2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
37 #include "transaction.h"
38 #include "btrfs_inode.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
48 static struct extent_io_ops btree_extent_io_ops
;
49 static void end_workqueue_fn(struct btrfs_work
*work
);
50 static void free_fs_root(struct btrfs_root
*root
);
51 static void btrfs_check_super_valid(struct btrfs_fs_info
*fs_info
,
53 static int btrfs_destroy_ordered_operations(struct btrfs_root
*root
);
54 static int btrfs_destroy_ordered_extents(struct btrfs_root
*root
);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
56 struct btrfs_root
*root
);
57 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction
*t
);
58 static int btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
);
59 static int btrfs_destroy_marked_extents(struct btrfs_root
*root
,
60 struct extent_io_tree
*dirty_pages
,
62 static int btrfs_destroy_pinned_extent(struct btrfs_root
*root
,
63 struct extent_io_tree
*pinned_extents
);
64 static int btrfs_cleanup_transaction(struct btrfs_root
*root
);
67 * end_io_wq structs are used to do processing in task context when an IO is
68 * complete. This is used during reads to verify checksums, and it is used
69 * by writes to insert metadata for new file extents after IO is complete.
75 struct btrfs_fs_info
*info
;
78 struct list_head list
;
79 struct btrfs_work work
;
83 * async submit bios are used to offload expensive checksumming
84 * onto the worker threads. They checksum file and metadata bios
85 * just before they are sent down the IO stack.
87 struct async_submit_bio
{
90 struct list_head list
;
91 extent_submit_bio_hook_t
*submit_bio_start
;
92 extent_submit_bio_hook_t
*submit_bio_done
;
95 unsigned long bio_flags
;
97 * bio_offset is optional, can be used if the pages in the bio
98 * can't tell us where in the file the bio should go
101 struct btrfs_work work
;
105 * Lockdep class keys for extent_buffer->lock's in this root. For a given
106 * eb, the lockdep key is determined by the btrfs_root it belongs to and
107 * the level the eb occupies in the tree.
109 * Different roots are used for different purposes and may nest inside each
110 * other and they require separate keysets. As lockdep keys should be
111 * static, assign keysets according to the purpose of the root as indicated
112 * by btrfs_root->objectid. This ensures that all special purpose roots
113 * have separate keysets.
115 * Lock-nesting across peer nodes is always done with the immediate parent
116 * node locked thus preventing deadlock. As lockdep doesn't know this, use
117 * subclass to avoid triggering lockdep warning in such cases.
119 * The key is set by the readpage_end_io_hook after the buffer has passed
120 * csum validation but before the pages are unlocked. It is also set by
121 * btrfs_init_new_buffer on freshly allocated blocks.
123 * We also add a check to make sure the highest level of the tree is the
124 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
125 * needs update as well.
127 #ifdef CONFIG_DEBUG_LOCK_ALLOC
128 # if BTRFS_MAX_LEVEL != 8
132 static struct btrfs_lockdep_keyset
{
133 u64 id
; /* root objectid */
134 const char *name_stem
; /* lock name stem */
135 char names
[BTRFS_MAX_LEVEL
+ 1][20];
136 struct lock_class_key keys
[BTRFS_MAX_LEVEL
+ 1];
137 } btrfs_lockdep_keysets
[] = {
138 { .id
= BTRFS_ROOT_TREE_OBJECTID
, .name_stem
= "root" },
139 { .id
= BTRFS_EXTENT_TREE_OBJECTID
, .name_stem
= "extent" },
140 { .id
= BTRFS_CHUNK_TREE_OBJECTID
, .name_stem
= "chunk" },
141 { .id
= BTRFS_DEV_TREE_OBJECTID
, .name_stem
= "dev" },
142 { .id
= BTRFS_FS_TREE_OBJECTID
, .name_stem
= "fs" },
143 { .id
= BTRFS_CSUM_TREE_OBJECTID
, .name_stem
= "csum" },
144 { .id
= BTRFS_ORPHAN_OBJECTID
, .name_stem
= "orphan" },
145 { .id
= BTRFS_TREE_LOG_OBJECTID
, .name_stem
= "log" },
146 { .id
= BTRFS_TREE_RELOC_OBJECTID
, .name_stem
= "treloc" },
147 { .id
= BTRFS_DATA_RELOC_TREE_OBJECTID
, .name_stem
= "dreloc" },
148 { .id
= 0, .name_stem
= "tree" },
151 void __init
btrfs_init_lockdep(void)
155 /* initialize lockdep class names */
156 for (i
= 0; i
< ARRAY_SIZE(btrfs_lockdep_keysets
); i
++) {
157 struct btrfs_lockdep_keyset
*ks
= &btrfs_lockdep_keysets
[i
];
159 for (j
= 0; j
< ARRAY_SIZE(ks
->names
); j
++)
160 snprintf(ks
->names
[j
], sizeof(ks
->names
[j
]),
161 "btrfs-%s-%02d", ks
->name_stem
, j
);
165 void btrfs_set_buffer_lockdep_class(u64 objectid
, struct extent_buffer
*eb
,
168 struct btrfs_lockdep_keyset
*ks
;
170 BUG_ON(level
>= ARRAY_SIZE(ks
->keys
));
172 /* find the matching keyset, id 0 is the default entry */
173 for (ks
= btrfs_lockdep_keysets
; ks
->id
; ks
++)
174 if (ks
->id
== objectid
)
177 lockdep_set_class_and_name(&eb
->lock
,
178 &ks
->keys
[level
], ks
->names
[level
]);
184 * extents on the btree inode are pretty simple, there's one extent
185 * that covers the entire device
187 static struct extent_map
*btree_get_extent(struct inode
*inode
,
188 struct page
*page
, size_t pg_offset
, u64 start
, u64 len
,
191 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
192 struct extent_map
*em
;
195 read_lock(&em_tree
->lock
);
196 em
= lookup_extent_mapping(em_tree
, start
, len
);
199 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
200 read_unlock(&em_tree
->lock
);
203 read_unlock(&em_tree
->lock
);
205 em
= alloc_extent_map();
207 em
= ERR_PTR(-ENOMEM
);
212 em
->block_len
= (u64
)-1;
214 em
->bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
216 write_lock(&em_tree
->lock
);
217 ret
= add_extent_mapping(em_tree
, em
);
218 if (ret
== -EEXIST
) {
219 u64 failed_start
= em
->start
;
220 u64 failed_len
= em
->len
;
223 em
= lookup_extent_mapping(em_tree
, start
, len
);
227 em
= lookup_extent_mapping(em_tree
, failed_start
,
235 write_unlock(&em_tree
->lock
);
243 u32
btrfs_csum_data(struct btrfs_root
*root
, char *data
, u32 seed
, size_t len
)
245 return crc32c(seed
, data
, len
);
248 void btrfs_csum_final(u32 crc
, char *result
)
250 put_unaligned_le32(~crc
, result
);
254 * compute the csum for a btree block, and either verify it or write it
255 * into the csum field of the block.
257 static int csum_tree_block(struct btrfs_root
*root
, struct extent_buffer
*buf
,
260 u16 csum_size
= btrfs_super_csum_size(root
->fs_info
->super_copy
);
263 unsigned long cur_len
;
264 unsigned long offset
= BTRFS_CSUM_SIZE
;
266 unsigned long map_start
;
267 unsigned long map_len
;
270 unsigned long inline_result
;
272 len
= buf
->len
- offset
;
274 err
= map_private_extent_buffer(buf
, offset
, 32,
275 &kaddr
, &map_start
, &map_len
);
278 cur_len
= min(len
, map_len
- (offset
- map_start
));
279 crc
= btrfs_csum_data(root
, kaddr
+ offset
- map_start
,
284 if (csum_size
> sizeof(inline_result
)) {
285 result
= kzalloc(csum_size
* sizeof(char), GFP_NOFS
);
289 result
= (char *)&inline_result
;
292 btrfs_csum_final(crc
, result
);
295 if (memcmp_extent_buffer(buf
, result
, 0, csum_size
)) {
298 memcpy(&found
, result
, csum_size
);
300 read_extent_buffer(buf
, &val
, 0, csum_size
);
301 printk_ratelimited(KERN_INFO
"btrfs: %s checksum verify "
302 "failed on %llu wanted %X found %X "
304 root
->fs_info
->sb
->s_id
,
305 (unsigned long long)buf
->start
, val
, found
,
306 btrfs_header_level(buf
));
307 if (result
!= (char *)&inline_result
)
312 write_extent_buffer(buf
, result
, 0, csum_size
);
314 if (result
!= (char *)&inline_result
)
320 * we can't consider a given block up to date unless the transid of the
321 * block matches the transid in the parent node's pointer. This is how we
322 * detect blocks that either didn't get written at all or got written
323 * in the wrong place.
325 static int verify_parent_transid(struct extent_io_tree
*io_tree
,
326 struct extent_buffer
*eb
, u64 parent_transid
)
328 struct extent_state
*cached_state
= NULL
;
331 if (!parent_transid
|| btrfs_header_generation(eb
) == parent_transid
)
334 lock_extent_bits(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
335 0, &cached_state
, GFP_NOFS
);
336 if (extent_buffer_uptodate(io_tree
, eb
, cached_state
) &&
337 btrfs_header_generation(eb
) == parent_transid
) {
341 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
343 (unsigned long long)eb
->start
,
344 (unsigned long long)parent_transid
,
345 (unsigned long long)btrfs_header_generation(eb
));
347 clear_extent_buffer_uptodate(io_tree
, eb
, &cached_state
);
349 unlock_extent_cached(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
350 &cached_state
, GFP_NOFS
);
355 * helper to read a given tree block, doing retries as required when
356 * the checksums don't match and we have alternate mirrors to try.
358 static int btree_read_extent_buffer_pages(struct btrfs_root
*root
,
359 struct extent_buffer
*eb
,
360 u64 start
, u64 parent_transid
)
362 struct extent_io_tree
*io_tree
;
367 clear_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
368 io_tree
= &BTRFS_I(root
->fs_info
->btree_inode
)->io_tree
;
370 ret
= read_extent_buffer_pages(io_tree
, eb
, start
,
372 btree_get_extent
, mirror_num
);
374 !verify_parent_transid(io_tree
, eb
, parent_transid
))
378 * This buffer's crc is fine, but its contents are corrupted, so
379 * there is no reason to read the other copies, they won't be
382 if (test_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
))
385 num_copies
= btrfs_num_copies(&root
->fs_info
->mapping_tree
,
391 if (mirror_num
> num_copies
)
398 * checksum a dirty tree block before IO. This has extra checks to make sure
399 * we only fill in the checksum field in the first page of a multi-page block
402 static int csum_dirty_buffer(struct btrfs_root
*root
, struct page
*page
)
404 struct extent_io_tree
*tree
;
405 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
408 struct extent_buffer
*eb
;
411 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
413 if (page
->private == EXTENT_PAGE_PRIVATE
) {
417 if (!page
->private) {
421 len
= page
->private >> 2;
424 eb
= alloc_extent_buffer(tree
, start
, len
, page
);
429 ret
= btree_read_extent_buffer_pages(root
, eb
, start
+ PAGE_CACHE_SIZE
,
430 btrfs_header_generation(eb
));
432 WARN_ON(!btrfs_header_flag(eb
, BTRFS_HEADER_FLAG_WRITTEN
));
434 found_start
= btrfs_header_bytenr(eb
);
435 if (found_start
!= start
) {
439 if (eb
->first_page
!= page
) {
443 if (!PageUptodate(page
)) {
447 csum_tree_block(root
, eb
, 0);
449 free_extent_buffer(eb
);
454 static int check_tree_block_fsid(struct btrfs_root
*root
,
455 struct extent_buffer
*eb
)
457 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
458 u8 fsid
[BTRFS_UUID_SIZE
];
461 read_extent_buffer(eb
, fsid
, (unsigned long)btrfs_header_fsid(eb
),
464 if (!memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
)) {
468 fs_devices
= fs_devices
->seed
;
473 #define CORRUPT(reason, eb, root, slot) \
474 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
475 "root=%llu, slot=%d\n", reason, \
476 (unsigned long long)btrfs_header_bytenr(eb), \
477 (unsigned long long)root->objectid, slot)
479 static noinline
int check_leaf(struct btrfs_root
*root
,
480 struct extent_buffer
*leaf
)
482 struct btrfs_key key
;
483 struct btrfs_key leaf_key
;
484 u32 nritems
= btrfs_header_nritems(leaf
);
490 /* Check the 0 item */
491 if (btrfs_item_offset_nr(leaf
, 0) + btrfs_item_size_nr(leaf
, 0) !=
492 BTRFS_LEAF_DATA_SIZE(root
)) {
493 CORRUPT("invalid item offset size pair", leaf
, root
, 0);
498 * Check to make sure each items keys are in the correct order and their
499 * offsets make sense. We only have to loop through nritems-1 because
500 * we check the current slot against the next slot, which verifies the
501 * next slot's offset+size makes sense and that the current's slot
504 for (slot
= 0; slot
< nritems
- 1; slot
++) {
505 btrfs_item_key_to_cpu(leaf
, &leaf_key
, slot
);
506 btrfs_item_key_to_cpu(leaf
, &key
, slot
+ 1);
508 /* Make sure the keys are in the right order */
509 if (btrfs_comp_cpu_keys(&leaf_key
, &key
) >= 0) {
510 CORRUPT("bad key order", leaf
, root
, slot
);
515 * Make sure the offset and ends are right, remember that the
516 * item data starts at the end of the leaf and grows towards the
519 if (btrfs_item_offset_nr(leaf
, slot
) !=
520 btrfs_item_end_nr(leaf
, slot
+ 1)) {
521 CORRUPT("slot offset bad", leaf
, root
, slot
);
526 * Check to make sure that we don't point outside of the leaf,
527 * just incase all the items are consistent to eachother, but
528 * all point outside of the leaf.
