2 * Copyright (C) 2011 STRATO. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
23 #include "transaction.h"
24 #include "delayed-ref.h"
27 * this structure records all encountered refs on the way up to the root
30 struct list_head list
;
39 static int __add_prelim_ref(struct list_head
*head
, u64 root_id
,
40 struct btrfs_key
*key
, int level
, u64 parent
,
41 u64 wanted_disk_byte
, int count
)
43 struct __prelim_ref
*ref
;
45 /* in case we're adding delayed refs, we're holding the refs spinlock */
46 ref
= kmalloc(sizeof(*ref
), GFP_ATOMIC
);
50 ref
->root_id
= root_id
;
54 memset(&ref
->key
, 0, sizeof(ref
->key
));
59 ref
->wanted_disk_byte
= wanted_disk_byte
;
60 list_add_tail(&ref
->list
, head
);
65 static int add_all_parents(struct btrfs_root
*root
, struct btrfs_path
*path
,
66 struct ulist
*parents
,
67 struct extent_buffer
*eb
, int level
,
68 u64 wanted_objectid
, u64 wanted_disk_byte
)
72 struct btrfs_file_extent_item
*fi
;
77 ret
= ulist_add(parents
, eb
->start
, 0, GFP_NOFS
);
85 * if the current leaf is full with EXTENT_DATA items, we must
86 * check the next one if that holds a reference as well.
87 * ref->count cannot be used to skip this check.
88 * repeat this until we don't find any additional EXTENT_DATA items.
91 ret
= btrfs_next_leaf(root
, path
);
98 for (slot
= 0; slot
< btrfs_header_nritems(eb
); ++slot
) {
99 btrfs_item_key_to_cpu(eb
, &key
, slot
);
100 if (key
.objectid
!= wanted_objectid
||
101 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
103 fi
= btrfs_item_ptr(eb
, slot
,
104 struct btrfs_file_extent_item
);
105 disk_byte
= btrfs_file_extent_disk_bytenr(eb
, fi
);
106 if (disk_byte
== wanted_disk_byte
)
115 * resolve an indirect backref in the form (root_id, key, level)
116 * to a logical address
118 static int __resolve_indirect_ref(struct btrfs_fs_info
*fs_info
,
119 int search_commit_root
,
120 struct __prelim_ref
*ref
,
121 struct ulist
*parents
)
123 struct btrfs_path
*path
;
124 struct btrfs_root
*root
;
125 struct btrfs_key root_key
;
126 struct btrfs_key key
= {0};
127 struct extent_buffer
*eb
;
130 int level
= ref
->level
;
132 path
= btrfs_alloc_path();
135 path
->search_commit_root
= !!search_commit_root
;
137 root_key
.objectid
= ref
->root_id
;
138 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
139 root_key
.offset
= (u64
)-1;
140 root
= btrfs_read_fs_root_no_name(fs_info
, &root_key
);
147 root_level
= btrfs_header_level(root
->node
);
150 if (root_level
+ 1 == level
)
153 path
->lowest_level
= level
;
154 ret
= btrfs_search_slot(NULL
, root
, &ref
->key
, path
, 0, 0);
155 pr_debug("search slot in root %llu (level %d, ref count %d) returned "
156 "%d for key (%llu %u %llu)\n",
157 (unsigned long long)ref
->root_id
, level
, ref
->count
, ret
,
158 (unsigned long long)ref
->key
.objectid
, ref
->key
.type
,
159 (unsigned long long)ref
->key
.offset
);
163 eb
= path
->nodes
[level
];
171 if (ret
== 1 && path
->slots
[0] >= btrfs_header_nritems(eb
)) {
172 ret
= btrfs_next_leaf(root
, path
);
178 btrfs_item_key_to_cpu(eb
, &key
, path
->slots
[0]);
181 /* the last two parameters will only be used for level == 0 */
182 ret
= add_all_parents(root
, path
, parents
, eb
, level
, key
.objectid
,
183 ref
->wanted_disk_byte
);
185 btrfs_free_path(path
);
190 * resolve all indirect backrefs from the list
192 static int __resolve_indirect_refs(struct btrfs_fs_info
*fs_info
,
193 int search_commit_root
,
194 struct list_head
*head
)
198 struct __prelim_ref
*ref
;
199 struct __prelim_ref
*ref_safe
;
200 struct __prelim_ref
*new_ref
;
201 struct ulist
*parents
;
202 struct ulist_node
*node
;
204 parents
= ulist_alloc(GFP_NOFS
);
209 * _safe allows us to insert directly after the current item without
210 * iterating over the newly inserted items.
211 * we're also allowed to re-assign ref during iteration.
