spi-topcliff-pch: Fix issue for transmitting over 4KByte
[zen-stable.git] / arch / x86 / kernel / dumpstack_64.c
blob17107bd6e1f0af06b5e59b1c48d452305a8b3214
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 */
5 #include <linux/kallsyms.h>
6 #include <linux/kprobes.h>
7 #include <linux/uaccess.h>
8 #include <linux/hardirq.h>
9 #include <linux/kdebug.h>
10 #include <linux/module.h>
11 #include <linux/ptrace.h>
12 #include <linux/kexec.h>
13 #include <linux/sysfs.h>
14 #include <linux/bug.h>
15 #include <linux/nmi.h>
17 #include <asm/stacktrace.h>
20 #define N_EXCEPTION_STACKS_END \
21 (N_EXCEPTION_STACKS + DEBUG_STKSZ/EXCEPTION_STKSZ - 2)
23 static char x86_stack_ids[][8] = {
24 [ DEBUG_STACK-1 ] = "#DB",
25 [ NMI_STACK-1 ] = "NMI",
26 [ DOUBLEFAULT_STACK-1 ] = "#DF",
27 [ STACKFAULT_STACK-1 ] = "#SS",
28 [ MCE_STACK-1 ] = "#MC",
29 #if DEBUG_STKSZ > EXCEPTION_STKSZ
30 [ N_EXCEPTION_STACKS ...
31 N_EXCEPTION_STACKS_END ] = "#DB[?]"
32 #endif
35 static unsigned long *in_exception_stack(unsigned cpu, unsigned long stack,
36 unsigned *usedp, char **idp)
38 unsigned k;
41 * Iterate over all exception stacks, and figure out whether
42 * 'stack' is in one of them:
44 for (k = 0; k < N_EXCEPTION_STACKS; k++) {
45 unsigned long end = per_cpu(orig_ist, cpu).ist[k];
47 * Is 'stack' above this exception frame's end?
48 * If yes then skip to the next frame.
50 if (stack >= end)
51 continue;
53 * Is 'stack' above this exception frame's start address?
54 * If yes then we found the right frame.
56 if (stack >= end - EXCEPTION_STKSZ) {
58 * Make sure we only iterate through an exception
59 * stack once. If it comes up for the second time
60 * then there's something wrong going on - just
61 * break out and return NULL:
63 if (*usedp & (1U << k))
64 break;
65 *usedp |= 1U << k;
66 *idp = x86_stack_ids[k];
67 return (unsigned long *)end;
70 * If this is a debug stack, and if it has a larger size than
71 * the usual exception stacks, then 'stack' might still
72 * be within the lower portion of the debug stack:
74 #if DEBUG_STKSZ > EXCEPTION_STKSZ
75 if (k == DEBUG_STACK - 1 && stack >= end - DEBUG_STKSZ) {
76 unsigned j = N_EXCEPTION_STACKS - 1;
79 * Black magic. A large debug stack is composed of
80 * multiple exception stack entries, which we
81 * iterate through now. Dont look:
83 do {
84 ++j;
85 end -= EXCEPTION_STKSZ;
86 x86_stack_ids[j][4] = '1' +
87 (j - N_EXCEPTION_STACKS);
88 } while (stack < end - EXCEPTION_STKSZ);
89 if (*usedp & (1U << j))
90 break;
91 *usedp |= 1U << j;
92 *idp = x86_stack_ids[j];
93 return (unsigned long *)end;
95 #endif
97 return NULL;
100 static inline int
101 in_irq_stack(unsigned long *stack, unsigned long *irq_stack,
102 unsigned long *irq_stack_end)
104 return (stack >= irq_stack && stack < irq_stack_end);
108 * x86-64 can have up to three kernel stacks:
109 * process stack
110 * interrupt stack
111 * severe exception (double fault, nmi, stack fault, debug, mce) hardware stack
114 void dump_trace(struct task_struct *task, struct pt_regs *regs,
115 unsigned long *stack, unsigned long bp,
116 const struct stacktrace_ops *ops, void *data)
118 const unsigned cpu = get_cpu();
119 unsigned long *irq_stack_end =
120 (unsigned long *)per_cpu(irq_stack_ptr, cpu);
121 unsigned used = 0;
122 struct thread_info *tinfo;
123 int graph = 0;
124 unsigned long dummy;
126 if (!task)
127 task = current;
129 if (!stack) {
130 if (regs)
131 stack = (unsigned long *)regs->sp;
132 else if (task != current)
133 stack = (unsigned long *)task->thread.sp;
134 else
135 stack = &dummy;
138 if (!bp)
139 bp = stack_frame(task, regs);
141 * Print function call entries in all stacks, starting at the
142 * current stack address. If the stacks consist of nested
143 * exceptions
145 tinfo = task_thread_info(task);
146 for (;;) {
147 char *id;
148 unsigned long *estack_end;
