2 * linux/arch/x86_64/mm/init.c
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz>
6 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/module.h>
31 #include <linux/memory.h>
32 #include <linux/memory_hotplug.h>
33 #include <linux/nmi.h>
34 #include <linux/gfp.h>
36 #include <asm/processor.h>
37 #include <asm/bios_ebda.h>
38 #include <asm/system.h>
39 #include <asm/uaccess.h>
40 #include <asm/pgtable.h>
41 #include <asm/pgalloc.h>
43 #include <asm/fixmap.h>
47 #include <asm/mmu_context.h>
48 #include <asm/proto.h>
50 #include <asm/sections.h>
51 #include <asm/kdebug.h>
53 #include <asm/cacheflush.h>
55 #include <asm/uv/uv.h>
56 #include <asm/setup.h>
58 static int __init
parse_direct_gbpages_off(char *arg
)
63 early_param("nogbpages", parse_direct_gbpages_off
);
65 static int __init
parse_direct_gbpages_on(char *arg
)
70 early_param("gbpages", parse_direct_gbpages_on
);
73 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
74 * physical space so we can cache the place of the first one and move
75 * around without checking the pgd every time.
78 pteval_t __supported_pte_mask __read_mostly
= ~_PAGE_IOMAP
;
79 EXPORT_SYMBOL_GPL(__supported_pte_mask
);
81 int force_personality32
;
85 * Control non executable heap for 32bit processes.
86 * To control the stack too use noexec=off
88 * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
89 * off PROT_READ implies PROT_EXEC
91 static int __init
nonx32_setup(char *str
)
93 if (!strcmp(str
, "on"))
94 force_personality32
&= ~READ_IMPLIES_EXEC
;
95 else if (!strcmp(str
, "off"))
96 force_personality32
|= READ_IMPLIES_EXEC
;
99 __setup("noexec32=", nonx32_setup
);
102 * When memory was added/removed make sure all the processes MM have
103 * suitable PGD entries in the local PGD level page.
105 void sync_global_pgds(unsigned long start
, unsigned long end
)
107 unsigned long address
;
109 for (address
= start
; address
<= end
; address
+= PGDIR_SIZE
) {
110 const pgd_t
*pgd_ref
= pgd_offset_k(address
);
113 if (pgd_none(*pgd_ref
))
116 spin_lock(&pgd_lock
);
117 list_for_each_entry(page
, &pgd_list
, lru
) {
119 spinlock_t
*pgt_lock
;
121 pgd
= (pgd_t
*)page_address(page
) + pgd_index(address
);
122 /* the pgt_lock only for Xen */
123 pgt_lock
= &pgd_page_get_mm(page
)->page_table_lock
;
127 set_pgd(pgd
, *pgd_ref
);
129 BUG_ON(pgd_page_vaddr(*pgd
)
130 != pgd_page_vaddr(*pgd_ref
));
132 spin_unlock(pgt_lock
);
134 spin_unlock(&pgd_lock
);
139 * NOTE: This function is marked __ref because it calls __init function
140 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
142 static __ref
void *spp_getpage(void)
147 ptr
= (void *) get_zeroed_page(GFP_ATOMIC
| __GFP_NOTRACK
);
149 ptr
= alloc_bootmem_pages(PAGE_SIZE
);
151 if (!ptr
|| ((unsigned long)ptr
& ~PAGE_MASK
)) {
152 panic("set_pte_phys: cannot allocate page data %s\n",
153 after_bootmem
? "after bootmem" : "");
156 pr_debug("spp_getpage %p\n", ptr
);
161 static pud_t
*fill_pud(pgd_t
*pgd
, unsigned long vaddr
)
163 if (pgd_none(*pgd
)) {
164 pud_t
*pud
= (pud_t
*)spp_getpage();
165 pgd_populate(&init_mm
, pgd
, pud
);
166 if (pud