213 list_for_each_entry_safe(ref
, ref_safe
, head
, list
) {
214 if (ref
->parent
) /* already direct */
218 err
= __resolve_indirect_ref(fs_info
, search_commit_root
,
226 /* we put the first parent into the ref at hand */
227 node
= ulist_next(parents
, NULL
);
228 ref
->parent
= node
? node
->val
: 0;
230 /* additional parents require new refs being added here */
231 while ((node
= ulist_next(parents
, node
))) {
232 new_ref
= kmalloc(sizeof(*new_ref
), GFP_NOFS
);
237 memcpy(new_ref
, ref
, sizeof(*ref
));
238 new_ref
->parent
= node
->val
;
239 list_add(&new_ref
->list
, &ref
->list
);
241 ulist_reinit(parents
);
249 * merge two lists of backrefs and adjust counts accordingly
251 * mode = 1: merge identical keys, if key is set
252 * mode = 2: merge identical parents
254 static int __merge_refs(struct list_head
*head
, int mode
)
256 struct list_head
*pos1
;
258 list_for_each(pos1
, head
) {
259 struct list_head
*n2
;
260 struct list_head
*pos2
;
261 struct __prelim_ref
*ref1
;
263 ref1
= list_entry(pos1
, struct __prelim_ref
, list
);
265 if (mode
== 1 && ref1
->key
.type
== 0)
267 for (pos2
= pos1
->next
, n2
= pos2
->next
; pos2
!= head
;
268 pos2
= n2
, n2
= pos2
->next
) {
269 struct __prelim_ref
*ref2
;
271 ref2
= list_entry(pos2
, struct __prelim_ref
, list
);
274 if (memcmp(&ref1
->key
, &ref2
->key
,
275 sizeof(ref1
->key
)) ||
276 ref1
->level
!= ref2
->level
||
277 ref1
->root_id
!= ref2
->root_id
)
279 ref1
->count
+= ref2
->count
;
281 if (ref1
->parent
!= ref2
->parent
)
283 ref1
->count
+= ref2
->count
;
285 list_del(&ref2
->list
);
294 * add all currently queued delayed refs from this head whose seq nr is
295 * smaller or equal that seq to the list
297 static int __add_delayed_refs(struct btrfs_delayed_ref_head
*head
, u64 seq
,
298 struct btrfs_key
*info_key
,
299 struct list_head
*prefs
)
301 struct btrfs_delayed_extent_op
*extent_op
= head
->extent_op
;
302 struct rb_node
*n
= &head
->node
.rb_node
;
306 if (extent_op
&& extent_op
->update_key
)
307 btrfs_disk_key_to_cpu(info_key
, &extent_op
->key
);
309 while ((n
= rb_prev(n
))) {
310 struct btrfs_delayed_ref_node
*node
;
311 node
= rb_entry(n
, struct btrfs_delayed_ref_node
,
313 if (node
->bytenr
!= head
->node
.bytenr
)
315 WARN_ON(node
->is_head
);
320 switch (node
->action
) {
321 case BTRFS_ADD_DELAYED_EXTENT
:
322 case BTRFS_UPDATE_DELAYED_HEAD
:
325 case BTRFS_ADD_DELAYED_REF
:
328 case BTRFS_DROP_DELAYED_REF
:
334 switch (node
->type
) {
335 case BTRFS_TREE_BLOCK_REF_KEY
: {
336 struct btrfs_delayed_tree_ref
*ref
;
338 ref
= btrfs_delayed_node_to_tree_ref(node
);
339 ret
= __add_prelim_ref(prefs
, ref
->root
, info_key
,
340 ref
->level
+ 1, 0, node
->bytenr
,
341 node
->ref_mod
* sgn
);
344 case BTRFS_SHARED_BLOCK_REF_KEY
: {
345 struct btrfs_delayed_tree_ref
*ref
;
347 ref
= btrfs_delayed_node_to_tree_ref(node
);
348 ret
= __add_prelim_ref(prefs
, ref
->root
, info_key
,
349 ref
->level
+ 1, ref
->parent
,
351 node
->ref_mod
* sgn
);
354 case BTRFS_EXTENT_DATA_REF_KEY
: {
355 struct btrfs_delayed_data_ref
*ref
;
356 struct btrfs_key key
;
358 ref
= btrfs_delayed_node_to_data_ref(node
);
360 key
.objectid
= ref
->objectid
;
361 key
.type
= BTRFS_EXTENT_DATA_KEY
;
362 key
.offset
= ref
->offset
;
363 ret
= __add_prelim_ref(prefs
, ref
->root
, &key
, 0, 0,
365 node
->ref_mod
* sgn
);
368 case BTRFS_SHARED_DATA_REF_KEY
: {
369 struct btrfs_delayed_data_ref
*ref
;
370 struct btrfs_key key
;
372 ref
= btrfs_delayed_node_to_data_ref(node
);
374 key
.objectid
= ref
->objectid
;
375 key
.type
= BTRFS_EXTENT_DATA_KEY
;
376 key
.offset
= ref
->offset
;
377 ret
= __add_prelim_ref(prefs
, ref
->root
, &key
, 0,
378 ref
->parent
, node
->bytenr
,
379 node
->ref_mod
* sgn
);
392 * add all inline backrefs for bytenr to the list
394 static int __add_inline_refs(struct btrfs_fs_info
*fs_info
,
395 struct btrfs_path
*path
, u64 bytenr
,
396 struct btrfs_key
*info_key
, int *info_level
,
397 struct list_head
*prefs
)
401 struct extent_buffer
*leaf
;
