2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
14 * From i386 code copyright (C) 1995 Linus Torvalds
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/errno.h>
21 #include <linux/string.h>
22 #include <linux/types.h>
23 #include <linux/ptrace.h>
24 #include <linux/mman.h>
26 #include <linux/smp.h>
27 #include <linux/interrupt.h>
28 #include <linux/init.h>
29 #include <linux/tty.h>
30 #include <linux/vt_kern.h> /* For unblank_screen() */
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/kprobes.h>
34 #include <linux/hugetlb.h>
35 #include <linux/syscalls.h>
36 #include <linux/uaccess.h>
38 #include <asm/system.h>
39 #include <asm/pgalloc.h>
40 #include <asm/sections.h>
41 #include <asm/traps.h>
42 #include <asm/syscalls.h>
44 #include <arch/interrupts.h>
46 static noinline
void force_sig_info_fault(const char *type
, int si_signo
,
47 int si_code
, unsigned long address
,
49 struct task_struct
*tsk
,
54 if (unlikely(tsk
->pid
< 2)) {
55 panic("Signal %d (code %d) at %#lx sent to %s!",
56 si_signo
, si_code
& 0xffff, address
,
57 is_idle_task(tsk
) ? "the idle task" : "init");
60 info
.si_signo
= si_signo
;
62 info
.si_code
= si_code
;
63 info
.si_addr
= (void __user
*)address
;
64 info
.si_trapno
= fault_num
;
65 trace_unhandled_signal(type
, regs
, address
, si_signo
);
66 force_sig_info(si_signo
, &info
, tsk
);
71 * Synthesize the fault a PL0 process would get by doing a word-load of
72 * an unaligned address or a high kernel address.
74 SYSCALL_DEFINE2(cmpxchg_badaddr
, unsigned long, address
,
75 struct pt_regs
*, regs
)
77 if (address
>= PAGE_OFFSET
)
78 force_sig_info_fault("atomic segfault", SIGSEGV
, SEGV_MAPERR
,
79 address
, INT_DTLB_MISS
, current
, regs
);
81 force_sig_info_fault("atomic alignment fault", SIGBUS
,
83 INT_UNALIGN_DATA
, current
, regs
);
86 * Adjust pc to point at the actual instruction, which is unusual
87 * for syscalls normally, but is appropriate when we are claiming
88 * that a syscall swint1 caused a page fault or bus error.
93 * Mark this as a caller-save interrupt, like a normal page fault,
94 * so that when we go through the signal handler path we will
95 * properly restore r0, r1, and r2 for the signal handler arguments.
97 regs
->flags
|= PT_FLAGS_CALLER_SAVES
;
103 static inline pmd_t
*vmalloc_sync_one(pgd_t
*pgd
, unsigned long address
)
105 unsigned index
= pgd_index(address
);
111 pgd_k
= init_mm
.pgd
+ index
;
113 if (!pgd_present(*pgd_k
))
116 pud
= pud_offset(pgd
, address
);
117 pud_k
= pud_offset(pgd_k
, address
);
118 if (!pud_present(*pud_k
))
121 pmd
= pmd_offset(pud
, address
);
122 pmd_k
= pmd_offset(pud_k
, address
);
123 if (!pmd_present(*pmd_k
))
125 if (!pmd_present(*pmd
)) {
126 set_pmd(pmd
, *pmd_k
);
127 arch_flush_lazy_mmu_mode();
129 BUG_ON(pmd_ptfn(*pmd
) != pmd_ptfn(*pmd_k
));
134 * Handle a fault on the vmalloc or module mapping area
136 static inline int vmalloc_fault(pgd_t
*pgd
, unsigned long address
)
141 /* Make sure we are in vmalloc area */
142 if (!(address
>= VMALLOC_START
&& address
< VMALLOC_END
))
146 * Synchronize this task's top level page-table
147 * with the 'reference' page table.
149 pmd_k
= vmalloc_sync_one(pgd
, address
);
152 if (pmd_huge(*pmd_k
))
153 return 0; /* support TILE huge_vmap() API */
154 pte_k
= pte_offset_kernel(pmd_k
, address
);
155 if (!pte_present(*pte_k
))
160 /* Wait until this PTE has completed migration. */
161 static void wait_for_migration(pte_t
*pte
)
163 if (pte_migrating(*pte
)) {
165 * Wait until the migrater fixes up this pte.
