spi-topcliff-pch: Fix issue for transmitting over 4KByte
[zen-stable.git] / drivers / video / pxafb.c
blob1d1e4f175e7844cb0eae129060e4a4d93f78c7c2
1 /*
2 * linux/drivers/video/pxafb.c
4 * Copyright (C) 1999 Eric A. Thomas.
5 * Copyright (C) 2004 Jean-Frederic Clere.
6 * Copyright (C) 2004 Ian Campbell.
7 * Copyright (C) 2004 Jeff Lackey.
8 * Based on sa1100fb.c Copyright (C) 1999 Eric A. Thomas
9 * which in turn is
10 * Based on acornfb.c Copyright (C) Russell King.
12 * This file is subject to the terms and conditions of the GNU General Public
13 * License. See the file COPYING in the main directory of this archive for
14 * more details.
16 * Intel PXA250/210 LCD Controller Frame Buffer Driver
18 * Please direct your questions and comments on this driver to the following
19 * email address:
21 * linux-arm-kernel@lists.arm.linux.org.uk
23 * Add support for overlay1 and overlay2 based on pxafb_overlay.c:
25 * Copyright (C) 2004, Intel Corporation
27 * 2003/08/27: <yu.tang@intel.com>
28 * 2004/03/10: <stanley.cai@intel.com>
29 * 2004/10/28: <yan.yin@intel.com>
31 * Copyright (C) 2006-2008 Marvell International Ltd.
32 * All Rights Reserved
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/kernel.h>
38 #include <linux/sched.h>
39 #include <linux/errno.h>
40 #include <linux/string.h>
41 #include <linux/interrupt.h>
42 #include <linux/slab.h>
43 #include <linux/mm.h>
44 #include <linux/fb.h>
45 #include <linux/delay.h>
46 #include <linux/init.h>
47 #include <linux/ioport.h>
48 #include <linux/cpufreq.h>
49 #include <linux/platform_device.h>
50 #include <linux/dma-mapping.h>
51 #include <linux/clk.h>
52 #include <linux/err.h>
53 #include <linux/completion.h>
54 #include <linux/mutex.h>
55 #include <linux/kthread.h>
56 #include <linux/freezer.h>
58 #include <mach/hardware.h>
59 #include <asm/io.h>
60 #include <asm/irq.h>
61 #include <asm/div64.h>
62 #include <mach/bitfield.h>
63 #include <mach/pxafb.h>
66 * Complain if VAR is out of range.
68 #define DEBUG_VAR 1
70 #include "pxafb.h"
72 /* Bits which should not be set in machine configuration structures */
73 #define LCCR0_INVALID_CONFIG_MASK (LCCR0_OUM | LCCR0_BM | LCCR0_QDM |\
74 LCCR0_DIS | LCCR0_EFM | LCCR0_IUM |\
75 LCCR0_SFM | LCCR0_LDM | LCCR0_ENB)
77 #define LCCR3_INVALID_CONFIG_MASK (LCCR3_HSP | LCCR3_VSP |\
78 LCCR3_PCD | LCCR3_BPP(0xf))
80 static int pxafb_activate_var(struct fb_var_screeninfo *var,
81 struct pxafb_info *);
82 static void set_ctrlr_state(struct pxafb_info *fbi, u_int state);
83 static void setup_base_frame(struct pxafb_info *fbi,
84 struct fb_var_screeninfo *var, int branch);
85 static int setup_frame_dma(struct pxafb_info *fbi, int dma, int pal,
86 unsigned long offset, size_t size);
88 static unsigned long video_mem_size = 0;
90 static inline unsigned long
91 lcd_readl(struct pxafb_info *fbi, unsigned int off)
93 return __raw_readl(fbi->mmio_base + off);
96 static inline void
97 lcd_writel(struct pxafb_info *fbi, unsigned int off, unsigned long val)
99 __raw_writel(val, fbi->mmio_base + off);
102 static inline void pxafb_schedule_work(struct pxafb_info *fbi, u_int state)
104 unsigned long flags;
106 local_irq_save(flags);
108 * We need to handle two requests being made at the same time.
109 * There are two important cases:
110 * 1. When we are changing VT (C_REENABLE) while unblanking
111 * (C_ENABLE) We must perform the unblanking, which will
112 * do our REENABLE for us.
113 * 2. When we are blanking, but immediately unblank before
114 * we have blanked. We do the "REENABLE" thing here as
115 * well, just to be sure.
117 if (fbi->task_state == C_ENABLE && state == C_REENABLE)
118 state = (u_int) -1;
119 if (fbi->task_state == C_DISABLE && state == C_ENABLE)
120 state = C_REENABLE;
122 if (state != (u_int)-1) {
123 fbi->task_state = state;
124 schedule_work(&fbi->task);
126 local_irq_restore(flags);
129 static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
131 chan &= 0xffff;
132 chan >>= 16 - bf->length;
133 return chan << bf->offset;
136 static int
137 pxafb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
138 u_int trans, struct fb_info *info)
140 struct pxafb_info *fbi = (struct pxafb_info *)info;
141 u_int val;
143 if (regno >= fbi->palette_size)
144 return 1;
146 if (fbi->fb.var.grayscale) {
147 fbi->palette_cpu[regno] = ((blue >> 8) & 0x00ff);
148 return 0;
151 switch (fbi->lccr4 & LCCR4_PAL_FOR_MASK) {
152 case LCCR4_PAL_FOR_0:
153 val = ((red >> 0) & 0xf800);
154 val |= ((green >> 5) & 0x07e0);
155 val |= ((blue >> 11) & 0x001f);
156 fbi->palette_cpu[regno] = val;
157 break;
158 case LCCR4_PAL_FOR_1:
159 val = ((red << 8) & 0x00f80000);
160 val |= ((green >> 0) & 0x0000fc00);
161 val |= ((blue >> 8) & 0x000000f8);
162 ((u32 *)(fbi->palette_cpu))[regno] = val;
163 break;
164 case LCCR4_PAL_FOR_2:
165 val = ((red << 8) & 0x00fc0000);
166 val |= ((green >> 0) & 0x0000fc00);
167 val |= ((blue >> 8) & 0x000000fc);
168 ((u32 *)(fbi->palette_cpu))[regno] = val;
169 break;
170 case LCCR4_PAL_FOR_3:
171 val = ((red << 8) & 0x00ff0000);
172 val |= ((green >> 0) & 0x0000ff00);
173 val |= ((blue >> 8) & 0x000000ff);
174 ((u32 *)(fbi->palette_cpu))[regno] = val;
175 break;
178 return 0;
181 static int
182 pxafb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
183 u_int trans, struct fb_info *info)
185 struct pxafb_info *fbi = (struct pxafb_info *)info;
186 unsigned int val;
187 int ret = 1;
190 * If inverse mode was selected, invert all the colours
191 * rather than the register number. The register number
192 * is what you poke into the framebuffer to produce the
193 * colour you requested.
195 if (fbi->cmap_inverse) {
196 red = 0xffff - red;
197 green = 0xffff - green;
198 blue = 0xffff - blue;
202 * If greyscale is true, then we convert the RGB value
203 * to greyscale no matter what visual we are using.
205 if (fbi->fb.var.grayscale)
206 red = green = blue = (19595 * red + 38470 * green +
207 7471 * blue) >> 16;
209 switch (fbi->fb.fix.visual) {
210 case FB_VISUAL_TRUECOLOR:
212 * 16-bit True Colour. We encode the RGB value
213 * according to the RGB bitfield information.
215 if (regno < 16) {
216 u32 *pal = fbi->fb.pseudo_palette;
218 val = chan_to_field(red, &fbi->fb.var.red);
219 val |= chan_to_field(green, &fbi->fb.var.green);
220 val |= chan_to_field(blue, &fbi->fb.var.blue);
222 pal[regno] = val;
223 ret = 0;
225 break;
227 case FB_VISUAL_STATIC_PSEUDOCOLOR:
228 case FB_VISUAL_PSEUDOCOLOR:
229 ret = pxafb_setpalettereg(regno, red, green, blue, trans, info);
230 break;
233 return ret;
236 /* calculate pixel depth, transparency bit included, >=16bpp formats _only_ */
237 static inline int var_to_depth(struct fb_var_screeninfo *var)
239 return var->red.length + var->green.length +
240 var->blue.length + var->transp.length;
243 /* calculate 4-bit BPP value for LCCR3 and OVLxC1 */
244 static int pxafb_var_to_bpp(struct fb_var_screeninfo *var)
246 int bpp = -EINVAL;
248 switch (var->bits_per_pixel) {
249 case 1: bpp = 0; break;
250 case 2: bpp = 1; break;
251 case 4: bpp = 2; break;
252 case 8: bpp = 3; break;
253 case 16: bpp = 4; break;
254 case 24:
255 switch (var_to_depth(var)) {
256 case 18: bpp = 6; break; /* 18-bits/pixel packed */
257 case 19: bpp = 8; break; /* 19-bits/pixel packed */
258 case 24: bpp = 9; break;
260 break;
261 case 32:
262 switch (var_to_depth(var)) {
263 case 18: bpp = 5; break; /* 18-bits/pixel unpacked */
264 case 19: bpp = 7; break; /* 19-bits/pixel unpacked */
265 case 25: bpp = 10; break;
267 break;
269 return bpp;
273 * pxafb_var_to_lccr3():
274 * Convert a bits per pixel value to the correct bit pattern for LCCR3
276 * NOTE: for PXA27x with overlays support, the LCCR3_PDFOR_x bits have an
277 * implication of the acutal use of transparency bit, which we handle it
278 * here separatedly. See PXA27x Developer's Manual, Section <<7.4.6 Pixel
279 * Formats>> for the valid combination of PDFOR, PAL_FOR for various BPP.
281 * Transparency for palette pixel formats is not supported at the moment.
283 static uint32_t pxafb_var_to_lccr3(struct fb_var_screeninfo *var)
285 int bpp = pxafb_var_to_bpp(var);
286 uint32_t lccr3;
288 if (bpp < 0)
289 return 0;
291 lccr3 = LCCR3_BPP(bpp);
293 switch (var_to_depth(var)) {
294 case 16: lccr3 |= var->transp.length ? LCCR3_PDFOR_3 : 0; break;
295 case 18: lccr3 |= LCCR3_PDFOR_3; break;
296 case 24: lccr3 |= var->transp.length ? LCCR3_PDFOR_2 : LCCR3_PDFOR_3;
297 break;
298 case 19:
299 case 25: lccr3 |= LCCR3_PDFOR_0; break;
301 return lccr3;
304 #define SET_PIXFMT(v, r, g, b, t) \
305 ({ \
306 (v)->transp.offset = (t) ? (r) + (g) + (b) : 0; \
307 (v)->transp.length = (t) ? (t) : 0; \
308 (v)->blue.length = (b); (v)->blue.offset = 0; \
309 (v)->green.length = (g); (v)->green.offset = (b); \
310 (v)->red.length = (r); (v)->red.offset = (b) + (g); \
313 /* set the RGBT bitfields of fb_var_screeninf according to
314 * var->bits_per_pixel and given depth
316 static void pxafb_set_pixfmt(struct fb_var_screeninfo *var, int depth)
318 if (depth == 0)
319 depth = var->bits_per_pixel;
321 if (var->bits_per_pixel < 16) {
322 /* indexed pixel formats */
323 var->red.offset = 0; var->red.length = 8;
324 var->green.offset = 0; var->green.length = 8;
325 var->blue.offset = 0; var->blue.length = 8;
326 var->transp.offset = 0; var->transp.length = 8;
329 switch (depth) {
330 case 16: var->transp.length ?