402 struct btrfs_key key
;
405 struct btrfs_extent_item
*ei
;
410 * enumerate all inline refs
412 leaf
= path
->nodes
[0];
413 slot
= path
->slots
[0] - 1;
415 item_size
= btrfs_item_size_nr(leaf
, slot
);
416 BUG_ON(item_size
< sizeof(*ei
));
418 ei
= btrfs_item_ptr(leaf
, slot
, struct btrfs_extent_item
);
419 flags
= btrfs_extent_flags(leaf
, ei
);
421 ptr
= (unsigned long)(ei
+ 1);
422 end
= (unsigned long)ei
+ item_size
;
424 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
425 struct btrfs_tree_block_info
*info
;
426 struct btrfs_disk_key disk_key
;
428 info
= (struct btrfs_tree_block_info
*)ptr
;
429 *info_level
= btrfs_tree_block_level(leaf
, info
);
430 btrfs_tree_block_key(leaf
, info
, &disk_key
);
431 btrfs_disk_key_to_cpu(info_key
, &disk_key
);
432 ptr
+= sizeof(struct btrfs_tree_block_info
);
435 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_DATA
));
439 struct btrfs_extent_inline_ref
*iref
;
443 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
444 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
445 offset
= btrfs_extent_inline_ref_offset(leaf
, iref
);
448 case BTRFS_SHARED_BLOCK_REF_KEY
:
449 ret
= __add_prelim_ref(prefs
, 0, info_key
,
450 *info_level
+ 1, offset
,
453 case BTRFS_SHARED_DATA_REF_KEY
: {
454 struct btrfs_shared_data_ref
*sdref
;
457 sdref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
458 count
= btrfs_shared_data_ref_count(leaf
, sdref
);
459 ret
= __add_prelim_ref(prefs
, 0, NULL
, 0, offset
,
463 case BTRFS_TREE_BLOCK_REF_KEY
:
464 ret
= __add_prelim_ref(prefs
, offset
, info_key
,
465 *info_level
+ 1, 0, bytenr
, 1);
467 case BTRFS_EXTENT_DATA_REF_KEY
: {
468 struct btrfs_extent_data_ref
*dref
;
472 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
473 count
= btrfs_extent_data_ref_count(leaf
, dref
);
474 key
.objectid
= btrfs_extent_data_ref_objectid(leaf
,
476 key
.type
= BTRFS_EXTENT_DATA_KEY
;
477 key
.offset
= btrfs_extent_data_ref_offset(leaf
, dref
);
478 root
= btrfs_extent_data_ref_root(leaf
, dref
);
479 ret
= __add_prelim_ref(prefs
, root
, &key
, 0, 0, bytenr
,
487 ptr
+= btrfs_extent_inline_ref_size(type
);
494 * add all non-inline backrefs for bytenr to the list
496 static int __add_keyed_refs(struct btrfs_fs_info
*fs_info
,
497 struct btrfs_path
*path
, u64 bytenr
,
498 struct btrfs_key
*info_key
, int info_level
,
499 struct list_head
*prefs
)
501 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
504 struct extent_buffer
*leaf
;
505 struct btrfs_key key
;
508 ret
= btrfs_next_item(extent_root
, path
);
516 slot
= path
->slots
[0];
517 leaf
= path
->nodes
[0];
518 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
520 if (key
.objectid
!= bytenr
)
522 if (key
.type
< BTRFS_TREE_BLOCK_REF_KEY
)
524 if (key
.type
> BTRFS_SHARED_DATA_REF_KEY
)
528 case BTRFS_SHARED_BLOCK_REF_KEY
:
529 ret
= __add_prelim_ref(prefs
, 0, info_key
,
530 info_level
+ 1, key
.offset
,
533 case BTRFS_SHARED_DATA_REF_KEY
: {
534 struct btrfs_shared_data_ref
*sdref
;
537 sdref
= btrfs_item_ptr(leaf
, slot
,
538 struct btrfs_shared_data_ref
);
539 count
= btrfs_shared_data_ref_count(leaf
, sdref
);
540 ret
= __add_prelim_ref(prefs
, 0, NULL
, 0, key
.offset
,
544 case BTRFS_TREE_BLOCK_REF_KEY
:
545 ret
= __add_prelim_ref(prefs
, key
.offset
, info_key
,
546 info_level
+ 1, 0, bytenr
, 1);
548 case BTRFS_EXTENT_DATA_REF_KEY
: {
549 struct btrfs_extent_data_ref
*dref
;
553 dref
= btrfs_item_ptr(leaf
, slot
,
554 struct btrfs_extent_data_ref
);
555 count
= btrfs_extent_data_ref_count(leaf
, dref
);
556 key
.objectid
= btrfs_extent_data_ref_objectid(leaf
,
558 key
.type
= BTRFS_EXTENT_DATA_KEY
;
559 key
.offset
= btrfs_extent_data_ref_offset(leaf
, dref
);
560 root
= btrfs_extent_data_ref_root(leaf
, dref
);
561 ret
= __add_prelim_ref(prefs
, root
, &key
, 0, 0,
575 * this adds all existing backrefs (inline backrefs, backrefs and delayed
576 * refs) for the given bytenr to the refs list, merges duplicates and resolves
577 * indirect refs to their parent bytenr.
