2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
22 #include "transaction.h"
25 #include "print-tree.h"
29 /* magic values for the inode_only field in btrfs_log_inode:
31 * LOG_INODE_ALL means to log everything
32 * LOG_INODE_EXISTS means to log just enough to recreate the inode
35 #define LOG_INODE_ALL 0
36 #define LOG_INODE_EXISTS 1
39 * directory trouble cases
41 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
42 * log, we must force a full commit before doing an fsync of the directory
43 * where the unlink was done.
44 * ---> record transid of last unlink/rename per directory
48 * rename foo/some_dir foo2/some_dir
50 * fsync foo/some_dir/some_file
52 * The fsync above will unlink the original some_dir without recording
53 * it in its new location (foo2). After a crash, some_dir will be gone
54 * unless the fsync of some_file forces a full commit
56 * 2) we must log any new names for any file or dir that is in the fsync
57 * log. ---> check inode while renaming/linking.
59 * 2a) we must log any new names for any file or dir during rename
60 * when the directory they are being removed from was logged.
61 * ---> check inode and old parent dir during rename
63 * 2a is actually the more important variant. With the extra logging
64 * a crash might unlink the old name without recreating the new one
66 * 3) after a crash, we must go through any directories with a link count
67 * of zero and redo the rm -rf
74 * The directory f1 was fully removed from the FS, but fsync was never
75 * called on f1, only its parent dir. After a crash the rm -rf must
76 * be replayed. This must be able to recurse down the entire
77 * directory tree. The inode link count fixup code takes care of the
82 * stages for the tree walking. The first
83 * stage (0) is to only pin down the blocks we find
84 * the second stage (1) is to make sure that all the inodes
85 * we find in the log are created in the subvolume.
87 * The last stage is to deal with directories and links and extents
88 * and all the other fun semantics
90 #define LOG_WALK_PIN_ONLY 0
91 #define LOG_WALK_REPLAY_INODES 1
92 #define LOG_WALK_REPLAY_ALL 2
94 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
95 struct btrfs_root
*root
, struct inode
*inode
,
97 static int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
98 struct btrfs_root
*root
,
99 struct btrfs_path
*path
, u64 objectid
);
100 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
101 struct btrfs_root
*root
,
102 struct btrfs_root
*log
,
103 struct btrfs_path
*path
,
104 u64 dirid
, int del_all
);
107 * tree logging is a special write ahead log used to make sure that
108 * fsyncs and O_SYNCs can happen without doing full tree commits.
110 * Full tree commits are expensive because they require commonly
111 * modified blocks to be recowed, creating many dirty pages in the
112 * extent tree an 4x-6x higher write load than ext3.
114 * Instead of doing a tree commit on every fsync, we use the
115 * key ranges and transaction ids to find items for a given file or directory
116 * that have changed in this transaction. Those items are copied into
117 * a special tree (one per subvolume root), that tree is written to disk
118 * and then the fsync is considered complete.
120 * After a crash, items are copied out of the log-tree back into the
121 * subvolume tree. Any file data extents found are recorded in the extent
122 * allocation tree, and the log-tree freed.
124 * The log tree is read three times, once to pin down all the extents it is
125 * using in ram and once, once to create all the inodes logged in the tree
126 * and once to do all the other items.
130 * start a sub transaction and setup the log tree
131 * this increments the log tree writer count to make the people
132 * syncing the tree wait for us to finish
134 static int start_log_trans(struct btrfs_trans_handle
*trans
,
135 struct btrfs_root
*root
)
140 mutex_lock(&root
->log_mutex
);
141 if (root
->log_root
) {
142 if (!root
->log_start_pid
) {
143 root
->log_start_pid
= current
->pid
;
144 root
->log_multiple_pids
= false;
145 } else if (root
->log_start_pid
!= current
->pid
) {
146 root
->log_multiple_pids
= true;
150 atomic_inc(&root
->log_writers
);
151 mutex_unlock(&root
->log_mutex
);
154 root
->log_multiple_pids
= false;
155 root
->log_start_pid
= current
->pid
;
156 mutex_lock(&root
->fs_info
->tree_log_mutex
);
157 if (!root
->fs_info
->log_root_tree
) {
158 ret
= btrfs_init_log_root_tree(trans
, root
->fs_info
);
162 if (err
== 0 && !root
->log_root
) {
163 ret
= btrfs_add_log_tree(trans
, root
);
167 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
169 atomic_inc(&root
->log_writers
);
170 mutex_unlock(&root
->log_mutex
);
175 * returns 0 if there was a log transaction running and we were able
176 * to join, or returns -ENOENT if there were not transactions
179 static int join_running_log_trans(struct btrfs_root
*root
)
187 mutex_lock(&root
->log_mutex
);
188 if (root
->log_root
) {
190 atomic_inc(&root
->log_writers
);
192 mutex_unlock(&root
->log_mutex
);
197 * This either makes the current running log transaction wait
198 * until you call btrfs_end_log_trans() or it makes any future
199 * log transactions wait until you call btrfs_end_log_trans()
201 int btrfs_pin_log_trans(struct btrfs_root
*root
)
205 mutex_lock(&root
->log_mutex
);
206 atomic_inc(&root
->log_writers
);
207 mutex_unlock(&root
->log_mutex
);
212 * indicate we're done making changes to the log tree
213 * and wake up anyone waiting to do a sync
215 int btrfs_end_log_trans(struct btrfs_root
*root
)
217 if (atomic_dec_and_test(&root
->log_writers
)) {
219 if (waitqueue_active(&root
->log_writer_wait
))
220 wake_up(&root
->log_writer_wait
);
227 * the walk control struct is used to pass state down the chain when
228 * processing the log tree. The stage field tells us which part
229 * of the log tree processing we are currently doing. The others
230 * are state fields used for that specific part
232 struct walk_control
{
233 /* should we free the extent on disk when done? This is used
234 * at transaction commit time while freeing a log tree
238 /* should we write out the extent buffer? This is used
239 * while flushing the log tree to disk during a sync
243 /* should we wait for the extent buffer io to finish? Also used
244 * while flushing the log tree to disk for a sync
248 /* pin only walk, we record which extents on disk belong to the
253 /* what stage of the replay code we're currently in */
256 /* the root we are currently replaying */
257 struct btrfs_root
*replay_dest
;
259 /* the trans handle for the current replay */
260 struct btrfs_trans_handle
*trans
;
262 /* the function that gets used to process blocks we find in the
263 * tree. Note the extent_buffer might not be up to date when it is
264 * passed in, and it must be checked or read if you need the data
267 int (*process_func
)(struct btrfs_root
*log
, struct extent_buffer
*eb
,
268 struct walk_control
*wc
, u64 gen
);
272 * process_func used to pin down extents, write them or wait on them
274 static int process_one_buffer(struct btrfs_root
*log
,
275 struct extent_buffer
*eb
,
276 struct walk_control
*wc
, u64 gen
)
279 btrfs_pin_extent_for_log_replay(wc
->trans
,
280 log
->fs_info
->extent_root
,
283 if (btrfs_buffer_uptodate(eb
, gen
)) {
285 btrfs_write_tree_block(eb
);
287 btrfs_wait_tree_block_writeback(eb
);
293 * Item overwrite used by replay and tree logging. eb, slot and key all refer
294 * to the src data we are copying out.
296 * root is the tree we are copying into, and path is a scratch
297 * path for use in this function (it should be released on entry and
298 * will be released on exit).
300 * If the key is already in the destination tree the existing item is
301 * overwritten. If the existing item isn't big enough, it is extended.
302 * If it is too large, it is truncated.
304 * If the key isn't in the destination yet, a new item is inserted.
306 static noinline
int overwrite_item(struct btrfs_trans_handle
*trans
,
307 struct btrfs_root
*root
,
308 struct btrfs_path
*path
,
309 struct extent_buffer
*eb
, int slot
,
310 struct btrfs_key
*key
)
314 u64 saved_i_size
= 0;
315 int save_old_i_size
= 0;
316 unsigned long src_ptr
;
317 unsigned long dst_ptr
;
318 int overwrite_root
= 0;
320 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
323 item_size
= btrfs_item_size_nr(eb
, slot
);
324 src_ptr
= btrfs_item_ptr_offset(eb
, slot
);
326 /* look for the key in the destination tree */
327 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
331 u32 dst_size
= btrfs_item_size_nr(path
->nodes
[0],
333 if (dst_size
!= item_size
)
336 if (item_size
== 0) {
337 btrfs_release_path(path
);
340 dst_copy
= kmalloc(item_size
, GFP_NOFS
);
341 src_copy
= kmalloc(item_size
, GFP_NOFS
);
342 if (!dst_copy
|| !src_copy
) {
343 btrfs_release_path(path
);
349 read_extent_buffer(eb
, src_copy
, src_ptr
, item_size
);
351 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
352 read_extent_buffer(path
->nodes
[0], dst_copy
, dst_ptr
,
354 ret
= memcmp(dst_copy
, src_copy
, item_size
);
359 * they have the same contents, just return, this saves
360 * us from cowing blocks in the destination tree and doing
361 * extra writes that may not have been done by a previous
365 btrfs_release_path(path
);
371 btrfs_release_path(path
);
372 /* try to insert the key into the destination tree */
373 ret
= btrfs_insert_empty_item(trans
, root
, path
,
376 /* make sure any existing item is the correct size */
377 if (ret
== -EEXIST
) {
379 found_size
= btrfs_item_size_nr(path
->nodes
[0],
381 if (found_size
> item_size
) {
382 btrfs_truncate_item(trans
, root
, path
, item_size
, 1);
383 } else if (found_size
< item_size
) {
384 ret
= btrfs_extend_item(trans
, root
, path
,
385 item_size
- found_size
);
390 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0],
393 /* don't overwrite an existing inode if the generation number
394 * was logged as zero. This is done when the tree logging code
395 * is just logging an inode to make sure it exists after recovery.
397 * Also, don't overwrite i_size on directories during replay.