530 if (btrfs_item_end_nr(leaf
, slot
) >
531 BTRFS_LEAF_DATA_SIZE(root
)) {
532 CORRUPT("slot end outside of leaf", leaf
, root
, slot
);
540 static int btree_readpage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
541 struct extent_state
*state
)
543 struct extent_io_tree
*tree
;
547 struct extent_buffer
*eb
;
548 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
551 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
552 if (page
->private == EXTENT_PAGE_PRIVATE
)
557 len
= page
->private >> 2;
560 eb
= alloc_extent_buffer(tree
, start
, len
, page
);
566 found_start
= btrfs_header_bytenr(eb
);
567 if (found_start
!= start
) {
568 printk_ratelimited(KERN_INFO
"btrfs bad tree block start "
570 (unsigned long long)found_start
,
571 (unsigned long long)eb
->start
);
575 if (eb
->first_page
!= page
) {
576 printk(KERN_INFO
"btrfs bad first page %lu %lu\n",
577 eb
->first_page
->index
, page
->index
);
582 if (check_tree_block_fsid(root
, eb
)) {
583 printk_ratelimited(KERN_INFO
"btrfs bad fsid on block %llu\n",
584 (unsigned long long)eb
->start
);
588 found_level
= btrfs_header_level(eb
);
590 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb
),
593 ret
= csum_tree_block(root
, eb
, 1);
600 * If this is a leaf block and it is corrupt, set the corrupt bit so
601 * that we don't try and read the other copies of this block, just
604 if (found_level
== 0 && check_leaf(root
, eb
)) {
605 set_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
609 end
= min_t(u64
, eb
->len
, PAGE_CACHE_SIZE
);
610 end
= eb
->start
+ end
- 1;
612 if (test_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
)) {
613 clear_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
);
614 btree_readahead_hook(root
, eb
, eb
->start
, ret
);
617 free_extent_buffer(eb
);
622 static int btree_io_failed_hook(struct bio
*failed_bio
,
623 struct page
*page
, u64 start
, u64 end
,
624 int mirror_num
, struct extent_state
*state
)
626 struct extent_io_tree
*tree
;
628 struct extent_buffer
*eb
;
629 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
631 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
632 if (page
->private == EXTENT_PAGE_PRIVATE
)
637 len
= page
->private >> 2;
640 eb
= alloc_extent_buffer(tree
, start
, len
, page
);
644 if (test_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
)) {
645 clear_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
);
646 btree_readahead_hook(root
, eb
, eb
->start
, -EIO
);
648 free_extent_buffer(eb
);
651 return -EIO
; /* we fixed nothing */
654 static void end_workqueue_bio(struct bio
*bio
, int err
)
656 struct end_io_wq
*end_io_wq
= bio
->bi_private
;
657 struct btrfs_fs_info
*fs_info
;
659 fs_info
= end_io_wq
->info
;
660 end_io_wq
->error
= err
;
661 end_io_wq
->work
.func
= end_workqueue_fn
;
662 end_io_wq
->work
.flags
= 0;
664 if (bio
->bi_rw
& REQ_WRITE
) {
665 if (end_io_wq
->metadata
== 1)
666 btrfs_queue_worker(&fs_info
->endio_meta_write_workers
,
668 else if (end_io_wq
->metadata
== 2)
669 btrfs_queue_worker(&fs_info
->endio_freespace_worker
,
672 btrfs_queue_worker(&fs_info
->endio_write_workers
,
675 if (end_io_wq
->metadata
)
676 btrfs_queue_worker(&fs_info
->endio_meta_workers
,
679 btrfs_queue_worker(&fs_info
->endio_workers
,
685 * For the metadata arg you want
688 * 1 - if normal metadta
689 * 2 - if writing to the free space cache area
691 int btrfs_bio_wq_end_io(struct btrfs_fs_info
*info
, struct bio
*bio
,
694 struct end_io_wq
*end_io_wq
;
695 end_io_wq
= kmalloc(sizeof(*end_io_wq
), GFP_NOFS
);
699 end_io_wq
->private = bio
->bi_private
;
700 end_io_wq
->end_io
= bio
->bi_end_io
;
701 end_io_wq
->info
= info
;
702 end_io_wq
->error
= 0;
703 end_io_wq
->bio
= bio
;
704 end_io_wq
->metadata
= metadata
;
706 bio
->bi_private
= end_io_wq
;
707 bio
->bi_end_io
= end_workqueue_bio
;
711 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info
*info
)
713 unsigned long limit
= min_t(unsigned long,
714 info
->workers
.max_workers
,
715 info
->fs_devices
->open_devices
);
719 static void run_one_async_start(struct btrfs_work
*work
)
721 struct async_submit_bio
*async
;
723 async
= container_of(work
, struct async_submit_bio
, work
);
724 async
->submit_bio_start(async
->inode
, async
->rw
, async
->bio
,
725 async
->mirror_num
, async
->bio_flags
,
729 static void run_one_async_done(struct btrfs_work
*work
)
731 struct btrfs_fs_info
*fs_info
;
732 struct async_submit_bio
*async
;
735 async
= container_of(work
, struct async_submit_bio
, work
);
736 fs_info
= BTRFS_I(async
->inode
)->root
->fs_info
;
738 limit
= btrfs_async_submit_limit(fs_info
);
739 limit
= limit
* 2 / 3;
741 atomic_dec(&fs_info
->nr_async_submits
);
743 if (atomic_read(&fs_info
->nr_async_submits
) < limit
&&
744 waitqueue_active(&fs_info
->async_submit_wait
))
745 wake_up(&fs_info
->async_submit_wait
);
747 async
->submit_bio_done(async
->inode
, async
->rw
, async
->bio
,
748 async
->mirror_num
, async
->bio_flags
,
752 static void run_one_async_free(struct btrfs_work
*work
)
754 struct async_submit_bio
*async
;
756 async
= container_of(work
, struct async_submit_bio
, work
);
760 int btrfs_wq_submit_bio(struct btrfs_fs_info
*fs_info
, struct inode
*inode
,
761 int rw
, struct bio
*bio
, int mirror_num
,
762 unsigned long bio_flags
,
764 extent_submit_bio_hook_t
*submit_bio_start
,
765 extent_submit_bio_hook_t
*submit_bio_done
)
767 struct async_submit_bio
*async
;
769 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
773 async
->inode
= inode
;
776 async
->mirror_num
= mirror_num
;
777 async
->submit_bio_start
= submit_bio_start
;
778 async
->submit_bio_done
= submit_bio_done
;
780 async
->work
.func
= run_one_async_start
;
781 async
->work
.ordered_func
= run_one_async_done
;
782 async
->work
.ordered_free
= run_one_async_free
;
784 async
->work
.flags
= 0;
785 async
->bio_flags
= bio_flags
;
786 async
->bio_offset
= bio_offset
;
788 atomic_inc(&fs_info
->nr_async_submits
);
791 btrfs_set_work_high_prio(&async
->work
);
793 btrfs_queue_worker(&fs_info
->workers
, &async
->work
);
795 while (atomic_read(&fs_info
->async_submit_draining
) &&
796 atomic_read(&fs_info
->nr_async_submits
)) {
797 wait_event(fs_info
->async_submit_wait
,
798 (atomic_read(&fs_info
->nr_async_submits
) == 0));
804 static int btree_csum_one_bio(struct bio
*bio
)
806 struct bio_vec
*bvec
= bio
->bi_io_vec
;
808 struct btrfs_root
*root
;
810 WARN_ON(bio
->bi_vcnt
<= 0);
811 while (bio_index
< bio
->bi_vcnt
) {
812 root
= BTRFS_I(bvec
->bv_page
->mapping
->host
)->root
;
813 csum_dirty_buffer(root
, bvec
->bv_page
);
820 static int __btree_submit_bio_start(struct inode
*inode
, int rw
,
821 struct bio
*bio
, int mirror_num
,
822 unsigned long bio_flags
,
826 * when we're called for a write, we're already in the async
827 * submission context. Just jump into btrfs_map_bio
829 btree_csum_one_bio(bio
);
833 static int __btree_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
834 int mirror_num
, unsigned long bio_flags
,
838 * when we're called for a write, we're already in the async
839 * submission context. Just jump into btrfs_map_bio
841 return btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
, mirror_num
, 1);
844 static int btree_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
845 int mirror_num
, unsigned long bio_flags
,
850 ret
= btrfs_bio_wq_end_io(BTRFS_I(inode
)->root
->fs_info
,
854 if (!(rw
& REQ_WRITE
)) {
856 * called for a read, do the setup so that checksum validation
857 * can happen in the async kernel threads
859 return btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
,
864 * kthread helpers are used to submit writes so that checksumming
865 * can happen in parallel across all CPUs
867 return btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
868 inode
, rw
, bio
, mirror_num
, 0,
870 __btree_submit_bio_start
,
871 __btree_submit_bio_done
);
874 #ifdef CONFIG_MIGRATION
875 static int btree_migratepage(struct address_space
*mapping
,
876 struct page
*newpage
, struct page
*page
,
877 enum migrate_mode mode
)
880 * we can't safely write a btree page from here,
881 * we haven't done the locking hook
886 * Buffers may be managed in a filesystem specific way.
887 * We must have no buffers or drop them.
889 if (page_has_private(page
) &&
890 !try_to_release_page(page
, GFP_KERNEL
))
892 return migrate_page(mapping
, newpage
, page
, mode
);
896 static int btree_writepage(struct page
*page
, struct writeback_control
*wbc
)
898 struct extent_io_tree
*tree
;
899 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
900 struct extent_buffer
*eb
;
903 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
904 if (!(current
->flags
& PF_MEMALLOC
)) {
905 return extent_write_full_page(tree
, page
,
906 btree_get_extent
, wbc
);
909 redirty_page_for_writepage(wbc
, page
);
910 eb
= btrfs_find_tree_block(root
, page_offset(page
), PAGE_CACHE_SIZE
);
913 was_dirty
= test_and_set_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
);
915 spin_lock(&root
->fs_info
->delalloc_lock
);
916 root
->fs_info
->dirty_metadata_bytes
+= PAGE_CACHE_SIZE
;
917 spin_unlock(&root
->fs_info
->delalloc_lock
);
919 free_extent_buffer(eb
);
925 static int btree_writepages(struct address_space
*mapping
,
926 struct writeback_control
*wbc
)
928 struct extent_io_tree
*tree
;
929 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
930 if (wbc
->sync_mode
== WB_SYNC_NONE
) {
931 struct btrfs_root
*root
= BTRFS_I(mapping
->host
)->root
;
933 unsigned long thresh
= 32 * 1024 * 1024;
935 if (wbc
->for_kupdate
)
938 /* this is a bit racy, but that's ok */
939 num_dirty
= root
->fs_info
->dirty_metadata_bytes
;
940 if (num_dirty
< thresh
)
943 return extent_writepages(tree
, mapping
, btree_get_extent
, wbc
);
946 static int btree_readpage(struct file
*file
, struct page
*page
)
948 struct extent_io_tree
*tree
;
949 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
950 return extent_read_full_page(tree
, page
, btree_get_extent
, 0);
953 static int btree_releasepage(struct page
*page
, gfp_t gfp_flags
)
955 struct extent_io_tree
*tree
;
956 struct extent_map_tree
*map
;
959 if (PageWriteback(page
) || PageDirty(page
))
962 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
963 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
966 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
967 * slab allocation from alloc_extent_state down the callchain where
968 * it'd hit a BUG_ON as those flags are not allowed.