578 * When roots are found, they're added to the roots list
580 * FIXME some caching might speed things up
582 static int find_parent_nodes(struct btrfs_trans_handle
*trans
,
583 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
584 u64 seq
, struct ulist
*refs
, struct ulist
*roots
)
586 struct btrfs_key key
;
587 struct btrfs_path
*path
;
588 struct btrfs_key info_key
= { 0 };
589 struct btrfs_delayed_ref_root
*delayed_refs
= NULL
;
590 struct btrfs_delayed_ref_head
*head
;
593 int search_commit_root
= (trans
== BTRFS_BACKREF_SEARCH_COMMIT_ROOT
);
594 struct list_head prefs_delayed
;
595 struct list_head prefs
;
596 struct __prelim_ref
*ref
;
598 INIT_LIST_HEAD(&prefs
);
599 INIT_LIST_HEAD(&prefs_delayed
);
601 key
.objectid
= bytenr
;
602 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
603 key
.offset
= (u64
)-1;
605 path
= btrfs_alloc_path();
608 path
->search_commit_root
= !!search_commit_root
;
611 * grab both a lock on the path and a lock on the delayed ref head.
612 * We need both to get a consistent picture of how the refs look
613 * at a specified point in time
618 ret
= btrfs_search_slot(trans
, fs_info
->extent_root
, &key
, path
, 0, 0);
623 if (trans
!= BTRFS_BACKREF_SEARCH_COMMIT_ROOT
) {
625 * look if there are updates for this ref queued and lock the
628 delayed_refs
= &trans
->transaction
->delayed_refs
;
629 spin_lock(&delayed_refs
->lock
);
630 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
632 if (!mutex_trylock(&head
->mutex
)) {
633 atomic_inc(&head
->node
.refs
);
634 spin_unlock(&delayed_refs
->lock
);
636 btrfs_release_path(path
);
639 * Mutex was contended, block until it's
640 * released and try again
642 mutex_lock(&head
->mutex
);
643 mutex_unlock(&head
->mutex
);
644 btrfs_put_delayed_ref(&head
->node
);
647 ret
= __add_delayed_refs(head
, seq
, &info_key
,
650 spin_unlock(&delayed_refs
->lock
);
654 spin_unlock(&delayed_refs
->lock
);
657 if (path
->slots
[0]) {
658 struct extent_buffer
*leaf
;
661 leaf
= path
->nodes
[0];
662 slot
= path
->slots
[0] - 1;
663 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
664 if (key
.objectid
== bytenr
&&
665 key
.type
== BTRFS_EXTENT_ITEM_KEY
) {
666 ret
= __add_inline_refs(fs_info
, path
, bytenr
,
667 &info_key
, &info_level
, &prefs
);
670 ret
= __add_keyed_refs(fs_info
, path
, bytenr
, &info_key
,
676 btrfs_release_path(path
);
679 * when adding the delayed refs above, the info_key might not have
680 * been known yet. Go over the list and replace the missing keys
682 list_for_each_entry(ref
, &prefs_delayed
, list
) {
683 if ((ref
->key
.offset
| ref
->key
.type
| ref
->key
.objectid
) == 0)
684 memcpy(&ref
->key
, &info_key
, sizeof(ref
->key
));
686 list_splice_init(&prefs_delayed
, &prefs
);
688 ret
= __merge_refs(&prefs
, 1);
692 ret
= __resolve_indirect_refs(fs_info
, search_commit_root
, &prefs
);
696 ret
= __merge_refs(&prefs
, 2);
700 while (!list_empty(&prefs
)) {
701 ref
= list_first_entry(&prefs
, struct __prelim_ref
, list
);
702 list_del(&ref
->list
);
705 if (ref
->count
&& ref
->root_id
&& ref
->parent
== 0) {
706 /* no parent == root of tree */
707 ret
= ulist_add(roots
, ref
->root_id
, 0, GFP_NOFS
);
710 if (ref
->count
&& ref
->parent
) {
711 ret
= ulist_add(refs
, ref
->parent
, 0, GFP_NOFS
);
719 mutex_unlock(&head
->mutex
);
720 btrfs_free_path(path
);
721 while (!list_empty(&prefs
)) {
722 ref
= list_first_entry(&prefs
, struct __prelim_ref
, list
);
723 list_del(&ref
->list
);
726 while (!list_empty(&prefs_delayed
)) {
727 ref
= list_first_entry(&prefs_delayed
, struct __prelim_ref
,
729 list_del(&ref
->list
);
737 * Finds all leafs with a reference to the specified combination of bytenr and
738 * offset. key_list_head will point to a list of corresponding keys (caller must
739 * free each list element). The leafs will be stored in the leafs ulist, which
740 * must be freed with ulist_free.