!= pud_offset(pgd
, 0))
167 printk(KERN_ERR
"PAGETABLE BUG #00! %p <-> %p\n",
168 pud
, pud_offset(pgd
, 0));
170 return pud_offset(pgd
, vaddr
);
173 static pmd_t
*fill_pmd(pud_t
*pud
, unsigned long vaddr
)
175 if (pud_none(*pud
)) {
176 pmd_t
*pmd
= (pmd_t
*) spp_getpage();
177 pud_populate(&init_mm
, pud
, pmd
);
178 if (pmd
!= pmd_offset(pud
, 0))
179 printk(KERN_ERR
"PAGETABLE BUG #01! %p <-> %p\n",
180 pmd
, pmd_offset(pud
, 0));
182 return pmd_offset(pud
, vaddr
);
185 static pte_t
*fill_pte(pmd_t
*pmd
, unsigned long vaddr
)
187 if (pmd_none(*pmd
)) {
188 pte_t
*pte
= (pte_t
*) spp_getpage();
189 pmd_populate_kernel(&init_mm
, pmd
, pte
);
190 if (pte
!= pte_offset_kernel(pmd
, 0))
191 printk(KERN_ERR
"PAGETABLE BUG #02!\n");
193 return pte_offset_kernel(pmd
, vaddr
);
196 void set_pte_vaddr_pud(pud_t
*pud_page
, unsigned long vaddr
, pte_t new_pte
)
202 pud
= pud_page
+ pud_index(vaddr
);
203 pmd
= fill_pmd(pud
, vaddr
);
204 pte
= fill_pte(pmd
, vaddr
);
206 set_pte(pte
, new_pte
);
209 * It's enough to flush this one mapping.
210 * (PGE mappings get flushed as well)
212 __flush_tlb_one(vaddr
);
215 void set_pte_vaddr(unsigned long vaddr
, pte_t pteval
)
220 pr_debug("set_pte_vaddr %lx to %lx\n", vaddr
, native_pte_val(pteval
));
222 pgd
= pgd_offset_k(vaddr
);
223 if (pgd_none(*pgd
)) {
225 "PGD FIXMAP MISSING, it should be setup in head.S!\n");
228 pud_page
= (pud_t
*)pgd_page_vaddr(*pgd
);
229 set_pte_vaddr_pud(pud_page
, vaddr
, pteval
);
232 pmd_t
* __init
populate_extra_pmd(unsigned long vaddr
)
237 pgd
= pgd_offset_k(vaddr
);
238 pud
= fill_pud(pgd
, vaddr
);
239 return fill_pmd(pud
, vaddr
);
242 pte_t
* __init
populate_extra_pte(unsigned long vaddr
)
246 pmd
= populate_extra_pmd(vaddr
);
247 return fill_pte(pmd
, vaddr
);
251 * Create large page table mappings for a range of physical addresses.
253 static void __init
__init_extra_mapping(unsigned long phys
, unsigned long size
,
260 BUG_ON((phys
& ~PMD_MASK
) || (size
& ~PMD_MASK
));
261 for (; size
; phys
+= PMD_SIZE
, size
-= PMD_SIZE
) {
262 pgd
= pgd_offset_k((unsigned long)__va(phys
));
263 if (pgd_none(*pgd
)) {
264 pud
= (pud_t
*) spp_getpage();
265 set_pgd(pgd
, __pgd(__pa(pud
) | _KERNPG_TABLE
|
268 pud
= pud_offset(pgd
, (unsigned long)__va(phys
));
269 if (pud_none(*pud
)) {
270 pmd
= (pmd_t
*) spp_getpage();
271 set_pud(pud
, __pud(__pa(pmd
) | _KERNPG_TABLE
|
274 pmd
= pmd_offset(pud
, phys
);
275 BUG_ON(!pmd_none(*pmd
));
276 set_pmd(pmd
, __pmd(phys
| pgprot_val(prot
)));
280 void __init
init_extra_mapping_wb(unsigned long phys
, unsigned long size
)
282 __init_extra_mapping(phys
, size
, PAGE_KERNEL_LARGE
);
285 void __init
init_extra_mapping_uc(unsigned long phys
, unsigned long size
)
287 __init_extra_mapping(phys
, size
, PAGE_KERNEL_LARGE_NOCACHE
);
291 * The head.S code sets up the kernel high mapping:
293 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
295 * phys_addr holds the negative offset to the kernel, which is added
296 * to the compile time generated pmds. This results in invalid pmds up
297 * to the point where we hit the physaddr 0 mapping.