331 SET_PIXFMT(var, 5, 5, 5, 1) : /* RGBT555 */
332 SET_PIXFMT(var, 5, 6, 5, 0); break; /* RGB565 */
333 case 18: SET_PIXFMT(var, 6, 6, 6, 0); break; /* RGB666 */
334 case 19: SET_PIXFMT(var, 6, 6, 6, 1); break; /* RGBT666 */
335 case 24: var->transp.length ?
336 SET_PIXFMT(var, 8, 8, 7, 1) : /* RGBT887 */
337 SET_PIXFMT(var, 8, 8, 8, 0); break; /* RGB888 */
338 case 25: SET_PIXFMT(var, 8, 8, 8, 1); break; /* RGBT888 */
342 #ifdef CONFIG_CPU_FREQ
344 * pxafb_display_dma_period()
345 * Calculate the minimum period (in picoseconds) between two DMA
346 * requests for the LCD controller. If we hit this, it means we're
347 * doing nothing but LCD DMA.
349 static unsigned int pxafb_display_dma_period(struct fb_var_screeninfo *var)
352 * Period = pixclock * bits_per_byte * bytes_per_transfer
353 * / memory_bits_per_pixel;
355 return var->pixclock * 8 * 16 / var->bits_per_pixel;
357 #endif
360 * Select the smallest mode that allows the desired resolution to be
361 * displayed. If desired parameters can be rounded up.
363 static struct pxafb_mode_info *pxafb_getmode(struct pxafb_mach_info *mach,
364 struct fb_var_screeninfo *var)
366 struct pxafb_mode_info *mode = NULL;
367 struct pxafb_mode_info *modelist = mach->modes;
368 unsigned int best_x = 0xffffffff, best_y = 0xffffffff;
369 unsigned int i;
371 for (i = 0; i < mach->num_modes; i++) {
372 if (modelist[i].xres >= var->xres &&
373 modelist[i].yres >= var->yres &&
374 modelist[i].xres < best_x &&
375 modelist[i].yres < best_y &&
376 modelist[i].bpp >= var->bits_per_pixel) {
377 best_x = modelist[i].xres;
378 best_y = modelist[i].yres;
379 mode = &modelist[i];
383 return mode;
386 static void pxafb_setmode(struct fb_var_screeninfo *var,
387 struct pxafb_mode_info *mode)
389 var->xres = mode->xres;
390 var->yres = mode->yres;
391 var->bits_per_pixel = mode->bpp;
392 var->pixclock = mode->pixclock;
393 var->hsync_len = mode->hsync_len;
394 var->left_margin = mode->left_margin;
395 var->right_margin = mode->right_margin;
396 var->vsync_len = mode->vsync_len;
397 var->upper_margin = mode->upper_margin;
398 var->lower_margin = mode->lower_margin;
399 var->sync = mode->sync;
400 var->grayscale = mode->cmap_greyscale;
401 var->transp.length = mode->transparency;
403 /* set the initial RGBA bitfields */
404 pxafb_set_pixfmt(var, mode->depth);
407 static int pxafb_adjust_timing(struct pxafb_info *fbi,
408 struct fb_var_screeninfo *var)
410 int line_length;
412 var->xres = max_t(int, var->xres, MIN_XRES);
413 var->yres = max_t(int, var->yres, MIN_YRES);
415 if (!(fbi->lccr0 & LCCR0_LCDT)) {
416 clamp_val(var->hsync_len, 1, 64);
417 clamp_val(var->vsync_len, 1, 64);
418 clamp_val(var->left_margin, 1, 255);
419 clamp_val(var->right_margin, 1, 255);
420 clamp_val(var->upper_margin, 1, 255);
421 clamp_val(var->lower_margin, 1, 255);
424 /* make sure each line is aligned on word boundary */
425 line_length = var->xres * var->bits_per_pixel / 8;
426 line_length = ALIGN(line_length, 4);
427 var->xres = line_length * 8 / var->bits_per_pixel;
429 /* we don't support xpan, force xres_virtual to be equal to xres */
430 var->xres_virtual = var->xres;
432 if (var->accel_flags & FB_ACCELF_TEXT)
433 var->yres_virtual = fbi->fb.fix.smem_len / line_length;
434 else
435 var->yres_virtual = max(var->yres_virtual, var->yres);
437 /* check for limits */
438 if (var->xres > MAX_XRES || var->yres > MAX_YRES)
439 return -EINVAL;
441 if (var->yres > var->yres_virtual)
442 return -EINVAL;
444 return 0;
448 * pxafb_check_var():
449 * Get the video params out of 'var'. If a value doesn't fit, round it up,
450 * if it's too big, return -EINVAL.
452 * Round up in the following order: bits_per_pixel, xres,
453 * yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
454 * bitfields, horizontal timing, vertical timing.
456 static int pxafb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
458 struct pxafb_info *fbi = (struct pxafb_info *)info;
459 struct pxafb_mach_info *inf = fbi->dev->platform_data;
460 int err;
462 if (inf->fixed_modes) {
463 struct pxafb_mode_info *mode;
465 mode = pxafb_getmode(inf, var);
466 if (!mode)
467 return -EINVAL;
468 pxafb_setmode(var, mode);
471 /* do a test conversion to BPP fields to check the color formats */
472 err = pxafb_var_to_bpp(var);
473 if (err < 0)
474 return err;
476 pxafb_set_pixfmt(var, var_to_depth(var));
478 err = pxafb_adjust_timing(fbi, var);
479 if (err)
480 return err;
482 #ifdef CONFIG_CPU_FREQ
483 pr_debug("pxafb: dma period = %d ps\n",
484 pxafb_display_dma_period(var));
485 #endif
487 return 0;
491 * pxafb_set_par():
492 * Set the user defined part of the display for the specified console
494 static int pxafb_set_par(struct fb_info *info)
496 struct pxafb_info *fbi = (struct pxafb_info *)info;
497 struct fb_var_screeninfo *var = &info->var;
499 if (var->bits_per_pixel >= 16)
500 fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
501 else if (!fbi->cmap_static)
502 fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
503 else {
505 * Some people have weird ideas about wanting static
506 * pseudocolor maps. I suspect their user space
507 * applications are broken.
509 fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
512 fbi->fb.fix.line_length = var->xres_virtual *
513 var->bits_per_pixel / 8;
514 if (var->bits_per_pixel >= 16)
515 fbi->palette_size = 0;
516 else
517 fbi->palette_size = var->bits_per_pixel == 1 ?
518 4 : 1 << var->bits_per_pixel;
520 fbi->palette_cpu = (u16 *)&fbi->dma_buff->palette[0];
522 if (fbi->fb.var.bits_per_pixel >= 16)
523 fb_dealloc_cmap(&fbi->fb.cmap);
524 else
525 fb_alloc_cmap(&fbi->fb.cmap, 1<<fbi->fb.var.bits_per_pixel, 0);
527 pxafb_activate_var(var, fbi);
529 return 0;
532 static int pxafb_pan_display(struct fb_var_screeninfo *var,
533 struct fb_info *info)
535 struct pxafb_info *fbi = (struct pxafb_info *)info;
536 struct fb_var_screeninfo newvar;
537 int dma = DMA_MAX + DMA_BASE;
539 if (fbi->state != C_ENABLE)
540 return 0;
542 /* Only take .xoffset, .yoffset and .vmode & FB_VMODE_YWRAP from what
543 * was passed in and copy the rest from the old screeninfo.
545 memcpy(&newvar, &fbi->fb.var, sizeof(newvar));
546 newvar.xoffset = var->xoffset;
547 newvar.yoffset = var->yoffset;
548 newvar.vmode &= ~FB_VMODE_YWRAP;
549 newvar.vmode |= var->vmode & FB_VMODE_YWRAP;
551 setup_base_frame(fbi, &newvar, 1);
553 if (fbi->lccr0 & LCCR0_SDS)
554 lcd_writel(fbi, FBR1, fbi->fdadr[dma + 1] | 0x1);
556 lcd_writel(fbi, FBR0, fbi->fdadr[dma] | 0x1);
557 return 0;
561 * pxafb_blank():
562 * Blank the display by setting all palette values to zero. Note, the
563 * 16 bpp mode does not really use the palette, so this will not
564 * blank the display in all modes.
566 static int pxafb_blank(int blank, struct fb_info *info)
568 struct pxafb_info *fbi = (struct pxafb_info *)info;
569 int i;
571 switch (blank) {
572 case FB_BLANK_POWERDOWN:
573 case FB_BLANK_VSYNC_SUSPEND:
574 case FB_BLANK_HSYNC_SUSPEND:
575 case FB_BLANK_NORMAL:
576 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
577 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
578 for (i = 0; i < fbi->palette_size; i++)
579 pxafb_setpalettereg(i, 0, 0, 0, 0, info);
581 pxafb_schedule_work(fbi, C_DISABLE);
582 /* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
583 break;
585 case FB_BLANK_UNBLANK:
586 /* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
587 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
588 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
589 fb_set_cmap(&fbi->fb.cmap, info);
590 pxafb_schedule_work(fbi, C_ENABLE);
592 return 0;
595 static struct fb_ops pxafb_ops = {
596 .owner = THIS_MODULE,
597 .fb_check_var = pxafb_check_var,
598 .fb_set_par = pxafb_set_par,
599 .fb_pan_display = pxafb_pan_display,
600 .fb_setcolreg = pxafb_setcolreg,
601 .fb_fillrect = cfb_fillrect,
602 .fb_copyarea = cfb_copyarea,
603 .fb_imageblit = cfb_imageblit,
604 .fb_blank = pxafb_blank,
607 #ifdef CONFIG_FB_PXA_OVERLAY
608 static void overlay1fb_setup(struct pxafb_layer *ofb)
610 int size = ofb->fb.fix.line_length * ofb->fb.var.yres_virtual;
611 unsigned long start = ofb->video_mem_phys;
612 setup_frame_dma(ofb->fbi, DMA_OV1, PAL_NONE, start, size);
615 /* Depending on the enable status of overlay1/2, the DMA should be
616 * updated from FDADRx (when disabled) or FBRx (when enabled).