398 * log replay inserts and removes directory items based on the
399 * state of the tree found in the subvolume, and i_size is modified
402 if (key
->type
== BTRFS_INODE_ITEM_KEY
&& ret
== -EEXIST
) {
403 struct btrfs_inode_item
*src_item
;
404 struct btrfs_inode_item
*dst_item
;
406 src_item
= (struct btrfs_inode_item
*)src_ptr
;
407 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
409 if (btrfs_inode_generation(eb
, src_item
) == 0)
412 if (overwrite_root
&&
413 S_ISDIR(btrfs_inode_mode(eb
, src_item
)) &&
414 S_ISDIR(btrfs_inode_mode(path
->nodes
[0], dst_item
))) {
416 saved_i_size
= btrfs_inode_size(path
->nodes
[0],
421 copy_extent_buffer(path
->nodes
[0], eb
, dst_ptr
,
424 if (save_old_i_size
) {
425 struct btrfs_inode_item
*dst_item
;
426 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
427 btrfs_set_inode_size(path
->nodes
[0], dst_item
, saved_i_size
);
430 /* make sure the generation is filled in */
431 if (key
->type
== BTRFS_INODE_ITEM_KEY
) {
432 struct btrfs_inode_item
*dst_item
;
433 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
434 if (btrfs_inode_generation(path
->nodes
[0], dst_item
) == 0) {
435 btrfs_set_inode_generation(path
->nodes
[0], dst_item
,
440 btrfs_mark_buffer_dirty(path
->nodes
[0]);
441 btrfs_release_path(path
);
446 * simple helper to read an inode off the disk from a given root
447 * This can only be called for subvolume roots and not for the log
449 static noinline
struct inode
*read_one_inode(struct btrfs_root
*root
,
452 struct btrfs_key key
;
455 key
.objectid
= objectid
;
456 key
.type
= BTRFS_INODE_ITEM_KEY
;
458 inode
= btrfs_iget(root
->fs_info
->sb
, &key
, root
, NULL
);
461 } else if (is_bad_inode(inode
)) {
468 /* replays a single extent in 'eb' at 'slot' with 'key' into the
469 * subvolume 'root'. path is released on entry and should be released
472 * extents in the log tree have not been allocated out of the extent
473 * tree yet. So, this completes the allocation, taking a reference
474 * as required if the extent already exists or creating a new extent
475 * if it isn't in the extent allocation tree yet.
477 * The extent is inserted into the file, dropping any existing extents
478 * from the file that overlap the new one.
480 static noinline
int replay_one_extent(struct btrfs_trans_handle
*trans
,
481 struct btrfs_root
*root
,
482 struct btrfs_path
*path
,
483 struct extent_buffer
*eb
, int slot
,
484 struct btrfs_key
*key
)
487 u64 mask
= root
->sectorsize
- 1;
490 u64 start
= key
->offset
;
492 struct btrfs_file_extent_item
*item
;
493 struct inode
*inode
= NULL
;
497 item
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
498 found_type
= btrfs_file_extent_type(eb
, item
);
500 if (found_type
== BTRFS_FILE_EXTENT_REG
||
501 found_type
== BTRFS_FILE_EXTENT_PREALLOC
)
502 extent_end
= start
+ btrfs_file_extent_num_bytes(eb
, item
);
503 else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
504 size
= btrfs_file_extent_inline_len(eb
, item
);
505 extent_end
= (start
+ size
+ mask
) & ~mask
;
511 inode
= read_one_inode(root
, key
->objectid
);
518 * first check to see if we already have this extent in the
519 * file. This must be done before the btrfs_drop_extents run
520 * so we don't try to drop this extent.
522 ret
= btrfs_lookup_file_extent(trans
, root
, path
, btrfs_ino(inode
),
526 (found_type
== BTRFS_FILE_EXTENT_REG
||
527 found_type
== BTRFS_FILE_EXTENT_PREALLOC
)) {
528 struct btrfs_file_extent_item cmp1
;
529 struct btrfs_file_extent_item cmp2
;
530 struct btrfs_file_extent_item
*existing
;
531 struct extent_buffer
*leaf
;
533 leaf
= path
->nodes
[0];
534 existing
= btrfs_item_ptr(leaf
, path
->slots
[0],
535 struct btrfs_file_extent_item
);
537 read_extent_buffer(eb
, &cmp1
, (unsigned long)item
,
539 read_extent_buffer(leaf
, &cmp2
, (unsigned long)existing
,
543 * we already have a pointer to this exact extent,
544 * we don't have to do anything
546 if (memcmp(&cmp1
, &cmp2
, sizeof(cmp1
)) == 0) {
547 btrfs_release_path(path
);
551 btrfs_release_path(path
);
553 saved_nbytes
= inode_get_bytes(inode
);
554 /* drop any overlapping extents */
555 ret
= btrfs_drop_extents(trans
, inode
, start
, extent_end
,
559 if (found_type
== BTRFS_FILE_EXTENT_REG
||
560 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
562 unsigned long dest_offset
;
563 struct btrfs_key ins
;
565 ret
= btrfs_insert_empty_item(trans
, root
, path
, key
,
568 dest_offset
= btrfs_item_ptr_offset(path
->nodes
[0],
570 copy_extent_buffer(path
->nodes
[0], eb
, dest_offset
,
571 (unsigned long)item
, sizeof(*item
));
573 ins
.objectid
= btrfs_file_extent_disk_bytenr(eb
, item
);
574 ins
.offset
= btrfs_file_extent_disk_num_bytes(eb
, item
);
575 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
576 offset
= key
->offset
- btrfs_file_extent_offset(eb
, item
);
578 if (ins
.objectid
> 0) {
581 LIST_HEAD(ordered_sums
);
583 * is this extent already allocated in the extent
584 * allocation tree? If so, just add a reference
586 ret
= btrfs_lookup_extent(root
, ins
.objectid
,
589 ret
= btrfs_inc_extent_ref(trans
, root
,
590 ins
.objectid
, ins
.offset
,
591 0, root
->root_key
.objectid
,
592 key
->objectid
, offset
, 0);
596 * insert the extent pointer in the extent
599 ret
= btrfs_alloc_logged_file_extent(trans
,
600 root
, root
->root_key
.objectid
,
601 key
->objectid
, offset
, &ins
);
604 btrfs_release_path(path
);
606 if (btrfs_file_extent_compression(eb
, item
)) {
607 csum_start
= ins
.objectid
;
608 csum_end
= csum_start
+ ins
.offset
;
610 csum_start
= ins
.objectid
+
611 btrfs_file_extent_offset(eb
, item
);
612 csum_end
= csum_start
+
613 btrfs_file_extent_num_bytes(eb
, item
);
616 ret
= btrfs_lookup_csums_range(root
->log_root
,
617 csum_start
, csum_end
- 1,
620 while (!list_empty(&ordered_sums
)) {
621 struct btrfs_ordered_sum
*sums
;
622 sums
= list_entry(ordered_sums
.next
,
623 struct btrfs_ordered_sum
,
625 ret
= btrfs_csum_file_blocks(trans
,
626 root
->fs_info
->csum_root
,
629 list_del(&sums
->list
);
633 btrfs_release_path(path
);
635 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
636 /* inline extents are easy, we just overwrite them */
637 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
641 inode_set_bytes(inode
, saved_nbytes
);
642 btrfs_update_inode(trans
, root
, inode
);
650 * when cleaning up conflicts between the directory names in the
651 * subvolume, directory names in the log and directory names in the
652 * inode back references, we may have to unlink inodes from directories.
654 * This is a helper function to do the unlink of a specific directory
657 static noinline
int drop_one_dir_item(struct btrfs_trans_handle
*trans
,
658 struct btrfs_root
*root
,
659 struct btrfs_path
*path
,
661 struct btrfs_dir_item
*di
)
666 struct extent_buffer
*leaf
;
667 struct btrfs_key location
;
670 leaf
= path
->nodes
[0];
672 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
673 name_len
= btrfs_dir_name_len(leaf
, di
);
674 name
= kmalloc(name_len
, GFP_NOFS
);
678 read_extent_buffer(leaf
, name
, (unsigned long)(di
+ 1), name_len
);
679 btrfs_release_path(path
);
681 inode
= read_one_inode(root
, location
.objectid
);
687 ret
= link_to_fixup_dir(trans
, root
, path
, location
.objectid
);
690 ret
= btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
699 * helper function to see if a given name and sequence number found
700 * in an inode back reference are already in a directory and correctly
701 * point to this inode
703 static noinline
int inode_in_dir(struct btrfs_root
*root
,
704 struct btrfs_path
*path
,
705 u64 dirid
, u64 objectid
, u64 index
,
706 const char *name
, int name_len
)
708 struct btrfs_dir_item
*di
;
709 struct btrfs_key location
;
712 di
= btrfs_lookup_dir_index_item(NULL
, root
, path
, dirid
,
713 index
, name
, name_len
, 0);
714 if (di
&& !IS_ERR(di
)) {
715 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
716 if (location
.objectid
!= objectid
)
720 btrfs_release_path(path
);
722 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dirid
, name
, name_len
, 0);
723 if (di
&& !IS_ERR(di
)) {
724 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
725 if (location
.objectid
!= objectid
)
731 btrfs_release_path(path
);
736 * helper function to check a log tree for a named back reference in
737 * an inode. This is used to decide if a back reference that is
738 * found in the subvolume conflicts with what we find in the log.
740 * inode backreferences may have multiple refs in a single item,
741 * during replay we process one reference at a time, and we don't
742 * want to delete valid links to a file from the subvolume if that
743 * link is also in the log.
745 static noinline
int backref_in_log(struct btrfs_root
*log
,
746 struct btrfs_key
*key
,
747 char *name
, int namelen
)
749 struct btrfs_path
*path
;
750 struct btrfs_inode_ref
*ref
;
752 unsigned long ptr_end
;
753 unsigned long name_ptr
;
759 path
= btrfs_alloc_path();
763 ret
= btrfs_search_slot(NULL
, log
, key
, path
, 0, 0);
767 item_size
= btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]);
768 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
769 ptr_end
= ptr
+ item_size
;
770 while (ptr
< ptr_end
) {
771 ref
= (struct btrfs_inode_ref
*)ptr
;
772 found_name_len
= btrfs_inode_ref_name_len(path
->nodes
[0], ref
);
773 if (found_name_len
== namelen
) {
774 name_ptr
= (unsigned long)(ref
+ 1);
775 ret
= memcmp_extent_buffer(path
->nodes
[0], name
,
782 ptr
= (unsigned long)(ref
+ 1) + found_name_len
;
785 btrfs_free_path(path
);
791 * replay one inode back reference item found in the log tree.
792 * eb, slot and key refer to the buffer and key found in the log tree.
793 * root is the destination we are replaying into, and path is for temp
794 * use by this function. (it should be released on return).