299 * We limit the mappings to the region from _text to _brk_end. _brk_end
300 * is rounded up to the 2MB boundary. This catches the invalid pmds as
301 * well, as they are located before _text:
303 void __init
cleanup_highmap(void)
305 unsigned long vaddr
= __START_KERNEL_map
;
306 unsigned long vaddr_end
= __START_KERNEL_map
+ (max_pfn_mapped
<< PAGE_SHIFT
);
307 unsigned long end
= roundup((unsigned long)_brk_end
, PMD_SIZE
) - 1;
308 pmd_t
*pmd
= level2_kernel_pgt
;
310 for (; vaddr
+ PMD_SIZE
- 1 < vaddr_end
; pmd
++, vaddr
+= PMD_SIZE
) {
313 if (vaddr
< (unsigned long) _text
|| vaddr
> end
)
314 set_pmd(pmd
, __pmd(0));
318 static __ref
void *alloc_low_page(unsigned long *phys
)
320 unsigned long pfn
= pgt_buf_end
++;
324 adr
= (void *)get_zeroed_page(GFP_ATOMIC
| __GFP_NOTRACK
);
330 if (pfn
>= pgt_buf_top
)
331 panic("alloc_low_page: ran out of memory");
333 adr
= early_memremap(pfn
* PAGE_SIZE
, PAGE_SIZE
);
335 *phys
= pfn
* PAGE_SIZE
;
339 static __ref
void *map_low_page(void *virt
)
342 unsigned long phys
, left
;
348 left
= phys
& (PAGE_SIZE
- 1);
349 adr
= early_memremap(phys
& PAGE_MASK
, PAGE_SIZE
);
350 adr
= (void *)(((unsigned long)adr
) | left
);
355 static __ref
void unmap_low_page(void *adr
)
360 early_iounmap((void *)((unsigned long)adr
& PAGE_MASK
), PAGE_SIZE
);
363 static unsigned long __meminit
364 phys_pte_init(pte_t
*pte_page
, unsigned long addr
, unsigned long end
,
368 unsigned long last_map_addr
= end
;
371 pte_t
*pte
= pte_page
+ pte_index(addr
);
373 for(i
= pte_index(addr
); i
< PTRS_PER_PTE
; i
++, addr
+= PAGE_SIZE
, pte
++) {
376 if (!after_bootmem
) {
377 for(; i
< PTRS_PER_PTE
; i
++, pte
++)
378 set_pte(pte
, __pte(0));
384 * We will re-use the existing mapping.
385 * Xen for example has some special requirements, like mapping
386 * pagetable pages as RO. So assume someone who pre-setup
387 * these mappings are more intelligent.
395 printk(" pte=%p addr=%lx pte=%016lx\n",
396 pte
, addr
, pfn_pte(addr
>> PAGE_SHIFT
, PAGE_KERNEL
).pte
);
398 set_pte(pte
, pfn_pte(addr
>> PAGE_SHIFT
, prot
));
399 last_map_addr
= (addr
& PAGE_MASK
) + PAGE_SIZE
;
402 update_page_count(PG_LEVEL_4K
, pages
);
404 return last_map_addr
;
407 static unsigned long __meminit
408 phys_pmd_init(pmd_t
*pmd_page
, unsigned long address
, unsigned long end
,
409 unsigned long page_size_mask
, pgprot_t prot
)
411 unsigned long pages
= 0;
412 unsigned long last_map_addr
= end
;
414 int i
= pmd_index(address