166 * We scale the loop count by the clock rate so we'll wait for
167 * a few seconds here.
170 int bound
= get_clock_rate();
171 while (pte_migrating(*pte
)) {
173 if (++retries
> bound
)
174 panic("Hit migrating PTE (%#llx) and"
175 " page PFN %#lx still migrating",
176 pte
->val
, pte_pfn(*pte
));
182 * It's not generally safe to use "current" to get the page table pointer,
183 * since we might be running an oprofile interrupt in the middle of a
186 static pgd_t
*get_current_pgd(void)
188 HV_Context ctx
= hv_inquire_context();
189 unsigned long pgd_pfn
= ctx
.page_table
>> PAGE_SHIFT
;
190 struct page
*pgd_page
= pfn_to_page(pgd_pfn
);
191 BUG_ON(PageHighMem(pgd_page
)); /* oops, HIGHPTE? */
192 return (pgd_t
*) __va(ctx
.page_table
);
196 * We can receive a page fault from a migrating PTE at any time.
197 * Handle it by just waiting until the fault resolves.
199 * It's also possible to get a migrating kernel PTE that resolves
200 * itself during the downcall from hypervisor to Linux. We just check
201 * here to see if the PTE seems valid, and if so we retry it.
203 * NOTE! We MUST NOT take any locks for this case. We may be in an
204 * interrupt or a critical region, and must do as little as possible.
205 * Similarly, we can't use atomic ops here, since we may be handling a
206 * fault caused by an atomic op access.
208 static int handle_migrating_pte(pgd_t
*pgd
, int fault_num
,
209 unsigned long address
,
210 int is_kernel_mode
, int write
)
217 if (pgd_addr_invalid(address
))
220 pgd
+= pgd_index(address
);
221 pud
= pud_offset(pgd
, address
);
222 if (!pud
|| !pud_present(*pud
))
224 pmd
= pmd_offset(pud
, address
);
225 if (!pmd
|| !pmd_present(*pmd
))
227 pte
= pmd_huge_page(*pmd
) ? ((pte_t
*)pmd
) :
228 pte_offset_kernel(pmd
, address
);
230 if (pte_migrating(pteval
)) {
231 wait_for_migration(pte
);
235 if (!is_kernel_mode
|| !pte_present(pteval
))
237 if (fault_num
== INT_ITLB_MISS
) {
238 if (pte_exec(pteval
))
241 if (pte_write(pteval
))
244 if (pte_read(pteval
))
252 * This routine is responsible for faulting in user pages.
253 * It passes the work off to one of the appropriate routines.
254 * It returns true if the fault was successfully handled.
256 static int handle_page_fault(struct pt_regs
*regs
,
259 unsigned long address
,
262 struct task_struct
*tsk
;
263 struct mm_struct
*mm
;
264 struct vm_area_struct
*vma
;
265 unsigned long stack_offset
;
271 /* on TILE, protection faults are always writes */
275 is_kernel_mode
= (EX1_PL(regs
->ex1
) != USER_PL
);
277 tsk
= validate_current();
280 * Check to see if we might be overwriting the stack, and bail
281 * out if so. The page fault code is a relatively likely
282 * place to get trapped in an infinite regress, and once we
283 * overwrite the whole stack, it becomes very hard to recover.
285 stack_offset
= stack_pointer
& (THREAD_SIZE
-1);
286 if (stack_offset
< THREAD_SIZE
/ 8) {
287 pr_alert("Potential stack overrun: sp %#lx\n",
290 pr_alert("Killing current process %d/%s\n",
291 tsk
->pid
, tsk
->comm
);
292 do_group_exit(SIGKILL
);
296 * Early on, we need to check for migrating PTE entries;
297 * see homecache.c. If we find a migrating PTE, we wait until
298 * the backing page claims to be done migrating, then we proceed.
299 * For kernel PTEs, we rewrite the PTE and return and retry.
300 * Otherwise, we treat the fault like a normal "no PTE" fault,
301 * rather than trying to patch up the existing PTE.
303 pgd
= get_current_pgd();
304 if (handle_migrating_pte(pgd
, fault_num
, address
,
305 is_kernel_mode
, write
))
308 si_code
= SEGV_MAPERR
;
311 * We fault-in kernel-space virtual memory on-demand. The
312 * 'reference' page table is init_mm.pgd.