796 static noinline
int add_inode_ref(struct btrfs_trans_handle
*trans
,
797 struct btrfs_root
*root
,
798 struct btrfs_root
*log
,
799 struct btrfs_path
*path
,
800 struct extent_buffer
*eb
, int slot
,
801 struct btrfs_key
*key
)
803 struct btrfs_inode_ref
*ref
;
804 struct btrfs_dir_item
*di
;
807 unsigned long ref_ptr
;
808 unsigned long ref_end
;
815 * it is possible that we didn't log all the parent directories
816 * for a given inode. If we don't find the dir, just don't
817 * copy the back ref in. The link count fixup code will take
820 dir
= read_one_inode(root
, key
->offset
);
824 inode
= read_one_inode(root
, key
->objectid
);
830 ref_ptr
= btrfs_item_ptr_offset(eb
, slot
);
831 ref_end
= ref_ptr
+ btrfs_item_size_nr(eb
, slot
);
834 ref
= (struct btrfs_inode_ref
*)ref_ptr
;
836 namelen
= btrfs_inode_ref_name_len(eb
, ref
);
837 name
= kmalloc(namelen
, GFP_NOFS
);
840 read_extent_buffer(eb
, name
, (unsigned long)(ref
+ 1), namelen
);
842 /* if we already have a perfect match, we're done */
843 if (inode_in_dir(root
, path
, btrfs_ino(dir
), btrfs_ino(inode
),
844 btrfs_inode_ref_index(eb
, ref
),
850 * look for a conflicting back reference in the metadata.
851 * if we find one we have to unlink that name of the file
852 * before we add our new link. Later on, we overwrite any
853 * existing back reference, and we don't want to create
854 * dangling pointers in the directory.
860 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
864 struct btrfs_inode_ref
*victim_ref
;
866 unsigned long ptr_end
;
867 struct extent_buffer
*leaf
= path
->nodes
[0];
869 /* are we trying to overwrite a back ref for the root directory
870 * if so, just jump out, we're done
872 if (key
->objectid
== key
->offset
)
875 /* check all the names in this back reference to see
876 * if they are in the log. if so, we allow them to stay
877 * otherwise they must be unlinked as a conflict
879 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
880 ptr_end
= ptr
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
881 while (ptr
< ptr_end
) {
882 victim_ref
= (struct btrfs_inode_ref
*)ptr
;
883 victim_name_len
= btrfs_inode_ref_name_len(leaf
,
885 victim_name
= kmalloc(victim_name_len
, GFP_NOFS
);
886 BUG_ON(!victim_name
);
888 read_extent_buffer(leaf
, victim_name
,
889 (unsigned long)(victim_ref
+ 1),
892 if (!backref_in_log(log
, key
, victim_name
,
894 btrfs_inc_nlink(inode
);
895 btrfs_release_path(path
);
897 ret
= btrfs_unlink_inode(trans
, root
, dir
,
902 ptr
= (unsigned long)(victim_ref
+ 1) + victim_name_len
;
907 * NOTE: we have searched root tree and checked the
908 * coresponding ref, it does not need to check again.
912 btrfs_release_path(path
);
914 /* look for a conflicting sequence number */
915 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, btrfs_ino(dir
),
916 btrfs_inode_ref_index(eb
, ref
),
918 if (di
&& !IS_ERR(di
)) {
919 ret
= drop_one_dir_item(trans
, root
, path
, dir
, di
);
922 btrfs_release_path(path
);
924 /* look for a conflicing name */
925 di
= btrfs_lookup_dir_item(trans
, root
, path
, btrfs_ino(dir
),
927 if (di
&& !IS_ERR(di
)) {
928 ret
= drop_one_dir_item(trans
, root
, path
, dir
, di
);
931 btrfs_release_path(path
);
934 /* insert our name */
935 ret
= btrfs_add_link(trans
, dir
, inode
, name
, namelen
, 0,
936 btrfs_inode_ref_index(eb
, ref
));
939 btrfs_update_inode(trans
, root
, inode
);
942 ref_ptr
= (unsigned long)(ref
+ 1) + namelen
;
944 if (ref_ptr
< ref_end
)
947 /* finally write the back reference in the inode */
948 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
952 btrfs_release_path(path
);
958 static int insert_orphan_item(struct btrfs_trans_handle
*trans
,
959 struct btrfs_root
*root
, u64 offset
)
962 ret
= btrfs_find_orphan_item(root
, offset
);
964 ret
= btrfs_insert_orphan_item(trans
, root
, offset
);
970 * There are a few corners where the link count of the file can't
971 * be properly maintained during replay. So, instead of adding
972 * lots of complexity to the log code, we just scan the backrefs
973 * for any file that has been through replay.
975 * The scan will update the link count on the inode to reflect the
976 * number of back refs found. If it goes down to zero, the iput
977 * will free the inode.
979 static noinline
int fixup_inode_link_count(struct btrfs_trans_handle
*trans
,
980 struct btrfs_root
*root
,
983 struct btrfs_path
*path
;
985 struct btrfs_key key
;
988 unsigned long ptr_end
;
990 u64 ino
= btrfs_ino(inode
);
993 key
.type
= BTRFS_INODE_REF_KEY
;
994 key
.offset
= (u64
)-1;
996 path
= btrfs_alloc_path();
1001 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1005 if (path
->slots
[0] == 0)
1009 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
1011 if (key
.objectid
!= ino
||
1012 key
.type
!= BTRFS_INODE_REF_KEY
)
1014 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
1015 ptr_end
= ptr
+ btrfs_item_size_nr(path
->nodes
[0],
1017 while (ptr
< ptr_end
) {
1018 struct btrfs_inode_ref
*ref
;
1020 ref
= (struct btrfs_inode_ref
*)ptr
;
1021 name_len
= btrfs_inode_ref_name_len(path
->nodes
[0],
1023 ptr
= (unsigned long)(ref
+ 1) + name_len
;
1027 if (key
.offset
== 0)
1030 btrfs_release_path(path
);
1032 btrfs_release_path(path
);
1033 if (nlink
!= inode
->i_nlink
) {
1034 set_nlink(inode
, nlink
);
1035 btrfs_update_inode(trans
, root
, inode
);
1037 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
1039 if (inode
->i_nlink
== 0) {
1040 if (S_ISDIR(inode
->i_mode
)) {
1041 ret
= replay_dir_deletes(trans
, root
, NULL
, path
,
1045 ret
= insert_orphan_item(trans
, root
, ino
);
1048 btrfs_free_path(path
);
1053 static noinline
int fixup_inode_link_counts(struct btrfs_trans_handle
*trans
,
1054 struct btrfs_root
*root
,
1055 struct btrfs_path
*path
)
1058 struct btrfs_key key
;
1059 struct inode
*inode
;
1061 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1062 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1063 key
.offset
= (u64
)-1;
1065 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1070 if (path
->slots
[0] == 0)
1075 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1076 if (key
.objectid
!= BTRFS_TREE_LOG_FIXUP_OBJECTID
||
1077 key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
1080 ret
= btrfs_del_item(trans
, root
, path
);
1084 btrfs_release_path(path
);
1085 inode
= read_one_inode(root
, key
.offset
);
1089 ret
= fixup_inode_link_count(trans
, root
, inode
);
1095 * fixup on a directory may create new entries,
1096 * make sure we always look for the highset possible
1099 key
.offset
= (u64
)-1;
1103 btrfs_release_path(path
);
1109 * record a given inode in the fixup dir so we can check its link
1110 * count when replay is done. The link count is incremented here
1111 * so the inode won't go away until we check it
1113 static noinline
int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
1114 struct btrfs_root
*root
,
1115 struct btrfs_path
*path
,
1118 struct btrfs_key key
;
1120 struct inode
*inode
;
1122 inode
= read_one_inode(root
, objectid
);
1126 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1127 btrfs_set_key_type(&key
, BTRFS_ORPHAN_ITEM_KEY
);
1128 key
.offset
= objectid
;
1130 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1132 btrfs_release_path(path
);
1134 btrfs_inc_nlink(inode
);
1135 btrfs_update_inode(trans
, root
, inode
);
1136 } else if (ret
== -EEXIST
) {
1147 * when replaying the log for a directory, we only insert names
1148 * for inodes that actually exist. This means an fsync on a directory
1149 * does not implicitly fsync all the new files in it
1151 static noinline
int insert_one_name(struct btrfs_trans_handle
*trans
,
1152 struct btrfs_root
*root
,
1153 struct btrfs_path
*path
,
1154 u64 dirid
, u64 index
,
1155 char *name
, int name_len
, u8 type
,
1156 struct btrfs_key
*location
)
1158 struct inode
*inode
;
1162 inode
= read_one_inode(root
, location
->objectid
);
1166 dir
= read_one_inode(root
, dirid
);
1171 ret
= btrfs_add_link(trans
, dir
, inode
, name
, name_len
, 1, index
);
1173 /* FIXME, put inode into FIXUP list */
1181 * take a single entry in a log directory item and replay it into
1184 * if a conflicting item exists in the subdirectory already,
1185 * the inode it points to is unlinked and put into the link count
1188 * If a name from the log points to a file or directory that does
1189 * not exist in the FS, it is skipped. fsyncs on directories
1190 * do not force down inodes inside that directory, just changes to the
1191 * names or unlinks in a directory.