);
416 for (; i
< PTRS_PER_PMD
; i
++, address
+= PMD_SIZE
) {
417 unsigned long pte_phys
;
418 pmd_t
*pmd
= pmd_page
+ pmd_index(address
);
420 pgprot_t new_prot
= prot
;
422 if (address
>= end
) {
423 if (!after_bootmem
) {
424 for (; i
< PTRS_PER_PMD
; i
++, pmd
++)
425 set_pmd(pmd
, __pmd(0));
431 if (!pmd_large(*pmd
)) {
432 spin_lock(&init_mm
.page_table_lock
);
433 pte
= map_low_page((pte_t
*)pmd_page_vaddr(*pmd
));
434 last_map_addr
= phys_pte_init(pte
, address
,
437 spin_unlock(&init_mm
.page_table_lock
);
441 * If we are ok with PG_LEVEL_2M mapping, then we will
442 * use the existing mapping,
444 * Otherwise, we will split the large page mapping but
445 * use the same existing protection bits except for
446 * large page, so that we don't violate Intel's TLB
447 * Application note (317080) which says, while changing
448 * the page sizes, new and old translations should
449 * not differ with respect to page frame and
452 if (page_size_mask
& (1 << PG_LEVEL_2M
)) {
456 new_prot
= pte_pgprot(pte_clrhuge(*(pte_t
*)pmd
));
459 if (page_size_mask
& (1<<PG_LEVEL_2M
)) {
461 spin_lock(&init_mm
.page_table_lock
);
462 set_pte((pte_t
*)pmd
,
463 pfn_pte(address
>> PAGE_SHIFT
,
464 __pgprot(pgprot_val(prot
) | _PAGE_PSE
)));
465 spin_unlock(&init_mm
.page_table_lock
);
466 last_map_addr
= (address
& PMD_MASK
) + PMD_SIZE
;
470 pte
= alloc_low_page(&pte_phys
);
471 last_map_addr
= phys_pte_init(pte
, address
, end
, new_prot
);
474 spin_lock(&init_mm
.page_table_lock
);
475 pmd_populate_kernel(&init_mm
, pmd
, __va(pte_phys
));
476 spin_unlock(&init_mm
.page_table_lock
);
478 update_page_count(PG_LEVEL_2M
, pages
);
479 return last_map_addr
;
482 static unsigned long __meminit
483 phys_pud_init(pud_t
*pud_page
, unsigned long addr
, unsigned long end
,
484 unsigned long page_size_mask
)
486 unsigned long pages
= 0;
487 unsigned long last_map_addr
= end
;
488 int i
= pud_index(addr
);
490 for (; i
< PTRS_PER_PUD
; i
++, addr
= (addr
& PUD_MASK
) + PUD_SIZE
) {
491 unsigned long pmd_phys
;
492 pud_t
*pud
= pud_page
+ pud_index(addr
);
494 pgprot_t prot
= PAGE_KERNEL
;
499 if (!after_bootmem
&&
500 !e820_any_mapped(addr
, addr
+PUD_SIZE
, 0)) {
501 set_pud(pud
, __pud(0));
506 if (!pud_large(*pud
)) {
507 pmd
= map_low_page(pmd_offset(pud
, 0));
508 last_map_addr
= phys_pmd_init(pmd
, addr
, end
,
509 page_size_mask
, prot
);
515 * If we are ok with PG_LEVEL_1G mapping, then we will
516 * use the existing mapping.