970 gfp_flags
&= ~GFP_SLAB_BUG_MASK
;
972 ret
= try_release_extent_state(map
, tree
, page
, gfp_flags
);
976 ret
= try_release_extent_buffer(tree
, page
);
978 ClearPagePrivate(page
);
979 set_page_private(page
, 0);
980 page_cache_release(page
);
986 static void btree_invalidatepage(struct page
*page
, unsigned long offset
)
988 struct extent_io_tree
*tree
;
989 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
990 extent_invalidatepage(tree
, page
, offset
);
991 btree_releasepage(page
, GFP_NOFS
);
992 if (PagePrivate(page
)) {
993 printk(KERN_WARNING
"btrfs warning page private not zero "
994 "on page %llu\n", (unsigned long long)page_offset(page
));
995 ClearPagePrivate(page
);
996 set_page_private(page
, 0);
997 page_cache_release(page
);
1001 static const struct address_space_operations btree_aops
= {
1002 .readpage
= btree_readpage
,
1003 .writepage
= btree_writepage
,
1004 .writepages
= btree_writepages
,
1005 .releasepage
= btree_releasepage
,
1006 .invalidatepage
= btree_invalidatepage
,
1007 #ifdef CONFIG_MIGRATION
1008 .migratepage
= btree_migratepage
,
1012 int readahead_tree_block(struct btrfs_root
*root
, u64 bytenr
, u32 blocksize
,
1015 struct extent_buffer
*buf
= NULL
;
1016 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1019 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
1022 read_extent_buffer_pages(&BTRFS_I(btree_inode
)->io_tree
,
1023 buf
, 0, WAIT_NONE
, btree_get_extent
, 0);
1024 free_extent_buffer(buf
);
1028 int reada_tree_block_flagged(struct btrfs_root
*root
, u64 bytenr
, u32 blocksize
,
1029 int mirror_num
, struct extent_buffer
**eb
)
1031 struct extent_buffer
*buf
= NULL
;
1032 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1033 struct extent_io_tree
*io_tree
= &BTRFS_I(btree_inode
)->io_tree
;
1036 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
1040 set_bit(EXTENT_BUFFER_READAHEAD
, &buf
->bflags
);
1042 ret
= read_extent_buffer_pages(io_tree
, buf
, 0, WAIT_PAGE_LOCK
,
1043 btree_get_extent
, mirror_num
);
1045 free_extent_buffer(buf
);
1049 if (test_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
)) {
1050 free_extent_buffer(buf
);
1052 } else if (extent_buffer_uptodate(io_tree
, buf
, NULL
)) {
1055 free_extent_buffer(buf
);
1060 struct extent_buffer
*btrfs_find_tree_block(struct btrfs_root
*root
,
1061 u64 bytenr
, u32 blocksize
)
1063 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1064 struct extent_buffer
*eb
;
1065 eb
= find_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
1070 struct extent_buffer
*btrfs_find_create_tree_block(struct btrfs_root
*root
,
1071 u64 bytenr
, u32 blocksize
)
1073 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1074 struct extent_buffer
*eb
;
1076 eb
= alloc_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
1077 bytenr
, blocksize
, NULL
);
1082 int btrfs_write_tree_block(struct extent_buffer
*buf
)
1084 return filemap_fdatawrite_range(buf
->first_page
->mapping
, buf
->start
,
1085 buf
->start
+ buf
->len
- 1);
1088 int btrfs_wait_tree_block_writeback(struct extent_buffer
*buf
)
1090 return filemap_fdatawait_range(buf
->first_page
->mapping
,
1091 buf
->start
, buf
->start
+ buf
->len
- 1);
1094 struct extent_buffer
*read_tree_block(struct btrfs_root
*root
, u64 bytenr
,
1095 u32 blocksize
, u64 parent_transid
)
1097 struct extent_buffer
*buf
= NULL
;
1100 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
1104 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
1107 set_bit(EXTENT_BUFFER_UPTODATE
, &buf
->bflags
);
1112 int clean_tree_block(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
1113 struct extent_buffer
*buf
)
1115 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1116 if (btrfs_header_generation(buf
) ==
1117 root
->fs_info
->running_transaction
->transid
) {
1118 btrfs_assert_tree_locked(buf
);
1120 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
)) {
1121 spin_lock(&root
->fs_info
->delalloc_lock
);
1122 if (root
->fs_info
->dirty_metadata_bytes
>= buf
->len
)
1123 root
->fs_info
->dirty_metadata_bytes
-= buf
->len
;
1126 spin_unlock(&root
->fs_info
->delalloc_lock
);
1129 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1130 btrfs_set_lock_blocking(buf
);
1131 clear_extent_buffer_dirty(&BTRFS_I(btree_inode
)->io_tree
,
1137 static int __setup_root(u32 nodesize
, u32 leafsize
, u32 sectorsize
,
1138 u32 stripesize
, struct btrfs_root
*root
,
1139 struct btrfs_fs_info
*fs_info
,
1143 root
->commit_root
= NULL
;
1144 root
->sectorsize
= sectorsize
;
1145 root
->nodesize
= nodesize
;
1146 root
->leafsize
= leafsize
;
1147 root
->stripesize
= stripesize
;
1149 root
->track_dirty
= 0;
1151 root
->orphan_item_inserted
= 0;
1152 root
->orphan_cleanup_state
= 0;
1154 root
->objectid
= objectid
;
1155 root
->last_trans
= 0;
1156 root
->highest_objectid
= 0;
1158 root
->inode_tree
= RB_ROOT
;
1159 INIT_RADIX_TREE(&root
->delayed_nodes_tree
, GFP_ATOMIC
);
1160 root
->block_rsv
= NULL
;
1161 root
->orphan_block_rsv
= NULL
;
1163 INIT_LIST_HEAD(&root
->dirty_list
);
1164 INIT_LIST_HEAD(&root
->orphan_list
);
1165 INIT_LIST_HEAD(&root
->root_list
);
1166 spin_lock_init(&root
->orphan_lock
);
1167 spin_lock_init(&root
->inode_lock
);
1168 spin_lock_init(&root
->accounting_lock
);
1169 mutex_init(&root
->objectid_mutex
);
1170 mutex_init(&root
->log_mutex
);
1171 init_waitqueue_head(&root
->log_writer_wait
);
1172 init_waitqueue_head(&root
->log_commit_wait
[0]);
1173 init_waitqueue_head(&root
->log_commit_wait
[1]);
1174 atomic_set(&root
->log_commit
[0], 0);
1175 atomic_set(&root
->log_commit
[1], 0);
1176 atomic_set(&root
->log_writers
, 0);
1177 root
->log_batch
= 0;
1178 root
->log_transid
= 0;
1179 root
->last_log_commit
= 0;
1180 extent_io_tree_init(&root
->dirty_log_pages
,
1181 fs_info
->btree_inode
->i_mapping
);
1183 memset(&root
->root_key
, 0, sizeof(root
->root_key
));
1184 memset(&root
->root_item
, 0, sizeof(root
->root_item
));
1185 memset(&root
->defrag_progress
, 0, sizeof(root
->defrag_progress
));
1186 memset(&root
->root_kobj
, 0, sizeof(root
->root_kobj
));
1187 root
->defrag_trans_start
= fs_info
->generation
;
1188 init_completion(&root
->kobj_unregister
);
1189 root
->defrag_running
= 0;
1190 root
->root_key
.objectid
= objectid
;
1195 static int find_and_setup_root(struct btrfs_root
*tree_root
,
1196 struct btrfs_fs_info
*fs_info
,
1198 struct btrfs_root
*root
)
1204 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1205 tree_root
->sectorsize
, tree_root
->stripesize
,
1206 root
, fs_info
, objectid
);
1207 ret
= btrfs_find_last_root(tree_root
, objectid
,
1208 &root
->root_item
, &root
->root_key
);
1213 generation
= btrfs_root_generation(&root
->root_item
);
1214 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
1215 root
->commit_root
= NULL
;
1216 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
1217 blocksize
, generation
);
1218 if (!root
->node
|| !btrfs_buffer_uptodate(root
->node
, generation
)) {
1219 free_extent_buffer(root
->node
);
1223 root
->commit_root
= btrfs_root_node(root
);
1227 static struct btrfs_root
*btrfs_alloc_root(struct btrfs_fs_info
*fs_info
)
1229 struct btrfs_root
*root
= kzalloc(sizeof(*root
), GFP_NOFS
);
1231 root
->fs_info
= fs_info
;
1235 static struct btrfs_root
*alloc_log_tree(struct btrfs_trans_handle
*trans
,
1236 struct btrfs_fs_info
*fs_info
)
1238 struct btrfs_root
*root
;
1239 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1240 struct extent_buffer
*leaf
;
1242 root
= btrfs_alloc_root(fs_info
);
1244 return ERR_PTR(-ENOMEM
);
1246 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1247 tree_root
->sectorsize
, tree_root
->stripesize
,
1248 root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
1250 root
->root_key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
1251 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1252 root
->root_key
.offset
= BTRFS_TREE_LOG_OBJECTID
;
1254 * log trees do not get reference counted because they go away
1255 * before a real commit is actually done. They do store pointers
1256 * to file data extents, and those reference counts still get
1257 * updated (along with back refs to the log tree).
1261 leaf
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
, 0,
1262 BTRFS_TREE_LOG_OBJECTID
, NULL
,
1266 return ERR_CAST(leaf
);
1269 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
1270 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1271 btrfs_set_header_generation(leaf
, trans
->transid
);
1272 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1273 btrfs_set_header_owner(leaf
, BTRFS_TREE_LOG_OBJECTID
);
1276 write_extent_buffer(root
->node
, root
->fs_info
->fsid
,
1277 (unsigned long)btrfs_header_fsid(root
->node
),
1279 btrfs_mark_buffer_dirty(root
->node
);
1280 btrfs_tree_unlock(root
->node
);
1284 int btrfs_init_log_root_tree(struct btrfs_trans_handle
*trans
,
1285 struct btrfs_fs_info
*fs_info
)
1287 struct btrfs_root
*log_root
;
1289 log_root
= alloc_log_tree(trans
, fs_info
);
1290 if (IS_ERR(log_root
))
1291 return PTR_ERR(log_root
);
1292 WARN_ON(fs_info
->log_root_tree
);
1293 fs_info
->log_root_tree
= log_root
;
1297 int btrfs_add_log_tree(struct btrfs_trans_handle
*trans
,
1298 struct btrfs_root
*root
)
1300 struct btrfs_root
*log_root
;
1301 struct btrfs_inode_item
*inode_item
;
1303 log_root
= alloc_log_tree(trans
, root
->fs_info
);
1304 if (IS_ERR(log_root
))
1305 return PTR_ERR(log_root
);
1307 log_root
->last_trans
= trans
->transid
;
1308 log_root
->root_key
.offset
= root
->root_key
.objectid
;
1310 inode_item
= &log_root
->root_item
.inode
;
1311 inode_item
->generation
= cpu_to_le64(1);
1312 inode_item
->size
= cpu_to_le64(3);
1313 inode_item
->nlink
= cpu_to_le32(1);
1314 inode_item
->nbytes
= cpu_to_le64(root
->leafsize
);
1315 inode_item
->mode
= cpu_to_le32(S_IFDIR
| 0755);
1317 btrfs_set_root_node(&log_root
->root_item
, log_root
->node
);
1319 WARN_ON(root
->log_root
);
1320 root
->log_root
= log_root
;
1321 root
->log_transid
= 0;
1322 root
->last_log_commit
= 0;
1326 struct btrfs_root
*btrfs_read_fs_root_no_radix(struct btrfs_root
*tree_root
,
1327 struct btrfs_key
*location
)
1329 struct btrfs_root
*root
;
1330 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1331 struct btrfs_path
*path
;
1332 struct extent_buffer
*l
;
1337 root
= btrfs_alloc_root(fs_info
);
1339 return ERR_PTR(-ENOMEM
);
1340 if (location
->offset
== (u64
)-1) {
1341 ret
= find_and_setup_root(tree_root
, fs_info
,
1342 location
->objectid
, root
);
1345 return ERR_PTR(ret
);
1350 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1351 tree_root
->sectorsize
, tree_root
->stripesize
,
1352 root
, fs_info
, location
->objectid
);
1354 path
= btrfs_alloc_path();
1357 return ERR_PTR(-ENOMEM
);
1359 ret
= btrfs_search_slot(NULL
, tree_root
, location
, path
, 0, 0);
1362 read_extent_buffer(l
, &root
->root_item
,
1363 btrfs_item_ptr_offset(l
, path
->slots
[0]),
1364 sizeof(root
->root_item
));
1365 memcpy(&root
->root_key
, location
, sizeof(*location
));
1367 btrfs_free_path(path
);
1372 return ERR_PTR(ret
);
1375 generation
= btrfs_root_generation(&root
->root_item
);
1376 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
1377 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
1378 blocksize
, generation
);
1379 root
->commit_root
= btrfs_root_node(root
);
1380 BUG_ON(!root
->node
);
1382 if (location
->objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
1384 btrfs_check_and_init_root_item(&root
->root_item
);
1390 struct btrfs_root
*btrfs_read_fs_root_no_name(struct btrfs_fs_info
*fs_info
,
1391 struct btrfs_key
*location
)
1393 struct btrfs_root
*root
;
1396 if (location
->objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1397 return fs_info
->tree_root
;
1398 if (location
->objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1399 return fs_info
->extent_root
;
1400 if (location
->objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
1401 return fs_info
->chunk_root
;
1402 if (location
->objectid
== BTRFS_DEV_TREE_OBJECTID
)
1403 return fs_info
->dev_root
;
1404 if (location
->objectid
== BTRFS_CSUM_TREE_OBJECTID
)
1405 return fs_info
->csum_root
;
1407 spin_lock(&fs_info
->fs_roots_radix_lock
);
1408 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1409 (unsigned long)location
->objectid
);
1410 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1414 root
= btrfs_read_fs_root_no_radix(fs_info
->tree_root
, location
);
1418 root
->free_ino_ctl
= kzalloc(sizeof(*root
->free_ino_ctl
), GFP_NOFS
);
1419 root
->free_ino_pinned
= kzalloc(sizeof(*root
->free_ino_pinned
),
1421 if (!root
->free_ino_pinned
|| !root
->free_ino_ctl
) {
1426 btrfs_init_free_ino_ctl(root
);
1427 mutex_init(&root
->fs_commit_mutex
);
1428 spin_lock_init(&root
->cache_lock
);
1429 init_waitqueue_head(&root
->cache_wait
);
1431 ret
= get_anon_bdev(&root
->anon_dev
);
1435 if (btrfs_root_refs(&root
->root_item
) == 0) {
1440 ret
= btrfs_find_orphan_item(fs_info
->tree_root
, location
->objectid
);
1444 root
->orphan_item_inserted
= 1;
1446 ret
= radix_tree_preload(GFP_NOFS
& ~__GFP_HIGHMEM
);
1450 spin_lock(&fs_info
->fs_roots_radix_lock
);
1451 ret
= radix_tree_insert(&fs_info
->fs_roots_radix
,
1452 (unsigned long)root
->root_key
.objectid
,
1457 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1458 radix_tree_preload_end();
1460 if (ret
== -EEXIST
) {
1467 ret
= btrfs_find_dead_roots(fs_info
->tree_root
,
1468 root
->root_key
.objectid
);
1473 return ERR_PTR(ret
);
1476 static int btrfs_congested_fn(void *congested_data
, int bdi_bits
)
1478 struct btrfs_fs_info
*info
= (struct btrfs_fs_info
*)congested_data
;
1480 struct btrfs_device
*device
;
1481 struct backing_dev_info
*bdi
;
1484 list_for_each_entry_rcu(device
, &info
->fs_devices
->devices
, dev_list
) {
1487 bdi
= blk_get_backing_dev_info(device
->bdev
);
1488 if (bdi
&& bdi_congested(bdi
, bdi_bits
)) {
1498 * If this fails, caller must call bdi_destroy() to get rid of the
1501 static int setup_bdi(struct btrfs_fs_info
*info
, struct backing_dev_info
*bdi
)
1505 bdi
->capabilities
= BDI_CAP_MAP_COPY
;
1506 err
= bdi_setup_and_register(bdi
, "btrfs", BDI_CAP_MAP_COPY
);
1510 bdi
->ra_pages
= default_backing_dev_info
.ra_pages
;
1511 bdi
->congested_fn
= btrfs_congested_fn
;
1512 bdi
->congested_data
= info
;
1516 static int bio_ready_for_csum(struct bio
*bio
)
1522 struct extent_io_tree
*io_tree
= NULL
;
1523 struct bio_vec
*bvec
;
1527 bio_for_each_segment(bvec
, bio
, i
) {
1528 page
= bvec
->bv_page
;
1529 if (page
->private == EXTENT_PAGE_PRIVATE
) {
1530 length
+= bvec
->bv_len
;
1533 if (!page
->private) {
1534 length
+= bvec
->bv_len
;
1537 length
= bvec
->bv_len
;
1538 buf_len
= page
->private >> 2;
1539 start
= page_offset(page
) + bvec
->bv_offset
;
1540 io_tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1542 /* are we fully contained in this bio? */
1543 if (buf_len
<= length
)
1546 ret
= extent_range_uptodate(io_tree
, start
+ length
,
1547 start
+ buf_len
- 1);
1552 * called by the kthread helper functions to finally call the bio end_io
1553 * functions. This is where read checksum verification actually happens
1555 static void end_workqueue_fn(struct btrfs_work
*work
)
1558 struct end_io_wq
*end_io_wq
;
1559 struct btrfs_fs_info
*fs_info
;
1562 end_io_wq
= container_of(work
, struct end_io_wq
, work
);
1563 bio
= end_io_wq
->bio
;
1564 fs_info
= end_io_wq
->info
;
1566 /* metadata bio reads are special because the whole tree block must
1567 * be checksummed at once. This makes sure the entire block is in
1568 * ram and up to date before trying to verify things. For
1569 * blocksize <= pagesize, it is basically a noop
1571 if (!(bio
->bi_rw
& REQ_WRITE
) && end_io_wq
->metadata
&&
1572 !bio_ready_for_csum(bio
)) {
1573 btrfs_queue_worker(&fs_info
->endio_meta_workers
,
1577 error
= end_io_wq
->error
;
1578 bio
->bi_private
= end_io_wq
->private;
1579 bio
->bi_end_io
= end_io_wq
->end_io
;
1581 bio_endio(bio
, error
);
1584 static int cleaner_kthread(void *arg
)
1586 struct btrfs_root
*root
= arg
;
1589 vfs_check_frozen(root
->fs_info
->sb
, SB_FREEZE_WRITE
);
1591 if (!(root
->fs_info
->sb
->s_flags
& MS_RDONLY
) &&
1592 mutex_trylock(&root
->fs_info
->cleaner_mutex
)) {
1593 btrfs_run_delayed_iputs(root
);
1594 btrfs_clean_old_snapshots(root
);
1595 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
1596 btrfs_run_defrag_inodes(root
->fs_info
);
1599 if (!try_to_freeze()) {
1600 set_current_state(TASK_INTERRUPTIBLE
);
1601 if (!kthread_should_stop())
1603 __set_current_state(TASK_RUNNING
);
1605 } while (!kthread_should_stop());
1609 static int transaction_kthread(void *arg
)
1611 struct btrfs_root
*root
= arg
;
1612 struct btrfs_trans_handle
*trans
;
1613 struct btrfs_transaction
*cur
;
1616 unsigned long delay
;
1621 vfs_check_frozen(root
->fs_info
->sb
, SB_FREEZE_WRITE
);
1622 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
1624 spin_lock(&root
->fs_info
->trans_lock
);
1625 cur
= root
->fs_info
->running_transaction
;
1627 spin_unlock(&root
->fs_info
->trans_lock
);
1631 now
= get_seconds();
1632 if (!cur
->blocked
&&
1633 (now
< cur
->start_time
|| now
- cur
->start_time
< 30)) {
1634 spin_unlock(&root
->fs_info
->trans_lock
);
1638 transid
= cur
->transid
;
1639 spin_unlock(&root
->fs_info
->trans_lock
);
1641 trans
= btrfs_join_transaction(root
);
1642 BUG_ON(IS_ERR(trans
));
1643 if (transid
== trans
->transid
) {
1644 ret
= btrfs_commit_transaction(trans
, root
);
1647 btrfs_end_transaction(trans
, root
);
1650 wake_up_process(root
->fs_info
->cleaner_kthread
);
1651 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
1653 if (!try_to_freeze()) {
1654 set_current_state(TASK_INTERRUPTIBLE
);
1655 if (!kthread_should_stop() &&
1656 !btrfs_transaction_blocked(root
->fs_info
))
1657 schedule_timeout(delay
);
1658 __set_current_state(TASK_RUNNING
);
1660 } while (!kthread_should_stop());
1665 * this will find the highest generation in the array of
1666 * root backups. The index of the highest array is returned,
1667 * or -1 if we can't find anything.