618 static void overlay1fb_enable(struct pxafb_layer *ofb)
620 int enabled = lcd_readl(ofb->fbi, OVL1C1) & OVLxC1_OEN;
621 uint32_t fdadr1 = ofb->fbi->fdadr[DMA_OV1] | (enabled ? 0x1 : 0);
623 lcd_writel(ofb->fbi, enabled ? FBR1 : FDADR1, fdadr1);
624 lcd_writel(ofb->fbi, OVL1C2, ofb->control[1]);
625 lcd_writel(ofb->fbi, OVL1C1, ofb->control[0] | OVLxC1_OEN);
628 static void overlay1fb_disable(struct pxafb_layer *ofb)
630 uint32_t lccr5;
632 if (!(lcd_readl(ofb->fbi, OVL1C1) & OVLxC1_OEN))
633 return;
635 lccr5 = lcd_readl(ofb->fbi, LCCR5);
637 lcd_writel(ofb->fbi, OVL1C1, ofb->control[0] & ~OVLxC1_OEN);
639 lcd_writel(ofb->fbi, LCSR1, LCSR1_BS(1));
640 lcd_writel(ofb->fbi, LCCR5, lccr5 & ~LCSR1_BS(1));
641 lcd_writel(ofb->fbi, FBR1, ofb->fbi->fdadr[DMA_OV1] | 0x3);
643 if (wait_for_completion_timeout(&ofb->branch_done, 1 * HZ) == 0)
644 pr_warning("%s: timeout disabling overlay1\n", __func__);
646 lcd_writel(ofb->fbi, LCCR5, lccr5);
649 static void overlay2fb_setup(struct pxafb_layer *ofb)
651 int size, div = 1, pfor = NONSTD_TO_PFOR(ofb->fb.var.nonstd);
652 unsigned long start[3] = { ofb->video_mem_phys, 0, 0 };
654 if (pfor == OVERLAY_FORMAT_RGB || pfor == OVERLAY_FORMAT_YUV444_PACKED) {
655 size = ofb->fb.fix.line_length * ofb->fb.var.yres_virtual;
656 setup_frame_dma(ofb->fbi, DMA_OV2_Y, -1, start[0], size);
657 } else {
658 size = ofb->fb.var.xres_virtual * ofb->fb.var.yres_virtual;
659 switch (pfor) {
660 case OVERLAY_FORMAT_YUV444_PLANAR: div = 1; break;
661 case OVERLAY_FORMAT_YUV422_PLANAR: div = 2; break;
662 case OVERLAY_FORMAT_YUV420_PLANAR: div = 4; break;
664 start[1] = start[0] + size;
665 start[2] = start[1] + size / div;
666 setup_frame_dma(ofb->fbi, DMA_OV2_Y, -1, start[0], size);
667 setup_frame_dma(ofb->fbi, DMA_OV2_Cb, -1, start[1], size / div);
668 setup_frame_dma(ofb->fbi, DMA_OV2_Cr, -1, start[2], size / div);
672 static void overlay2fb_enable(struct pxafb_layer *ofb)
674 int pfor = NONSTD_TO_PFOR(ofb->fb.var.nonstd);
675 int enabled = lcd_readl(ofb->fbi, OVL2C1) & OVLxC1_OEN;
676 uint32_t fdadr2 = ofb->fbi->fdadr[DMA_OV2_Y] | (enabled ? 0x1 : 0);
677 uint32_t fdadr3 = ofb->fbi->fdadr[DMA_OV2_Cb] | (enabled ? 0x1 : 0);
678 uint32_t fdadr4 = ofb->fbi->fdadr[DMA_OV2_Cr] | (enabled ? 0x1 : 0);
680 if (pfor == OVERLAY_FORMAT_RGB || pfor == OVERLAY_FORMAT_YUV444_PACKED)
681 lcd_writel(ofb->fbi, enabled ? FBR2 : FDADR2, fdadr2);
682 else {
683 lcd_writel(ofb->fbi, enabled ? FBR2 : FDADR2, fdadr2);
684 lcd_writel(ofb->fbi, enabled ? FBR3 : FDADR3, fdadr3);
685 lcd_writel(ofb->fbi, enabled ? FBR4 : FDADR4, fdadr4);
687 lcd_writel(ofb->fbi, OVL2C2, ofb->control[1]);
688 lcd_writel(ofb->fbi, OVL2C1, ofb->control[0] | OVLxC1_OEN);
691 static void overlay2fb_disable(struct pxafb_layer *ofb)
693 uint32_t lccr5;
695 if (!(lcd_readl(ofb->fbi, OVL2C1) & OVLxC1_OEN))
696 return;
698 lccr5 = lcd_readl(ofb->fbi, LCCR5);
700 lcd_writel(ofb->fbi, OVL2C1, ofb->control[0] & ~OVLxC1_OEN);
702 lcd_writel(ofb->fbi, LCSR1, LCSR1_BS(2));
703 lcd_writel(ofb->fbi, LCCR5, lccr5 & ~LCSR1_BS(2));
704 lcd_writel(ofb->fbi, FBR2, ofb->fbi->fdadr[DMA_OV2_Y] | 0x3);
705 lcd_writel(ofb->fbi, FBR3, ofb->fbi->fdadr[DMA_OV2_Cb] | 0x3);
706 lcd_writel(ofb->fbi, FBR4, ofb->fbi->fdadr[DMA_OV2_Cr] | 0x3);
708 if (wait_for_completion_timeout(&ofb->branch_done, 1 * HZ) == 0)
709 pr_warning("%s: timeout disabling overlay2\n", __func__);
712 static struct pxafb_layer_ops ofb_ops[] = {
713 [0] = {
714 .enable = overlay1fb_enable,
715 .disable = overlay1fb_disable,
716 .setup = overlay1fb_setup,
718 [1] = {
719 .enable = overlay2fb_enable,
720 .disable = overlay2fb_disable,
721 .setup = overlay2fb_setup,
725 static int overlayfb_open(struct fb_info *info, int user)
727 struct pxafb_layer *ofb = (struct pxafb_layer *)info;
729 /* no support for framebuffer console on overlay */
730 if (user == 0)
731 return -ENODEV;
733 if (ofb->usage++ == 0)
734 /* unblank the base framebuffer */
735 fb_blank(&ofb->fbi->fb, FB_BLANK_UNBLANK);
737 return 0;
740 static int overlayfb_release(struct fb_info *info, int user)
742 struct pxafb_layer *ofb = (struct pxafb_layer*) info;
744 if (ofb->usage == 1) {
745 ofb->ops->disable(ofb);
746 ofb->fb.var.height = -1;
747 ofb->fb.var.width = -1;
748 ofb->fb.var.xres = ofb->fb.var.xres_virtual = 0;
749 ofb->fb.var.yres = ofb->fb.var.yres_virtual = 0;
751 ofb->usage--;
753 return 0;
756 static int overlayfb_check_var(struct fb_var_screeninfo *var,
757 struct fb_info *info)
759 struct pxafb_layer *ofb = (struct pxafb_layer *)info;
760 struct fb_var_screeninfo *base_var = &ofb->fbi->fb.var;
761 int xpos, ypos, pfor, bpp;
763 xpos = NONSTD_TO_XPOS(var->nonstd);
764 ypos = NONSTD_TO_YPOS(var->nonstd);
765 pfor = NONSTD_TO_PFOR(var->nonstd);
767 bpp = pxafb_var_to_bpp(var);
768 if (bpp < 0)
769 return -EINVAL;
771 /* no support for YUV format on overlay1 */
772 if (ofb->id == OVERLAY1 && pfor != 0)
773 return -EINVAL;
775 /* for YUV packed formats, bpp = 'minimum bpp of YUV components' */
776 switch (pfor) {
777 case OVERLAY_FORMAT_RGB:
778 bpp = pxafb_var_to_bpp(var);
779 if (bpp < 0)
780 return -EINVAL;
782 pxafb_set_pixfmt(var, var_to_depth(var));
783 break;
784 case OVERLAY_FORMAT_YUV444_PACKED: bpp = 24; break;
785 case OVERLAY_FORMAT_YUV444_PLANAR: bpp = 8; break;
786 case OVERLAY_FORMAT_YUV422_PLANAR: bpp = 4; break;
787 case OVERLAY_FORMAT_YUV420_PLANAR: bpp = 2; break;
788 default:
789 return -EINVAL;
792 /* each line must start at a 32-bit word boundary */
793 if ((xpos * bpp) % 32)
794 return -EINVAL;
796 /* xres must align on 32-bit word boundary */
797 var->xres = roundup(var->xres * bpp, 32) / bpp;
799 if ((xpos + var->xres > base_var->xres) ||
800 (ypos + var->yres > base_var->yres))
801 return -EINVAL;
803 var->xres_virtual = var->xres;
804 var->yres_virtual = max(var->yres, var->yres_virtual);
805 return 0;
808 static int overlayfb_check_video_memory(struct pxafb_layer *ofb)
810 struct fb_var_screeninfo *var = &ofb->fb.var;
811 int pfor = NONSTD_TO_PFOR(var->nonstd);
812 int size, bpp = 0;
814 switch (pfor) {
815 case OVERLAY_FORMAT_RGB: bpp = var->bits_per_pixel; break;
816 case OVERLAY_FORMAT_YUV444_PACKED: bpp = 24; break;
817 case OVERLAY_FORMAT_YUV444_PLANAR: bpp = 24; break;
818 case OVERLAY_FORMAT_YUV422_PLANAR: bpp = 16; break;
819 case OVERLAY_FORMAT_YUV420_PLANAR: bpp = 12; break;
822 ofb->fb.fix.line_length = var->xres_virtual * bpp / 8;
824 size = PAGE_ALIGN(ofb->fb.fix.line_length * var->yres_virtual);
826 if (ofb->video_mem) {
827 if (ofb->video_mem_size >= size)
828 return 0;
830 return -EINVAL;
833 static int overlayfb_set_par(struct fb_info *info)
835 struct pxafb_layer *ofb = (struct pxafb_layer *)info;
836 struct fb_var_screeninfo *var = &info->var;
837 int xpos, ypos, pfor, bpp, ret;
839 ret = overlayfb_check_video_memory(ofb);
840 if (ret)
841 return ret;
843 bpp = pxafb_var_to_bpp(var);
844 xpos = NONSTD_TO_XPOS(var->nonstd);
845 ypos = NONSTD_TO_YPOS(var->nonstd);
846 pfor = NONSTD_TO_PFOR(var->nonstd);
848 ofb->control[0] = OVLxC1_PPL(var->xres) | OVLxC1_LPO(var->yres) |
849 OVLxC1_BPP(bpp);
850 ofb->control[1] = OVLxC2_XPOS(xpos) | OVLxC2_YPOS(ypos);
852 if (ofb->id == OVERLAY2)
853 ofb->control[1] |= OVL2C2_PFOR(pfor);
855 ofb->ops->setup(ofb);
856 ofb->ops->enable(ofb);
857 return 0;
860 static struct fb_ops overlay_fb_ops = {
861 .owner = THIS_MODULE,
862 .fb_open = overlayfb_open,
863 .fb_release = overlayfb_release,
864 .fb_check_var = overlayfb_check_var,
865 .fb_set_par = overlayfb_set_par,
868 static void __devinit init_pxafb_overlay(struct pxafb_info *fbi,
869 struct pxafb_layer *ofb, int id)
871 sprintf(ofb->fb.fix.id, "overlay%d", id + 1);