742 * returns 0 on success, <0 on error
744 static int btrfs_find_all_leafs(struct btrfs_trans_handle
*trans
,
745 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
746 u64 num_bytes
, u64 seq
, struct ulist
**leafs
)
751 tmp
= ulist_alloc(GFP_NOFS
);
754 *leafs
= ulist_alloc(GFP_NOFS
);
760 ret
= find_parent_nodes(trans
, fs_info
, bytenr
, seq
, *leafs
, tmp
);
763 if (ret
< 0 && ret
!= -ENOENT
) {
772 * walk all backrefs for a given extent to find all roots that reference this
773 * extent. Walking a backref means finding all extents that reference this
774 * extent and in turn walk the backrefs of those, too. Naturally this is a
775 * recursive process, but here it is implemented in an iterative fashion: We
776 * find all referencing extents for the extent in question and put them on a
777 * list. In turn, we find all referencing extents for those, further appending
778 * to the list. The way we iterate the list allows adding more elements after
779 * the current while iterating. The process stops when we reach the end of the
780 * list. Found roots are added to the roots list.
782 * returns 0 on success, < 0 on error.
784 int btrfs_find_all_roots(struct btrfs_trans_handle
*trans
,
785 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
786 u64 num_bytes
, u64 seq
, struct ulist
**roots
)
789 struct ulist_node
*node
= NULL
;
792 tmp
= ulist_alloc(GFP_NOFS
);
795 *roots
= ulist_alloc(GFP_NOFS
);
802 ret
= find_parent_nodes(trans
, fs_info
, bytenr
, seq
,
804 if (ret
< 0 && ret
!= -ENOENT
) {
809 node
= ulist_next(tmp
, node
);
820 static int __inode_info(u64 inum
, u64 ioff
, u8 key_type
,
821 struct btrfs_root
*fs_root
, struct btrfs_path
*path
,
822 struct btrfs_key
*found_key
)
825 struct btrfs_key key
;
826 struct extent_buffer
*eb
;
832 ret
= btrfs_search_slot(NULL
, fs_root
, &key
, path
, 0, 0);
837 if (ret
&& path
->slots
[0] >= btrfs_header_nritems(eb
)) {
838 ret
= btrfs_next_leaf(fs_root
, path
);
844 btrfs_item_key_to_cpu(eb
, found_key
, path
->slots
[0]);
845 if (found_key
->type
!= key
.type
|| found_key
->objectid
!= key
.objectid
)
852 * this makes the path point to (inum INODE_ITEM ioff)
854 int inode_item_info(u64 inum
, u64 ioff
, struct btrfs_root
*fs_root
,
855 struct btrfs_path
*path
)
857 struct btrfs_key key
;
858 return __inode_info(inum
, ioff
, BTRFS_INODE_ITEM_KEY
, fs_root
, path
,
862 static int inode_ref_info(u64 inum
, u64 ioff
, struct btrfs_root
*fs_root
,
863 struct btrfs_path
*path
,
864 struct btrfs_key
*found_key
)
866 return __inode_info(inum
, ioff
, BTRFS_INODE_REF_KEY
, fs_root
, path
,
871 * this iterates to turn a btrfs_inode_ref into a full filesystem path. elements
872 * of the path are separated by '/' and the path is guaranteed to be
873 * 0-terminated. the path is only given within the current file system.
874 * Therefore, it never starts with a '/'. the caller is responsible to provide
875 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
876 * the start point of the resulting string is returned. this pointer is within
878 * in case the path buffer would overflow, the pointer is decremented further
879 * as if output was written to the buffer, though no more output is actually
880 * generated. that way, the caller can determine how much space would be
881 * required for the path to fit into the buffer. in that case, the returned
882 * value will be smaller than dest. callers must check this!
884 static char *iref_to_path(struct btrfs_root
*fs_root
, struct btrfs_path
*path
,
885 struct btrfs_inode_ref
*iref
,
886 struct extent_buffer
*eb_in
, u64 parent
,
887 char *dest
, u32 size
)
893 s64 bytes_left
= size
- 1;
894 struct extent_buffer
*eb
= eb_in
;
895 struct btrfs_key found_key
;
898 dest
[bytes_left
] = '\0';
901 len
= btrfs_inode_ref_name_len(eb
, iref
);
904 read_extent_buffer(eb
, dest
+ bytes_left
,
905 (unsigned long)(iref
+ 1), len
);
907 free_extent_buffer(eb
);
908 ret
= inode_ref_info(parent
, 0, fs_root
, path
, &found_key
);
913 next_inum
= found_key
.offset
;
915 /* regular exit ahead */
916 if (parent
== next_inum
)
919 slot
= path
->slots
[0];
921 /* make sure we can use eb after releasing the path */
923 atomic_inc(&eb
->refs
);
924 btrfs_release_path(path
);
926 iref
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_ref
);
930 dest
[bytes_left
] = '/';
933 btrfs_release_path(path
);
938 return dest
+ bytes_left
;
942 * this makes the path point to (logical EXTENT_ITEM *)
943 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
944 * tree blocks and <0 on error.