1669 * We check to make sure the array is valid by comparing the
1670 * generation of the latest root in the array with the generation
1671 * in the super block. If they don't match we pitch it.
1673 static int find_newest_super_backup(struct btrfs_fs_info
*info
, u64 newest_gen
)
1676 int newest_index
= -1;
1677 struct btrfs_root_backup
*root_backup
;
1680 for (i
= 0; i
< BTRFS_NUM_BACKUP_ROOTS
; i
++) {
1681 root_backup
= info
->super_copy
->super_roots
+ i
;
1682 cur
= btrfs_backup_tree_root_gen(root_backup
);
1683 if (cur
== newest_gen
)
1687 /* check to see if we actually wrapped around */
1688 if (newest_index
== BTRFS_NUM_BACKUP_ROOTS
- 1) {
1689 root_backup
= info
->super_copy
->super_roots
;
1690 cur
= btrfs_backup_tree_root_gen(root_backup
);
1691 if (cur
== newest_gen
)
1694 return newest_index
;
1699 * find the oldest backup so we know where to store new entries
1700 * in the backup array. This will set the backup_root_index
1701 * field in the fs_info struct
1703 static void find_oldest_super_backup(struct btrfs_fs_info
*info
,
1706 int newest_index
= -1;
1708 newest_index
= find_newest_super_backup(info
, newest_gen
);
1709 /* if there was garbage in there, just move along */
1710 if (newest_index
== -1) {
1711 info
->backup_root_index
= 0;
1713 info
->backup_root_index
= (newest_index
+ 1) % BTRFS_NUM_BACKUP_ROOTS
;
1718 * copy all the root pointers into the super backup array.
1719 * this will bump the backup pointer by one when it is
1722 static void backup_super_roots(struct btrfs_fs_info
*info
)
1725 struct btrfs_root_backup
*root_backup
;
1728 next_backup
= info
->backup_root_index
;
1729 last_backup
= (next_backup
+ BTRFS_NUM_BACKUP_ROOTS
- 1) %
1730 BTRFS_NUM_BACKUP_ROOTS
;
1733 * just overwrite the last backup if we're at the same generation
1734 * this happens only at umount
1736 root_backup
= info
->super_for_commit
->super_roots
+ last_backup
;
1737 if (btrfs_backup_tree_root_gen(root_backup
) ==
1738 btrfs_header_generation(info
->tree_root
->node
))
1739 next_backup
= last_backup
;
1741 root_backup
= info
->super_for_commit
->super_roots
+ next_backup
;
1744 * make sure all of our padding and empty slots get zero filled
1745 * regardless of which ones we use today
1747 memset(root_backup
, 0, sizeof(*root_backup
));
1749 info
->backup_root_index
= (next_backup
+ 1) % BTRFS_NUM_BACKUP_ROOTS
;
1751 btrfs_set_backup_tree_root(root_backup
, info
->tree_root
->node
->start
);
1752 btrfs_set_backup_tree_root_gen(root_backup
,
1753 btrfs_header_generation(info
->tree_root
->node
));
1755 btrfs_set_backup_tree_root_level(root_backup
,
1756 btrfs_header_level(info
->tree_root
->node
));
1758 btrfs_set_backup_chunk_root(root_backup
, info
->chunk_root
->node
->start
);
1759 btrfs_set_backup_chunk_root_gen(root_backup
,
1760 btrfs_header_generation(info
->chunk_root
->node
));
1761 btrfs_set_backup_chunk_root_level(root_backup
,
1762 btrfs_header_level(info
->chunk_root
->node
));
1764 btrfs_set_backup_extent_root(root_backup
, info
->extent_root
->node
->start
);
1765 btrfs_set_backup_extent_root_gen(root_backup
,
1766 btrfs_header_generation(info
->extent_root
->node
));
1767 btrfs_set_backup_extent_root_level(root_backup
,
1768 btrfs_header_level(info
->extent_root
->node
));
1771 * we might commit during log recovery, which happens before we set
1772 * the fs_root. Make sure it is valid before we fill it in.
1774 if (info
->fs_root
&& info
->fs_root
->node
) {
1775 btrfs_set_backup_fs_root(root_backup
,
1776 info
->fs_root
->node
->start
);
1777 btrfs_set_backup_fs_root_gen(root_backup
,
1778 btrfs_header_generation(info
->fs_root
->node
));
1779 btrfs_set_backup_fs_root_level(root_backup
,
1780 btrfs_header_level(info
->fs_root
->node
));
1783 btrfs_set_backup_dev_root(root_backup
, info
->dev_root
->node
->start
);
1784 btrfs_set_backup_dev_root_gen(root_backup
,
1785 btrfs_header_generation(info
->dev_root
->node
));
1786 btrfs_set_backup_dev_root_level(root_backup
,
1787 btrfs_header_level(info
->dev_root
->node
));
1789 btrfs_set_backup_csum_root(root_backup
, info
->csum_root
->node
->start
);
1790 btrfs_set_backup_csum_root_gen(root_backup
,
1791 btrfs_header_generation(info
->csum_root
->node
));
1792 btrfs_set_backup_csum_root_level(root_backup
,
1793 btrfs_header_level(info
->csum_root
->node
));
1795 btrfs_set_backup_total_bytes(root_backup
,
1796 btrfs_super_total_bytes(info
->super_copy
));
1797 btrfs_set_backup_bytes_used(root_backup
,
1798 btrfs_super_bytes_used(info
->super_copy
));
1799 btrfs_set_backup_num_devices(root_backup
,
1800 btrfs_super_num_devices(info
->super_copy
));
1803 * if we don't copy this out to the super_copy, it won't get remembered
1804 * for the next commit
1806 memcpy(&info
->super_copy
->super_roots
,
1807 &info
->super_for_commit
->super_roots
,
1808 sizeof(*root_backup
) * BTRFS_NUM_BACKUP_ROOTS
);
1812 * this copies info out of the root backup array and back into
1813 * the in-memory super block. It is meant to help iterate through
1814 * the array, so you send it the number of backups you've already
1815 * tried and the last backup index you used.
1817 * this returns -1 when it has tried all the backups
1819 static noinline
int next_root_backup(struct btrfs_fs_info
*info
,
1820 struct btrfs_super_block
*super
,
1821 int *num_backups_tried
, int *backup_index
)
1823 struct btrfs_root_backup
*root_backup
;
1824 int newest
= *backup_index
;
1826 if (*num_backups_tried
== 0) {
1827 u64 gen
= btrfs_super_generation(super
);
1829 newest
= find_newest_super_backup(info
, gen
);
1833 *backup_index
= newest
;
1834 *num_backups_tried
= 1;
1835 } else if (*num_backups_tried
== BTRFS_NUM_BACKUP_ROOTS
) {
1836 /* we've tried all the backups, all done */
1839 /* jump to the next oldest backup */
1840 newest
= (*backup_index
+ BTRFS_NUM_BACKUP_ROOTS
- 1) %
1841 BTRFS_NUM_BACKUP_ROOTS
;
1842 *backup_index
= newest
;
1843 *num_backups_tried
+= 1;
1845 root_backup
= super
->super_roots
+ newest
;
1847 btrfs_set_super_generation(super
,
1848 btrfs_backup_tree_root_gen(root_backup
));
1849 btrfs_set_super_root(super
, btrfs_backup_tree_root(root_backup
));
1850 btrfs_set_super_root_level(super
,
1851 btrfs_backup_tree_root_level(root_backup
));
1852 btrfs_set_super_bytes_used(super
, btrfs_backup_bytes_used(root_backup
));
1855 * fixme: the total bytes and num_devices need to match or we should
1858 btrfs_set_super_total_bytes(super
, btrfs_backup_total_bytes(root_backup
));
1859 btrfs_set_super_num_devices(super
, btrfs_backup_num_devices(root_backup
));
1863 /* helper to cleanup tree roots */
1864 static void free_root_pointers(struct btrfs_fs_info
*info
, int chunk_root
)
1866 free_extent_buffer(info
->tree_root
->node
);
1867 free_extent_buffer(info
->tree_root
->commit_root
);
1868 free_extent_buffer(info
->dev_root
->node
);
1869 free_extent_buffer(info
->dev_root
->commit_root
);
1870 free_extent_buffer(info
->extent_root
->node
);
1871 free_extent_buffer(info
->extent_root
->commit_root
);
1872 free_extent_buffer(info
->csum_root
->node
);
1873 free_extent_buffer(info
->csum_root
->commit_root
);
1875 info
->tree_root
->node
= NULL
;
1876 info
->tree_root
->commit_root
= NULL
;
1877 info
->dev_root
->node
= NULL
;
1878 info
->dev_root
->commit_root
= NULL
;
1879 info
->extent_root
->node
= NULL
;
1880 info
->extent_root
->commit_root
= NULL
;
1881 info
->csum_root
->node
= NULL
;
1882 info
->csum_root
->commit_root
= NULL
;
1885 free_extent_buffer(info
->chunk_root
->node
);
1886 free_extent_buffer(info
->chunk_root
->commit_root
);
1887 info
->chunk_root
->node
= NULL
;
1888 info
->chunk_root
->commit_root
= NULL
;
1893 int open_ctree(struct super_block
*sb
,
1894 struct btrfs_fs_devices
*fs_devices
,
1904 struct btrfs_key location
;
1905 struct buffer_head
*bh
;
1906 struct btrfs_super_block
*disk_super
;
1907 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
1908 struct btrfs_root
*tree_root
;
1909 struct btrfs_root
*extent_root
;
1910 struct btrfs_root
*csum_root
;
1911 struct btrfs_root
*chunk_root
;
1912 struct btrfs_root
*dev_root
;
1913 struct btrfs_root
*log_tree_root
;
1916 int num_backups_tried
= 0;
1917 int backup_index
= 0;
1919 tree_root
= fs_info
->tree_root
= btrfs_alloc_root(fs_info
);
1920 extent_root
= fs_info
->extent_root
= btrfs_alloc_root(fs_info
);
1921 csum_root
= fs_info
->csum_root
= btrfs_alloc_root(fs_info
);
1922 chunk_root
= fs_info
->chunk_root
= btrfs_alloc_root(fs_info
);
1923 dev_root
= fs_info
->dev_root
= btrfs_alloc_root(fs_info
);
1925 if (!tree_root
|| !extent_root
|| !csum_root
||
1926 !chunk_root
|| !dev_root
) {
1931 ret
= init_srcu_struct(&fs_info
->subvol_srcu
);
1937 ret
= setup_bdi(fs_info
, &fs_info
->bdi
);
1943 fs_info
->btree_inode
= new_inode(sb
);
1944 if (!fs_info
->btree_inode
) {
1949 mapping_set_gfp_mask(fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
1951 INIT_RADIX_TREE(&fs_info
->fs_roots_radix
, GFP_ATOMIC
);
1952 INIT_LIST_HEAD(&fs_info
->trans_list
);
1953 INIT_LIST_HEAD(&fs_info
->dead_roots
);
1954 INIT_LIST_HEAD(&fs_info
->delayed_iputs
);
1955 INIT_LIST_HEAD(&fs_info
->hashers
);
1956 INIT_LIST_HEAD(&fs_info
->delalloc_inodes
);
1957 INIT_LIST_HEAD(&fs_info
->ordered_operations
);
1958 INIT_LIST_HEAD(&fs_info
->caching_block_groups
);
1959 spin_lock_init(&fs_info
->delalloc_lock
);
1960 spin_lock_init(&fs_info
->trans_lock
);
1961 spin_lock_init(&fs_info