873 ofb->fb.fix.type = FB_TYPE_PACKED_PIXELS;
874 ofb->fb.fix.xpanstep = 0;
875 ofb->fb.fix.ypanstep = 1;
877 ofb->fb.var.activate = FB_ACTIVATE_NOW;
878 ofb->fb.var.height = -1;
879 ofb->fb.var.width = -1;
880 ofb->fb.var.vmode = FB_VMODE_NONINTERLACED;
882 ofb->fb.fbops = &overlay_fb_ops;
883 ofb->fb.flags = FBINFO_FLAG_DEFAULT;
884 ofb->fb.node = -1;
885 ofb->fb.pseudo_palette = NULL;
887 ofb->id = id;
888 ofb->ops = &ofb_ops[id];
889 ofb->usage = 0;
890 ofb->fbi = fbi;
891 init_completion(&ofb->branch_done);
894 static inline int pxafb_overlay_supported(void)
896 if (cpu_is_pxa27x() || cpu_is_pxa3xx())
897 return 1;
899 return 0;
902 static int __devinit pxafb_overlay_map_video_memory(struct pxafb_info *pxafb,
903 struct pxafb_layer *ofb)
905 /* We assume that user will use at most video_mem_size for overlay fb,
906 * anyway, it's useless to use 16bpp main plane and 24bpp overlay
908 ofb->video_mem = alloc_pages_exact(PAGE_ALIGN(pxafb->video_mem_size),
909 GFP_KERNEL | __GFP_ZERO);
910 if (ofb->video_mem == NULL)
911 return -ENOMEM;
913 ofb->video_mem_phys = virt_to_phys(ofb->video_mem);
914 ofb->video_mem_size = PAGE_ALIGN(pxafb->video_mem_size);
916 mutex_lock(&ofb->fb.mm_lock);
917 ofb->fb.fix.smem_start = ofb->video_mem_phys;
918 ofb->fb.fix.smem_len = pxafb->video_mem_size;
919 mutex_unlock(&ofb->fb.mm_lock);
921 ofb->fb.screen_base = ofb->video_mem;
923 return 0;
926 static void __devinit pxafb_overlay_init(struct pxafb_info *fbi)
928 int i, ret;
930 if (!pxafb_overlay_supported())
931 return;
933 for (i = 0; i < 2; i++) {
934 struct pxafb_layer *ofb = &fbi->overlay[i];
935 init_pxafb_overlay(fbi, ofb, i);
936 ret = register_framebuffer(&ofb->fb);
937 if (ret) {
938 dev_err(fbi->dev, "failed to register overlay %d\n", i);
939 continue;
941 ret = pxafb_overlay_map_video_memory(fbi, ofb);
942 if (ret) {
943 dev_err(fbi->dev,
944 "failed to map video memory for overlay %d\n",
946 unregister_framebuffer(&ofb->fb);
947 continue;
949 ofb->registered = 1;
952 /* mask all IU/BS/EOF/SOF interrupts */
953 lcd_writel(fbi, LCCR5, ~0);
955 pr_info("PXA Overlay driver loaded successfully!\n");
958 static void __devexit pxafb_overlay_exit(struct pxafb_info *fbi)
960 int i;
962 if (!pxafb_overlay_supported())
963 return;
965 for (i = 0; i < 2; i++) {
966 struct pxafb_layer *ofb = &fbi->overlay[i];
967 if (ofb->registered) {
968 if (ofb->video_mem)
969 free_pages_exact(ofb->video_mem,
970 ofb->video_mem_size);
971 unregister_framebuffer(&ofb->fb);
975 #else
976 static inline void pxafb_overlay_init(struct pxafb_info *fbi) {}
977 static inline void pxafb_overlay_exit(struct pxafb_info *fbi) {}
978 #endif /* CONFIG_FB_PXA_OVERLAY */
981 * Calculate the PCD value from the clock rate (in picoseconds).
982 * We take account of the PPCR clock setting.
983 * From PXA Developer's Manual:
985 * PixelClock = LCLK
986 * -------------
987 * 2 ( PCD + 1 )
989 * PCD = LCLK
990 * ------------- - 1
991 * 2(PixelClock)
993 * Where:
994 * LCLK = LCD/Memory Clock
995 * PCD = LCCR3[7:0]
997 * PixelClock here is in Hz while the pixclock argument given is the
998 * period in picoseconds. Hence PixelClock = 1 / ( pixclock * 10^-12 )
1000 * The function get_lclk_frequency_10khz returns LCLK in units of
1001 * 10khz. Calling the result of this function lclk gives us the
1002 * following
1004 * PCD = (lclk * 10^4 ) * ( pixclock * 10^-12 )
1005 * -------------------------------------- - 1
1008 * Factoring the 10^4 and 10^-12 out gives 10^-8 == 1 / 100000000 as used below.
1010 static inline unsigned int get_pcd(struct pxafb_info *fbi,
1011 unsigned int pixclock)
1013 unsigned long long pcd;
1015 /* FIXME: Need to take into account Double Pixel Clock mode
1016 * (DPC) bit? or perhaps set it based on the various clock
1017 * speeds */
1018 pcd = (unsigned long long)(clk_get_rate(fbi->clk) / 10000);
1019 pcd *= pixclock;
1020 do_div(pcd, 100000000 * 2);
1021 /* no need for this, since we should subtract 1 anyway. they cancel */
1022 /* pcd += 1; */ /* make up for integer math truncations */
1023 return (unsigned int)pcd;
1027 * Some touchscreens need hsync information from the video driver to
1028 * function correctly. We export it here. Note that 'hsync_time' and
1029 * the value returned from pxafb_get_hsync_time() is the *reciprocal*
1030 * of the hsync period in seconds.
1032 static inline void set_hsync_time(struct pxafb_info *fbi, unsigned int pcd)
1034 unsigned long htime;
1036 if ((pcd == 0) || (fbi->fb.var.hsync_len == 0)) {
1037 fbi->hsync_time = 0;
1038 return;
1041 htime = clk_get_rate(fbi->clk) / (pcd * fbi->fb.var.hsync_len);
1043 fbi->hsync_time = htime;
1046 unsigned long pxafb_get_hsync_time(struct device *dev)
1048 struct pxafb_info *fbi = dev_get_drvdata(dev);
1050 /* If display is blanked/suspended, hsync isn't active */
1051 if (!fbi || (fbi->state != C_ENABLE))
1052 return 0;
1054 return fbi->hsync_time;
1056 EXPORT_SYMBOL(pxafb_get_hsync_time);
1058 static int setup_frame_dma(struct pxafb_info *fbi, int dma, int pal,
1059 unsigned long start, size_t size)
1061 struct pxafb_dma_descriptor *dma_desc, *pal_desc;
1062 unsigned int dma_desc_off, pal_desc_off;
1064 if (dma < 0 || dma >= DMA_MAX * 2)
1065 return -EINVAL;
1067 dma_desc = &fbi->dma_buff->dma_desc[dma];
1068 dma_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[dma]);
1070 dma_desc->fsadr = start;
1071 dma_desc->fidr = 0;
1072 dma_desc->ldcmd = size;
1074 if (pal < 0 || pal >= PAL_MAX * 2) {
1075 dma_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
1076 fbi->fdadr[dma] = fbi->dma_buff_phys + dma_desc_off;
1077 } else {
1078 pal_desc = &fbi->dma_buff->pal_desc[pal];
1079 pal_desc_off = offsetof(struct pxafb_dma_buff, pal_desc[pal]);
1081 pal_desc->fsadr = fbi->dma_buff_phys + pal * PALETTE_SIZE;
1082 pal_desc->fidr = 0;
1084 if ((fbi->lccr4 & LCCR4_PAL_FOR_MASK) == LCCR4_PAL_FOR_0)
1085 pal_desc->ldcmd = fbi->palette_size * sizeof(u16);
1086 else
1087 pal_desc->ldcmd = fbi->palette_size * sizeof(u32);
1089 pal_desc->ldcmd |= LDCMD_PAL;
1091 /* flip back and forth between palette and frame buffer */
1092 pal_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
1093 dma_desc->fdadr = fbi->dma_buff_phys + pal_desc_off;
1094 fbi->fdadr[dma] = fbi->dma_buff_phys + dma_desc_off;
1097 return 0;
1100 static void setup_base_frame(struct pxafb_info *fbi,
1101 struct fb_var_screeninfo *var,
1102 int branch)
1104 struct fb_fix_screeninfo *fix = &fbi->fb.fix;
1105 int nbytes, dma, pal, bpp = var->bits_per_pixel;
1106 unsigned long offset;
1108 dma = DMA_BASE + (branch ? DMA_MAX : 0);
1109 pal = (bpp >= 16) ? PAL_NONE : PAL_BASE + (branch ? PAL_MAX : 0);
1111 nbytes = fix->line_length * var->yres;
1112 offset = fix->line_length * var->yoffset + fbi->video_mem_phys;
1114 if (fbi->lccr0 & LCCR0_SDS) {
1115 nbytes = nbytes / 2;
1116 setup_frame_dma(fbi, dma + 1, PAL_NONE, offset + nbytes, nbytes);
1119 setup_frame_dma(fbi, dma, pal, offset, nbytes);
1122 #ifdef CONFIG_FB_PXA_SMARTPANEL
1123 static int setup_smart_dma(struct pxafb_info *fbi)
1125 struct pxafb_dma_descriptor *dma_desc;
1126 unsigned long dma_desc_off, cmd_buff_off;
1128 dma_desc = &fbi->dma_buff->dma_desc[DMA_CMD];
1129 dma_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[DMA_CMD]);
1130 cmd_buff_off = offsetof(struct pxafb_dma_buff, cmd_buff);
1132 dma_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
1133 dma_desc->fsadr = fbi->dma_buff_phys + cmd_buff_off;
1134 dma_desc->fidr = 0;
1135 dma_desc->ldcmd = fbi->n_smart_cmds * sizeof(uint16_t);
1137 fbi->fdadr[DMA_CMD] = dma_desc->fdadr;
1138 return 0;
1141 int pxafb_smart_flush(struct fb_info *info)
1143 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