946 int extent_from_logical(struct btrfs_fs_info
*fs_info
, u64 logical
,
947 struct btrfs_path
*path
, struct btrfs_key
*found_key
)
952 struct extent_buffer
*eb
;
953 struct btrfs_extent_item
*ei
;
954 struct btrfs_key key
;
956 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
957 key
.objectid
= logical
;
958 key
.offset
= (u64
)-1;
960 ret
= btrfs_search_slot(NULL
, fs_info
->extent_root
, &key
, path
, 0, 0);
963 ret
= btrfs_previous_item(fs_info
->extent_root
, path
,
964 0, BTRFS_EXTENT_ITEM_KEY
);
968 btrfs_item_key_to_cpu(path
->nodes
[0], found_key
, path
->slots
[0]);
969 if (found_key
->type
!= BTRFS_EXTENT_ITEM_KEY
||
970 found_key
->objectid
> logical
||
971 found_key
->objectid
+ found_key
->offset
<= logical
) {
972 pr_debug("logical %llu is not within any extent\n",
973 (unsigned long long)logical
);
978 item_size
= btrfs_item_size_nr(eb
, path
->slots
[0]);
979 BUG_ON(item_size
< sizeof(*ei
));
981 ei
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_extent_item
);
982 flags
= btrfs_extent_flags(eb
, ei
);
984 pr_debug("logical %llu is at position %llu within the extent (%llu "
985 "EXTENT_ITEM %llu) flags %#llx size %u\n",
986 (unsigned long long)logical
,
987 (unsigned long long)(logical
- found_key
->objectid
),
988 (unsigned long long)found_key
->objectid
,
989 (unsigned long long)found_key
->offset
,
990 (unsigned long long)flags
, item_size
);
991 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
)
992 return BTRFS_EXTENT_FLAG_TREE_BLOCK
;
993 if (flags
& BTRFS_EXTENT_FLAG_DATA
)
994 return BTRFS_EXTENT_FLAG_DATA
;
1000 * helper function to iterate extent inline refs. ptr must point to a 0 value
1001 * for the first call and may be modified. it is used to track state.
1002 * if more refs exist, 0 is returned and the next call to
1003 * __get_extent_inline_ref must pass the modified ptr parameter to get the
1004 * next ref. after the last ref was processed, 1 is returned.
1005 * returns <0 on error
1007 static int __get_extent_inline_ref(unsigned long *ptr
, struct extent_buffer
*eb
,
1008 struct btrfs_extent_item
*ei
, u32 item_size
,
1009 struct btrfs_extent_inline_ref
**out_eiref
,
1014 struct btrfs_tree_block_info
*info
;
1018 flags
= btrfs_extent_flags(eb
, ei
);
1019 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
1020 info
= (struct btrfs_tree_block_info
*)(ei
+ 1);
1022 (struct btrfs_extent_inline_ref
*)(info
+ 1);
1024 *out_eiref
= (struct btrfs_extent_inline_ref
*)(ei
+ 1);
1026 *ptr
= (unsigned long)*out_eiref
;
1027 if ((void *)*ptr
>= (void *)ei
+ item_size
)
1031 end
= (unsigned long)ei
+ item_size
;
1032 *out_eiref
= (struct btrfs_extent_inline_ref
*)*ptr
;
1033 *out_type
= btrfs_extent_inline_ref_type(eb
, *out_eiref
);
1035 *ptr
+= btrfs_extent_inline_ref_size(*out_type
);
1036 WARN_ON(*ptr
> end
);
1038 return 1; /* last */
1044 * reads the tree block backref for an extent. tree level and root are returned
1045 * through out_level and out_root. ptr must point to a 0 value for the first
1046 * call and may be modified (see __get_extent_inline_ref comment).
1047 * returns 0 if data was provided, 1 if there was no more data to provide or
1050 int tree_backref_for_extent(unsigned long *ptr
, struct extent_buffer
*eb
,
1051 struct btrfs_extent_item
*ei
, u32 item_size
,
1052 u64
*out_root
, u8
*out_level
)
1056 struct btrfs_tree_block_info
*info
;
1057 struct btrfs_extent_inline_ref
*eiref
;
1059 if (*ptr
== (unsigned long)-1)
1063 ret
= __get_extent_inline_ref(ptr
, eb
, ei
, item_size
,
1068 if (type
== BTRFS_TREE_BLOCK_REF_KEY
||
1069 type
== BTRFS_SHARED_BLOCK_REF_KEY
)
1076 /* we can treat both ref types equally here */
1077 info
= (struct btrfs_tree_block_info
*)(ei
+ 1);
1078 *out_root
= btrfs_extent_inline_ref_offset(eb
, eiref
);
1079 *out_level
= btrfs_tree_block_level(eb
, info
);
1082 *ptr
= (unsigned long)-1;
1087 static int iterate_leaf_refs(struct btrfs_fs_info
*fs_info
, u64 logical
,
1088 u64 orig_extent_item_objectid
,
1089 u64 extent_item_pos
, u64 root
,
1090 iterate_extent_inodes_t
*iterate
, void *ctx
)
1093 struct btrfs_key key
;
1094 struct btrfs_file_extent_item
*fi
;
1095 struct extent_buffer
*eb
;
1103 eb
= read_tree_block(fs_info
->tree_root
, logical
,
1104 fs_info
->tree_root
->leafsize
, 0);
1109 * from the shared data ref, we only have the leaf but we need
1110 * the key. thus, we must look into all items and see that we
1111 * find one (some) with a reference to our extent item.