->ref_cache_lock
);
1962 spin_lock_init(&fs_info
->fs_roots_radix_lock
);
1963 spin_lock_init(&fs_info
->delayed_iput_lock
);
1964 spin_lock_init(&fs_info
->defrag_inodes_lock
);
1965 spin_lock_init(&fs_info
->free_chunk_lock
);
1966 mutex_init(&fs_info
->reloc_mutex
);
1968 init_completion(&fs_info
->kobj_unregister
);
1969 INIT_LIST_HEAD(&fs_info
->dirty_cowonly_roots
);
1970 INIT_LIST_HEAD(&fs_info
->space_info
);
1971 btrfs_mapping_init(&fs_info
->mapping_tree
);
1972 btrfs_init_block_rsv(&fs_info
->global_block_rsv
);
1973 btrfs_init_block_rsv(&fs_info
->delalloc_block_rsv
);
1974 btrfs_init_block_rsv(&fs_info
->trans_block_rsv
);
1975 btrfs_init_block_rsv(&fs_info
->chunk_block_rsv
);
1976 btrfs_init_block_rsv(&fs_info
->empty_block_rsv
);
1977 btrfs_init_block_rsv(&fs_info
->delayed_block_rsv
);
1978 atomic_set(&fs_info
->nr_async_submits
, 0);
1979 atomic_set(&fs_info
->async_delalloc_pages
, 0);
1980 atomic_set(&fs_info
->async_submit_draining
, 0);
1981 atomic_set(&fs_info
->nr_async_bios
, 0);
1982 atomic_set(&fs_info
->defrag_running
, 0);
1984 fs_info
->max_inline
= 8192 * 1024;
1985 fs_info
->metadata_ratio
= 0;
1986 fs_info
->defrag_inodes
= RB_ROOT
;
1987 fs_info
->trans_no_join
= 0;
1988 fs_info
->free_chunk_space
= 0;
1990 /* readahead state */
1991 INIT_RADIX_TREE(&fs_info
->reada_tree
, GFP_NOFS
& ~__GFP_WAIT
);
1992 spin_lock_init(&fs_info
->reada_lock
);
1994 fs_info
->thread_pool_size
= min_t(unsigned long,
1995 num_online_cpus() + 2, 8);
1997 INIT_LIST_HEAD(&fs_info
->ordered_extents
);
1998 spin_lock_init(&fs_info
->ordered_extent_lock
);
1999 fs_info
->delayed_root
= kmalloc(sizeof(struct btrfs_delayed_root
),
2001 if (!fs_info
->delayed_root
) {
2005 btrfs_init_delayed_root(fs_info
->delayed_root
);
2007 mutex_init(&fs_info
->scrub_lock
);
2008 atomic_set(&fs_info
->scrubs_running
, 0);
2009 atomic_set(&fs_info
->scrub_pause_req
, 0);
2010 atomic_set(&fs_info
->scrubs_paused
, 0);
2011 atomic_set(&fs_info
->scrub_cancel_req
, 0);
2012 init_waitqueue_head(&fs_info
->scrub_pause_wait
);
2013 init_rwsem(&fs_info
->scrub_super_lock
);
2014 fs_info
->scrub_workers_refcnt
= 0;
2015 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2016 fs_info
->check_integrity_print_mask
= 0;
2019 spin_lock_init(&fs_info
->balance_lock
);
2020 mutex_init(&fs_info
->balance_mutex
);
2021 atomic_set(&fs_info
->balance_running
, 0);
2022 atomic_set(&fs_info
->balance_pause_req
, 0);
2023 atomic_set(&fs_info
->balance_cancel_req
, 0);
2024 fs_info
->balance_ctl
= NULL
;
2025 init_waitqueue_head(&fs_info
->balance_wait_q
);
2027 sb
->s_blocksize
= 4096;
2028 sb
->s_blocksize_bits
= blksize_bits(4096);
2029 sb
->s_bdi
= &fs_info
->bdi
;
2031 fs_info
->btree_inode
->i_ino
= BTRFS_BTREE_INODE_OBJECTID
;
2032 set_nlink(fs_info
->btree_inode
, 1);
2034 * we set the i_size on the btree inode to the max possible int.
2035 * the real end of the address space is determined by all of
2036 * the devices in the system
2038 fs_info
->btree_inode
->i_size
= OFFSET_MAX
;
2039 fs_info
->btree_inode
->i_mapping
->a_ops
= &btree_aops
;
2040 fs_info
->btree_inode
->i_mapping
->backing_dev_info
= &fs_info
->bdi
;
2042 RB_CLEAR_NODE(&BTRFS_I(fs_info
->btree_inode
)->rb_node
);
2043 extent_io_tree_init(&BTRFS_I(fs_info
->btree_inode
)->io_tree
,
2044 fs_info
->btree_inode
->i_mapping
);
2045 extent_map_tree_init(&BTRFS_I(fs_info
->btree_inode
)->extent_tree
);
2047 BTRFS_I(fs_info
->btree_inode
)->io_tree
.ops
= &btree_extent_io_ops
;
2049 BTRFS_I(fs_info
->btree_inode
)->root
= tree_root
;
2050 memset(&BTRFS_I(fs_info
->btree_inode
)->location
, 0,
2051 sizeof(struct btrfs_key
));
2052 BTRFS_I(fs_info
->btree_inode
)->dummy_inode
= 1;
2053 insert_inode_hash(fs_info
->btree_inode
);
2055 spin_lock_init(&fs_info
->block_group_cache_lock
);
2056 fs_info
->block_group_cache_tree
= RB_ROOT
;
2058 extent_io_tree_init(&fs_info
->freed_extents
[0],
2059 fs_info
->btree_inode
->i_mapping
);
2060 extent_io_tree_init(&fs_info
->freed_extents
[1],
2061 fs_info
->btree_inode
->i_mapping
);
2062 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
2063 fs_info
->do_barriers
= 1;
2066 mutex_init(&fs_info
->ordered_operations_mutex
);
2067 mutex_init(&fs_info
->tree_log_mutex
);
2068 mutex_init(&fs_info
->chunk_mutex
);
2069 mutex_init(&fs_info
->transaction_kthread_mutex
);
2070 mutex_init(&fs_info
->cleaner_mutex
);
2071 mutex_init(&fs_info
->volume_mutex
);
2072 init_rwsem(&fs_info
->extent_commit_sem
);
2073 init_rwsem(&fs_info
->cleanup_work_sem
);
2074 init_rwsem(&fs_info
->subvol_sem
);
2076 btrfs_init_free_cluster(&fs_info
->meta_alloc_cluster
);
2077 btrfs_init_free_cluster(&fs_info
->data_alloc_cluster
);
2079 init_waitqueue_head(&fs_info
->transaction_throttle
);
2080 init_waitqueue_head(&fs_info
->transaction_wait
);
2081 init_waitqueue_head(&fs_info
->transaction_blocked_wait
);
2082 init_waitqueue_head(&fs_info
->async_submit_wait
);
2084 __setup_root(4096, 4096, 4096, 4096, tree_root
,
2085 fs_info
, BTRFS_ROOT_TREE_OBJECTID
);
2087 bh
= btrfs_read_dev_super(fs_devices
->latest_bdev
);
2093 memcpy(fs_info
->super_copy
, bh
->b_data
, sizeof(*fs_info
->super_copy
));
2094 memcpy(fs_info
->super_for_commit
, fs_info
->super_copy
,
2095 sizeof(*fs_info
->super_for_commit
));
2098 memcpy(fs_info
->fsid
, fs_info
->super_copy
->fsid
, BTRFS_FSID_SIZE
);
2100 disk_super
= fs_info
->super_copy
;
2101 if (!btrfs_super_root(disk_super
))
2104 /* check FS state, whether FS is broken. */
2105 fs_info
->fs_state
|= btrfs_super_flags(disk_super
);
2107 btrfs_check_super_valid(fs_info
, sb
->s_flags
& MS_RDONLY
);
2110 * run through our array of backup supers and setup
2111 * our ring pointer to the oldest one
2113 generation
= btrfs_super_generation(disk_super
);
2114 find_oldest_super_backup(fs_info
, generation
);
2117 * In the long term, we'll store the compression type in the super
2118 * block, and it'll be used for per file compression control.
2120 fs_info
->compress_type
= BTRFS_COMPRESS_ZLIB
;
2122 ret
= btrfs_parse_options(tree_root
, options
);
2128 features
= btrfs_super_incompat_flags(disk_super
) &
2129 ~BTRFS_FEATURE_INCOMPAT_SUPP
;
2131 printk(KERN_ERR
"BTRFS: couldn't mount because of "
2132 "unsupported optional features (%Lx).\n",
2133 (unsigned long long)features
);
2138 features
= btrfs_super_incompat_flags(disk_super
);
2139 features
|= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF
;
2140 if (tree_root
->fs_info
->compress_type
& BTRFS_COMPRESS_LZO
)
2141 features
|= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO
;
2142 btrfs_set_super_incompat_flags(disk_super
, features
);
2144 features
= btrfs_super_compat_ro_flags(disk_super
) &
2145 ~BTRFS_FEATURE_COMPAT_RO_SUPP
;
2146 if (!(sb
->s_flags
& MS_RDONLY
) && features
) {
2147 printk(KERN_ERR
"BTRFS: couldn't mount RDWR because of "
2148 "unsupported option features (%Lx).\n",
2149 (unsigned long long)features
);
2154 btrfs_init_workers(&fs_info
->generic_worker
,
2155 "genwork", 1, NULL
);
2157 btrfs_init_workers(&fs_info
->workers
, "worker",
2158 fs_info
->thread_pool_size
,
2159 &fs_info
->generic_worker
);
2161 btrfs_init_workers(&fs_info
->delalloc_workers
, "delalloc",
2162 fs_info
->thread_pool_size
,
2163 &fs_info
->generic_worker
);
2165 btrfs_init_workers(&fs_info
->submit_workers
, "submit",
2166 min_t(u64
, fs_devices
->num_devices
,
2167 fs_info
->thread_pool_size
),
2168 &fs_info
->generic_worker
);
2170 btrfs_init_workers(&fs_info
->caching_workers
, "cache",
2171 2, &fs_info
->generic_worker
);
2173 /* a higher idle thresh on the submit workers makes it much more
2174 * likely that bios will be send down in a sane order to the
2177 fs_info
->submit_workers
.idle_thresh
= 64;
2179 fs_info
->workers
.idle_thresh
= 16;
2180 fs_info
->workers
.ordered
= 1;
2182 fs_info
->delalloc_workers
.idle_thresh
= 2;
2183 fs_info
->delalloc_workers
.ordered
= 1;
2185 btrfs_init_workers(&fs_info
->fixup_workers
, "fixup", 1,
2186 &fs_info
->generic_worker
);
2187 btrfs_init_workers(&fs_info
->endio_workers
, "endio",
2188 fs_info
->thread_pool_size
,
2189 &fs_info
->generic_worker
);
2190 btrfs_init_workers(&fs_info
->endio_meta_workers
, "endio-meta",
2191 fs_info
->thread_pool_size
,
2192 &fs_info
->generic_worker
);
2193 btrfs_init_workers(&fs_info
->endio_meta_write_workers
,
2194 "endio-meta-write", fs_info
->thread_pool_size
,
2195 &fs_info
->generic_worker
);
2196 btrfs_init_workers(&fs_info
->endio_write_workers
, "endio-write",
2197 fs_info
->thread_pool_size
,
2198 &fs_info
->generic_worker
);
2199 btrfs_init_workers(&fs_info
->endio_freespace_worker
, "freespace-write",
2200 1, &fs_info
->generic_worker
);
2201 btrfs_init_workers(&fs_info
->delayed_workers
, "delayed-meta",
2202 fs_info
->thread_pool_size
,
2203 &fs_info
->generic_worker
);
2204 btrfs_init_workers(&fs_info
->readahead_workers
, "readahead",
2205 fs_info
->thread_pool_size
,
2206 &fs_info
->generic_worker
);
2209 * endios are largely parallel and should have a very
2212 fs_info
->endio_workers
.idle_thresh
= 4;
2213 fs_info
->endio_meta_workers
.idle_thresh
= 4;
2215 fs_info
->endio_write_workers
.idle_thresh
= 2;
2216 fs_info
->endio_meta_write_workers
.idle_thresh
= 2;
2217 fs_info
->readahead_workers
.idle_thresh
= 2;
2220 * btrfs_start_workers can really only fail because of ENOMEM so just
2221 * return -ENOMEM if any of these fail.