1144 uint32_t prsr;
1145 int ret = 0;
1147 /* disable controller until all registers are set up */
1148 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
1150 /* 1. make it an even number of commands to align on 32-bit boundary
1151 * 2. add the interrupt command to the end of the chain so we can
1152 * keep track of the end of the transfer
1155 while (fbi->n_smart_cmds & 1)
1156 fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_NOOP;
1158 fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_INTERRUPT;
1159 fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_WAIT_FOR_VSYNC;
1160 setup_smart_dma(fbi);
1162 /* continue to execute next command */
1163 prsr = lcd_readl(fbi, PRSR) | PRSR_ST_OK | PRSR_CON_NT;
1164 lcd_writel(fbi, PRSR, prsr);
1166 /* stop the processor in case it executed "wait for sync" cmd */
1167 lcd_writel(fbi, CMDCR, 0x0001);
1169 /* don't send interrupts for fifo underruns on channel 6 */
1170 lcd_writel(fbi, LCCR5, LCCR5_IUM(6));
1172 lcd_writel(fbi, LCCR1, fbi->reg_lccr1);
1173 lcd_writel(fbi, LCCR2, fbi->reg_lccr2);
1174 lcd_writel(fbi, LCCR3, fbi->reg_lccr3);
1175 lcd_writel(fbi, LCCR4, fbi->reg_lccr4);
1176 lcd_writel(fbi, FDADR0, fbi->fdadr[0]);
1177 lcd_writel(fbi, FDADR6, fbi->fdadr[6]);
1179 /* begin sending */
1180 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 | LCCR0_ENB);
1182 if (wait_for_completion_timeout(&fbi->command_done, HZ/2) == 0) {
1183 pr_warning("%s: timeout waiting for command done\n",
1184 __func__);
1185 ret = -ETIMEDOUT;
1188 /* quick disable */
1189 prsr = lcd_readl(fbi, PRSR) & ~(PRSR_ST_OK | PRSR_CON_NT);
1190 lcd_writel(fbi, PRSR, prsr);
1191 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
1192 lcd_writel(fbi, FDADR6, 0);
1193 fbi->n_smart_cmds = 0;
1194 return ret;
1197 int pxafb_smart_queue(struct fb_info *info, uint16_t *cmds, int n_cmds)
1199 int i;
1200 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
1202 for (i = 0; i < n_cmds; i++, cmds++) {
1203 /* if it is a software delay, flush and delay */
1204 if ((*cmds & 0xff00) == SMART_CMD_DELAY) {
1205 pxafb_smart_flush(info);
1206 mdelay(*cmds & 0xff);
1207 continue;
1210 /* leave 2 commands for INTERRUPT and WAIT_FOR_SYNC */
1211 if (fbi->n_smart_cmds == CMD_BUFF_SIZE - 8)
1212 pxafb_smart_flush(info);
1214 fbi->smart_cmds[fbi->n_smart_cmds++] = *cmds;
1217 return 0;
1220 static unsigned int __smart_timing(unsigned time_ns, unsigned long lcd_clk)
1222 unsigned int t = (time_ns * (lcd_clk / 1000000) / 1000);
1223 return (t == 0) ? 1 : t;
1226 static void setup_smart_timing(struct pxafb_info *fbi,
1227 struct fb_var_screeninfo *var)
1229 struct pxafb_mach_info *inf = fbi->dev->platform_data;
1230 struct pxafb_mode_info *mode = &inf->modes[0];
1231 unsigned long lclk = clk_get_rate(fbi->clk);
1232 unsigned t1, t2, t3, t4;
1234 t1 = max(mode->a0csrd_set_hld, mode->a0cswr_set_hld);
1235 t2 = max(mode->rd_pulse_width, mode->wr_pulse_width);
1236 t3 = mode->op_hold_time;
1237 t4 = mode->cmd_inh_time;
1239 fbi->reg_lccr1 =
1240 LCCR1_DisWdth(var->xres) |
1241 LCCR1_BegLnDel(__smart_timing(t1, lclk)) |
1242 LCCR1_EndLnDel(__smart_timing(t2, lclk)) |
1243 LCCR1_HorSnchWdth(__smart_timing(t3, lclk));
1245 fbi->reg_lccr2 = LCCR2_DisHght(var->yres);
1246 fbi->reg_lccr3 = fbi->lccr3 | LCCR3_PixClkDiv(__smart_timing(t4, lclk));
1247 fbi->reg_lccr3 |= (var->sync & FB_SYNC_HOR_HIGH_ACT) ? LCCR3_HSP : 0;
1248 fbi->reg_lccr3 |= (var->sync & FB_SYNC_VERT_HIGH_ACT) ? LCCR3_VSP : 0;
1250 /* FIXME: make this configurable */
1251 fbi->reg_cmdcr = 1;
1254 static int pxafb_smart_thread(void *arg)
1256 struct pxafb_info *fbi = arg;
1257 struct pxafb_mach_info *inf = fbi->dev->platform_data;
1259 if (!inf->smart_update) {
1260 pr_err("%s: not properly initialized, thread terminated\n",
1261 __func__);
1262 return -EINVAL;
1264 inf = fbi->dev->platform_data;
1266 pr_debug("%s(): task starting\n", __func__);
1268 set_freezable();
1269 while (!kthread_should_stop()) {
1271 if (try_to_freeze())
1272 continue;
1274 mutex_lock(&fbi->ctrlr_lock);
1276 if (fbi->state == C_ENABLE) {
1277 inf->smart_update(&fbi->fb);
1278 complete(&fbi->refresh_done);
1281 mutex_unlock(&fbi->ctrlr_lock);
1283 set_current_state(TASK_INTERRUPTIBLE);
1284 schedule_timeout(30 * HZ / 1000);
1287 pr_debug("%s(): task ending\n", __func__);
1288 return 0;
1291 static int pxafb_smart_init(struct pxafb_info *fbi)
1293 if (!(fbi->lccr0 & LCCR0_LCDT))
1294 return 0;
1296 fbi->smart_cmds = (uint16_t *) fbi->dma_buff->cmd_buff;
1297 fbi->n_smart_cmds = 0;
1299 init_completion(&fbi->command_done);
1300 init_completion(&fbi->refresh_done);
1302 fbi->smart_thread = kthread_run(pxafb_smart_thread, fbi,
1303 "lcd_refresh");
1304 if (IS_ERR(fbi->smart_thread)) {
1305 pr_err("%s: unable to create kernel thread\n", __func__);
1306 return PTR_ERR(fbi->smart_thread);
1309 return 0;
1311 #else
1312 static inline int pxafb_smart_init(struct pxafb_info *fbi) { return 0; }
1313 #endif /* CONFIG_FB_PXA_SMARTPANEL */
1315 static void setup_parallel_timing(struct pxafb_info *fbi,
1316 struct fb_var_screeninfo *var)
1318 unsigned int lines_per_panel, pcd = get_pcd(fbi, var->pixclock);
1320 fbi->reg_lccr1 =
1321 LCCR1_DisWdth(var->xres) +
1322 LCCR1_HorSnchWdth(var->hsync_len) +
1323 LCCR1_BegLnDel(var->left_margin) +
1324 LCCR1_EndLnDel(var->right_margin);
1327 * If we have a dual scan LCD, we need to halve
1328 * the YRES parameter.
1330 lines_per_panel = var->yres;
1331 if ((fbi->lccr0 & LCCR0_SDS) == LCCR0_Dual)
1332 lines_per_panel /= 2;
1334 fbi->reg_lccr2 =
1335 LCCR2_DisHght(lines_per_panel) +
1336 LCCR2_VrtSnchWdth(var->vsync_len) +
1337 LCCR2_BegFrmDel(var->upper_margin) +
1338 LCCR2_EndFrmDel(var->lower_margin);
1340 fbi->reg_lccr3 = fbi->lccr3 |
1341 (var->sync & FB_SYNC_HOR_HIGH_ACT ?
1342 LCCR3_HorSnchH : LCCR3_HorSnchL) |
1343 (var->sync & FB_SYNC_VERT_HIGH_ACT ?
1344 LCCR3_VrtSnchH : LCCR3_VrtSnchL);
1346 if (pcd) {
1347 fbi->reg_lccr3 |= LCCR3_PixClkDiv(pcd);
1348 set_hsync_time(fbi, pcd);
1353 * pxafb_activate_var():
1354 * Configures LCD Controller based on entries in var parameter.
1355 * Settings are only written to the controller if changes were made.
1357 static int pxafb_activate_var(struct fb_var_screeninfo *var,
1358 struct pxafb_info *fbi)
1360 u_long flags;
1362 /* Update shadow copy atomically */
1363 local_irq_save(flags);
1365 #ifdef CONFIG_FB_PXA_SMARTPANEL
1366 if (fbi->lccr0 & LCCR0_LCDT)
1367 setup_smart_timing(fbi, var);
1368 else
1369 #endif
1370 setup_parallel_timing(fbi, var);
1372 setup_base_frame(fbi, var, 0);
1374 fbi->reg_lccr0 = fbi->lccr0 |
1375 (LCCR0_LDM | LCCR0_SFM | LCCR0_IUM | LCCR0_EFM |
1376 LCCR0_QDM | LCCR0_BM | LCCR0_OUM);
1378 fbi->reg_lccr3 |= pxafb_var_to_lccr3(var);
1380 fbi->reg_lccr4 = lcd_readl(fbi, LCCR4) & ~LCCR4_PAL_FOR_MASK;
1381 fbi->reg_lccr4 |= (fbi->lccr4 & LCCR4_PAL_FOR_MASK);
1382 local_irq_restore(flags);
1385 * Only update the registers if the controller is enabled
1386 * and something has changed.
1388 if ((lcd_readl(fbi, LCCR0) != fbi->reg_lccr0) ||
1389 (lcd_readl(fbi, LCCR1) != fbi->reg_lccr1) ||
1390 (lcd_readl(fbi, LCCR2) != fbi->reg_lccr2) ||
1391 (lcd_readl(fbi, LCCR3) != fbi->reg_lccr3) ||
1392 (lcd_readl(fbi, LCCR4) != fbi->reg_lccr4) ||
1393 (lcd_readl(fbi, FDADR0) != fbi->fdadr[0]) ||
1394 ((fbi->lccr0 & LCCR0_SDS) &&
1395 (lcd_readl(fbi, FDADR1) != fbi->fdadr[1])))
1396 pxafb_schedule_work(fbi, C_REENABLE);
1398 return 0;
1402 * NOTE! The following functions are purely helpers for set_ctrlr_state.
1403 * Do not call them directly; set_ctrlr_state does the correct serialisation
1404 * to ensure that things happen in the right way 100% of time time.