1193 static noinline
int replay_one_name(struct btrfs_trans_handle
*trans
,
1194 struct btrfs_root
*root
,
1195 struct btrfs_path
*path
,
1196 struct extent_buffer
*eb
,
1197 struct btrfs_dir_item
*di
,
1198 struct btrfs_key
*key
)
1202 struct btrfs_dir_item
*dst_di
;
1203 struct btrfs_key found_key
;
1204 struct btrfs_key log_key
;
1210 dir
= read_one_inode(root
, key
->objectid
);
1214 name_len
= btrfs_dir_name_len(eb
, di
);
1215 name
= kmalloc(name_len
, GFP_NOFS
);
1219 log_type
= btrfs_dir_type(eb
, di
);
1220 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
1223 btrfs_dir_item_key_to_cpu(eb
, di
, &log_key
);
1224 exists
= btrfs_lookup_inode(trans
, root
, path
, &log_key
, 0);
1229 btrfs_release_path(path
);
1231 if (key
->type
== BTRFS_DIR_ITEM_KEY
) {
1232 dst_di
= btrfs_lookup_dir_item(trans
, root
, path
, key
->objectid
,
1234 } else if (key
->type
== BTRFS_DIR_INDEX_KEY
) {
1235 dst_di
= btrfs_lookup_dir_index_item(trans
, root
, path
,
1242 if (IS_ERR_OR_NULL(dst_di
)) {
1243 /* we need a sequence number to insert, so we only
1244 * do inserts for the BTRFS_DIR_INDEX_KEY types
1246 if (key
->type
!= BTRFS_DIR_INDEX_KEY
)
1251 btrfs_dir_item_key_to_cpu(path
->nodes
[0], dst_di
, &found_key
);
1252 /* the existing item matches the logged item */
1253 if (found_key
.objectid
== log_key
.objectid
&&
1254 found_key
.type
== log_key
.type
&&
1255 found_key
.offset
== log_key
.offset
&&
1256 btrfs_dir_type(path
->nodes
[0], dst_di
) == log_type
) {
1261 * don't drop the conflicting directory entry if the inode
1262 * for the new entry doesn't exist
1267 ret
= drop_one_dir_item(trans
, root
, path
, dir
, dst_di
);
1270 if (key
->type
== BTRFS_DIR_INDEX_KEY
)
1273 btrfs_release_path(path
);
1279 btrfs_release_path(path
);
1280 ret
= insert_one_name(trans
, root
, path
, key
->objectid
, key
->offset
,
1281 name
, name_len
, log_type
, &log_key
);
1283 BUG_ON(ret
&& ret
!= -ENOENT
);
1288 * find all the names in a directory item and reconcile them into
1289 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1290 * one name in a directory item, but the same code gets used for
1291 * both directory index types
1293 static noinline
int replay_one_dir_item(struct btrfs_trans_handle
*trans
,
1294 struct btrfs_root
*root
,
1295 struct btrfs_path
*path
,
1296 struct extent_buffer
*eb
, int slot
,
1297 struct btrfs_key
*key
)
1300 u32 item_size
= btrfs_item_size_nr(eb
, slot
);
1301 struct btrfs_dir_item
*di
;
1304 unsigned long ptr_end
;
1306 ptr
= btrfs_item_ptr_offset(eb
, slot
);
1307 ptr_end
= ptr
+ item_size
;
1308 while (ptr
< ptr_end
) {
1309 di
= (struct btrfs_dir_item
*)ptr
;
1310 if (verify_dir_item(root
, eb
, di
))
1312 name_len
= btrfs_dir_name_len(eb
, di
);
1313 ret
= replay_one_name(trans
, root
, path
, eb
, di
, key
);
1315 ptr
= (unsigned long)(di
+ 1);
1322 * directory replay has two parts. There are the standard directory
1323 * items in the log copied from the subvolume, and range items
1324 * created in the log while the subvolume was logged.
1326 * The range items tell us which parts of the key space the log
1327 * is authoritative for. During replay, if a key in the subvolume
1328 * directory is in a logged range item, but not actually in the log
1329 * that means it was deleted from the directory before the fsync
1330 * and should be removed.
1332 static noinline
int find_dir_range(struct btrfs_root
*root
,
1333 struct btrfs_path
*path
,
1334 u64 dirid
, int key_type
,
1335 u64
*start_ret
, u64
*end_ret
)
1337 struct btrfs_key key
;
1339 struct btrfs_dir_log_item
*item
;
1343 if (*start_ret
== (u64
)-1)
1346 key
.objectid
= dirid
;
1347 key
.type
= key_type
;
1348 key
.offset
= *start_ret
;
1350 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1354 if (path
->slots
[0] == 0)
1359 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1361 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
1365 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1366 struct btrfs_dir_log_item
);
1367 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
1369 if (*start_ret
>= key
.offset
&& *start_ret
<= found_end
) {
1371 *start_ret
= key
.offset
;
1372 *end_ret
= found_end
;
1377 /* check the next slot in the tree to see if it is a valid item */
1378 nritems
= btrfs_header_nritems(path
->nodes
[0]);
1379 if (path
->slots
[0] >= nritems
) {
1380 ret
= btrfs_next_leaf(root
, path
);
1387 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1389 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
1393 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1394 struct btrfs_dir_log_item
);
1395 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
1396 *start_ret
= key
.offset
;
1397 *end_ret
= found_end
;
1400 btrfs_release_path(path
);
1405 * this looks for a given directory item in the log. If the directory
1406 * item is not in the log, the item is removed and the inode it points
1409 static noinline
int check_item_in_log(struct btrfs_trans_handle
*trans
,
1410 struct btrfs_root
*root
,
1411 struct btrfs_root
*log
,
1412 struct btrfs_path
*path
,
1413 struct btrfs_path
*log_path
,
1415 struct btrfs_key
*dir_key
)
1418 struct extent_buffer
*eb
;
1421 struct btrfs_dir_item
*di
;
1422 struct btrfs_dir_item
*log_di
;
1425 unsigned long ptr_end
;
1427 struct inode
*inode
;
1428 struct btrfs_key location
;
1431 eb
= path
->nodes
[0];
1432 slot
= path
->slots
[0];
1433 item_size
= btrfs_item_size_nr(eb
, slot
);
1434 ptr
= btrfs_item_ptr_offset(eb
, slot
);
1435 ptr_end
= ptr
+ item_size
;
1436 while (ptr
< ptr_end
) {
1437 di
= (struct btrfs_dir_item
*)ptr
;
1438 if (verify_dir_item(root
, eb
, di
)) {
1443 name_len
= btrfs_dir_name_len(eb
, di
);
1444 name
= kmalloc(name_len
, GFP_NOFS
);
1449 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
1452 if (log
&& dir_key
->type
== BTRFS_DIR_ITEM_KEY
) {
1453 log_di
= btrfs_lookup_dir_item(trans
, log
, log_path
,
1456 } else if (log
&& dir_key
->type
== BTRFS_DIR_INDEX_KEY
) {
1457 log_di
= btrfs_lookup_dir_index_item(trans
, log
,
1463 if (IS_ERR_OR_NULL(log_di
)) {
1464 btrfs_dir_item_key_to_cpu(eb
, di
, &location
);
1465 btrfs_release_path(path
);
1466 btrfs_release_path(log_path
);
1467 inode
= read_one_inode(root
, location
.objectid
);
1473 ret
= link_to_fixup_dir(trans
, root
,
1474 path
, location
.objectid
);
1476 btrfs_inc_nlink(inode
);
1477 ret
= btrfs_unlink_inode(trans
, root
, dir
, inode
,
1483 /* there might still be more names under this key
1484 * check and repeat if required
1486 ret
= btrfs_search_slot(NULL
, root
, dir_key
, path
,
1493 btrfs_release_path(log_path
);
1496 ptr
= (unsigned long)(di
+ 1);
1501 btrfs_release_path(path
);
1502 btrfs_release_path(log_path
);
1507 * deletion replay happens before we copy any new directory items
1508 * out of the log or out of backreferences from inodes. It
1509 * scans the log to find ranges of keys that log is authoritative for,
1510 * and then scans the directory to find items in those ranges that are
1511 * not present in the log.
1513 * Anything we don't find in the log is unlinked and removed from the
1516 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
1517 struct btrfs_root
*root
,
1518 struct btrfs_root
*log
,
1519 struct btrfs_path
*path
,
1520 u64 dirid
, int del_all
)
1524 int key_type
= BTRFS_DIR_LOG_ITEM_KEY
;
1526 struct btrfs_key dir_key
;
1527 struct btrfs_key found_key
;
1528 struct btrfs_path
*log_path
;
1531 dir_key
.objectid
= dirid
;
1532 dir_key
.type
= BTRFS_DIR_ITEM_KEY
;
1533 log_path
= btrfs_alloc_path();
1537 dir
= read_one_inode(root
, dirid
);
1538 /* it isn't an error if the inode isn't there, that can happen
1539 * because we replay the deletes before we copy in the inode item
1543 btrfs_free_path(log_path
);
1551 range_end
= (u64
)-1;
1553 ret
= find_dir_range(log
, path
, dirid
, key_type
,
1554 &range_start
, &range_end
);
1559 dir_key
.offset
= range_start
;
1562 ret
= btrfs_search_slot(NULL
, root
, &dir_key
, path
,
1567 nritems
= btrfs_header_nritems(path
->nodes
[0]);
1568 if (path
->slots
[0] >= nritems
) {
1569 ret
= btrfs_next_leaf(root
, path
);
1573 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1575 if (found_key
.objectid
!= dirid
||
1576 found_key
.type
!= dir_key
.type
)
1579 if (found_key
.offset
> range_end
)
1582 ret
= check_item_in_log(trans
, root
, log
, path
,
1586 if (found_key
.offset
== (u64
)-1)
1588 dir_key
.offset
= found_key
.offset
+ 1;
1590 btrfs_release_path(path
);
1591 if (range_end
== (u64
)-1)
1593 range_start
= range_end
+ 1;
1598 if (key_type
== BTRFS_DIR_LOG_ITEM_KEY
) {
1599 key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
1600 dir_key
.type
= BTRFS_DIR_INDEX_KEY
;
1601 btrfs_release_path(path
);
1605 btrfs_release_path(path
);
1606 btrfs_free_path(log_path
);
1612 * the process_func used to replay items from the log tree. This
1613 * gets called in two different stages. The first stage just looks
1614 * for inodes and makes sure they are all copied into the subvolume.
1616 * The second stage copies all the other item types from the log into
1617 * the subvolume. The two stage approach is slower, but gets rid of
1618 * lots of complexity around inodes referencing other inodes that exist
1619 * only in the log (references come from either directory items or inode
1622 static int replay_one_buffer(struct btrfs_root
*log
, struct extent_buffer
*eb
,
1623 struct walk_control
*wc
, u64 gen
)
1626 struct btrfs_path
*path
;
1627 struct btrfs_root
*root
= wc
->replay_dest
;
1628 struct btrfs_key key
;
1633 btrfs_read_buffer(eb
, gen
);
1635 level
= btrfs_header_level(eb
);
1640 path
= btrfs_alloc_path();
1644 nritems
= btrfs_header_nritems(eb
);
1645 for (i
= 0; i
< nritems
; i
++) {
1646 btrfs_item_key_to_cpu(eb
, &key
, i
);
1648 /* inode keys are done during the first stage */
1649 if (key
.type
== BTRFS_INODE_ITEM_KEY
&&
1650 wc
->stage
== LOG_WALK_REPLAY_INODES
) {
1651 struct btrfs_inode_item
*inode_item
;
1654 inode_item
= btrfs_item_ptr(eb
, i
,
1655 struct btrfs_inode_item
);
1656 mode
= btrfs_inode_mode(eb
, inode_item
);
1657 if (S_ISDIR(mode
)) {
1658 ret
= replay_dir_deletes(wc
->trans
,
1659 root
, log
, path
, key
.objectid
, 0);
1662 ret
= overwrite_item(wc
->trans
, root
, path
,
1666 /* for regular files, make sure corresponding
1667 * orhpan item exist. extents past the new EOF
1668 * will be truncated later by orphan cleanup.