1113 nritems
= btrfs_header_nritems(eb
);
1114 for (slot
= 0; slot
< nritems
; ++slot
) {
1115 btrfs_item_key_to_cpu(eb
, &key
, slot
);
1116 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
1118 fi
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
1119 extent_type
= btrfs_file_extent_type(eb
, fi
);
1120 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
)
1122 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
1123 disk_byte
= btrfs_file_extent_disk_bytenr(eb
, fi
);
1124 if (disk_byte
!= orig_extent_item_objectid
)
1127 data_offset
= btrfs_file_extent_offset(eb
, fi
);
1128 data_len
= btrfs_file_extent_num_bytes(eb
, fi
);
1130 if (extent_item_pos
< data_offset
||
1131 extent_item_pos
>= data_offset
+ data_len
)
1134 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1135 "root %llu\n", orig_extent_item_objectid
,
1136 key
.objectid
, key
.offset
, root
);
1137 ret
= iterate(key
.objectid
,
1138 key
.offset
+ (extent_item_pos
- data_offset
),
1141 pr_debug("stopping iteration because ret=%d\n", ret
);
1146 free_extent_buffer(eb
);
1152 * calls iterate() for every inode that references the extent identified by
1153 * the given parameters.
1154 * when the iterator function returns a non-zero value, iteration stops.
1156 int iterate_extent_inodes(struct btrfs_fs_info
*fs_info
,
1157 u64 extent_item_objectid
, u64 extent_item_pos
,
1158 int search_commit_root
,
1159 iterate_extent_inodes_t
*iterate
, void *ctx
)
1162 struct list_head data_refs
= LIST_HEAD_INIT(data_refs
);
1163 struct list_head shared_refs
= LIST_HEAD_INIT(shared_refs
);
1164 struct btrfs_trans_handle
*trans
;
1165 struct ulist
*refs
= NULL
;
1166 struct ulist
*roots
= NULL
;
1167 struct ulist_node
*ref_node
= NULL
;
1168 struct ulist_node
*root_node
= NULL
;
1169 struct seq_list seq_elem
;
1170 struct btrfs_delayed_ref_root
*delayed_refs
= NULL
;
1172 pr_debug("resolving all inodes for extent %llu\n",
1173 extent_item_objectid
);
1175 if (search_commit_root
) {
1176 trans
= BTRFS_BACKREF_SEARCH_COMMIT_ROOT
;
1178 trans
= btrfs_join_transaction(fs_info
->extent_root
);
1180 return PTR_ERR(trans
);
1182 delayed_refs
= &trans
->transaction
->delayed_refs
;
1183 spin_lock(&delayed_refs
->lock
);
1184 btrfs_get_delayed_seq(delayed_refs
, &seq_elem
);
1185 spin_unlock(&delayed_refs
->lock
);
1188 ret
= btrfs_find_all_leafs(trans
, fs_info
, extent_item_objectid
,
1189 extent_item_pos
, seq_elem
.seq
,
1195 while (!ret
&& (ref_node
= ulist_next(refs
, ref_node
))) {
1196 ret
= btrfs_find_all_roots(trans
, fs_info
, ref_node
->val
, -1,
1197 seq_elem
.seq
, &roots
);
1200 while (!ret
&& (root_node
= ulist_next(roots
, root_node
))) {
1201 pr_debug("root %llu references leaf %llu\n",
1202 root_node
->val
, ref_node
->val
);
1203 ret
= iterate_leaf_refs(fs_info
, ref_node
->val
,
1204 extent_item_objectid
,
1205 extent_item_pos
, root_node
->val
,
1213 if (!search_commit_root
) {
1214 btrfs_put_delayed_seq(delayed_refs
, &seq_elem
);
1215 btrfs_end_transaction(trans
, fs_info
->extent_root
);
1221 int iterate_inodes_from_logical(u64 logical
, struct btrfs_fs_info
*fs_info
,
1222 struct btrfs_path
*path
,
1223 iterate_extent_inodes_t
*iterate
, void *ctx
)
1226 u64 extent_item_pos
;
1227 struct btrfs_key found_key
;
1228 int search_commit_root
= path
->search_commit_root
;
1230 ret
= extent_from_logical(fs_info
, logical
, path
,
1232 btrfs_release_path(path
);
1233 if (ret
& BTRFS_EXTENT_FLAG_TREE_BLOCK
)
1238 extent_item_pos
= logical
- found_key
.objectid
;
1239 ret
= iterate_extent_inodes(fs_info
, found_key
.objectid
,
1240 extent_item_pos
, search_commit_root
,
1246 static int iterate_irefs(u64 inum
, struct btrfs_root
*fs_root
,
1247 struct btrfs_path
*path
,
1248 iterate_irefs_t
*iterate
, void *ctx
)
1257 struct extent_buffer
*eb
;
1258 struct btrfs_item
*item
;
1259 struct btrfs_inode_ref
*iref
;
1260 struct btrfs_key found_key
;
1263 ret
= inode_ref_info(inum
, parent
? parent
+1 : 0, fs_root
, path
,
1268 ret
= found
? 0 : -ENOENT
;
1273 parent
= found_key
.offset
;
1274 slot
= path
->slots
[0];
1275 eb
= path
->nodes
[0];
1276 /* make sure we can use eb after releasing the path */
1277 atomic_inc(&eb
->refs
);
1278 btrfs_release_path(path
);
1280 item
= btrfs_item_nr(eb
, slot
);
1281 iref
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_ref
);
1283 for (cur
= 0; cur
< btrfs_item_size(eb
, item
); cur
+= len
) {
1284 name_len
= btrfs_inode_ref_name_len(eb
, iref
);
1285 /* path must be released before calling iterate()! */
1286 pr_debug("following ref at offset %u for inode %llu in "
1288 (unsigned long long)found_key
.objectid
,
1289 (unsigned long long)fs_root
->objectid
);
1290 ret
= iterate(parent
, iref
, eb
, ctx
);
1292 free_extent_buffer(eb
);
1295 len
= sizeof(*iref
) + name_len
;
1296 iref
= (struct btrfs_inode_ref
*)((char *)iref
+ len
);
1298 free_extent_buffer(eb
);
1301 btrfs_release_path(path
);
1307 * returns 0 if the path could be dumped (probably truncated)
1308 * returns <0 in case of an error
1310 static int inode_to_path(u64 inum
, struct btrfs_inode_ref
*iref
,
1311 struct extent_buffer
*eb
, void *ctx
)
1313 struct inode_fs_paths
*ipath
= ctx
;
1316 int i
= ipath
->fspath
->elem_cnt
;
1317 const int s_ptr
= sizeof(char *);
1320 bytes_left
= ipath
->fspath
->bytes_left
> s_ptr
?