1405 * -- rmk
1407 static inline void __pxafb_backlight_power(struct pxafb_info *fbi, int on)
1409 pr_debug("pxafb: backlight o%s\n", on ? "n" : "ff");
1411 if (fbi->backlight_power)
1412 fbi->backlight_power(on);
1415 static inline void __pxafb_lcd_power(struct pxafb_info *fbi, int on)
1417 pr_debug("pxafb: LCD power o%s\n", on ? "n" : "ff");
1419 if (fbi->lcd_power)
1420 fbi->lcd_power(on, &fbi->fb.var);
1423 static void pxafb_enable_controller(struct pxafb_info *fbi)
1425 pr_debug("pxafb: Enabling LCD controller\n");
1426 pr_debug("fdadr0 0x%08x\n", (unsigned int) fbi->fdadr[0]);
1427 pr_debug("fdadr1 0x%08x\n", (unsigned int) fbi->fdadr[1]);
1428 pr_debug("reg_lccr0 0x%08x\n", (unsigned int) fbi->reg_lccr0);
1429 pr_debug("reg_lccr1 0x%08x\n", (unsigned int) fbi->reg_lccr1);
1430 pr_debug("reg_lccr2 0x%08x\n", (unsigned int) fbi->reg_lccr2);
1431 pr_debug("reg_lccr3 0x%08x\n", (unsigned int) fbi->reg_lccr3);
1433 /* enable LCD controller clock */
1434 clk_enable(fbi->clk);
1436 if (fbi->lccr0 & LCCR0_LCDT)
1437 return;
1439 /* Sequence from 11.7.10 */
1440 lcd_writel(fbi, LCCR4, fbi->reg_lccr4);
1441 lcd_writel(fbi, LCCR3, fbi->reg_lccr3);
1442 lcd_writel(fbi, LCCR2, fbi->reg_lccr2);
1443 lcd_writel(fbi, LCCR1, fbi->reg_lccr1);
1444 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
1446 lcd_writel(fbi, FDADR0, fbi->fdadr[0]);
1447 if (fbi->lccr0 & LCCR0_SDS)
1448 lcd_writel(fbi, FDADR1, fbi->fdadr[1]);
1449 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 | LCCR0_ENB);
1452 static void pxafb_disable_controller(struct pxafb_info *fbi)
1454 uint32_t lccr0;
1456 #ifdef CONFIG_FB_PXA_SMARTPANEL
1457 if (fbi->lccr0 & LCCR0_LCDT) {
1458 wait_for_completion_timeout(&fbi->refresh_done,
1459 200 * HZ / 1000);
1460 return;
1462 #endif
1464 /* Clear LCD Status Register */
1465 lcd_writel(fbi, LCSR, 0xffffffff);
1467 lccr0 = lcd_readl(fbi, LCCR0) & ~LCCR0_LDM;
1468 lcd_writel(fbi, LCCR0, lccr0);
1469 lcd_writel(fbi, LCCR0, lccr0 | LCCR0_DIS);
1471 wait_for_completion_timeout(&fbi->disable_done, 200 * HZ / 1000);
1473 /* disable LCD controller clock */
1474 clk_disable(fbi->clk);
1478 * pxafb_handle_irq: Handle 'LCD DONE' interrupts.
1480 static irqreturn_t pxafb_handle_irq(int irq, void *dev_id)
1482 struct pxafb_info *fbi = dev_id;
1483 unsigned int lccr0, lcsr;
1485 lcsr = lcd_readl(fbi, LCSR);
1486 if (lcsr & LCSR_LDD) {
1487 lccr0 = lcd_readl(fbi, LCCR0);
1488 lcd_writel(fbi, LCCR0, lccr0 | LCCR0_LDM);
1489 complete(&fbi->disable_done);
1492 #ifdef CONFIG_FB_PXA_SMARTPANEL
1493 if (lcsr & LCSR_CMD_INT)
1494 complete(&fbi->command_done);
1495 #endif
1496 lcd_writel(fbi, LCSR, lcsr);
1498 #ifdef CONFIG_FB_PXA_OVERLAY
1500 unsigned int lcsr1 = lcd_readl(fbi, LCSR1);
1501 if (lcsr1 & LCSR1_BS(1))
1502 complete(&fbi->overlay[0].branch_done);
1504 if (lcsr1 & LCSR1_BS(2))
1505 complete(&fbi->overlay[1].branch_done);
1507 lcd_writel(fbi, LCSR1, lcsr1);
1509 #endif
1510 return IRQ_HANDLED;
1514 * This function must be called from task context only, since it will
1515 * sleep when disabling the LCD controller, or if we get two contending
1516 * processes trying to alter state.
1518 static void set_ctrlr_state(struct pxafb_info *fbi, u_int state)
1520 u_int old_state;
1522 mutex_lock(&fbi->ctrlr_lock);
1524 old_state = fbi->state;
1527 * Hack around fbcon initialisation.
1529 if (old_state == C_STARTUP && state == C_REENABLE)
1530 state = C_ENABLE;
1532 switch (state) {
1533 case C_DISABLE_CLKCHANGE:
1535 * Disable controller for clock change. If the
1536 * controller is already disabled, then do nothing.
1538 if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
1539 fbi->state = state;
1540 /* TODO __pxafb_lcd_power(fbi, 0); */
1541 pxafb_disable_controller(fbi);
1543 break;
1545 case C_DISABLE_PM:
1546 case C_DISABLE:
1548 * Disable controller
1550 if (old_state != C_DISABLE) {
1551 fbi->state = state;
1552 __pxafb_backlight_power(fbi, 0);
1553 __pxafb_lcd_power(fbi, 0);
1554 if (old_state != C_DISABLE_CLKCHANGE)
1555 pxafb_disable_controller(fbi);
1557 break;
1559 case C_ENABLE_CLKCHANGE:
1561 * Enable the controller after clock change. Only
1562 * do this if we were disabled for the clock change.
1564 if (old_state == C_DISABLE_CLKCHANGE) {
1565 fbi->state = C_ENABLE;
1566 pxafb_enable_controller(fbi);
1567 /* TODO __pxafb_lcd_power(fbi, 1); */
1569 break;
1571 case C_REENABLE:
1573 * Re-enable the controller only if it was already
1574 * enabled. This is so we reprogram the control
1575 * registers.
1577 if (old_state == C_ENABLE) {
1578 __pxafb_lcd_power(fbi, 0);
1579 pxafb_disable_controller(fbi);
1580 pxafb_enable_controller(fbi);
1581 __pxafb_lcd_power(fbi, 1);
1583 break;
1585 case C_ENABLE_PM:
1587 * Re-enable the controller after PM. This is not
1588 * perfect - think about the case where we were doing
1589 * a clock change, and we suspended half-way through.
1591 if (old_state != C_DISABLE_PM)
1592 break;
1593 /* fall through */
1595 case C_ENABLE:
1597 * Power up the LCD screen, enable controller, and
1598 * turn on the backlight.
1600 if (old_state != C_ENABLE) {
1601 fbi->state = C_ENABLE;
1602 pxafb_enable_controller(fbi);
1603 __pxafb_lcd_power(fbi, 1);
1604 __pxafb_backlight_power(fbi, 1);
1606 break;
1608 mutex_unlock(&fbi->ctrlr_lock);
1612 * Our LCD controller task (which is called when we blank or unblank)
1613 * via keventd.
1615 static void pxafb_task(struct work_struct *work)
1617 struct pxafb_info *fbi =
1618 container_of(work, struct pxafb_info, task);
1619 u_int state = xchg(&fbi->task_state, -1);
1621 set_ctrlr_state(fbi, state);
1624 #ifdef CONFIG_CPU_FREQ
1626 * CPU clock speed change handler. We need to adjust the LCD timing
1627 * parameters when the CPU clock is adjusted by the power management
1628 * subsystem.
1630 * TODO: Determine why f->new != 10*get_lclk_frequency_10khz()
1632 static int
1633 pxafb_freq_transition(struct notifier_block *nb, unsigned long val, void *data)
1635 struct pxafb_info *fbi = TO_INF(nb, freq_transition);
1636 /* TODO struct cpufreq_freqs *f = data; */
1637 u_int pcd;
1639 switch (val) {
1640 case CPUFREQ_PRECHANGE:
1641 #ifdef CONFIG_FB_PXA_OVERLAY
1642 if (!(fbi->overlay[0].usage || fbi->overlay[1].usage))
1643 #endif
1644 set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
1645 break;
1647 case CPUFREQ_POSTCHANGE:
1648 pcd = get_pcd(fbi, fbi->fb.var.pixclock);
1649 set_hsync_time(fbi, pcd);
1650 fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) |
1651 LCCR3_PixClkDiv(pcd);
1652 set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
1653 break;
1655 return 0;
1658 static int
1659 pxafb_freq_policy(struct notifier_block *nb, unsigned long val, void *data)
1661 struct pxafb_info *fbi = TO_INF(nb, freq_policy);
1662 struct fb_var_screeninfo *var = &fbi->fb.var;
1663 struct cpufreq_policy *policy = data;
1665 switch (val) {
1666 case CPUFREQ_ADJUST:
1667 case CPUFREQ_INCOMPATIBLE:
1668 pr_debug("min dma period: %d ps, "
1669 "new clock %d kHz\n", pxafb_display_dma_period(var),
1670 policy->max);
1671 /* TODO: fill in min/max values */
1672 break;
1674 return 0;
1676 #endif
1678 #ifdef CONFIG_PM
1680 * Power management hooks. Note that we won't be called from IRQ context,
1681 * unlike the blank functions above, so we may sleep.