2223 ret
= btrfs_start_workers(&fs_info
->workers
);
2224 ret
|= btrfs_start_workers(&fs_info
->generic_worker
);
2225 ret
|= btrfs_start_workers(&fs_info
->submit_workers
);
2226 ret
|= btrfs_start_workers(&fs_info
->delalloc_workers
);
2227 ret
|= btrfs_start_workers(&fs_info
->fixup_workers
);
2228 ret
|= btrfs_start_workers(&fs_info
->endio_workers
);
2229 ret
|= btrfs_start_workers(&fs_info
->endio_meta_workers
);
2230 ret
|= btrfs_start_workers(&fs_info
->endio_meta_write_workers
);
2231 ret
|= btrfs_start_workers(&fs_info
->endio_write_workers
);
2232 ret
|= btrfs_start_workers(&fs_info
->endio_freespace_worker
);
2233 ret
|= btrfs_start_workers(&fs_info
->delayed_workers
);
2234 ret
|= btrfs_start_workers(&fs_info
->caching_workers
);
2235 ret
|= btrfs_start_workers(&fs_info
->readahead_workers
);
2238 goto fail_sb_buffer
;
2241 fs_info
->bdi
.ra_pages
*= btrfs_super_num_devices(disk_super
);
2242 fs_info
->bdi
.ra_pages
= max(fs_info
->bdi
.ra_pages
,
2243 4 * 1024 * 1024 / PAGE_CACHE_SIZE
);
2245 nodesize
= btrfs_super_nodesize(disk_super
);
2246 leafsize
= btrfs_super_leafsize(disk_super
);
2247 sectorsize
= btrfs_super_sectorsize(disk_super
);
2248 stripesize
= btrfs_super_stripesize(disk_super
);
2249 tree_root
->nodesize
= nodesize
;
2250 tree_root
->leafsize
= leafsize
;
2251 tree_root
->sectorsize
= sectorsize
;
2252 tree_root
->stripesize
= stripesize
;
2254 sb
->s_blocksize
= sectorsize
;
2255 sb
->s_blocksize_bits
= blksize_bits(sectorsize
);
2257 if (strncmp((char *)(&disk_super
->magic
), BTRFS_MAGIC
,
2258 sizeof(disk_super
->magic
))) {
2259 printk(KERN_INFO
"btrfs: valid FS not found on %s\n", sb
->s_id
);
2260 goto fail_sb_buffer
;
2263 if (sectorsize
< PAGE_SIZE
) {
2264 printk(KERN_WARNING
"btrfs: Incompatible sector size "
2265 "found on %s\n", sb
->s_id
);
2266 goto fail_sb_buffer
;
2269 mutex_lock(&fs_info
->chunk_mutex
);
2270 ret
= btrfs_read_sys_array(tree_root
);
2271 mutex_unlock(&fs_info
->chunk_mutex
);
2273 printk(KERN_WARNING
"btrfs: failed to read the system "
2274 "array on %s\n", sb
->s_id
);
2275 goto fail_sb_buffer
;
2278 blocksize
= btrfs_level_size(tree_root
,
2279 btrfs_super_chunk_root_level(disk_super
));
2280 generation
= btrfs_super_chunk_root_generation(disk_super
);
2282 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
2283 chunk_root
, fs_info
, BTRFS_CHUNK_TREE_OBJECTID
);
2285 chunk_root
->node
= read_tree_block(chunk_root
,
2286 btrfs_super_chunk_root(disk_super
),
2287 blocksize
, generation
);
2288 BUG_ON(!chunk_root
->node
);
2289 if (!test_bit(EXTENT_BUFFER_UPTODATE
, &chunk_root
->node
->bflags
)) {
2290 printk(KERN_WARNING
"btrfs: failed to read chunk root on %s\n",
2292 goto fail_tree_roots
;
2294 btrfs_set_root_node(&chunk_root
->root_item
, chunk_root
->node
);
2295 chunk_root
->commit_root
= btrfs_root_node(chunk_root
);
2297 read_extent_buffer(chunk_root
->node
, fs_info
->chunk_tree_uuid
,
2298 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root
->node
),
2301 ret
= btrfs_read_chunk_tree(chunk_root
);
2303 printk(KERN_WARNING
"btrfs: failed to read chunk tree on %s\n",
2305 goto fail_tree_roots
;
2308 btrfs_close_extra_devices(fs_devices
);
2310 if (!fs_devices
->latest_bdev
) {
2311 printk(KERN_CRIT
"btrfs: failed to read devices on %s\n",
2313 goto fail_tree_roots
;
2317 blocksize
= btrfs_level_size(tree_root
,
2318 btrfs_super_root_level(disk_super
));
2319 generation
= btrfs_super_generation(disk_super
);
2321 tree_root
->node
= read_tree_block(tree_root
,
2322 btrfs_super_root(disk_super
),
2323 blocksize
, generation
);
2324 if (!tree_root
->node
||
2325 !test_bit(EXTENT_BUFFER_UPTODATE
, &tree_root
->node
->bflags
)) {
2326 printk(KERN_WARNING
"btrfs: failed to read tree root on %s\n",
2329 goto recovery_tree_root
;
2332 btrfs_set_root_node(&tree_root
->root_item
, tree_root
->node
);
2333 tree_root
->commit_root
= btrfs_root_node(tree_root
);
2335 ret
= find_and_setup_root(tree_root
, fs_info
,
2336 BTRFS_EXTENT_TREE_OBJECTID
, extent_root
);
2338 goto recovery_tree_root
;
2339 extent_root
->track_dirty
= 1;
2341 ret
= find_and_setup_root(tree_root
, fs_info
,
2342 BTRFS_DEV_TREE_OBJECTID
, dev_root
);
2344 goto recovery_tree_root
;
2345 dev_root
->track_dirty
= 1;
2347 ret
= find_and_setup_root(tree_root
, fs_info
,
2348 BTRFS_CSUM_TREE_OBJECTID
, csum_root
);
2350 goto recovery_tree_root
;
2352 csum_root
->track_dirty
= 1;
2354 fs_info
->generation
= generation
;
2355 fs_info
->last_trans_committed
= generation
;
2357 ret
= btrfs_init_space_info(fs_info
);
2359 printk(KERN_ERR
"Failed to initial space info: %d\n", ret
);
2360 goto fail_block_groups
;
2363 ret
= btrfs_read_block_groups(extent_root
);
2365 printk(KERN_ERR
"Failed to read block groups: %d\n", ret
);
2366 goto fail_block_groups
;
2369 fs_info
->cleaner_kthread
= kthread_run(cleaner_kthread
, tree_root
,
2371 if (IS_ERR(fs_info
->cleaner_kthread
))
2372 goto fail_block_groups
;
2374 fs_info
->transaction_kthread
= kthread_run(transaction_kthread
,
2376 "btrfs-transaction");
2377 if (IS_ERR(fs_info
->transaction_kthread
))
2380 if (!btrfs_test_opt(tree_root
, SSD
) &&
2381 !btrfs_test_opt(tree_root
, NOSSD
) &&
2382 !fs_info
->fs_devices
->rotating
) {
2383 printk(KERN_INFO
"Btrfs detected SSD devices, enabling SSD "
2385 btrfs_set_opt(fs_info
->mount_opt
, SSD
);
2388 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2389 if (btrfs_test_opt(tree_root
, CHECK_INTEGRITY
)) {
2390 ret
= btrfsic_mount(tree_root
, fs_devices
,
2391 btrfs_test_opt(tree_root
,
2392 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA
) ?
2394 fs_info
->check_integrity_print_mask
);
2396 printk(KERN_WARNING
"btrfs: failed to initialize"
2397 " integrity check module %s\n", sb
->s_id
);
2401 /* do not make disk changes in broken FS */
2402 if (btrfs_super_log_root(disk_super
) != 0 &&
2403 !(fs_info
->fs_state
& BTRFS_SUPER_FLAG_ERROR
)) {
2404 u64 bytenr
= btrfs_super_log_root(disk_super
);
2406 if (fs_devices
->rw_devices
== 0) {
2407 printk(KERN_WARNING
"Btrfs log replay required "
2410 goto fail_trans_kthread
;
2413 btrfs_level_size(tree_root
,
2414 btrfs_super_log_root_level(disk_super
));
2416 log_tree_root
= btrfs_alloc_root(fs_info
);
2417 if (!log_tree_root
) {
2419 goto fail_trans_kthread
;
2422 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
2423 log_tree_root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
2425 log_tree_root
->node
= read_tree_block(tree_root
, bytenr
,
2428 ret
= btrfs_recover_log_trees(log_tree_root
);
2431 if (sb
->s_flags
& MS_RDONLY
) {
2432 ret
= btrfs_commit_super(tree_root
);
2437 ret
= btrfs_find_orphan_roots(tree_root
);
2440 if (!(sb
->s_flags
& MS_RDONLY
)) {
2441 ret
= btrfs_cleanup_fs_roots(fs_info
);
2444 ret
= btrfs_recover_relocation(tree_root
);
2447 "btrfs: failed to recover relocation\n");
2449 goto fail_trans_kthread
;
2453 location
.objectid
= BTRFS_FS_TREE_OBJECTID
;
2454 location
.type
= BTRFS_ROOT_ITEM_KEY
;
2455 location
.offset
= (u64
)-1;
2457 fs_info
->fs_root
= btrfs_read_fs_root_no_name(fs_info
, &location
);
2458 if (!fs_info
->fs_root
)
2459 goto fail_trans_kthread
;
2460 if (IS_ERR(fs_info
->fs_root
)) {
2461 err
= PTR_ERR(fs_info
->fs_root
);
2462 goto fail_trans_kthread
;
2465 if (!(sb
->s_flags
& MS_RDONLY
)) {
2466 down_read(&fs_info
->cleanup_work_sem
);
2467 err
= btrfs_orphan_cleanup(fs_info
->fs_root
);
2469 err
= btrfs_orphan_cleanup(fs_info
->tree_root
);
2470 up_read(&fs_info
->cleanup_work_sem
);
2473 err
= btrfs_recover_balance(fs_info
->tree_root
);
2476 close_ctree(tree_root
);
2484 kthread_stop(fs_info
->transaction_kthread
);
2486 kthread_stop(fs_info
->cleaner_kthread
);
2489 * make sure we're done with the btree inode before we stop our
2492 filemap_write_and_wait(fs_info
->btree_inode
->i_mapping
);
2493 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
2496 btrfs_free_block_groups(fs_info
);
2499 free_root_pointers(fs_info
, 1);
2502 btrfs_stop_workers(&fs_info
->generic_worker
);
2503 btrfs_stop_workers(&fs_info
->readahead_workers
);
2504 btrfs_stop_workers(&fs_info
->fixup_workers
);
2505 btrfs_stop_workers(&fs_info
->delalloc_workers
);
2506 btrfs_stop_workers(&fs_info
->workers
);
2507 btrfs_stop_workers(&fs_info
->endio_workers
);
2508 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
2509 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
2510 btrfs_stop_workers(&fs_info
->endio_write_workers
);
2511 btrfs_stop_workers(&fs_info
->endio_freespace_worker
);
2512 btrfs_stop_workers(&fs_info
->submit_workers
);
2513 btrfs_stop_workers(&fs_info
->delayed_workers
);
2514 btrfs_stop_workers(&fs_info
->caching_workers
);
2517 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
2519 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
2520 iput(fs_info
->btree_inode
);
2522 bdi_destroy(&fs_info
->bdi
);
2524 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
2526 btrfs_close_devices(fs_info
->fs_devices
);
2530 if (!btrfs_test_opt(tree_root
, RECOVERY
))
2531 goto fail_tree_roots
;
2533 free_root_pointers(fs_info
, 0);
2535 /* don't use the log in recovery mode, it won't be valid */
2536 btrfs_set_super_log_root(disk_super
, 0);
2538 /* we can't trust the free space cache either */
2539 btrfs_set_opt(fs_info
->mount_opt
, CLEAR_CACHE
);
2541 ret
= next_root_backup(fs_info
, fs_info
->super_copy
,
2542 &num_backups_tried
, &backup_index
);
2544 goto fail_block_groups
;
2545 goto retry_root_backup
;
2548 static void btrfs_end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
2550 char b
[BDEVNAME_SIZE
];
2553 set_buffer_uptodate(bh
);
2555 printk_ratelimited(KERN_WARNING
"lost page write due to "
2556 "I/O error on %s\n",
2557 bdevname(bh
->b_bdev
, b
));
2558 /* note, we dont' set_buffer_write_io_error because we have
2559 * our own ways of dealing with the IO errors
2561 clear_buffer_uptodate(bh
);
2567 struct buffer_head
*btrfs_read_dev_super(struct block_device
*bdev
)
2569 struct buffer_head
*bh
;
2570 struct buffer_head
*latest
= NULL
;
2571 struct btrfs_super_block
*super
;
2576 /* we would like to check all the supers, but that would make
2577 * a btrfs mount succeed after a mkfs from a different FS.
2578 * So, we need to add a special mount option to scan for
2579 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2581 for (i
= 0; i
< 1; i
++) {
2582 bytenr
= btrfs_sb_offset(i
);
2583 if (bytenr
+ 4096 >= i_size_read(bdev
->bd_inode
))
2585 bh
= __bread(bdev
, bytenr
/ 4096, 4096);
2589 super
= (struct btrfs_super_block
*)bh
->b_data
;
2590 if (btrfs_super_bytenr(super
) != bytenr
||
2591 strncmp((char *)(&super
->magic
), BTRFS_MAGIC
,
2592 sizeof(super
->magic
))) {
2597 if (!latest
|| btrfs_super_generation(super
) > transid
) {
2600 transid
= btrfs_super_generation(super
);
2609 * this should be called twice, once with wait == 0 and
2610 * once with wait == 1. When wait == 0 is done, all the buffer heads
2611 * we write are pinned.
2613 * They are released when wait == 1 is done.
2614 * max_mirrors must be the same for both runs, and it indicates how
2615 * many supers on this one device should be written.
2617 * max_mirrors == 0 means to write them all.