518 * Otherwise, we will split the gbpage mapping but use
519 * the same existing protection bits except for large
520 * page, so that we don't violate Intel's TLB
521 * Application note (317080) which says, while changing
522 * the page sizes, new and old translations should
523 * not differ with respect to page frame and
526 if (page_size_mask
& (1 << PG_LEVEL_1G
)) {
530 prot
= pte_pgprot(pte_clrhuge(*(pte_t
*)pud
));
533 if (page_size_mask
& (1<<PG_LEVEL_1G
)) {
535 spin_lock(&init_mm
.page_table_lock
);
536 set_pte((pte_t
*)pud
,
537 pfn_pte(addr
>> PAGE_SHIFT
, PAGE_KERNEL_LARGE
));
538 spin_unlock(&init_mm
.page_table_lock
);
539 last_map_addr
= (addr
& PUD_MASK
) + PUD_SIZE
;
543 pmd
= alloc_low_page(&pmd_phys
);
544 last_map_addr
= phys_pmd_init(pmd
, addr
, end
, page_size_mask
,
548 spin_lock(&init_mm
.page_table_lock
);
549 pud_populate(&init_mm
, pud
, __va(pmd_phys
));
550 spin_unlock(&init_mm
.page_table_lock
);
554 update_page_count(PG_LEVEL_1G
, pages
);
556 return last_map_addr
;
559 unsigned long __meminit
560 kernel_physical_mapping_init(unsigned long start
,
562 unsigned long page_size_mask
)
564 bool pgd_changed
= false;
565 unsigned long next
, last_map_addr
= end
;
568 start
= (unsigned long)__va(start
);
569 end
= (unsigned long)__va(end
);
572 for (; start
< end
; start
= next
) {
573 pgd_t
*pgd
= pgd_offset_k(start
);
574 unsigned long pud_phys
;
577 next
= (start
+ PGDIR_SIZE
) & PGDIR_MASK
;
582 pud
= map_low_page((pud_t
*)pgd_page_vaddr(*pgd
));
583 last_map_addr
= phys_pud_init(pud
, __pa(start
),
584 __pa(end
), page_size_mask
);
589 pud
= alloc_low_page(&pud_phys
);
590 last_map_addr
= phys_pud_init(pud
, __pa(start
), __pa(next
),
594 spin_lock(&init_mm
.page_table_lock
);
595 pgd_populate(&init_mm
, pgd
, __va(pud_phys
));
596 spin_unlock(&init_mm
.page_table_lock
);
601 sync_global_pgds(addr
, end
);
605 return last_map_addr
;
609 void __init
initmem_init(void)
611 memblock_set_node(0, (phys_addr_t
)ULLONG_MAX
, 0);
615 void __init
paging_init(void)
617 sparse_memory_present_with_active_regions(MAX_NUMNODES
);
621 * clear the default setting with node 0
622 * note: don't use nodes_clear here, that is really clearing when
623 * numa support is not compiled in, and later node_set_state
624 * will not set it back.
626 node_clear_state(0, N_NORMAL_MEMORY
);
632 * Memory hotplug specific functions
634 #ifdef CONFIG_MEMORY_HOTPLUG
636 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
639 static void update_end_of_memory_vars(u64 start
, u64 size
)
641 unsigned long end_pfn
= PFN_UP(start
+ size
);
643 if (end_pfn
> max_pfn
) {
645 max_low_pfn
= end_pfn
;
646 high_memory
= (void *)__va(max_pfn
* PAGE_SIZE
- 1) + 1;
651 * Memory is added always to NORMAL zone. This means you will never get
652 * additional DMA/DMA32 memory.
654 int arch_add_memory(int nid
, u64 start
, u64 size
)
656 struct pglist_data
*pgdat
= NODE_DATA(nid
);
657 struct zone
*zone
= pgdat
->node_zones
+ ZONE_NORMAL
;
658 unsigned long last_mapped_pfn
, start_pfn
= start
>> PAGE_SHIFT
;
659 unsigned long nr_pages
= size
>> PAGE_SHIFT
;
662 last_mapped_pfn
= init_memory_mapping(start
, start
+ size
);
663 if (last_mapped_pfn
> max_pfn_mapped
)
664 max_pfn_mapped
= last_mapped_pfn
;
666 ret
= __add_pages(nid
, zone
, start_pfn
, nr_pages
);
669 /* update max_pfn, max_low_pfn and high_memory */
670 update_end_of_memory_vars(start
, size
);