1670 if (S_ISREG(mode
)) {
1671 ret
= insert_orphan_item(wc
->trans
, root
,
1676 ret
= link_to_fixup_dir(wc
->trans
, root
,
1677 path
, key
.objectid
);
1680 if (wc
->stage
< LOG_WALK_REPLAY_ALL
)
1683 /* these keys are simply copied */
1684 if (key
.type
== BTRFS_XATTR_ITEM_KEY
) {
1685 ret
= overwrite_item(wc
->trans
, root
, path
,
1688 } else if (key
.type
== BTRFS_INODE_REF_KEY
) {
1689 ret
= add_inode_ref(wc
->trans
, root
, log
, path
,
1691 BUG_ON(ret
&& ret
!= -ENOENT
);
1692 } else if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
1693 ret
= replay_one_extent(wc
->trans
, root
, path
,
1696 } else if (key
.type
== BTRFS_DIR_ITEM_KEY
||
1697 key
.type
== BTRFS_DIR_INDEX_KEY
) {
1698 ret
= replay_one_dir_item(wc
->trans
, root
, path
,
1703 btrfs_free_path(path
);
1707 static noinline
int walk_down_log_tree(struct btrfs_trans_handle
*trans
,
1708 struct btrfs_root
*root
,
1709 struct btrfs_path
*path
, int *level
,
1710 struct walk_control
*wc
)
1715 struct extent_buffer
*next
;
1716 struct extent_buffer
*cur
;
1717 struct extent_buffer
*parent
;
1721 WARN_ON(*level
< 0);
1722 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
1724 while (*level
> 0) {
1725 WARN_ON(*level
< 0);
1726 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
1727 cur
= path
->nodes
[*level
];
1729 if (btrfs_header_level(cur
) != *level
)
1732 if (path
->slots
[*level
] >=
1733 btrfs_header_nritems(cur
))
1736 bytenr
= btrfs_node_blockptr(cur
, path
->slots
[*level
]);
1737 ptr_gen
= btrfs_node_ptr_generation(cur
, path
->slots
[*level
]);
1738 blocksize
= btrfs_level_size(root
, *level
- 1);
1740 parent
= path
->nodes
[*level
];
1741 root_owner
= btrfs_header_owner(parent
);
1743 next
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
1748 ret
= wc
->process_func(root
, next
, wc
, ptr_gen
);
1752 path
->slots
[*level
]++;
1754 btrfs_read_buffer(next
, ptr_gen
);
1756 btrfs_tree_lock(next
);
1757 btrfs_set_lock_blocking(next
);
1758 clean_tree_block(trans
, root
, next
);
1759 btrfs_wait_tree_block_writeback(next
);
1760 btrfs_tree_unlock(next
);
1762 WARN_ON(root_owner
!=
1763 BTRFS_TREE_LOG_OBJECTID
);
1764 ret
= btrfs_free_and_pin_reserved_extent(root
,
1768 free_extent_buffer(next
);
1771 btrfs_read_buffer(next
, ptr_gen
);
1773 WARN_ON(*level
<= 0);
1774 if (path
->nodes
[*level
-1])
1775 free_extent_buffer(path
->nodes
[*level
-1]);
1776 path
->nodes
[*level
-1] = next
;
1777 *level
= btrfs_header_level(next
);
1778 path
->slots
[*level
] = 0;
1781 WARN_ON(*level
< 0);
1782 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
1784 path
->slots
[*level
] = btrfs_header_nritems(path
->nodes
[*level
]);
1790 static noinline
int walk_up_log_tree(struct btrfs_trans_handle
*trans
,
1791 struct btrfs_root
*root
,
1792 struct btrfs_path
*path
, int *level
,
1793 struct walk_control
*wc
)
1800 for (i
= *level
; i
< BTRFS_MAX_LEVEL
- 1 && path
->nodes
[i
]; i
++) {
1801 slot
= path
->slots
[i
];
1802 if (slot
+ 1 < btrfs_header_nritems(path
->nodes
[i
])) {
1805 WARN_ON(*level
== 0);
1808 struct extent_buffer
*parent
;
1809 if (path
->nodes
[*level
] == root
->node
)
1810 parent
= path
->nodes
[*level
];
1812 parent
= path
->nodes
[*level
+ 1];
1814 root_owner
= btrfs_header_owner(parent
);
1815 ret
= wc
->process_func(root
, path
->nodes
[*level
], wc
,
1816 btrfs_header_generation(path
->nodes
[*level
]));
1821 struct extent_buffer
*next
;
1823 next
= path
->nodes
[*level
];
1825 btrfs_tree_lock(next
);
1826 btrfs_set_lock_blocking(next
);
1827 clean_tree_block(trans
, root
, next
);
1828 btrfs_wait_tree_block_writeback(next
);
1829 btrfs_tree_unlock(next
);
1831 WARN_ON(root_owner
!= BTRFS_TREE_LOG_OBJECTID
);
1832 ret
= btrfs_free_and_pin_reserved_extent(root
,
1833 path
->nodes
[*level
]->start
,
1834 path
->nodes
[*level
]->len
);
1837 free_extent_buffer(path
->nodes
[*level
]);
1838 path
->nodes
[*level
] = NULL
;
1846 * drop the reference count on the tree rooted at 'snap'. This traverses
1847 * the tree freeing any blocks that have a ref count of zero after being
1850 static int walk_log_tree(struct btrfs_trans_handle
*trans
,
1851 struct btrfs_root
*log
, struct walk_control
*wc
)
1856 struct btrfs_path
*path
;
1860 path
= btrfs_alloc_path();
1864 level
= btrfs_header_level(log
->node
);
1866 path
->nodes
[level
] = log
->node
;
1867 extent_buffer_get(log
->node
);
1868 path
->slots
[level
] = 0;
1871 wret
= walk_down_log_tree(trans
, log
, path
, &level
, wc
);
1877 wret
= walk_up_log_tree(trans
, log
, path
, &level
, wc
);
1884 /* was the root node processed? if not, catch it here */
1885 if (path
->nodes
[orig_level
]) {
1886 wc
->process_func(log
, path
->nodes
[orig_level
], wc
,
1887 btrfs_header_generation(path
->nodes
[orig_level
]));
1889 struct extent_buffer
*next
;
1891 next
= path
->nodes
[orig_level
];
1893 btrfs_tree_lock(next
);
1894 btrfs_set_lock_blocking(next
);
1895 clean_tree_block(trans
, log
, next
);
1896 btrfs_wait_tree_block_writeback(next
);
1897 btrfs_tree_unlock(next
);
1899 WARN_ON(log
->root_key
.objectid
!=
1900 BTRFS_TREE_LOG_OBJECTID
);
1901 ret
= btrfs_free_and_pin_reserved_extent(log
, next
->start
,
1907 for (i
= 0; i
<= orig_level
; i
++) {
1908 if (path
->nodes
[i
]) {
1909 free_extent_buffer(path
->nodes
[i
]);
1910 path
->nodes
[i
] = NULL
;
1913 btrfs_free_path(path
);
1918 * helper function to update the item for a given subvolumes log root
1919 * in the tree of log roots
1921 static int update_log_root(struct btrfs_trans_handle
*trans
,
1922 struct btrfs_root
*log
)
1926 if (log
->log_transid
== 1) {
1927 /* insert root item on the first sync */
1928 ret
= btrfs_insert_root(trans
, log
->fs_info
->log_root_tree
,
1929 &log
->root_key
, &log
->root_item
);
1931 ret
= btrfs_update_root(trans
, log
->fs_info
->log_root_tree
,
1932 &log
->root_key
, &log
->root_item
);
1937 static int wait_log_commit(struct btrfs_trans_handle
*trans
,
1938 struct btrfs_root
*root
, unsigned long transid
)
1941 int index
= transid
% 2;
1944 * we only allow two pending log transactions at a time,
1945 * so we know that if ours is more than 2 older than the
1946 * current transaction, we're done
1949 prepare_to_wait(&root
->log_commit_wait
[index
],
1950 &wait
, TASK_UNINTERRUPTIBLE
);
1951 mutex_unlock(&root
->log_mutex
);
1953 if (root
->fs_info
->last_trans_log_full_commit
!=
1954 trans
->transid
&& root
->log_transid
< transid
+ 2 &&
1955 atomic_read(&root
->log_commit
[index
]))
1958 finish_wait(&root
->log_commit_wait
[index
], &wait
);
1959 mutex_lock(&root
->log_mutex
);
1960 } while (root
->fs_info
->last_trans_log_full_commit
!=
1961 trans
->transid
&& root
->log_transid
< transid
+ 2 &&
1962 atomic_read(&root
->log_commit
[index
]));
1966 static int wait_for_writer(struct btrfs_trans_handle
*trans
,
1967 struct btrfs_root
*root
)
1970 while (root
->fs_info
->last_trans_log_full_commit
!=
1971 trans
->transid
&& atomic_read(&root
->log_writers
)) {
1972 prepare_to_wait(&root
->log_writer_wait
,
1973 &wait
, TASK_UNINTERRUPTIBLE
);
1974 mutex_unlock(&root
->log_mutex
);
1975 if (root
->fs_info
->last_trans_log_full_commit
!=
1976 trans
->transid
&& atomic_read(&root
->log_writers
))
1978 mutex_lock(&root
->log_mutex
);
1979 finish_wait(&root
->log_writer_wait
, &wait
);
1985 * btrfs_sync_log does sends a given tree log down to the disk and
1986 * updates the super blocks to record it. When this call is done,
1987 * you know that any inodes previously logged are safely on disk only
1990 * Any other return value means you need to call btrfs_commit_transaction.
1991 * Some of the edge cases for fsyncing directories that have had unlinks
1992 * or renames done in the past mean that sometimes the only safe
1993 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
1994 * that has happened.
