2 * Copyright (C) 2004 PathScale, Inc
3 * Copyright (C) 2004 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
4 * Licensed under the GPL
12 #include "as-layout.h"
13 #include "kern_util.h"
15 #include "sysdep/mcontext.h"
17 void (*sig_info
[NSIG
])(int, struct uml_pt_regs
*) = {
18 [SIGTRAP
] = relay_signal
,
19 [SIGFPE
] = relay_signal
,
20 [SIGILL
] = relay_signal
,
22 [SIGBUS
] = bus_handler
,
23 [SIGSEGV
] = segv_handler
,
24 [SIGIO
] = sigio_handler
,
25 [SIGVTALRM
] = timer_handler
};
27 static void sig_handler_common(int sig
, mcontext_t
*mc
)
30 int save_errno
= errno
;
34 /* For segfaults, we want the data from the sigcontext. */
35 get_regs_from_mc(&r
, mc
);
36 GET_FAULTINFO_FROM_MC(r
.faultinfo
, mc
);
39 /* enable signals if sig isn't IRQ signal */
40 if ((sig
!= SIGIO
) && (sig
!= SIGWINCH
) && (sig
!= SIGVTALRM
))
43 (*sig_info
[sig
])(sig
, &r
);
49 * These are the asynchronous signals. SIGPROF is excluded because we want to
50 * be able to profile all of UML, not just the non-critical sections. If
51 * profiling is not thread-safe, then that is not my problem. We can disable
52 * profiling when SMP is enabled in that case.
55 #define SIGIO_MASK (1 << SIGIO_BIT)
57 #define SIGVTALRM_BIT 1
58 #define SIGVTALRM_MASK (1 << SIGVTALRM_BIT)
60 static int signals_enabled
;
61 static unsigned int signals_pending
;
63 void sig_handler(int sig
, mcontext_t
*mc
)
67 enabled
= signals_enabled
;
68 if (!enabled
&& (sig
== SIGIO
)) {
69 signals_pending
|= SIGIO_MASK
;
75 sig_handler_common(sig
, mc
);
80 static void real_alarm_handler(mcontext_t
*mc
)
82 struct uml_pt_regs regs
;
85 get_regs_from_mc(®s
, mc
);
88 timer_handler(SIGVTALRM
, ®s
);
91 void alarm_handler(int sig
, mcontext_t
*mc
)
95 enabled
= signals_enabled
;
96 if (!signals_enabled
) {
97 signals_pending
|= SIGVTALRM_MASK
;
103 real_alarm_handler(mc
);
104 set_signals(enabled
);
107 void timer_init(void)
109 set_handler(SIGVTALRM
);
112 void set_sigstack(void *sig_stack
, int size
)
114 stack_t stack
= ((stack_t
) { .ss_flags
= 0,
115 .ss_sp
= (__ptr_t
) sig_stack
,
116 .ss_size
= size
- sizeof(void *) });
118 if (sigaltstack(&stack
, NULL
) != 0)
119 panic("enabling signal stack failed, errno = %d\n", errno
);
122 static void (*handlers
[_NSIG
])(int sig
, mcontext_t
*mc
) = {
123 [SIGSEGV
] = sig_handler
,
124 [SIGBUS
] = sig_handler
,
125 [SIGILL
] = sig_handler
,
126 [SIGFPE
] = sig_handler
,
127 [SIGTRAP
] = sig_handler
,
129 [SIGIO
] = sig_handler
,
130 [SIGWINCH
] = sig_handler
,
131 [SIGVTALRM
] = alarm_handler
135 static void hard_handler(int sig
, siginfo_t
*info
, void *p
)
137 struct ucontext
*uc
= p
;
138 mcontext_t
*mc
= &uc
->uc_mcontext
;
139 unsigned long pending
= 1UL << sig
;
145 * pending comes back with one bit set for each
146 * interrupt that arrived while setting up the stack,
147 * plus a bit for this interrupt, plus the zero bit is
148 * set if this is a nested interrupt.
149 * If bail is true, then we interrupted another
150 * handler setting up the stack. In this case, we
151 * have to return, and the upper handler will deal
152 * with this interrupt.
154 bail
= to_irq_stack(&pending
);
158 nested
= pending
& 1;
161 while ((sig
= ffs(pending
)) != 0){
163 pending
&= ~(1 << sig
);
164 (*handlers
[sig
])(sig
, mc
);
168 * Again, pending comes back with a mask of signals
169 * that arrived while tearing down the stack. If this
170 * is non-zero, we just go back, set up the stack
171 * again, and handle the new interrupts.
174 pending
= from_irq_stack(nested
);
178 void set_handler(int sig
)
180 struct sigaction action
;
181 int flags
= SA_SIGINFO
| SA_ONSTACK
;
184 action
.sa_sigaction
= hard_handler
;
187 sigemptyset(&action
.sa_mask
);
188 sigaddset(&action
.sa_mask
, SIGVTALRM
);
189 sigaddset(&action
.sa_mask
, SIGIO
);
190 sigaddset(&action
.sa_mask
, SIGWINCH
);
195 if (sigismember(&action
.sa_mask
, sig
))
196 flags
|= SA_RESTART
; /* if it's an irq signal */
198 action
.sa_flags
= flags
;
199 action
.sa_restorer
= NULL
;
200 if (sigaction(sig
, &action
, NULL
) < 0)
201 panic("sigaction failed - errno = %d\n", errno
);
203 sigemptyset(&sig_mask
);
204 sigaddset(&sig_mask
, sig
);
205 if (sigprocmask(SIG_UNBLOCK
, &sig_mask
, NULL
) < 0)
206 panic("sigprocmask failed - errno = %d\n", errno
);
209 int change_sig(int signal
, int on
)
213 sigemptyset(&sigset
);
214 sigaddset(&sigset
, signal
);
215 if (sigprocmask(on
? SIG_UNBLOCK
: SIG_BLOCK
, &sigset
, NULL
) < 0)
221 void block_signals(void)
225 * This must return with signals disabled, so this barrier
226 * ensures that writes are flushed out before the return.
227 * This might matter if gcc figures out how to inline this and
228 * decides to shuffle this code into the caller.
233 void unblock_signals(void)
237 if (signals_enabled
== 1)
241 * We loop because the IRQ handler returns with interrupts off. So,
242 * interrupts may have arrived and we need to re-enable them and
243 * recheck signals_pending.
247 * Save and reset save_pending after enabling signals. This
248 * way, signals_pending won't be changed while we're reading it.
253 * Setting signals_enabled and reading signals_pending must
254 * happen in this order.
258 save_pending
= signals_pending
;
259 if (save_pending
== 0)
265 * We have pending interrupts, so disable signals, as the
266 * handlers expect them off when they are called. They will
267 * be enabled again above.
273 * Deal with SIGIO first because the alarm handler might
274 * schedule, leaving the pending SIGIO stranded until we come
277 if (save_pending
& SIGIO_MASK
)
278 sig_handler_common(SIGIO
, NULL
);
280 if (save_pending
& SIGVTALRM_MASK
)
281 real_alarm_handler(NULL
);
285 int get_signals(void)
287 return signals_enabled
;
290 int set_signals(int enable
)
293 if (signals_enabled
== enable
)
296 ret
= signals_enabled
;
299 else block_signals();