1321 ipath
->fspath
->bytes_left
- s_ptr
: 0;
1323 fspath_min
= (char *)ipath
->fspath
->val
+ (i
+ 1) * s_ptr
;
1324 fspath
= iref_to_path(ipath
->fs_root
, ipath
->btrfs_path
, iref
, eb
,
1325 inum
, fspath_min
, bytes_left
);
1327 return PTR_ERR(fspath
);
1329 if (fspath
> fspath_min
) {
1330 pr_debug("path resolved: %s\n", fspath
);
1331 ipath
->fspath
->val
[i
] = (u64
)(unsigned long)fspath
;
1332 ++ipath
->fspath
->elem_cnt
;
1333 ipath
->fspath
->bytes_left
= fspath
- fspath_min
;
1335 pr_debug("missed path, not enough space. missing bytes: %lu, "
1336 "constructed so far: %s\n",
1337 (unsigned long)(fspath_min
- fspath
), fspath_min
);
1338 ++ipath
->fspath
->elem_missed
;
1339 ipath
->fspath
->bytes_missing
+= fspath_min
- fspath
;
1340 ipath
->fspath
->bytes_left
= 0;
1347 * this dumps all file system paths to the inode into the ipath struct, provided
1348 * is has been created large enough. each path is zero-terminated and accessed
1349 * from ipath->fspath->val[i].
1350 * when it returns, there are ipath->fspath->elem_cnt number of paths available
1351 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1352 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1353 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1354 * have been needed to return all paths.
1356 int paths_from_inode(u64 inum
, struct inode_fs_paths
*ipath
)
1358 return iterate_irefs(inum
, ipath
->fs_root
, ipath
->btrfs_path
,
1359 inode_to_path
, ipath
);
1363 * allocates space to return multiple file system paths for an inode.
1364 * total_bytes to allocate are passed, note that space usable for actual path
1365 * information will be total_bytes - sizeof(struct inode_fs_paths).
1366 * the returned pointer must be freed with free_ipath() in the end.
1368 struct btrfs_data_container
*init_data_container(u32 total_bytes
)
1370 struct btrfs_data_container
*data
;
1373 alloc_bytes
= max_t(size_t, total_bytes
, sizeof(*data
));
1374 data
= kmalloc(alloc_bytes
, GFP_NOFS
);
1376 return ERR_PTR(-ENOMEM
);
1378 if (total_bytes
>= sizeof(*data
)) {
1379 data
->bytes_left
= total_bytes
- sizeof(*data
);
1380 data
->bytes_missing
= 0;
1382 data
->bytes_missing
= sizeof(*data
) - total_bytes
;
1383 data
->bytes_left
= 0;
1387 data
->elem_missed
= 0;
1393 * allocates space to return multiple file system paths for an inode.
1394 * total_bytes to allocate are passed, note that space usable for actual path
1395 * information will be total_bytes - sizeof(struct inode_fs_paths).
1396 * the returned pointer must be freed with free_ipath() in the end.
1398 struct inode_fs_paths
*init_ipath(s32 total_bytes
, struct btrfs_root
*fs_root
,
1399 struct btrfs_path
*path
)
1401 struct inode_fs_paths
*ifp
;
1402 struct btrfs_data_container
*fspath
;
1404 fspath
= init_data_container(total_bytes
);
1406 return (void *)fspath
;
1408 ifp
= kmalloc(sizeof(*ifp
), GFP_NOFS
);
1411 return ERR_PTR(-ENOMEM
);
1414 ifp
->btrfs_path
= path
;
1415 ifp
->fspath
= fspath
;
1416 ifp
->fs_root
= fs_root
;
1421 void free_ipath(struct inode_fs_paths
*ipath
)