1996 int btrfs_sync_log(struct btrfs_trans_handle
*trans
,
1997 struct btrfs_root
*root
)
2003 struct btrfs_root
*log
= root
->log_root
;
2004 struct btrfs_root
*log_root_tree
= root
->fs_info
->log_root_tree
;
2005 unsigned long log_transid
= 0;
2007 mutex_lock(&root
->log_mutex
);
2008 index1
= root
->log_transid
% 2;
2009 if (atomic_read(&root
->log_commit
[index1
])) {
2010 wait_log_commit(trans
, root
, root
->log_transid
);
2011 mutex_unlock(&root
->log_mutex
);
2014 atomic_set(&root
->log_commit
[index1
], 1);
2016 /* wait for previous tree log sync to complete */
2017 if (atomic_read(&root
->log_commit
[(index1
+ 1) % 2]))
2018 wait_log_commit(trans
, root
, root
->log_transid
- 1);
2020 unsigned long batch
= root
->log_batch
;
2021 /* when we're on an ssd, just kick the log commit out */
2022 if (!btrfs_test_opt(root
, SSD
) && root
->log_multiple_pids
) {
2023 mutex_unlock(&root
->log_mutex
);
2024 schedule_timeout_uninterruptible(1);
2025 mutex_lock(&root
->log_mutex
);
2027 wait_for_writer(trans
, root
);
2028 if (batch
== root
->log_batch
)
2032 /* bail out if we need to do a full commit */
2033 if (root
->fs_info
->last_trans_log_full_commit
== trans
->transid
) {
2035 mutex_unlock(&root
->log_mutex
);
2039 log_transid
= root
->log_transid
;
2040 if (log_transid
% 2 == 0)
2041 mark
= EXTENT_DIRTY
;
2045 /* we start IO on all the marked extents here, but we don't actually
2046 * wait for them until later.
2048 ret
= btrfs_write_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2051 btrfs_set_root_node(&log
->root_item
, log
->node
);
2053 root
->log_batch
= 0;
2054 root
->log_transid
++;
2055 log
->log_transid
= root
->log_transid
;
2056 root
->log_start_pid
= 0;
2059 * IO has been started, blocks of the log tree have WRITTEN flag set
2060 * in their headers. new modifications of the log will be written to
2061 * new positions. so it's safe to allow log writers to go in.
2063 mutex_unlock(&root
->log_mutex
);
2065 mutex_lock(&log_root_tree
->log_mutex
);
2066 log_root_tree
->log_batch
++;
2067 atomic_inc(&log_root_tree
->log_writers
);
2068 mutex_unlock(&log_root_tree
->log_mutex
);
2070 ret
= update_log_root(trans
, log
);
2072 mutex_lock(&log_root_tree
->log_mutex
);
2073 if (atomic_dec_and_test(&log_root_tree
->log_writers
)) {
2075 if (waitqueue_active(&log_root_tree
->log_writer_wait
))
2076 wake_up(&log_root_tree
->log_writer_wait
);
2080 BUG_ON(ret
!= -ENOSPC
);
2081 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
2082 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2083 mutex_unlock(&log_root_tree
->log_mutex
);
2088 index2
= log_root_tree
->log_transid
% 2;
2089 if (atomic_read(&log_root_tree
->log_commit
[index2
])) {
2090 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2091 wait_log_commit(trans
, log_root_tree
,
2092 log_root_tree
->log_transid
);
2093 mutex_unlock(&log_root_tree
->log_mutex
);
2097 atomic_set(&log_root_tree
->log_commit
[index2
], 1);
2099 if (atomic_read(&log_root_tree
->log_commit
[(index2
+ 1) % 2])) {
2100 wait_log_commit(trans
, log_root_tree
,
2101 log_root_tree
->log_transid
- 1);
2104 wait_for_writer(trans
, log_root_tree
);
2107 * now that we've moved on to the tree of log tree roots,
2108 * check the full commit flag again
2110 if (root
->fs_info
->last_trans_log_full_commit
== trans
->transid
) {
2111 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2112 mutex_unlock(&log_root_tree
->log_mutex
);
2114 goto out_wake_log_root
;
2117 ret
= btrfs_write_and_wait_marked_extents(log_root_tree
,
2118 &log_root_tree
->dirty_log_pages
,
2119 EXTENT_DIRTY
| EXTENT_NEW
);
2121 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2123 btrfs_set_super_log_root(root
->fs_info
->super_for_commit
,
2124 log_root_tree
->node
->start
);
2125 btrfs_set_super_log_root_level(root
->fs_info
->super_for_commit
,
2126 btrfs_header_level(log_root_tree
->node
));
2128 log_root_tree
->log_batch
= 0;
2129 log_root_tree
->log_transid
++;
2132 mutex_unlock(&log_root_tree
->log_mutex
);
2135 * nobody else is going to jump in and write the the ctree
2136 * super here because the log_commit atomic below is protecting
2137 * us. We must be called with a transaction handle pinning
2138 * the running transaction open, so a full commit can't hop
2139 * in and cause problems either.
2141 btrfs_scrub_pause_super(root
);
2142 write_ctree_super(trans
, root
->fs_info
->tree_root
, 1);
2143 btrfs_scrub_continue_super(root
);
2146 mutex_lock(&root
->log_mutex
);
2147 if (root
->last_log_commit
< log_transid
)
2148 root
->last_log_commit
= log_transid
;
2149 mutex_unlock(&root
->log_mutex
);
2152 atomic_set(&log_root_tree
->log_commit
[index2
], 0);
2154 if (waitqueue_active(&log_root_tree
->log_commit_wait
[index2
]))
2155 wake_up(&log_root_tree
->log_commit_wait
[index2
]);
2157 atomic_set(&root
->log_commit
[index1
], 0);
2159 if (waitqueue_active(&root
->log_commit_wait
[index1
]))
2160 wake_up(&root
->log_commit_wait
[index1
]);
2164 static void free_log_tree(struct btrfs_trans_handle
*trans
,
2165 struct btrfs_root
*log
)
2170 struct walk_control wc
= {
2172 .process_func
= process_one_buffer
2175 ret
= walk_log_tree(trans
, log
, &wc
);
2179 ret
= find_first_extent_bit(&log
->dirty_log_pages
,
2180 0, &start
, &end
, EXTENT_DIRTY
| EXTENT_NEW
);
2184 clear_extent_bits(&log
->dirty_log_pages
, start
, end
,
2185 EXTENT_DIRTY
| EXTENT_NEW
, GFP_NOFS
);
2188 free_extent_buffer(log
->node
);
2193 * free all the extents used by the tree log. This should be called
2194 * at commit time of the full transaction
2196 int btrfs_free_log(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
)
2198 if (root
->log_root
) {
2199 free_log_tree(trans
, root
->log_root
);
2200 root
->log_root
= NULL
;
2205 int btrfs_free_log_root_tree(struct btrfs_trans_handle
*trans
,
2206 struct btrfs_fs_info
*fs_info
)
2208 if (fs_info
->log_root_tree
) {
2209 free_log_tree(trans
, fs_info
->log_root_tree
);
2210 fs_info
->log_root_tree
= NULL
;
2216 * If both a file and directory are logged, and unlinks or renames are
2217 * mixed in, we have a few interesting corners:
2219 * create file X in dir Y
2220 * link file X to X.link in dir Y
2222 * unlink file X but leave X.link
2225 * After a crash we would expect only X.link to exist. But file X
2226 * didn't get fsync'd again so the log has back refs for X and X.link.
2228 * We solve this by removing directory entries and inode backrefs from the
2229 * log when a file that was logged in the current transaction is
2230 * unlinked. Any later fsync will include the updated log entries, and
2231 * we'll be able to reconstruct the proper directory items from backrefs.
2233 * This optimizations allows us to avoid relogging the entire inode
2234 * or the entire directory.
2236 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle
*trans
,
2237 struct btrfs_root
*root
,
2238 const char *name
, int name_len
,
2239 struct inode
*dir
, u64 index
)
2241 struct btrfs_root
*log
;
2242 struct btrfs_dir_item
*di
;
2243 struct btrfs_path
*path
;
2247 u64 dir_ino
= btrfs_ino(dir
);
2249 if (BTRFS_I(dir
)->logged_trans
< trans
->transid
)
2252 ret
= join_running_log_trans(root
);
2256 mutex_lock(&BTRFS_I(dir
)->log_mutex
);
2258 log
= root
->log_root
;
2259 path
= btrfs_alloc_path();
2265 di
= btrfs_lookup_dir_item(trans
, log
, path
, dir_ino
,
2266 name
, name_len
, -1);
2272 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
2273 bytes_del
+= name_len
;
2276 btrfs_release_path(path
);
2277 di
= btrfs_lookup_dir_index_item(trans
, log
, path
, dir_ino
,
2278 index
, name
, name_len
, -1);
2284 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
2285 bytes_del
+= name_len
;
2289 /* update the directory size in the log to reflect the names
2293 struct btrfs_key key
;
2295 key
.objectid
= dir_ino
;
2297 key
.type
= BTRFS_INODE_ITEM_KEY
;
2298 btrfs_release_path(path
);
2300 ret
= btrfs_search_slot(trans
, log
, &key
, path
, 0, 1);
2306 struct btrfs_inode_item
*item
;
2309 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2310 struct btrfs_inode_item
);
2311 i_size
= btrfs_inode_size(path
->nodes
[0], item
);
2312 if (i_size
> bytes_del
)
2313 i_size
-= bytes_del
;
2316 btrfs_set_inode_size(path
->nodes
[0], item
, i_size
);
2317 btrfs_mark_buffer_dirty(path
->nodes
[0]);
2320 btrfs_release_path(path
);
2323 btrfs_free_path(path
);
2325 mutex_unlock(&BTRFS_I(dir
)->log_mutex
);
2326 if (ret
== -ENOSPC
) {
2327 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
2330 btrfs_end_log_trans(root
);
2335 /* see comments for btrfs_del_dir_entries_in_log */
2336 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle
*trans
,
2337 struct btrfs_root
*root
,
2338 const char *name
, int name_len
,
2339 struct inode
*inode
, u64 dirid
)
2341 struct btrfs_root
*log
;
2345 if (BTRFS_I(inode
)->logged_trans
< trans
->transid
)
2348 ret
= join_running_log_trans(root
);
2351 log
= root
->log_root
;
2352 mutex_lock(&BTRFS_I(inode
)->log_mutex
);
2354 ret
= btrfs_del_inode_ref(trans
, log
, name
, name_len
, btrfs_ino(inode
),
2356 mutex_unlock(&BTRFS_I(inode
)->log_mutex
);
2357 if (ret
== -ENOSPC
) {
2358 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
2361 btrfs_end_log_trans(root
);
2367 * creates a range item in the log for 'dirid'. first_offset and
2368 * last_offset tell us which parts of the key space the log should
2369 * be considered authoritative for.