674 EXPORT_SYMBOL_GPL(arch_add_memory
);
676 #endif /* CONFIG_MEMORY_HOTPLUG */
678 static struct kcore_list kcore_vsyscall
;
680 void __init
mem_init(void)
682 long codesize
, reservedpages
, datasize
, initsize
;
683 unsigned long absent_pages
;
687 /* clear_bss() already clear the empty_zero_page */
691 /* this will put all low memory onto the freelists */
693 totalram_pages
= numa_free_all_bootmem();
695 totalram_pages
= free_all_bootmem();
698 absent_pages
= absent_pages_in_range(0, max_pfn
);
699 reservedpages
= max_pfn
- totalram_pages
- absent_pages
;
702 codesize
= (unsigned long) &_etext
- (unsigned long) &_text
;
703 datasize
= (unsigned long) &_edata
- (unsigned long) &_etext
;
704 initsize
= (unsigned long) &__init_end
- (unsigned long) &__init_begin
;
706 /* Register memory areas for /proc/kcore */
707 kclist_add(&kcore_vsyscall
, (void *)VSYSCALL_START
,
708 VSYSCALL_END
- VSYSCALL_START
, KCORE_OTHER
);
710 printk(KERN_INFO
"Memory: %luk/%luk available (%ldk kernel code, "
711 "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
712 nr_free_pages() << (PAGE_SHIFT
-10),
713 max_pfn
<< (PAGE_SHIFT
-10),
715 absent_pages
<< (PAGE_SHIFT
-10),
716 reservedpages
<< (PAGE_SHIFT
-10),
721 #ifdef CONFIG_DEBUG_RODATA
722 const int rodata_test_data
= 0xC3;
723 EXPORT_SYMBOL_GPL(rodata_test_data
);
725 int kernel_set_to_readonly
;
727 void set_kernel_text_rw(void)
729 unsigned long start
= PFN_ALIGN(_text
);
730 unsigned long end
= PFN_ALIGN(__stop___ex_table
);
732 if (!kernel_set_to_readonly
)
735 pr_debug("Set kernel text: %lx - %lx for read write\n",
739 * Make the kernel identity mapping for text RW. Kernel text
740 * mapping will always be RO. Refer to the comment in
741 * static_protections() in pageattr.c
743 set_memory_rw(start
, (end
- start
) >> PAGE_SHIFT
);
746 void set_kernel_text_ro(void)
748 unsigned long start
= PFN_ALIGN(_text
);
749 unsigned long end
= PFN_ALIGN(__stop___ex_table
);
751 if (!kernel_set_to_readonly
)
754 pr_debug("Set kernel text: %lx - %lx for read only\n",
758 * Set the kernel identity mapping for text RO.
760 set_memory_ro(start
, (end
- start
) >> PAGE_SHIFT
);
763 void mark_rodata_ro(void)
765 unsigned long start
= PFN_ALIGN(_text
);
766 unsigned long rodata_start
=
767 ((unsigned long)__start_rodata
+ PAGE_SIZE
- 1) & PAGE_MASK
;
768 unsigned long end
= (unsigned long) &__end_rodata_hpage_align
;
769 unsigned long text_end
= PAGE_ALIGN((unsigned long) &__stop___ex_table
);
770 unsigned long rodata_end
= PAGE_ALIGN((unsigned long) &__end_rodata
);
771 unsigned long data_start
= (unsigned long) &_sdata
;
773 printk(KERN_INFO
"Write protecting the kernel read-only data: %luk\n",
774 (end
- start
) >> 10);
775 set_memory_ro(start
, (end
- start
) >> PAGE_SHIFT
);
777 kernel_set_to_readonly
= 1;
780 * The rodata section (but not the kernel text!) should also be
783 set_memory_nx(rodata_start
, (end
- rodata_start
) >> PAGE_SHIFT
);
787 #ifdef CONFIG_CPA_DEBUG
788 printk(KERN_INFO
"Testing CPA: undo %lx-%lx\n", start
, end
);
789 set_memory_rw(start
, (end
-start
) >> PAGE_SHIFT
);
791 printk(KERN_INFO
"Testing CPA: again\n");
792 set_memory_ro(start
, (end
-start
) >> PAGE_SHIFT
);
795 free_init_pages("unused kernel memory",
796 (unsigned long) page_address(virt_to_page(text_end
)),
798 page_address(virt_to_page(rodata_start
)));
799 free_init_pages("unused kernel memory",
800 (unsigned long) page_address(virt_to_page(rodata_end