2619 static int write_dev_supers(struct btrfs_device
*device
,
2620 struct btrfs_super_block
*sb
,
2621 int do_barriers
, int wait
, int max_mirrors
)
2623 struct buffer_head
*bh
;
2630 if (max_mirrors
== 0)
2631 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
2633 for (i
= 0; i
< max_mirrors
; i
++) {
2634 bytenr
= btrfs_sb_offset(i
);
2635 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>= device
->total_bytes
)
2639 bh
= __find_get_block(device
->bdev
, bytenr
/ 4096,
2640 BTRFS_SUPER_INFO_SIZE
);
2643 if (!buffer_uptodate(bh
))
2646 /* drop our reference */
2649 /* drop the reference from the wait == 0 run */
2653 btrfs_set_super_bytenr(sb
, bytenr
);
2656 crc
= btrfs_csum_data(NULL
, (char *)sb
+
2657 BTRFS_CSUM_SIZE
, crc
,
2658 BTRFS_SUPER_INFO_SIZE
-
2660 btrfs_csum_final(crc
, sb
->csum
);
2663 * one reference for us, and we leave it for the
2666 bh
= __getblk(device
->bdev
, bytenr
/ 4096,
2667 BTRFS_SUPER_INFO_SIZE
);
2668 memcpy(bh
->b_data
, sb
, BTRFS_SUPER_INFO_SIZE
);
2670 /* one reference for submit_bh */
2673 set_buffer_uptodate(bh
);
2675 bh
->b_end_io
= btrfs_end_buffer_write_sync
;
2679 * we fua the first super. The others we allow
2682 ret
= btrfsic_submit_bh(WRITE_FUA
, bh
);
2686 return errors
< i
? 0 : -1;
2690 * endio for the write_dev_flush, this will wake anyone waiting
2691 * for the barrier when it is done
2693 static void btrfs_end_empty_barrier(struct bio
*bio
, int err
)
2696 if (err
== -EOPNOTSUPP
)
2697 set_bit(BIO_EOPNOTSUPP
, &bio
->bi_flags
);
2698 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
2700 if (bio
->bi_private
)
2701 complete(bio
->bi_private
);
2706 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2707 * sent down. With wait == 1, it waits for the previous flush.
2709 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2712 static int write_dev_flush(struct btrfs_device
*device
, int wait
)
2717 if (device
->nobarriers
)
2721 bio
= device
->flush_bio
;
2725 wait_for_completion(&device
->flush_wait
);
2727 if (bio_flagged(bio
, BIO_EOPNOTSUPP
)) {
2728 printk("btrfs: disabling barriers on dev %s\n",
2730 device
->nobarriers
= 1;
2732 if (!bio_flagged(bio
, BIO_UPTODATE
)) {
2736 /* drop the reference from the wait == 0 run */
2738 device
->flush_bio
= NULL
;
2744 * one reference for us, and we leave it for the
2747 device
->flush_bio
= NULL
;;
2748 bio
= bio_alloc(GFP_NOFS
, 0);
2752 bio
->bi_end_io
= btrfs_end_empty_barrier
;
2753 bio
->bi_bdev
= device
->bdev
;
2754 init_completion(&device
->flush_wait
);
2755 bio
->bi_private
= &device
->flush_wait
;
2756 device
->flush_bio
= bio
;
2759 btrfsic_submit_bio(WRITE_FLUSH
, bio
);
2765 * send an empty flush down to each device in parallel,
2766 * then wait for them
2768 static int barrier_all_devices(struct btrfs_fs_info
*info
)
2770 struct list_head
*head
;
2771 struct btrfs_device
*dev
;
2775 /* send down all the barriers */
2776 head
= &info
->fs_devices
->devices
;
2777 list_for_each_entry_rcu(dev
, head
, dev_list
) {
2782 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2785 ret
= write_dev_flush(dev
, 0);
2790 /* wait for all the barriers */
2791 list_for_each_entry_rcu(dev
, head
, dev_list
) {
2796 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2799 ret
= write_dev_flush(dev
, 1);
2808 int write_all_supers(struct btrfs_root
*root
, int max_mirrors
)
2810 struct list_head
*head
;
2811 struct btrfs_device
*dev
;
2812 struct btrfs_super_block
*sb
;
2813 struct btrfs_dev_item
*dev_item
;
2817 int total_errors
= 0;
2820 max_errors
= btrfs_super_num_devices(root
->fs_info
->super_copy
) - 1;
2821 do_barriers
= !btrfs_test_opt(root
, NOBARRIER
);
2822 backup_super_roots(root
->fs_info
);
2824 sb
= root
->fs_info
->super_for_commit
;
2825 dev_item
= &sb
->dev_item
;
2827 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2828 head
= &root
->fs_info
->fs_devices
->devices
;
2831 barrier_all_devices(root
->fs_info
);
2833 list_for_each_entry_rcu(dev
, head
, dev_list
) {
2838 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2841 btrfs_set_stack_device_generation(dev_item
, 0);
2842 btrfs_set_stack_device_type(dev_item
, dev
->type
);
2843 btrfs_set_stack_device_id(dev_item
, dev
->devid
);
2844 btrfs_set_stack_device_total_bytes(dev_item
, dev
->total_bytes
);
2845 btrfs_set_stack_device_bytes_used(dev_item
, dev
->bytes_used
);
2846 btrfs_set_stack_device_io_align(dev_item
, dev
->io_align
);
2847 btrfs_set_stack_device_io_width(dev_item
, dev
->io_width
);
2848 btrfs_set_stack_device_sector_size(dev_item
, dev
->sector_size
);
2849 memcpy(dev_item
->uuid
, dev
->uuid
, BTRFS_UUID_SIZE
);
2850 memcpy(dev_item
->fsid
, dev
->fs_devices
->fsid
, BTRFS_UUID_SIZE
);
2852 flags
= btrfs_super_flags(sb
);
2853 btrfs_set_super_flags(sb
, flags
| BTRFS_HEADER_FLAG_WRITTEN
);
2855 ret
= write_dev_supers(dev
, sb
, do_barriers
, 0, max_mirrors
);
2859 if (total_errors
> max_errors
) {
2860 printk(KERN_ERR
"btrfs: %d errors while writing supers\n",
2866 list_for_each_entry_rcu(dev
, head
, dev_list
) {
2869 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2872 ret
= write_dev_supers(dev
, sb
, do_barriers
, 1, max_mirrors
);
2876 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2877 if (total_errors
> max_errors
) {
2878 printk(KERN_ERR
"btrfs: %d errors while writing supers\n",
2885 int write_ctree_super(struct btrfs_trans_handle
*trans
,
2886 struct btrfs_root
*root
, int max_mirrors
)
2890 ret
= write_all_supers(root
, max_mirrors
);
2894 int btrfs_free_fs_root(struct btrfs_fs_info
*fs_info
, struct btrfs_root
*root
)
2896 spin_lock(&fs_info
->fs_roots_radix_lock
);
2897 radix_tree_delete(&fs_info
->fs_roots_radix
,
2898 (unsigned long)root
->root_key
.objectid
);
2899 spin_unlock(&fs_info
->fs_roots_radix_lock
);
2901 if (btrfs_root_refs(&root
->root_item
) == 0)
2902 synchronize_srcu(&fs_info
->subvol_srcu
);
2904 __btrfs_remove_free_space_cache(root
->free_ino_pinned
);
2905 __btrfs_remove_free_space_cache(root
->free_ino_ctl
);
2910 static void free_fs_root(struct btrfs_root
*root
)
2912 iput(root
->cache_inode
);
2913 WARN_ON(!RB_EMPTY_ROOT(&root
->inode_tree
));
2915 free_anon_bdev(root
->anon_dev
);
2916 free_extent_buffer(root
->node
);
2917 free_extent_buffer(root
->commit_root
);
2918 kfree(root
->free_ino_ctl
);
2919 kfree(root
->free_ino_pinned
);
2924 static int del_fs_roots(struct btrfs_fs_info
*fs_info
)
2927 struct btrfs_root
*gang
[8];
2930 while (!list_empty(&fs_info
->dead_roots
)) {
2931 gang
[0] = list_entry(fs_info
->dead_roots
.next
,
2932 struct btrfs_root
, root_list
);
2933 list_del(&gang
[0]->root_list
);
2935 if (gang
[0]->in_radix
) {
2936 btrfs_free_fs_root(fs_info
, gang
[0]);
2938 free_extent_buffer(gang
[0]->node
);
2939 free_extent_buffer(gang
[0]->commit_root
);
2945 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2950 for (i
= 0; i
< ret
; i
++)
2951 btrfs_free_fs_root(fs_info
, gang
[i
]);
2956 int btrfs_cleanup_fs_roots(struct btrfs_fs_info
*fs_info
)
2958 u64 root_objectid
= 0;
2959 struct btrfs_root
*gang
[8];
2964 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2965 (void **)gang
, root_objectid
,
2970 root_objectid
= gang
[ret
- 1]->root_key
.objectid
+ 1;
2971 for (i
= 0; i
< ret
; i
++) {
2974 root_objectid
= gang
[i
]->root_key
.objectid
;
2975 err
= btrfs_orphan_cleanup(gang
[i
]);
2984 int btrfs_commit_super(struct btrfs_root
*root
)
2986 struct btrfs_trans_handle
*trans
;
2989 mutex_lock(&root
->fs_info
->cleaner_mutex
);
2990 btrfs_run_delayed_iputs(root
);
2991 btrfs_clean_old_snapshots(root
);
2992 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
2994 /* wait until ongoing cleanup work done */
2995 down_write(&root
->fs_info
->cleanup_work_sem
);
2996 up_write(&root
->fs_info
->cleanup_work_sem
);
2998 trans
= btrfs_join_transaction(root
);
3000 return PTR_ERR(trans
);
3001 ret
= btrfs_commit_transaction(trans
, root
);
3003 /* run commit again to drop the original snapshot */
3004 trans
= btrfs_join_transaction(root
);
3006 return PTR_ERR(trans
);
3007 btrfs_commit_transaction(trans
, root
);
3008 ret
= btrfs_write_and_wait_transaction(NULL
, root
);
3011 ret
= write_ctree_super(NULL
, root
, 0);
3015 int close_ctree(struct btrfs_root
*root
)
3017 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3020 fs_info
->closing
= 1;
3023 /* pause restriper - we want to resume on mount */
3024 btrfs_pause_balance(root
->fs_info
);
3026 btrfs_scrub_cancel(root
);
3028 /* wait for any defraggers to finish */
3029 wait_event(fs_info
->transaction_wait
,
3030 (atomic_read(&fs_info
->defrag_running
) == 0));
3032 /* clear out the rbtree of defraggable inodes */
3033 btrfs_run_defrag_inodes(fs_info
);
3036 * Here come 2 situations when btrfs is broken to flip readonly:
3038 * 1. when btrfs flips readonly somewhere else before
3039 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
3040 * and btrfs will skip to write sb directly to keep
3041 * ERROR state on disk.
3043 * 2. when btrfs flips readonly just in btrfs_commit_super,
3044 * and in such case, btrfs cannot write sb via btrfs_commit_super,
3045 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
3046 * btrfs will cleanup all FS resources first and write sb then.