314 * NOTE! We MUST NOT take any locks for this case. We may
315 * be in an interrupt or a critical region, and should
316 * only copy the information from the master page table,
319 * This verifies that the fault happens in kernel space
320 * and that the fault was not a protection fault.
322 if (unlikely(address
>= TASK_SIZE
&&
323 !is_arch_mappable_range(address
, 0))) {
324 if (is_kernel_mode
&& is_page_fault
&&
325 vmalloc_fault(pgd
, address
) >= 0)
328 * Don't take the mm semaphore here. If we fixup a prefetch
329 * fault we could otherwise deadlock.
331 mm
= NULL
; /* happy compiler */
333 goto bad_area_nosemaphore
;
337 * If we're trying to touch user-space addresses, we must
338 * be either at PL0, or else with interrupts enabled in the
339 * kernel, so either way we can re-enable interrupts here.
346 * If we're in an interrupt, have no user context or are running in an
347 * atomic region then we must not take the fault.
349 if (in_atomic() || !mm
) {
350 vma
= NULL
; /* happy compiler */
351 goto bad_area_nosemaphore
;
355 * When running in the kernel we expect faults to occur only to
356 * addresses in user space. All other faults represent errors in the
357 * kernel and should generate an OOPS. Unfortunately, in the case of an
358 * erroneous fault occurring in a code path which already holds mmap_sem
359 * we will deadlock attempting to validate the fault against the
360 * address space. Luckily the kernel only validly references user
361 * space from well defined areas of code, which are listed in the
364 * As the vast majority of faults will be valid we will only perform
365 * the source reference check when there is a possibility of a deadlock.
366 * Attempt to lock the address space, if we cannot we then validate the
367 * source. If this is invalid we can skip the address space check,
368 * thus avoiding the deadlock.
370 if (!down_read_trylock(&mm
->mmap_sem
)) {
371 if (is_kernel_mode
&&
372 !search_exception_tables(regs
->pc
)) {
373 vma
= NULL
; /* happy compiler */
374 goto bad_area_nosemaphore
;
376 down_read(&mm
->mmap_sem
);
379 vma
= find_vma(mm
, address
);
382 if (vma
->vm_start
<= address
)
384 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
386 if (regs
->sp
< PAGE_OFFSET
) {
388 * accessing the stack below sp is always a bug.
390 if (address
< regs
->sp
)
393 if (expand_stack(vma
, address
))
397 * Ok, we have a good vm_area for this memory access, so
401 si_code
= SEGV_ACCERR
;
402 if (fault_num
== INT_ITLB_MISS
) {
403 if (!(vma
->vm_flags
& VM_EXEC
))
406 #ifdef TEST_VERIFY_AREA
407 if (!is_page_fault
&& regs
->cs
== KERNEL_CS
)
408 pr_err("WP fault at "REGFMT
"\n", regs
->eip
);
410 if (!(vma
->vm_flags
& VM_WRITE
))
413 if (!is_page_fault
|| !(vma
->vm_flags
& VM_READ
))
419 * If for any reason at all we couldn't handle the fault,
420 * make sure we exit gracefully rather than endlessly redo
423 fault
= handle_mm_fault(mm
, vma
, address
, write
);
424 if (unlikely(fault
& VM_FAULT_ERROR
)) {
425 if (fault
& VM_FAULT_OOM
)
427 else if (fault
& VM_FAULT_SIGBUS
)
431 if (fault
& VM_FAULT_MAJOR
)
436 #if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
438 * If this was an asynchronous fault,
439 * restart the appropriate engine.
442 #if CHIP_HAS_TILE_DMA()
443 case INT_DMATLB_MISS
:
444 case INT_DMATLB_MISS_DWNCL
:
445 case INT_DMATLB_ACCESS
:
446 case INT_DMATLB_ACCESS_DWNCL
:
447 __insn_mtspr(SPR_DMA_CTR
, SPR_DMA_CTR__REQUEST_MASK
);
450 #if CHIP_HAS_SN_PROC()
451 case INT_SNITLB_MISS
:
452 case INT_SNITLB_MISS_DWNCL
:
453 __insn_mtspr(SPR_SNCTL
,
454 __insn_mfspr(SPR_SNCTL
) &
455 ~SPR_SNCTL__FRZPROC_MASK
);
461 up_read(&mm
->mmap_sem
);
465 * Something tried to access memory that isn't in our memory map..
466 * Fix it, but check if it's kernel or user first..