2371 static noinline
int insert_dir_log_key(struct btrfs_trans_handle
*trans
,
2372 struct btrfs_root
*log
,
2373 struct btrfs_path
*path
,
2374 int key_type
, u64 dirid
,
2375 u64 first_offset
, u64 last_offset
)
2378 struct btrfs_key key
;
2379 struct btrfs_dir_log_item
*item
;
2381 key
.objectid
= dirid
;
2382 key
.offset
= first_offset
;
2383 if (key_type
== BTRFS_DIR_ITEM_KEY
)
2384 key
.type
= BTRFS_DIR_LOG_ITEM_KEY
;
2386 key
.type
= BTRFS_DIR_LOG_INDEX_KEY
;
2387 ret
= btrfs_insert_empty_item(trans
, log
, path
, &key
, sizeof(*item
));
2391 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2392 struct btrfs_dir_log_item
);
2393 btrfs_set_dir_log_end(path
->nodes
[0], item
, last_offset
);
2394 btrfs_mark_buffer_dirty(path
->nodes
[0]);
2395 btrfs_release_path(path
);
2400 * log all the items included in the current transaction for a given
2401 * directory. This also creates the range items in the log tree required
2402 * to replay anything deleted before the fsync
2404 static noinline
int log_dir_items(struct btrfs_trans_handle
*trans
,
2405 struct btrfs_root
*root
, struct inode
*inode
,
2406 struct btrfs_path
*path
,
2407 struct btrfs_path
*dst_path
, int key_type
,
2408 u64 min_offset
, u64
*last_offset_ret
)
2410 struct btrfs_key min_key
;
2411 struct btrfs_key max_key
;
2412 struct btrfs_root
*log
= root
->log_root
;
2413 struct extent_buffer
*src
;
2418 u64 first_offset
= min_offset
;
2419 u64 last_offset
= (u64
)-1;
2420 u64 ino
= btrfs_ino(inode
);
2422 log
= root
->log_root
;
2423 max_key
.objectid
= ino
;
2424 max_key
.offset
= (u64
)-1;
2425 max_key
.type
= key_type
;
2427 min_key
.objectid
= ino
;
2428 min_key
.type
= key_type
;
2429 min_key
.offset
= min_offset
;
2431 path
->keep_locks
= 1;
2433 ret
= btrfs_search_forward(root
, &min_key
, &max_key
,
2434 path
, 0, trans
->transid
);
2437 * we didn't find anything from this transaction, see if there
2438 * is anything at all
2440 if (ret
!= 0 || min_key
.objectid
!= ino
|| min_key
.type
!= key_type
) {
2441 min_key
.objectid
= ino
;
2442 min_key
.type
= key_type
;
2443 min_key
.offset
= (u64
)-1;
2444 btrfs_release_path(path
);
2445 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
2447 btrfs_release_path(path
);
2450 ret
= btrfs_previous_item(root
, path
, ino
, key_type
);
2452 /* if ret == 0 there are items for this type,
2453 * create a range to tell us the last key of this type.
2454 * otherwise, there are no items in this directory after
2455 * *min_offset, and we create a range to indicate that.
2458 struct btrfs_key tmp
;
2459 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
,
2461 if (key_type
== tmp
.type
)
2462 first_offset
= max(min_offset
, tmp
.offset
) + 1;
2467 /* go backward to find any previous key */
2468 ret
= btrfs_previous_item(root
, path
, ino
, key_type
);
2470 struct btrfs_key tmp
;
2471 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
2472 if (key_type
== tmp
.type
) {
2473 first_offset
= tmp
.offset
;
2474 ret
= overwrite_item(trans
, log
, dst_path
,
2475 path
->nodes
[0], path
->slots
[0],
2483 btrfs_release_path(path
);
2485 /* find the first key from this transaction again */
2486 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
2493 * we have a block from this transaction, log every item in it
2494 * from our directory
2497 struct btrfs_key tmp
;
2498 src
= path
->nodes
[0];
2499 nritems
= btrfs_header_nritems(src
);
2500 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
2501 btrfs_item_key_to_cpu(src
, &min_key
, i
);
2503 if (min_key
.objectid
!= ino
|| min_key
.type
!= key_type
)
2505 ret
= overwrite_item(trans
, log
, dst_path
, src
, i
,
2512 path
->slots
[0] = nritems
;
2515 * look ahead to the next item and see if it is also
2516 * from this directory and from this transaction
2518 ret
= btrfs_next_leaf(root
, path
);
2520 last_offset
= (u64
)-1;
2523 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
2524 if (tmp
.objectid
!= ino
|| tmp
.type
!= key_type
) {
2525 last_offset
= (u64
)-1;
2528 if (btrfs_header_generation(path
->nodes
[0]) != trans
->transid
) {
2529 ret
= overwrite_item(trans
, log
, dst_path
,
2530 path
->nodes
[0], path
->slots
[0],
2535 last_offset
= tmp
.offset
;
2540 btrfs_release_path(path
);
2541 btrfs_release_path(dst_path
);
2544 *last_offset_ret
= last_offset
;
2546 * insert the log range keys to indicate where the log
2549 ret
= insert_dir_log_key(trans
, log
, path
, key_type
,
2550 ino
, first_offset
, last_offset
);
2558 * logging directories is very similar to logging inodes, We find all the items
2559 * from the current transaction and write them to the log.
2561 * The recovery code scans the directory in the subvolume, and if it finds a
2562 * key in the range logged that is not present in the log tree, then it means
2563 * that dir entry was unlinked during the transaction.
2565 * In order for that scan to work, we must include one key smaller than
2566 * the smallest logged by this transaction and one key larger than the largest
2567 * key logged by this transaction.
2569 static noinline
int log_directory_changes(struct btrfs_trans_handle
*trans
,
2570 struct btrfs_root
*root
, struct inode
*inode
,
2571 struct btrfs_path
*path
,
2572 struct btrfs_path
*dst_path
)
2577 int key_type
= BTRFS_DIR_ITEM_KEY
;
2583 ret
= log_dir_items(trans
, root
, inode
, path
,
2584 dst_path
, key_type
, min_key
,
2588 if (max_key
== (u64
)-1)
2590 min_key
= max_key
+ 1;
2593 if (key_type
== BTRFS_DIR_ITEM_KEY
) {
2594 key_type
= BTRFS_DIR_INDEX_KEY
;
2601 * a helper function to drop items from the log before we relog an
2602 * inode. max_key_type indicates the highest item type to remove.
2603 * This cannot be run for file data extents because it does not
2604 * free the extents they point to.
2606 static int drop_objectid_items(struct btrfs_trans_handle
*trans
,
2607 struct btrfs_root
*log
,
2608 struct btrfs_path
*path
,
2609 u64 objectid
, int max_key_type
)
2612 struct btrfs_key key
;
2613 struct btrfs_key found_key
;
2615 key
.objectid
= objectid
;
2616 key
.type
= max_key_type
;
2617 key
.offset
= (u64
)-1;
2620 ret
= btrfs_search_slot(trans
, log
, &key
, path
, -1, 1);
2625 if (path
->slots
[0] == 0)
2629 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
2632 if (found_key
.objectid
!= objectid
)
2635 ret
= btrfs_del_item(trans
, log
, path
);
2638 btrfs_release_path(path
);
2640 btrfs_release_path(path
);
2644 static noinline
int copy_items(struct btrfs_trans_handle
*trans
,
2645 struct btrfs_root
*log
,
2646 struct btrfs_path
*dst_path
,
2647 struct extent_buffer
*src
,
2648 int start_slot
, int nr
, int inode_only
)
2650 unsigned long src_offset
;
2651 unsigned long dst_offset
;
2652 struct btrfs_file_extent_item
*extent
;
2653 struct btrfs_inode_item
*inode_item
;
2655 struct btrfs_key
*ins_keys
;
2659 struct list_head ordered_sums
;
2661 INIT_LIST_HEAD(&ordered_sums
);
2663 ins_data
= kmalloc(nr
* sizeof(struct btrfs_key
) +
2664 nr
* sizeof(u32
), GFP_NOFS
);
2668 ins_sizes
= (u32
*)ins_data
;
2669 ins_keys
= (struct btrfs_key
*)(ins_data
+ nr
* sizeof(u32
));
2671 for (i
= 0; i
< nr
; i
++) {
2672 ins_sizes
[i
] = btrfs_item_size_nr(src
, i
+ start_slot
);
2673 btrfs_item_key_to_cpu(src
, ins_keys
+ i
, i
+ start_slot
);
2675 ret
= btrfs_insert_empty_items(trans
, log
, dst_path
,
2676 ins_keys
, ins_sizes
, nr
);
2682 for (i
= 0; i
< nr
; i
++, dst_path
->slots
[0]++) {
2683 dst_offset
= btrfs_item_ptr_offset(dst_path
->nodes
[0],
2684 dst_path
->slots
[0]);
2686 src_offset
= btrfs_item_ptr_offset(src
, start_slot
+ i
);
2688 copy_extent_buffer(dst_path
->nodes
[0], src
, dst_offset
,
2689 src_offset
, ins_sizes
[i
]);
2691 if (inode_only
== LOG_INODE_EXISTS
&&
2692 ins_keys
[i
].type
== BTRFS_INODE_ITEM_KEY
) {
2693 inode_item
= btrfs_item_ptr(dst_path
->nodes
[0],
2695 struct btrfs_inode_item
);
2696 btrfs_set_inode_size(dst_path
->nodes
[0], inode_item
, 0);
2698 /* set the generation to zero so the recover code
2699 * can tell the difference between an logging
2700 * just to say 'this inode exists' and a logging
2701 * to say 'update this inode with these values'
2703 btrfs_set_inode_generation(dst_path
->nodes
[0],
2706 /* take a reference on file data extents so that truncates
2707 * or deletes of this inode don't have to relog the inode
2710 if (btrfs_key_type(ins_keys
+ i
) == BTRFS_EXTENT_DATA_KEY
) {
2712 extent
= btrfs_item_ptr(src
, start_slot
+ i
,
2713 struct btrfs_file_extent_item
);
2715 if (btrfs_file_extent_generation(src
, extent
) < trans
->transid
)
2718 found_type
= btrfs_file_extent_type(src
, extent
);
2719 if (found_type
== BTRFS_FILE_EXTENT_REG
||
2720 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
2722 ds
= btrfs_file_extent_disk_bytenr(src
,
2724 /* ds == 0 is a hole */
2728 dl
= btrfs_file_extent_disk_num_bytes(src
,
2730 cs
= btrfs_file_extent_offset(src
, extent
);
2731 cl
= btrfs_file_extent_num_bytes(src
,
2733 if (btrfs_file_extent_compression(src
,
2739 ret
= btrfs_lookup_csums_range(
2740 log
->fs_info
->csum_root
,
2741 ds
+ cs
, ds
+ cs
+ cl
- 1,
2748 btrfs_mark_buffer_dirty(dst_path
->nodes
[0]);
2749 btrfs_release_path(dst_path
);
2753 * we have to do this after the loop above to avoid changing the
2754 * log tree while trying to change the log tree.