)),
801 (unsigned long) page_address(virt_to_page(data_start
)));
806 int kern_addr_valid(unsigned long addr
)
808 unsigned long above
= ((long)addr
) >> __VIRTUAL_MASK_SHIFT
;
814 if (above
!= 0 && above
!= -1UL)
817 pgd
= pgd_offset_k(addr
);
821 pud
= pud_offset(pgd
, addr
);
825 pmd
= pmd_offset(pud
, addr
);
830 return pfn_valid(pmd_pfn(*pmd
));
832 pte
= pte_offset_kernel(pmd
, addr
);
836 return pfn_valid(pte_pfn(*pte
));
840 * A pseudo VMA to allow ptrace access for the vsyscall page. This only
841 * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
842 * not need special handling anymore:
844 static struct vm_area_struct gate_vma
= {
845 .vm_start
= VSYSCALL_START
,
846 .vm_end
= VSYSCALL_START
+ (VSYSCALL_MAPPED_PAGES
* PAGE_SIZE
),
847 .vm_page_prot
= PAGE_READONLY_EXEC
,
848 .vm_flags
= VM_READ
| VM_EXEC
851 struct vm_area_struct
*get_gate_vma(struct mm_struct
*mm
)
853 #ifdef CONFIG_IA32_EMULATION
854 if (!mm
|| mm
->context
.ia32_compat
)
860 int in_gate_area(struct mm_struct
*mm
, unsigned long addr
)
862 struct vm_area_struct
*vma
= get_gate_vma(mm
);
867 return (addr
>= vma
->vm_start
) && (addr
< vma
->vm_end
);
871 * Use this when you have no reliable mm, typically from interrupt
872 * context. It is less reliable than using a task's mm and may give
875 int in_gate_area_no_mm(unsigned long addr
)
877 return (addr
>= VSYSCALL_START
) && (addr
< VSYSCALL_END
);
880 const char *arch_vma_name(struct vm_area_struct
*vma
)
882 if (vma
->vm_mm
&& vma
->vm_start
== (long)vma
->vm_mm
->context
.vdso
)
884 if (vma
== &gate_vma
)
890 unsigned long memory_block_size_bytes(void)
892 if (is_uv_system()) {
893 printk(KERN_INFO
"UV: memory block size 2GB\n");
894 return 2UL * 1024 * 1024 * 1024;
896 return MIN_MEMORY_BLOCK_SIZE
;
900 #ifdef CONFIG_SPARSEMEM_VMEMMAP
902 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
904 static long __meminitdata addr_start
, addr_end
;
905 static void __meminitdata
*p_start
, *p_end
;
906 static int __meminitdata node_start
;
909 vmemmap_populate(struct page
*start_page
, unsigned long size
, int node
)
911 unsigned long addr
= (unsigned long)start_page
;
912 unsigned long end
= (unsigned long)(start_page
+ size
);
918 for (; addr
< end
; addr
= next
) {
921 pgd
= vmemmap_pgd_populate(addr
, node
);
925 pud
= vmemmap_pud_populate(pgd
, addr
, node
);
930 next
= (addr
+ PAGE_SIZE
) & PAGE_MASK
;
931 pmd
= vmemmap_pmd_populate(pud
, addr
, node
);
936 p
= vmemmap_pte_populate(pmd
, addr
, node
);
941 addr_end
= addr
+ PAGE_SIZE
;
942 p_end
= p
+ PAGE_SIZE
;
944 next
= pmd_addr_end(addr
, end
);
946 pmd
= pmd_offset(pud
, addr
);
947 if (pmd_none(*pmd
)) {
950 p
= vmemmap_alloc_block_buf(PMD_SIZE
, node
);
954 entry
= pfn_pte(__pa(p
) >> PAGE_SHIFT
,
956 set_pmd(pmd
, __pmd(pte_val(entry
)));
958 /* check to see if we have contiguous blocks */
959 if (p_end
!= p
|| node_start
!= node
) {
961 printk(KERN_DEBUG
" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
962 addr_start
, addr_end
-1, p_start
, p_end
-1, node_start
);
968 addr_end
= addr
+ PMD_SIZE
;
969 p_end
= p
+ PMD_SIZE
;
971 vmemmap_verify((pte_t
*)pmd
, node
, addr
, next
);
975 sync_global_pgds((unsigned long)start_page
, end
);
979 void __meminit
vmemmap_populate_print_last(void)
982 printk(KERN_DEBUG
" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
983 addr_start
, addr_end
-1, p_start
, p_end
-1, node_start
);