469 up_read(&mm
->mmap_sem
);
471 bad_area_nosemaphore
:
472 /* User mode accesses just cause a SIGSEGV */
473 if (!is_kernel_mode
) {
475 * It's possible to have interrupts off here.
479 force_sig_info_fault("segfault", SIGSEGV
, si_code
, address
,
480 fault_num
, tsk
, regs
);
485 /* Are we prepared to handle this kernel fault? */
486 if (fixup_exception(regs
))
490 * Oops. The kernel tried to access some bad page. We'll have to
491 * terminate things with extreme prejudice.
496 /* FIXME: no lookup_address() yet */
497 #ifdef SUPPORT_LOOKUP_ADDRESS
498 if (fault_num
== INT_ITLB_MISS
) {
499 pte_t
*pte
= lookup_address(address
);
501 if (pte
&& pte_present(*pte
) && !pte_exec_kernel(*pte
))
502 pr_crit("kernel tried to execute"
503 " non-executable page - exploit attempt?"
504 " (uid: %d)\n", current
->uid
);
507 if (address
< PAGE_SIZE
)
508 pr_alert("Unable to handle kernel NULL pointer dereference\n");
510 pr_alert("Unable to handle kernel paging request\n");
511 pr_alert(" at virtual address "REGFMT
", pc "REGFMT
"\n",
516 if (unlikely(tsk
->pid
< 2)) {
517 panic("Kernel page fault running %s!",
518 is_idle_task(tsk
) ? "the idle task" : "init");
522 * More FIXME: we should probably copy the i386 here and
523 * implement a generic die() routine. Not today.
530 do_group_exit(SIGKILL
);
533 * We ran out of memory, or some other thing happened to us that made
534 * us unable to handle the page fault gracefully.
537 up_read(&mm
->mmap_sem
);
538 if (is_global_init(tsk
)) {
540 down_read(&mm
->mmap_sem
);
543 pr_alert("VM: killing process %s\n", tsk
->comm
);
545 do_group_exit(SIGKILL
);
549 up_read(&mm
->mmap_sem
);
551 /* Kernel mode? Handle exceptions or die */
555 force_sig_info_fault("bus error", SIGBUS
, BUS_ADRERR
, address
,
556 fault_num
, tsk
, regs
);
562 /* We must release ICS before panicking or we won't get anywhere. */
563 #define ics_panic(fmt, ...) do { \
564 __insn_mtspr(SPR_INTERRUPT_CRITICAL_SECTION, 0); \
565 panic(fmt, __VA_ARGS__); \
569 * When we take an ITLB or DTLB fault or access violation in the
570 * supervisor while the critical section bit is set, the hypervisor is
571 * reluctant to write new values into the EX_CONTEXT_K_x registers,
572 * since that might indicate we have not yet squirreled the SPR
573 * contents away and can thus safely take a recursive interrupt.
574 * Accordingly, the hypervisor passes us the PC via SYSTEM_SAVE_K_2.
576 * Note that this routine is called before homecache_tlb_defer_enter(),
577 * which means that we can properly unlock any atomics that might
578 * be used there (good), but also means we must be very sensitive
579 * to not touch any data structures that might be located in memory
580 * that could migrate, as we could be entering the kernel on a dataplane
581 * cpu that has been deferring kernel TLB updates. This means, for
582 * example, that we can't migrate init_mm or its pgd.
584 struct intvec_state
do_page_fault_ics(struct pt_regs
*regs
, int fault_num
,
585 unsigned long address
,
588 unsigned long pc
= info
& ~1;
589 int write
= info
& 1;
590 pgd_t
*pgd
= get_current_pgd();
592 /* Retval is 1 at first since we will handle the fault fully. */
593 struct intvec_state state
= {
594 do_page_fault
, fault_num
, address
, write
, 1
597 /* Validate that we are plausibly in the right routine. */
598 if ((pc
& 0x7) != 0 || pc
< PAGE_OFFSET
||
599 (fault_num
!= INT_DTLB_MISS
&&
600 fault_num
!= INT_DTLB_ACCESS
)) {
601 unsigned long old_pc
= regs
->pc
;
603 ics_panic("Bad ICS page fault args:"
604 " old PC %#lx, fault %d/%d at %#lx\n",
605 old_pc
, fault_num
, write
, address
);
608 /* We might be faulting on a vmalloc page, so check that first. */
609 if (fault_num
!= INT_DTLB_ACCESS
&& vmalloc_fault(pgd
, address
) >= 0)
613 * If we faulted with ICS set in sys_cmpxchg, we are providing
614 * a user syscall service that should generate a signal on
615 * fault. We didn't set up a kernel stack on initial entry to
616 * sys_cmpxchg, but instead had one set up by the fault, which
617 * (because sys_cmpxchg never releases ICS) came to us via the
618 * SYSTEM_SAVE_K_2 mechanism, and thus EX_CONTEXT_K_[01] are
619 * still referencing the original user code. We release the
620 * atomic lock and rewrite pt_regs so that it appears that we
621 * came from user-space directly, and after we finish the
622 * fault we'll go back to user space and re-issue the swint.