149 estack_end = in_exception_stack(cpu, (unsigned long)stack,
150 &used, &id);
152 if (estack_end) {
153 if (ops->stack(data, id) < 0)
154 break;
156 bp = ops->walk_stack(tinfo, stack, bp, ops,
157 data, estack_end, &graph);
158 ops->stack(data, "<EOE>");
160 * We link to the next stack via the
161 * second-to-last pointer (index -2 to end) in the
162 * exception stack:
164 stack = (unsigned long *) estack_end[-2];
165 continue;
167 if (irq_stack_end) {
168 unsigned long *irq_stack;
169 irq_stack = irq_stack_end -
170 (IRQ_STACK_SIZE - 64) / sizeof(*irq_stack);
172 if (in_irq_stack(stack, irq_stack, irq_stack_end)) {
173 if (ops->stack(data, "IRQ") < 0)
174 break;
175 bp = ops->walk_stack(tinfo, stack, bp,
176 ops, data, irq_stack_end, &graph);
178 * We link to the next stack (which would be
179 * the process stack normally) the last
180 * pointer (index -1 to end) in the IRQ stack:
182 stack = (unsigned long *) (irq_stack_end[-1]);
183 irq_stack_end = NULL;
184 ops->stack(data, "EOI");
185 continue;
188 break;
192 * This handles the process stack:
194 bp = ops->walk_stack(tinfo, stack, bp, ops, data, NULL, &graph);
195 put_cpu();
197 EXPORT_SYMBOL(dump_trace);
199 void
200 show_stack_log_lvl(struct task_struct *task, struct pt_regs *regs,
201 unsigned long *sp, unsigned long bp, char *log_lvl)
203 unsigned long *irq_stack_end;
204 unsigned long *irq_stack;
205 unsigned long *stack;
206 int cpu;
207 int i;
209 preempt_disable();
210 cpu = smp_processor_id();
212 irq_stack_end = (unsigned long *)(per_cpu(irq_stack_ptr, cpu));
213 irq_stack = (unsigned long *)(per_cpu(irq_stack_ptr, cpu) - IRQ_STACK_SIZE);
216 * Debugging aid: "show_stack(NULL, NULL);" prints the
217 * back trace for this cpu:
219 if (sp == NULL) {
220 if (task)
221 sp = (unsigned long *)task->thread.sp;
222 else
223 sp = (unsigned long *)&sp;
226 stack = sp;
227 for (i = 0; i < kstack_depth_to_print; i++) {
228 if (stack >= irq_stack && stack <= irq_stack_end) {
229 if (stack == irq_stack_end) {
230 stack = (unsigned long *) (irq_stack_end[-1]);
231 printk(KERN_CONT " <EOI> ");
233 } else {
234 if (((long) stack & (THREAD_SIZE-1)) == 0)
235 break;
237 if (i && ((i % STACKSLOTS_PER_LINE) == 0))
238 printk(KERN_CONT "\n");
239 printk(KERN_CONT " %016lx", *stack++);
240 touch_nmi_watchdog();
242 preempt_enable();
244 printk(KERN_CONT "\n");
245 show_trace_log_lvl(task, regs, sp, bp, log_lvl);
248 void show_registers(struct pt_regs *regs)
250 int i;
251 unsigned long sp;
252 const int cpu = smp_processor_id();
253 struct task_struct *cur = current;
255 sp = regs->sp;
256 printk("CPU %d ", cpu);
257 print_modules();
258 __show_regs(regs, 1);
259 printk("Process %s (pid: %d, threadinfo %p, task %p)\n",
260 cur->comm, cur->pid, task_thread_info(cur), cur);
263 * When in-kernel, we also print out the stack and code at the
264 * time of the fault..
266 if (!user_mode(regs)) {
267 unsigned int code_prologue = code_bytes * 43 / 64;
268 unsigned int code_len = code_bytes;
269 unsigned char c;
270 u8 *ip;
272 printk(KERN_DEFAULT "Stack:\n");
273 show_stack_log_lvl(NULL, regs, (unsigned long *)sp,
274 0, KERN_DEFAULT);
276 printk(KERN_DEFAULT "Code: ");
278 ip = (u8 *)regs->ip - code_prologue;
279 if (ip < (u8 *)PAGE_OFFSET || probe_kernel_address(ip, c)) {
280 /* try starting at IP */
281 ip = (u8 *)regs->ip;
282 code_len = code_len - code_prologue + 1;
284 for (i = 0; i < code_len; i++, ip++) {
285 if (ip < (u8 *)PAGE_OFFSET ||
286 probe_kernel_address(ip, c)) {
287 printk(KERN_CONT " Bad RIP value.");
288 break;
290 if (ip == (u8 *)regs->ip)
291 printk(KERN_CONT "<%02x> ", c);
292 else
293 printk(KERN_CONT "%02x ", c);
296 printk(KERN_CONT "\n");
299 int is_valid_bugaddr(unsigned long ip)
301 unsigned short ud2;
303 if (__copy_from_user(&ud2, (const void __user *) ip, sizeof(ud2)))
304 return 0;
306 return ud2 == 0x0b0f;