3048 if (!(fs_info
->sb
->s_flags
& MS_RDONLY
)) {
3049 ret
= btrfs_commit_super(root
);
3051 printk(KERN_ERR
"btrfs: commit super ret %d\n", ret
);
3054 if (fs_info
->fs_state
& BTRFS_SUPER_FLAG_ERROR
) {
3055 ret
= btrfs_error_commit_super(root
);
3057 printk(KERN_ERR
"btrfs: commit super ret %d\n", ret
);
3060 btrfs_put_block_group_cache(fs_info
);
3062 kthread_stop(fs_info
->transaction_kthread
);
3063 kthread_stop(fs_info
->cleaner_kthread
);
3065 fs_info
->closing
= 2;
3068 if (fs_info
->delalloc_bytes
) {
3069 printk(KERN_INFO
"btrfs: at unmount delalloc count %llu\n",
3070 (unsigned long long)fs_info
->delalloc_bytes
);
3072 if (fs_info
->total_ref_cache_size
) {
3073 printk(KERN_INFO
"btrfs: at umount reference cache size %llu\n",
3074 (unsigned long long)fs_info
->total_ref_cache_size
);
3077 free_extent_buffer(fs_info
->extent_root
->node
);
3078 free_extent_buffer(fs_info
->extent_root
->commit_root
);
3079 free_extent_buffer(fs_info
->tree_root
->node
);
3080 free_extent_buffer(fs_info
->tree_root
->commit_root
);
3081 free_extent_buffer(fs_info
->chunk_root
->node
);
3082 free_extent_buffer(fs_info
->chunk_root
->commit_root
);
3083 free_extent_buffer(fs_info
->dev_root
->node
);
3084 free_extent_buffer(fs_info
->dev_root
->commit_root
);
3085 free_extent_buffer(fs_info
->csum_root
->node
);
3086 free_extent_buffer(fs_info
->csum_root
->commit_root
);
3088 btrfs_free_block_groups(fs_info
);
3090 del_fs_roots(fs_info
);
3092 iput(fs_info
->btree_inode
);
3094 btrfs_stop_workers(&fs_info
->generic_worker
);
3095 btrfs_stop_workers(&fs_info
->fixup_workers
);
3096 btrfs_stop_workers(&fs_info
->delalloc_workers
);
3097 btrfs_stop_workers(&fs_info
->workers
);
3098 btrfs_stop_workers(&fs_info
->endio_workers
);
3099 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
3100 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
3101 btrfs_stop_workers(&fs_info
->endio_write_workers
);
3102 btrfs_stop_workers(&fs_info
->endio_freespace_worker
);
3103 btrfs_stop_workers(&fs_info
->submit_workers
);
3104 btrfs_stop_workers(&fs_info
->delayed_workers
);
3105 btrfs_stop_workers(&fs_info
->caching_workers
);
3106 btrfs_stop_workers(&fs_info
->readahead_workers
);
3108 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3109 if (btrfs_test_opt(root
, CHECK_INTEGRITY
))
3110 btrfsic_unmount(root
, fs_info
->fs_devices
);
3113 btrfs_close_devices(fs_info
->fs_devices
);
3114 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
3116 bdi_destroy(&fs_info
->bdi
);
3117 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
3122 int btrfs_buffer_uptodate(struct extent_buffer
*buf
, u64 parent_transid
)
3125 struct inode
*btree_inode
= buf
->first_page
->mapping
->host
;
3127 ret
= extent_buffer_uptodate(&BTRFS_I(btree_inode
)->io_tree
, buf
,
3132 ret
= verify_parent_transid(&BTRFS_I(btree_inode
)->io_tree
, buf
,
3137 int btrfs_set_buffer_uptodate(struct extent_buffer
*buf
)
3139 struct inode
*btree_inode
= buf
->first_page
->mapping
->host
;
3140 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode
)->io_tree
,
3144 void btrfs_mark_buffer_dirty(struct extent_buffer
*buf
)
3146 struct btrfs_root
*root
= BTRFS_I(buf
->first_page
->mapping
->host
)->root
;
3147 u64 transid
= btrfs_header_generation(buf
);
3148 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
3151 btrfs_assert_tree_locked(buf
);
3152 if (transid
!= root
->fs_info
->generation
) {
3153 printk(KERN_CRIT
"btrfs transid mismatch buffer %llu, "
3154 "found %llu running %llu\n",
3155 (unsigned long long)buf
->start
,
3156 (unsigned long long)transid
,
3157 (unsigned long long)root
->fs_info
->generation
);
3160 was_dirty
= set_extent_buffer_dirty(&BTRFS_I(btree_inode
)->io_tree
,
3163 spin_lock(&root
->fs_info
->delalloc_lock
);
3164 root
->fs_info
->dirty_metadata_bytes
+= buf
->len
;
3165 spin_unlock(&root
->fs_info
->delalloc_lock
);
3169 void btrfs_btree_balance_dirty(struct btrfs_root
*root
, unsigned long nr
)
3172 * looks as though older kernels can get into trouble with
3173 * this code, they end up stuck in balance_dirty_pages forever
3176 unsigned long thresh
= 32 * 1024 * 1024;
3178 if (current
->flags
& PF_MEMALLOC
)
3181 btrfs_balance_delayed_items(root
);
3183 num_dirty
= root
->fs_info
->dirty_metadata_bytes
;
3185 if (num_dirty
> thresh
) {
3186 balance_dirty_pages_ratelimited_nr(
3187 root
->fs_info
->btree_inode
->i_mapping
, 1);
3192 void __btrfs_btree_balance_dirty(struct btrfs_root
*root
, unsigned long nr
)
3195 * looks as though older kernels can get into trouble with
3196 * this code, they end up stuck in balance_dirty_pages forever
3199 unsigned long thresh
= 32 * 1024 * 1024;
3201 if (current
->flags
& PF_MEMALLOC
)
3204 num_dirty
= root
->fs_info
->dirty_metadata_bytes
;
3206 if (num_dirty
> thresh
) {
3207 balance_dirty_pages_ratelimited_nr(
3208 root
->fs_info
->btree_inode
->i_mapping
, 1);
3213 int btrfs_read_buffer(struct extent_buffer
*buf
, u64 parent_transid
)
3215 struct btrfs_root
*root
= BTRFS_I(buf
->first_page
->mapping
->host
)->root
;
3217 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
3219 set_bit(EXTENT_BUFFER_UPTODATE
, &buf
->bflags
);
3223 static int btree_lock_page_hook(struct page
*page
, void *data
,
3224 void (*flush_fn
)(void *))
3226 struct inode
*inode
= page
->mapping
->host
;
3227 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3228 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3229 struct extent_buffer
*eb
;
3231 u64 bytenr
= page_offset(page
);
3233 if (page
->private == EXTENT_PAGE_PRIVATE
)
3236 len
= page
->private >> 2;
3237 eb
= find_extent_buffer(io_tree
, bytenr
, len
);
3241 if (!btrfs_try_tree_write_lock(eb
)) {
3243 btrfs_tree_lock(eb
);
3245 btrfs_set_header_flag(eb
, BTRFS_HEADER_FLAG_WRITTEN
);
3247 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
)) {
3248 spin_lock(&root
->fs_info
->delalloc_lock
);
3249 if (root
->fs_info
->dirty_metadata_bytes
>= eb
->len
)
3250 root
->fs_info
->dirty_metadata_bytes
-= eb
->len
;
3253 spin_unlock(&root
->fs_info
->delalloc_lock
);
3256 btrfs_tree_unlock(eb
);
3257 free_extent_buffer(eb
);
3259 if (!trylock_page(page
)) {
3266 static void btrfs_check_super_valid(struct btrfs_fs_info
*fs_info
,
3272 if (fs_info
->fs_state
& BTRFS_SUPER_FLAG_ERROR
)
3273 printk(KERN_WARNING
"warning: mount fs with errors, "
3274 "running btrfsck is recommended\n");
3277 int btrfs_error_commit_super(struct btrfs_root
*root
)
3281 mutex_lock(&root
->fs_info
->cleaner_mutex
);
3282 btrfs_run_delayed_iputs(root
);
3283 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
3285 down_write(&root
->fs_info
->cleanup_work_sem
);
3286 up_write(&root
->fs_info
->cleanup_work_sem
);
3288 /* cleanup FS via transaction */
3289 btrfs_cleanup_transaction(root
);
3291 ret
= write_ctree_super(NULL
, root
, 0);
3296 static int btrfs_destroy_ordered_operations(struct btrfs_root
*root
)
3298 struct btrfs_inode
*btrfs_inode
;
3299 struct list_head splice
;
3301 INIT_LIST_HEAD(&splice
);
3303 mutex_lock(&root
->fs_info
->ordered_operations_mutex
);
3304 spin_lock(&root
->fs_info
->ordered_extent_lock
);
3306 list_splice_init(&root
->fs_info
->ordered_operations
, &splice
);
3307 while (!list_empty(&splice
)) {
3308 btrfs_inode
= list_entry(splice
.next
, struct btrfs_inode
,
3309 ordered_operations
);
3311 list_del_init(&btrfs_inode
->ordered_operations
);
3313 btrfs_invalidate_inodes(btrfs_inode
->root
);
3316 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
3317 mutex_unlock(&root
->fs_info
->ordered_operations_mutex
);
3322 static int btrfs_destroy_ordered_extents(struct btrfs_root
*root
)
3324 struct list_head splice
;
3325 struct btrfs_ordered_extent
*ordered
;
3326 struct inode
*inode
;
3328 INIT_LIST_HEAD(&splice
);
3330 spin_lock(&root
->fs_info
->ordered_extent_lock
);
3332 list_splice_init(&root
->fs_info
->ordered_extents
, &splice
);
3333 while (!list_empty(&splice
)) {
3334 ordered
= list_entry(splice
.next
, struct btrfs_ordered_extent
,
3337 list_del_init(&ordered
->root_extent_list
);
3338 atomic_inc(&ordered
->refs
);
3340 /* the inode may be getting freed (in sys_unlink path). */
3341 inode
= igrab(ordered
->inode
);
3343 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
3347 atomic_set(&ordered
->refs
, 1);
3348 btrfs_put_ordered_extent(ordered
);
3350 spin_lock(&root
->fs_info
->ordered_extent_lock
);
3353 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
3358 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
3359 struct btrfs_root
*root
)
3361 struct rb_node
*node
;
3362 struct btrfs_delayed_ref_root
*delayed_refs
;
3363 struct btrfs_delayed_ref_node
*ref
;
3366 delayed_refs
= &trans
->delayed_refs
;
3368 spin_lock(&delayed_refs
->lock
);
3369 if (delayed_refs
->num_entries
== 0) {
3370 spin_unlock(&delayed_refs
->lock
);
3371 printk(KERN_INFO
"delayed_refs has NO entry\n");
3375 node
= rb_first(&delayed_refs
->root
);
3377 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
3378 node
= rb_next(node
);
3381 rb_erase(&ref
->rb_node
, &delayed_refs
->root
);
3382 delayed_refs
->num_entries
--;
3384 atomic_set(&ref
->refs
, 1);
3385 if (btrfs_delayed_ref_is_head(ref
)) {
3386 struct btrfs_delayed_ref_head
*head
;
3388 head
= btrfs_delayed_node_to_head(ref
);
3389 mutex_lock(&head
->mutex
);
3390 kfree(head
->extent_op
);
3391 delayed_refs
->num_heads
--;
3392 if (list_empty(&head
->cluster
))
3393 delayed_refs
->num_heads_ready
--;
3394 list_del_init(&head
->cluster
);
3395 mutex_unlock(&head
->mutex
);
3398 spin_unlock(&delayed_refs
->lock
);
3399 btrfs_put_delayed_ref(ref
);
3402 spin_lock(&delayed_refs
->lock
);
3405 spin_unlock(&delayed_refs
->lock
);
3410 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction
*t
)
3412 struct btrfs_pending_snapshot
*snapshot
;
3413 struct list_head splice
;
3415 INIT_LIST_HEAD(&splice
);
3417 list_splice_init(&t
->pending_snapshots
, &splice
);
3419 while (!list_empty(&splice
)) {
3420 snapshot
= list_entry(splice
.next
,
3421 struct btrfs_pending_snapshot
,
3424 list_del_init(&snapshot
->list
);
3432 static int btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
)
3434 struct btrfs_inode
*btrfs_inode
;
3435 struct list_head splice
;
3437 INIT_LIST_HEAD(&splice
);
3439 spin_lock(&root
->fs_info
->delalloc_lock
);
3440 list_splice_init(&root
->fs_info
->delalloc_inodes
, &splice
);
3442 while (!list_empty(&splice
)) {
3443 btrfs_inode
= list_entry(splice
.next
, struct btrfs_inode
,
3446 list_del_init(&btrfs_inode
->delalloc_inodes
);
3448 btrfs_invalidate_inodes(btrfs_inode
->root
);
3451 spin_unlock(&root
->fs_info
->delalloc_lock
);
3456 static int btrfs_destroy_marked_extents(struct btrfs_root
*root
,
3457 struct extent_io_tree
*dirty_pages
,
3462 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
3463 struct extent_buffer
*eb
;
3467 unsigned long index
;
3470 ret
= find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
3475 clear_extent_bits(dirty_pages
, start
, end
, mark
, GFP_NOFS
);
3476 while (start
<= end
) {
3477 index
= start
>> PAGE_CACHE_SHIFT
;
3478 start
= (u64
)(index
+ 1) << PAGE_CACHE_SHIFT
;
3479 page
= find_get_page(btree_inode
->i_mapping
, index
);
3482 offset
= page_offset(page
);
3484 spin_lock(&dirty_pages
->buffer_lock
);
3485 eb
= radix_tree_lookup(
3486 &(&BTRFS_I(page
->mapping
->host
)->io_tree
)->buffer
,
3487 offset
>> PAGE_CACHE_SHIFT
);
3488 spin_unlock(&dirty_pages
->buffer_lock
);
3490 ret
= test_and_clear_bit(EXTENT_BUFFER_DIRTY
,
3492 atomic_set(&eb
->refs
, 1);
3494 if (PageWriteback(page
))
3495 end_page_writeback(page
);
3498 if (PageDirty(page
)) {
3499 clear_page_dirty_for_io(page
);
3500 spin_lock_irq(&page
->mapping
->tree_lock
);
3501 radix_tree_tag_clear(&page
->mapping
->page_tree
,
3503 PAGECACHE_TAG_DIRTY
);
3504 spin_unlock_irq(&page
->mapping
->tree_lock
);
3507 page
->mapping
->a_ops
->invalidatepage(page
, 0);
3515 static int btrfs_destroy_pinned_extent(struct btrfs_root
*root
,
3516 struct extent_io_tree
*pinned_extents
)
3518 struct extent_io_tree
*unpin
;
3523 unpin
= pinned_extents
;
3525 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
3531 if (btrfs_test_opt(root
, DISCARD
))
3532 ret
= btrfs_error_discard_extent(root
, start
,
3536 clear_extent_dirty(unpin
, start
, end
, GFP_NOFS
);
3537 btrfs_error_unpin_extent_range(root
, start
, end
);
3544 static int btrfs_cleanup_transaction(struct btrfs_root
*root
)
3546 struct btrfs_transaction
*t
;
3551 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
3553 spin_lock(&root
->fs_info
->trans_lock
);
3554 list_splice_init(&root
->fs_info
->trans_list
, &list
);
3555 root
->fs_info
->trans_no_join
= 1;
3556 spin_unlock(&root
->fs_info
->trans_lock
);
3558 while (!list_empty(&list
)) {
3559 t
= list_entry(list
.next
, struct btrfs_transaction
, list
);
3563 btrfs_destroy_ordered_operations(root
);
3565 btrfs_destroy_ordered_extents(root
);
3567 btrfs_destroy_delayed_refs(t
, root
);
3569 btrfs_block_rsv_release(root
,
3570 &root
->fs_info
->trans_block_rsv
,
3571 t
->dirty_pages
.dirty_bytes
);
3573 /* FIXME: cleanup wait for commit */
3576 if (waitqueue_active(&root
->fs_info
->transaction_blocked_wait
))
3577 wake_up(&root
->fs_info
->transaction_blocked_wait
);
3580 if (waitqueue_active(&root
->fs_info
->transaction_wait
))
3581 wake_up(&root
->fs_info
->transaction_wait
);
3584 if (waitqueue_active(&t
->commit_wait
))
3585 wake_up(&t
->commit_wait
);
3587 btrfs_destroy_pending_snapshots(t
);
3589 btrfs_destroy_delalloc_inodes(root
);
3591 spin_lock(&root
->fs_info
->trans_lock
);
3592 root
->fs_info
->running_transaction
= NULL
;
3593 spin_unlock(&root
->fs_info
->trans_lock
);
3595 btrfs_destroy_marked_extents(root
, &t
->dirty_pages
,
3598 btrfs_destroy_pinned_extent(root
,
3599 root
->fs_info
->pinned_extents
);
3601 atomic_set(&t
->use_count
, 0);
3602 list_del_init(&t
->list
);
3603 memset(t
, 0, sizeof(*t
));
3604 kmem_cache_free(btrfs_transaction_cachep
, t
);
3607 spin_lock(&root
->fs_info
->trans_lock
);
3608 root
->fs_info
->trans_no_join
= 0;
3609 spin_unlock(&root
->fs_info
->trans_lock
);
3610 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
3615 static struct extent_io_ops btree_extent_io_ops
= {
3616 .write_cache_pages_lock_hook
= btree_lock_page_hook
,
3617 .readpage_end_io_hook
= btree_readpage_end_io_hook
,
3618 .readpage_io_failed_hook
= btree_io_failed_hook
,
3619 .submit_bio_hook
= btree_submit_bio_hook
,
3620 /* note we're sharing with inode.c for the merge bio hook */
3621 .merge_bio_hook
= btrfs_merge_bio_hook
,