623 * This way the backtrace information is correct if we need to
624 * emit a stack dump at any point while handling this.
626 * Must match register use in sys_cmpxchg().
628 if (pc
>= (unsigned long) sys_cmpxchg
&&
629 pc
< (unsigned long) __sys_cmpxchg_end
) {
631 /* Don't unlock before we could have locked. */
632 if (pc
>= (unsigned long)__sys_cmpxchg_grab_lock
) {
633 int *lock_ptr
= (int *)(regs
->regs
[ATOMIC_LOCK_REG
]);
634 __atomic_fault_unlock(lock_ptr
);
637 regs
->sp
= regs
->regs
[27];
641 * We can also fault in the atomic assembly, in which
642 * case we use the exception table to do the first-level fixup.
643 * We may re-fixup again in the real fault handler if it
644 * turns out the faulting address is just bad, and not,
645 * for example, migrating.
647 else if (pc
>= (unsigned long) __start_atomic_asm_code
&&
648 pc
< (unsigned long) __end_atomic_asm_code
) {
649 const struct exception_table_entry
*fixup
;
651 /* Unlock the atomic lock. */
652 int *lock_ptr
= (int *)(regs
->regs
[ATOMIC_LOCK_REG
]);
653 __atomic_fault_unlock(lock_ptr
);
655 fixup
= search_exception_tables(pc
);
657 ics_panic("ICS atomic fault not in table:"
658 " PC %#lx, fault %d", pc
, fault_num
);
659 regs
->pc
= fixup
->fixup
;
660 regs
->ex1
= PL_ICS_EX1(KERNEL_PL
, 0);
664 * Now that we have released the atomic lock (if necessary),
665 * it's safe to spin if the PTE that caused the fault was migrating.
667 if (fault_num
== INT_DTLB_ACCESS
)
669 if (handle_migrating_pte(pgd
, fault_num
, address
, 1, write
))
672 /* Return zero so that we continue on with normal fault handling. */
677 #endif /* !__tilegx__ */
680 * This routine handles page faults. It determines the address, and the
681 * problem, and then passes it handle_page_fault() for normal DTLB and
682 * ITLB issues, and for DMA or SN processor faults when we are in user
683 * space. For the latter, if we're in kernel mode, we just save the
684 * interrupt away appropriately and return immediately. We can't do
685 * page faults for user code while in kernel mode.
687 void do_page_fault(struct pt_regs
*regs
, int fault_num
,
688 unsigned long address
, unsigned long write
)
692 /* This case should have been handled by do_page_fault_ics(). */
695 #if CHIP_HAS_TILE_DMA()
697 * If it's a DMA fault, suspend the transfer while we're
698 * handling the miss; we'll restart after it's handled. If we
699 * don't suspend, it's possible that this process could swap
700 * out and back in, and restart the engine since the DMA is
703 if (fault_num
== INT_DMATLB_MISS
||
704 fault_num
== INT_DMATLB_ACCESS
||
705 fault_num
== INT_DMATLB_MISS_DWNCL
||
706 fault_num
== INT_DMATLB_ACCESS_DWNCL
) {
707 __insn_mtspr(SPR_DMA_CTR
, SPR_DMA_CTR__SUSPEND_MASK
);
708 while (__insn_mfspr(SPR_DMA_USER_STATUS
) &
709 SPR_DMA_STATUS__BUSY_MASK
)
714 /* Validate fault num and decide if this is a first-time page fault. */
718 #if CHIP_HAS_TILE_DMA()
719 case INT_DMATLB_MISS
:
720 case INT_DMATLB_MISS_DWNCL
:
722 #if CHIP_HAS_SN_PROC()
723 case INT_SNITLB_MISS
:
724 case INT_SNITLB_MISS_DWNCL
:
729 case INT_DTLB_ACCESS
:
730 #if CHIP_HAS_TILE_DMA()
731 case INT_DMATLB_ACCESS
:
732 case INT_DMATLB_ACCESS_DWNCL
:
738 panic("Bad fault number %d in do_page_fault", fault_num
);
741 #if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
742 if (EX1_PL(regs
->ex1
) != USER_PL
) {
743 struct async_tlb
*async
;
745 #if CHIP_HAS_TILE_DMA()
746 case INT_DMATLB_MISS
:
747 case INT_DMATLB_ACCESS
:
748 case INT_DMATLB_MISS_DWNCL
:
749 case INT_DMATLB_ACCESS_DWNCL
:
750 async
= ¤t
->thread
.dma_async_tlb
;
753 #if CHIP_HAS_SN_PROC()
754 case INT_SNITLB_MISS
:
755 case INT_SNITLB_MISS_DWNCL
:
756 async
= ¤t
->thread
.sn_async_tlb
;
765 * No vmalloc check required, so we can allow
766 * interrupts immediately at this point.