1683 static int pxafb_suspend(struct device *dev)
1685 struct pxafb_info *fbi = dev_get_drvdata(dev);
1687 set_ctrlr_state(fbi, C_DISABLE_PM);
1688 return 0;
1691 static int pxafb_resume(struct device *dev)
1693 struct pxafb_info *fbi = dev_get_drvdata(dev);
1695 set_ctrlr_state(fbi, C_ENABLE_PM);
1696 return 0;
1699 static const struct dev_pm_ops pxafb_pm_ops = {
1700 .suspend = pxafb_suspend,
1701 .resume = pxafb_resume,
1703 #endif
1705 static int __devinit pxafb_init_video_memory(struct pxafb_info *fbi)
1707 int size = PAGE_ALIGN(fbi->video_mem_size);
1709 fbi->video_mem = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
1710 if (fbi->video_mem == NULL)
1711 return -ENOMEM;
1713 fbi->video_mem_phys = virt_to_phys(fbi->video_mem);
1714 fbi->video_mem_size = size;
1716 fbi->fb.fix.smem_start = fbi->video_mem_phys;
1717 fbi->fb.fix.smem_len = fbi->video_mem_size;
1718 fbi->fb.screen_base = fbi->video_mem;
1720 return fbi->video_mem ? 0 : -ENOMEM;
1723 static void pxafb_decode_mach_info(struct pxafb_info *fbi,
1724 struct pxafb_mach_info *inf)
1726 unsigned int lcd_conn = inf->lcd_conn;
1727 struct pxafb_mode_info *m;
1728 int i;
1730 fbi->cmap_inverse = inf->cmap_inverse;
1731 fbi->cmap_static = inf->cmap_static;
1732 fbi->lccr4 = inf->lccr4;
1734 switch (lcd_conn & LCD_TYPE_MASK) {
1735 case LCD_TYPE_MONO_STN:
1736 fbi->lccr0 = LCCR0_CMS;
1737 break;
1738 case LCD_TYPE_MONO_DSTN:
1739 fbi->lccr0 = LCCR0_CMS | LCCR0_SDS;
1740 break;
1741 case LCD_TYPE_COLOR_STN:
1742 fbi->lccr0 = 0;
1743 break;
1744 case LCD_TYPE_COLOR_DSTN:
1745 fbi->lccr0 = LCCR0_SDS;
1746 break;
1747 case LCD_TYPE_COLOR_TFT:
1748 fbi->lccr0 = LCCR0_PAS;
1749 break;
1750 case LCD_TYPE_SMART_PANEL:
1751 fbi->lccr0 = LCCR0_LCDT | LCCR0_PAS;
1752 break;
1753 default:
1754 /* fall back to backward compatibility way */
1755 fbi->lccr0 = inf->lccr0;
1756 fbi->lccr3 = inf->lccr3;
1757 goto decode_mode;
1760 if (lcd_conn == LCD_MONO_STN_8BPP)
1761 fbi->lccr0 |= LCCR0_DPD;
1763 fbi->lccr0 |= (lcd_conn & LCD_ALTERNATE_MAPPING) ? LCCR0_LDDALT : 0;
1765 fbi->lccr3 = LCCR3_Acb((inf->lcd_conn >> 10) & 0xff);
1766 fbi->lccr3 |= (lcd_conn & LCD_BIAS_ACTIVE_LOW) ? LCCR3_OEP : 0;
1767 fbi->lccr3 |= (lcd_conn & LCD_PCLK_EDGE_FALL) ? LCCR3_PCP : 0;
1769 decode_mode:
1770 pxafb_setmode(&fbi->fb.var, &inf->modes[0]);
1772 /* decide video memory size as follows:
1773 * 1. default to mode of maximum resolution
1774 * 2. allow platform to override
1775 * 3. allow module parameter to override
1777 for (i = 0, m = &inf->modes[0]; i < inf->num_modes; i++, m++)
1778 fbi->video_mem_size = max_t(size_t, fbi->video_mem_size,
1779 m->xres * m->yres * m->bpp / 8);
1781 if (inf->video_mem_size > fbi->video_mem_size)
1782 fbi->video_mem_size = inf->video_mem_size;
1784 if (video_mem_size > fbi->video_mem_size)
1785 fbi->video_mem_size = video_mem_size;
1788 static struct pxafb_info * __devinit pxafb_init_fbinfo(struct device *dev)
1790 struct pxafb_info *fbi;
1791 void *addr;
1792 struct pxafb_mach_info *inf = dev->platform_data;
1794 /* Alloc the pxafb_info and pseudo_palette in one step */
1795 fbi = kmalloc(sizeof(struct pxafb_info) + sizeof(u32) * 16, GFP_KERNEL);
1796 if (!fbi)
1797 return NULL;
1799 memset(fbi, 0, sizeof(struct pxafb_info));
1800 fbi->dev = dev;
1802 fbi->clk = clk_get(dev, NULL);
1803 if (IS_ERR(fbi->clk)) {
1804 kfree(fbi);
1805 return NULL;
1808 strcpy(fbi->fb.fix.id, PXA_NAME);
1810 fbi->fb.fix.type = FB_TYPE_PACKED_PIXELS;
1811 fbi->fb.fix.type_aux = 0;
1812 fbi->fb.fix.xpanstep = 0;
1813 fbi->fb.fix.ypanstep = 1;
1814 fbi->fb.fix.ywrapstep = 0;
1815 fbi->fb.fix.accel = FB_ACCEL_NONE;
1817 fbi->fb.var.nonstd = 0;
1818 fbi->fb.var.activate = FB_ACTIVATE_NOW;
1819 fbi->fb.var.height = -1;
1820 fbi->fb.var.width = -1;
1821 fbi->fb.var.accel_flags = FB_ACCELF_TEXT;
1822 fbi->fb.var.vmode = FB_VMODE_NONINTERLACED;
1824 fbi->fb.fbops = &pxafb_ops;
1825 fbi->fb.flags = FBINFO_DEFAULT;
1826 fbi->fb.node = -1;
1828 addr = fbi;
1829 addr = addr + sizeof(struct pxafb_info);
1830 fbi->fb.pseudo_palette = addr;
1832 fbi->state = C_STARTUP;
1833 fbi->task_state = (u_char)-1;
1835 pxafb_decode_mach_info(fbi, inf);
1837 #ifdef CONFIG_FB_PXA_OVERLAY
1838 /* place overlay(s) on top of base */
1839 if (pxafb_overlay_supported())
1840 fbi->lccr0 |= LCCR0_OUC;
1841 #endif
1843 init_waitqueue_head(&fbi->ctrlr_wait);
1844 INIT_WORK(&fbi->task, pxafb_task);
1845 mutex_init(&fbi->ctrlr_lock);
1846 init_completion(&fbi->disable_done);
1848 return fbi;
1851 #ifdef CONFIG_FB_PXA_PARAMETERS
1852 static int __devinit parse_opt_mode(struct device *dev, const char *this_opt)
1854 struct pxafb_mach_info *inf = dev->platform_data;
1856 const char *name = this_opt+5;
1857 unsigned int namelen = strlen(name);
1858 int res_specified = 0, bpp_specified = 0;
1859 unsigned int xres = 0, yres = 0, bpp = 0;
1860 int yres_specified = 0;
1861 int i;
1862 for (i = namelen-1; i >= 0; i--) {
1863 switch (name[i]) {
1864 case '-':
1865 namelen = i;
1866 if (!bpp_specified && !yres_specified) {
1867 bpp = simple_strtoul(&name[i+1], NULL, 0);
1868 bpp_specified = 1;
1869 } else
1870 goto done;
1871 break;
1872 case 'x':
1873 if (!yres_specified) {
1874 yres = simple_strtoul(&name[i+1], NULL, 0);
1875 yres_specified = 1;
1876 } else
1877 goto done;
1878 break;
1879 case '0' ... '9':
1880 break;
1881 default:
1882 goto done;
1885 if (i < 0 && yres_specified) {
1886 xres = simple_strtoul(name, NULL, 0);
1887 res_specified = 1;
1889 done:
1890 if (res_specified) {
1891 dev_info(dev, "overriding resolution: %dx%d\n", xres, yres);
1892 inf->modes[0].xres = xres; inf->modes[0].yres = yres;
1894 if (bpp_specified)
1895 switch (bpp) {
1896 case 1:
1897 case 2:
1898 case 4:
1899 case 8:
1900 case 16:
1901 inf->modes[0].bpp = bpp;
1902 dev_info(dev, "overriding bit depth: %d\n", bpp);
1903 break;
1904 default:
1905 dev_err(dev, "Depth %d is not valid\n", bpp);
1906 return -EINVAL;
1908 return 0;
1911 static int __devinit parse_opt(struct device *dev, char *this_opt)
1913 struct pxafb_mach_info *inf = dev->platform_data;
1914 struct pxafb_mode_info *mode = &inf->modes[0];
1915 char s[64];
1917 s[0] = '\0';
1919 if (!strncmp(this_opt, "vmem:", 5)) {
1920 video_mem_size = memparse(this_opt + 5, NULL);
1921 } else if (!strncmp(this_opt, "mode:", 5)) {
1922 return parse_opt_mode(dev, this_opt);
1923 } else if (!strncmp(this_opt, "pixclock:", 9)) {
1924 mode->pixclock = simple_strtoul(this_opt+9, NULL, 0);
1925 sprintf(s, "pixclock: %ld\n", mode->pixclock);
1926 } else if (!strncmp(this_opt, "left:", 5)) {
1927 mode->left_margin = simple_strtoul(this_opt+5, NULL, 0);
1928 sprintf(s, "left: %u\n", mode->left_margin);
1929 } else if (!strncmp(this_opt, "right:", 6)) {
1930 mode->right_margin = simple_strtoul(this_opt+6, NULL, 0);
1931 sprintf(s, "right: %u\n", mode->right_margin);
1932 } else if (!strncmp(this_opt, "upper:", 6)) {
1933 mode->upper_margin = simple_strtoul(this_opt+6, NULL, 0);
1934 sprintf(s, "upper: %u\n", mode->upper_margin);
1935 } else if (!strncmp(this_opt, "lower:", 6)) {
1936 mode->lower_margin = simple_strtoul(this_opt+6, NULL, 0);
1937 sprintf(s, "lower: %u\n", mode->lower_margin);
1938 } else if (!strncmp(this_opt, "hsynclen:", 9)) {
1939 mode->hsync_len = simple_strtoul(this_opt+9, NULL, 0);
1940 sprintf(s, "hsynclen: %u\n", mode->hsync_len);
1941 } else if (!strncmp(this_opt, "vsynclen:", 9)) {
1942 mode->vsync_len = simple_strtoul(this_opt+9, NULL, 0);
1943 sprintf(s, "vsynclen: %u\n", mode->vsync_len);
1944 } else if (!strncmp(this_opt, "hsync:", 6)) {
1945 if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
1946 sprintf(s, "hsync: Active Low\n");
1947 mode->sync &= ~FB_SYNC_HOR_HIGH_ACT;
1948 } else {
1949 sprintf(s, "hsync: Active High\n");
1950 mode->sync |= FB_SYNC_HOR_HIGH_ACT;
1952 } else if (!strncmp(this_opt, "vsync:", 6)) {
1953 if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
1954 sprintf(s, "vsync: Active Low\n");
1955 mode->sync &= ~FB_SYNC_VERT_HIGH_ACT;
1956 } else {
1957 sprintf(s, "vsync: Active High\n");
1958 mode->sync |= FB_SYNC_VERT_HIGH_ACT;
1960 } else if (!strncmp(this_opt, "dpc:", 4)) {
1961 if (simple_strtoul(this_opt+4, NULL, 0) == 0) {
1962 sprintf(s, "double pixel clock: false\n");
1963 inf->lccr3 &= ~LCCR3_DPC;
1964 } else {
1965 sprintf(s, "double pixel clock: true\n");
1966 inf->lccr3 |= LCCR3_DPC;
1968 } else if (!strncmp(this_opt, "outputen:", 9)) {
1969 if (simple_strtoul(this_opt+9, NULL, 0) == 0) {
1970 sprintf(s, "output enable: active low\n");
1971 inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnL;
1972 } else {
1973 sprintf(s, "output enable: active high\n");
1974 inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnH;
1976 } else if (!strncmp(this_opt, "pixclockpol:", 12)) {
1977 if (simple_strtoul(this_opt+12, NULL, 0) == 0) {
1978 sprintf(s, "pixel clock polarity: falling edge\n");
1979 inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixFlEdg;
1980 } else {
1981 sprintf(s, "pixel clock polarity: rising edge\n");
1982 inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixRsEdg;
1984 } else if (!strncmp(this_opt, "color", 5)) {
1985 inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Color;