770 set_thread_flag(TIF_ASYNC_TLB
);
771 if (async
->fault_num
!= 0) {
772 panic("Second async fault %d;"
773 " old fault was %d (%#lx/%ld)",
774 fault_num
, async
->fault_num
,
777 BUG_ON(fault_num
== 0);
778 async
->fault_num
= fault_num
;
779 async
->is_fault
= is_page_fault
;
780 async
->is_write
= write
;
781 async
->address
= address
;
787 handle_page_fault(regs
, fault_num
, is_page_fault
, address
, write
);
791 #if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
793 * Check an async_tlb structure to see if a deferred fault is waiting,
794 * and if so pass it to the page-fault code.
796 static void handle_async_page_fault(struct pt_regs
*regs
,
797 struct async_tlb
*async
)
799 if (async
->fault_num
) {
801 * Clear async->fault_num before calling the page-fault
802 * handler so that if we re-interrupt before returning
803 * from the function we have somewhere to put the
804 * information from the new interrupt.
806 int fault_num
= async
->fault_num
;
807 async
->fault_num
= 0;
808 handle_page_fault(regs
, fault_num
, async
->is_fault
,
809 async
->address
, async
->is_write
);
814 * This routine effectively re-issues asynchronous page faults
815 * when we are returning to user space.
817 void do_async_page_fault(struct pt_regs
*regs
)
820 * Clear thread flag early. If we re-interrupt while processing
821 * code here, we will reset it and recall this routine before
822 * returning to user space.
824 clear_thread_flag(TIF_ASYNC_TLB
);
826 #if CHIP_HAS_TILE_DMA()
827 handle_async_page_fault(regs
, ¤t
->thread
.dma_async_tlb
);
829 #if CHIP_HAS_SN_PROC()
830 handle_async_page_fault(regs
, ¤t
->thread
.sn_async_tlb
);
833 #endif /* CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC() */
836 void vmalloc_sync_all(void)
839 /* Currently all L1 kernel pmd's are static and shared. */
840 BUG_ON(pgd_index(VMALLOC_END
) != pgd_index(VMALLOC_START
));
843 * Note that races in the updates of insync and start aren't
844 * problematic: insync can only get set bits added, and updates to
845 * start are only improving performance (without affecting correctness
848 static DECLARE_BITMAP(insync
, PTRS_PER_PGD
);
849 static unsigned long start
= PAGE_OFFSET
;
850 unsigned long address
;
852 BUILD_BUG_ON(PAGE_OFFSET
& ~PGDIR_MASK
);
853 for (address
= start
; address
>= PAGE_OFFSET
; address
+= PGDIR_SIZE
) {
854 if (!test_bit(pgd_index(address
), insync
)) {
856 struct list_head
*pos
;
858 spin_lock_irqsave(&pgd_lock
, flags
);
859 list_for_each(pos
, &pgd_list
)
860 if (!vmalloc_sync_one(list_to_pgd(pos
),
862 /* Must be at first entry in list. */
863 BUG_ON(pos
!= pgd_list
.next
);
866 spin_unlock_irqrestore(&pgd_lock
, flags
);
867 if (pos
!= pgd_list
.next
)
868 set_bit(pgd_index(address
), insync
);
870 if (address
== start
&& test_bit(pgd_index(address
), insync
))
871 start
= address
+ PGDIR_SIZE
;