1986 } else if (!strncmp(this_opt, "mono", 4)) {
1987 inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Mono;
1988 } else if (!strncmp(this_opt, "active", 6)) {
1989 inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Act;
1990 } else if (!strncmp(this_opt, "passive", 7)) {
1991 inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Pas;
1992 } else if (!strncmp(this_opt, "single", 6)) {
1993 inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Sngl;
1994 } else if (!strncmp(this_opt, "dual", 4)) {
1995 inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Dual;
1996 } else if (!strncmp(this_opt, "4pix", 4)) {
1997 inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_4PixMono;
1998 } else if (!strncmp(this_opt, "8pix", 4)) {
1999 inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_8PixMono;
2000 } else {
2001 dev_err(dev, "unknown option: %s\n", this_opt);
2002 return -EINVAL;
2005 if (s[0] != '\0')
2006 dev_info(dev, "override %s", s);
2008 return 0;
2011 static int __devinit pxafb_parse_options(struct device *dev, char *options)
2013 char *this_opt;
2014 int ret;
2016 if (!options || !*options)
2017 return 0;
2019 dev_dbg(dev, "options are \"%s\"\n", options ? options : "null");
2021 /* could be made table driven or similar?... */
2022 while ((this_opt = strsep(&options, ",")) != NULL) {
2023 ret = parse_opt(dev, this_opt);
2024 if (ret)
2025 return ret;
2027 return 0;
2030 static char g_options[256] __devinitdata = "";
2032 #ifndef MODULE
2033 static int __init pxafb_setup_options(void)
2035 char *options = NULL;
2037 if (fb_get_options("pxafb", &options))
2038 return -ENODEV;
2040 if (options)
2041 strlcpy(g_options, options, sizeof(g_options));
2043 return 0;
2045 #else
2046 #define pxafb_setup_options() (0)
2048 module_param_string(options, g_options, sizeof(g_options), 0);
2049 MODULE_PARM_DESC(options, "LCD parameters (see Documentation/fb/pxafb.txt)");
2050 #endif
2052 #else
2053 #define pxafb_parse_options(...) (0)
2054 #define pxafb_setup_options() (0)
2055 #endif
2057 #ifdef DEBUG_VAR
2058 /* Check for various illegal bit-combinations. Currently only
2059 * a warning is given. */
2060 static void __devinit pxafb_check_options(struct device *dev,
2061 struct pxafb_mach_info *inf)
2063 if (inf->lcd_conn)
2064 return;
2066 if (inf->lccr0 & LCCR0_INVALID_CONFIG_MASK)
2067 dev_warn(dev, "machine LCCR0 setting contains "
2068 "illegal bits: %08x\n",
2069 inf->lccr0 & LCCR0_INVALID_CONFIG_MASK);
2070 if (inf->lccr3 & LCCR3_INVALID_CONFIG_MASK)
2071 dev_warn(dev, "machine LCCR3 setting contains "
2072 "illegal bits: %08x\n",
2073 inf->lccr3 & LCCR3_INVALID_CONFIG_MASK);
2074 if (inf->lccr0 & LCCR0_DPD &&
2075 ((inf->lccr0 & LCCR0_PAS) != LCCR0_Pas ||
2076 (inf->lccr0 & LCCR0_SDS) != LCCR0_Sngl ||
2077 (inf->lccr0 & LCCR0_CMS) != LCCR0_Mono))
2078 dev_warn(dev, "Double Pixel Data (DPD) mode is "
2079 "only valid in passive mono"
2080 " single panel mode\n");
2081 if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Act &&
2082 (inf->lccr0 & LCCR0_SDS) == LCCR0_Dual)
2083 dev_warn(dev, "Dual panel only valid in passive mode\n");
2084 if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Pas &&
2085 (inf->modes->upper_margin || inf->modes->lower_margin))
2086 dev_warn(dev, "Upper and lower margins must be 0 in "
2087 "passive mode\n");
2089 #else
2090 #define pxafb_check_options(...) do {} while (0)
2091 #endif
2093 static int __devinit pxafb_probe(struct platform_device *dev)
2095 struct pxafb_info *fbi;
2096 struct pxafb_mach_info *inf;
2097 struct resource *r;
2098 int irq, ret;
2100 dev_dbg(&dev->dev, "pxafb_probe\n");
2102 inf = dev->dev.platform_data;
2103 ret = -ENOMEM;
2104 fbi = NULL;
2105 if (!inf)
2106 goto failed;
2108 ret = pxafb_parse_options(&dev->dev, g_options);
2109 if (ret < 0)
2110 goto failed;
2112 pxafb_check_options(&dev->dev, inf);
2114 dev_dbg(&dev->dev, "got a %dx%dx%d LCD\n",
2115 inf->modes->xres,
2116 inf->modes->yres,
2117 inf->modes->bpp);
2118 if (inf->modes->xres == 0 ||
2119 inf->modes->yres == 0 ||
2120 inf->modes->bpp == 0) {
2121 dev_err(&dev->dev, "Invalid resolution or bit depth\n");
2122 ret = -EINVAL;
2123 goto failed;
2126 fbi = pxafb_init_fbinfo(&dev->dev);
2127 if (!fbi) {
2128 /* only reason for pxafb_init_fbinfo to fail is kmalloc */
2129 dev_err(&dev->dev, "Failed to initialize framebuffer device\n");
2130 ret = -ENOMEM;
2131 goto failed;
2134 if (cpu_is_pxa3xx() && inf->acceleration_enabled)
2135 fbi->fb.fix.accel = FB_ACCEL_PXA3XX;
2137 fbi->backlight_power = inf->pxafb_backlight_power;
2138 fbi->lcd_power = inf->pxafb_lcd_power;
2140 r = platform_get_resource(dev, IORESOURCE_MEM, 0);
2141 if (r == NULL) {
2142 dev_err(&dev->dev, "no I/O memory resource defined\n");
2143 ret = -ENODEV;
2144 goto failed_fbi;
2147 r = request_mem_region(r->start, resource_size(r), dev->name);
2148 if (r == NULL) {
2149 dev_err(&dev->dev, "failed to request I/O memory\n");
2150 ret = -EBUSY;
2151 goto failed_fbi;
2154 fbi->mmio_base = ioremap(r->start, resource_size(r));
2155 if (fbi->mmio_base == NULL) {
2156 dev_err(&dev->dev, "failed to map I/O memory\n");
2157 ret = -EBUSY;
2158 goto failed_free_res;
2161 fbi->dma_buff_size = PAGE_ALIGN(sizeof(struct pxafb_dma_buff));
2162 fbi->dma_buff = dma_alloc_coherent(fbi->dev, fbi->dma_buff_size,
2163 &fbi->dma_buff_phys, GFP_KERNEL);
2164 if (fbi->dma_buff == NULL) {
2165 dev_err(&dev->dev, "failed to allocate memory for DMA\n");
2166 ret = -ENOMEM;
2167 goto failed_free_io;
2170 ret = pxafb_init_video_memory(fbi);
2171 if (ret) {
2172 dev_err(&dev->dev, "Failed to allocate video RAM: %d\n", ret);
2173 ret = -ENOMEM;
2174 goto failed_free_dma;
2177 irq = platform_get_irq(dev, 0);
2178 if (irq < 0) {
2179 dev_err(&dev->dev, "no IRQ defined\n");
2180 ret = -ENODEV;
2181 goto failed_free_mem;
2184 ret = request_irq(irq, pxafb_handle_irq, 0, "LCD", fbi);
2185 if (ret) {
2186 dev_err(&dev->dev, "request_irq failed: %d\n", ret);
2187 ret = -EBUSY;
2188 goto failed_free_mem;
2191 ret = pxafb_smart_init(fbi);
2192 if (ret) {
2193 dev_err(&dev->dev, "failed to initialize smartpanel\n");
2194 goto failed_free_irq;
2198 * This makes sure that our colour bitfield
2199 * descriptors are correctly initialised.
2201 ret = pxafb_check_var(&fbi->fb.var, &fbi->fb);
2202 if (ret) {
2203 dev_err(&dev->dev, "failed to get suitable mode\n");
2204 goto failed_free_irq;
2207 ret = pxafb_set_par(&fbi->fb);
2208 if (ret) {
2209 dev_err(&dev->dev, "Failed to set parameters\n");
2210 goto failed_free_irq;
2213 platform_set_drvdata(dev, fbi);
2215 ret = register_framebuffer(&fbi->fb);
2216 if (ret < 0) {
2217 dev_err(&dev->dev,
2218 "Failed to register framebuffer device: %d\n", ret);
2219 goto failed_free_cmap;
2222 pxafb_overlay_init(fbi);
2224 #ifdef CONFIG_CPU_FREQ
2225 fbi->freq_transition.notifier_call = pxafb_freq_transition;
2226 fbi->freq_policy.notifier_call = pxafb_freq_policy;
2227 cpufreq_register_notifier(&fbi->freq_transition,
2228 CPUFREQ_TRANSITION_NOTIFIER);
2229 cpufreq_register_notifier(&fbi->freq_policy,
2230 CPUFREQ_POLICY_NOTIFIER);
2231 #endif
2234 * Ok, now enable the LCD controller
2236 set_ctrlr_state(fbi, C_ENABLE);
2238 return 0;
2240 failed_free_cmap:
2241 if (fbi->fb.cmap.len)
2242 fb_dealloc_cmap(&fbi->fb.cmap);
2243 failed_free_irq:
2244 free_irq(irq, fbi);
2245 failed_free_mem:
2246 free_pages_exact(fbi->video_mem, fbi->video_mem_size);
2247 failed_free_dma:
2248 dma_free_coherent(&dev->dev, fbi->dma_buff_size,
2249 fbi->dma_buff, fbi->dma_buff_phys);
2250 failed_free_io:
2251 iounmap(fbi->mmio_base);
2252 failed_free_res:
2253 release_mem_region(r->start, resource_size(r));
2254 failed_fbi:
2255 clk_put(fbi->clk);
2256 platform_set_drvdata(dev, NULL);
2257 kfree(fbi);
2258 failed:
2259 return ret;
2262 static int __devexit pxafb_remove(struct platform_device *dev)
2264 struct pxafb_info *fbi = platform_get_drvdata(dev);
2265 struct resource *r;
2266 int irq;
2267 struct fb_info *info;
2269 if (!fbi)
2270 return 0;
2272 info = &fbi->fb;
2274 pxafb_overlay_exit(fbi);
2275 unregister_framebuffer(info);
2277 pxafb_disable_controller(fbi);
2279 if (fbi->fb.cmap.len)
2280 fb_dealloc_cmap(&fbi->fb.cmap);
2282 irq = platform_get_irq(dev, 0);
2283 free_irq(irq, fbi);
2285 free_pages_exact(fbi->video_mem, fbi->video_mem_size);
2287 dma_free_writecombine(&dev->dev, fbi->dma_buff_size,
2288 fbi->dma_buff, fbi->dma_buff_phys);
2290 iounmap(fbi->mmio_base);
2292 r = platform_get_resource(dev, IORESOURCE_MEM, 0);
2293 release_mem_region(r->start, resource_size(r));
2295 clk_put(fbi->clk);
2296 kfree(fbi);
2298 return 0;
2301 static struct platform_driver pxafb_driver = {
2302 .probe = pxafb_probe,
2303 .remove = __devexit_p(pxafb_remove),
2304 .driver = {
2305 .owner = THIS_MODULE,
2306 .name = "pxa2xx-fb",
2307 #ifdef CONFIG_PM
2308 .pm = &pxafb_pm_ops,
2309 #endif
2313 static int __init pxafb_init(void)
2315 if (pxafb_setup_options())
2316 return -EINVAL;
2318 return platform_driver_register(&pxafb_driver);
2321 static void __exit pxafb_exit(void)
2323 platform_driver_unregister(&pxafb_driver);
2326 module_init(pxafb_init);
2327 module_exit(pxafb_exit);
2329 MODULE_DESCRIPTION("loadable framebuffer driver for PXA");
2330 MODULE_LICENSE("GPL");