2757 while (!list_empty(&ordered_sums
)) {
2758 struct btrfs_ordered_sum
*sums
= list_entry(ordered_sums
.next
,
2759 struct btrfs_ordered_sum
,
2762 ret
= btrfs_csum_file_blocks(trans
, log
, sums
);
2763 list_del(&sums
->list
);
2769 /* log a single inode in the tree log.
2770 * At least one parent directory for this inode must exist in the tree
2771 * or be logged already.
2773 * Any items from this inode changed by the current transaction are copied
2774 * to the log tree. An extra reference is taken on any extents in this
2775 * file, allowing us to avoid a whole pile of corner cases around logging
2776 * blocks that have been removed from the tree.
2778 * See LOG_INODE_ALL and related defines for a description of what inode_only
2781 * This handles both files and directories.
2783 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
2784 struct btrfs_root
*root
, struct inode
*inode
,
2787 struct btrfs_path
*path
;
2788 struct btrfs_path
*dst_path
;
2789 struct btrfs_key min_key
;
2790 struct btrfs_key max_key
;
2791 struct btrfs_root
*log
= root
->log_root
;
2792 struct extent_buffer
*src
= NULL
;
2796 int ins_start_slot
= 0;
2798 u64 ino
= btrfs_ino(inode
);
2800 log
= root
->log_root
;
2802 path
= btrfs_alloc_path();
2805 dst_path
= btrfs_alloc_path();
2807 btrfs_free_path(path
);
2811 min_key
.objectid
= ino
;
2812 min_key
.type
= BTRFS_INODE_ITEM_KEY
;
2815 max_key
.objectid
= ino
;
2817 /* today the code can only do partial logging of directories */
2818 if (!S_ISDIR(inode
->i_mode
))
2819 inode_only
= LOG_INODE_ALL
;
2821 if (inode_only
== LOG_INODE_EXISTS
|| S_ISDIR(inode
->i_mode
))
2822 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
2824 max_key
.type
= (u8
)-1;
2825 max_key
.offset
= (u64
)-1;
2827 ret
= btrfs_commit_inode_delayed_items(trans
, inode
);
2829 btrfs_free_path(path
);
2830 btrfs_free_path(dst_path
);
2834 mutex_lock(&BTRFS_I(inode
)->log_mutex
);
2837 * a brute force approach to making sure we get the most uptodate
2838 * copies of everything.
2840 if (S_ISDIR(inode
->i_mode
)) {
2841 int max_key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
2843 if (inode_only
== LOG_INODE_EXISTS
)
2844 max_key_type
= BTRFS_XATTR_ITEM_KEY
;
2845 ret
= drop_objectid_items(trans
, log
, path
, ino
, max_key_type
);
2847 ret
= btrfs_truncate_inode_items(trans
, log
, inode
, 0, 0);
2853 path
->keep_locks
= 1;
2857 ret
= btrfs_search_forward(root
, &min_key
, &max_key
,
2858 path
, 0, trans
->transid
);
2862 /* note, ins_nr might be > 0 here, cleanup outside the loop */
2863 if (min_key
.objectid
!= ino
)
2865 if (min_key
.type
> max_key
.type
)
2868 src
= path
->nodes
[0];
2869 if (ins_nr
&& ins_start_slot
+ ins_nr
== path
->slots
[0]) {
2872 } else if (!ins_nr
) {
2873 ins_start_slot
= path
->slots
[0];
2878 ret
= copy_items(trans
, log
, dst_path
, src
, ins_start_slot
,
2879 ins_nr
, inode_only
);
2885 ins_start_slot
= path
->slots
[0];
2888 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2890 if (path
->slots
[0] < nritems
) {
2891 btrfs_item_key_to_cpu(path
->nodes
[0], &min_key
,
2896 ret
= copy_items(trans
, log
, dst_path
, src
,
2898 ins_nr
, inode_only
);
2905 btrfs_release_path(path
);
2907 if (min_key
.offset
< (u64
)-1)
2909 else if (min_key
.type
< (u8
)-1)
2911 else if (min_key
.objectid
< (u64
)-1)
2917 ret
= copy_items(trans
, log
, dst_path
, src
,
2919 ins_nr
, inode_only
);
2927 if (inode_only
== LOG_INODE_ALL
&& S_ISDIR(inode
->i_mode
)) {
2928 btrfs_release_path(path
);
2929 btrfs_release_path(dst_path
);
2930 ret
= log_directory_changes(trans
, root
, inode
, path
, dst_path
);
2936 BTRFS_I(inode
)->logged_trans
= trans
->transid
;
2938 mutex_unlock(&BTRFS_I(inode
)->log_mutex
);
2940 btrfs_free_path(path
);
2941 btrfs_free_path(dst_path
);
2946 * follow the dentry parent pointers up the chain and see if any
2947 * of the directories in it require a full commit before they can
2948 * be logged. Returns zero if nothing special needs to be done or 1 if
2949 * a full commit is required.
2951 static noinline
int check_parent_dirs_for_sync(struct btrfs_trans_handle
*trans
,
2952 struct inode
*inode
,
2953 struct dentry
*parent
,
2954 struct super_block
*sb
,
2958 struct btrfs_root
*root
;
2959 struct dentry
*old_parent
= NULL
;
2962 * for regular files, if its inode is already on disk, we don't
2963 * have to worry about the parents at all. This is because
2964 * we can use the last_unlink_trans field to record renames
2965 * and other fun in this file.
2967 if (S_ISREG(inode
->i_mode
) &&
2968 BTRFS_I(inode
)->generation
<= last_committed
&&
2969 BTRFS_I(inode
)->last_unlink_trans
<= last_committed
)
2972 if (!S_ISDIR(inode
->i_mode
)) {
2973 if (!parent
|| !parent
->d_inode
|| sb
!= parent
->d_inode
->i_sb
)
2975 inode
= parent
->d_inode
;
2979 BTRFS_I(inode
)->logged_trans
= trans
->transid
;
2982 if (BTRFS_I(inode
)->last_unlink_trans
> last_committed
) {
2983 root
= BTRFS_I(inode
)->root
;
2986 * make sure any commits to the log are forced
2987 * to be full commits
2989 root
->fs_info
->last_trans_log_full_commit
=
2995 if (!parent
|| !parent
->d_inode
|| sb
!= parent
->d_inode
->i_sb
)
2998 if (IS_ROOT(parent
))
3001 parent
= dget_parent(parent
);
3003 old_parent
= parent
;
3004 inode
= parent
->d_inode
;
3012 static int inode_in_log(struct btrfs_trans_handle
*trans
,
3013 struct inode
*inode
)
3015 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3018 mutex_lock(&root
->log_mutex
);
3019 if (BTRFS_I(inode
)->logged_trans
== trans
->transid
&&
3020 BTRFS_I(inode
)->last_sub_trans
<= root
->last_log_commit
)
3022 mutex_unlock(&root
->log_mutex
);
3028 * helper function around btrfs_log_inode to make sure newly created
3029 * parent directories also end up in the log. A minimal inode and backref
3030 * only logging is done of any parent directories that are older than
3031 * the last committed transaction
3033 int btrfs_log_inode_parent(struct btrfs_trans_handle
*trans
,
3034 struct btrfs_root
*root
, struct inode
*inode
,
3035 struct dentry
*parent
, int exists_only
)
3037 int inode_only
= exists_only
? LOG_INODE_EXISTS
: LOG_INODE_ALL
;
3038 struct super_block
*sb
;
3039 struct dentry
*old_parent
= NULL
;
3041 u64 last_committed
= root
->fs_info
->last_trans_committed
;
3045 if (btrfs_test_opt(root
, NOTREELOG
)) {
3050 if (root
->fs_info
->last_trans_log_full_commit
>
3051 root
->fs_info
->last_trans_committed
) {
3056 if (root
!= BTRFS_I(inode
)->root
||
3057 btrfs_root_refs(&root
->root_item
) == 0) {
3062 ret
= check_parent_dirs_for_sync(trans
, inode
, parent
,
3063 sb
, last_committed
);
3067 if (inode_in_log(trans
, inode
)) {
3068 ret
= BTRFS_NO_LOG_SYNC
;
3072 ret
= start_log_trans(trans
, root
);
3076 ret
= btrfs_log_inode(trans
, root
, inode
, inode_only
);
3081 * for regular files, if its inode is already on disk, we don't
3082 * have to worry about the parents at all. This is because
3083 * we can use the last_unlink_trans field to record renames
3084 * and other fun in this file.
3086 if (S_ISREG(inode
->i_mode
) &&
3087 BTRFS_I(inode
)->generation
<= last_committed
&&
3088 BTRFS_I(inode
)->last_unlink_trans
<= last_committed
) {
3093 inode_only
= LOG_INODE_EXISTS
;
3095 if (!parent
|| !parent
->d_inode
|| sb
!= parent
->d_inode
->i_sb
)
3098 inode
= parent
->d_inode
;
3099 if (root
!= BTRFS_I(inode
)->root
)
3102 if (BTRFS_I(inode
)->generation
>
3103 root
->fs_info
->last_trans_committed
) {
3104 ret
= btrfs_log_inode(trans
, root
, inode
, inode_only
);
3108 if (IS_ROOT(parent
))
3111 parent
= dget_parent(parent
);
3113 old_parent
= parent
;
3119 BUG_ON(ret
!= -ENOSPC
);
3120 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
3123 btrfs_end_log_trans(root
);
3129 * it is not safe to log dentry if the chunk root has added new
3130 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
3131 * If this returns 1, you must commit the transaction to safely get your
3134 int btrfs_log_dentry_safe(struct btrfs_trans_handle
*trans
,
3135 struct btrfs_root
*root
, struct dentry
*dentry
)
3137 struct dentry
*parent
= dget_parent(dentry
);
3140 ret
= btrfs_log_inode_parent(trans
, root
, dentry
->d_inode
, parent
, 0);
3147 * should be called during mount to recover any replay any log trees
3150 int btrfs_recover_log_trees(struct btrfs_root
*log_root_tree
)
3153 struct btrfs_path
*path
;
3154 struct btrfs_trans_handle
*trans
;
3155 struct btrfs_key key
;
3156 struct btrfs_key found_key
;
3157 struct btrfs_key tmp_key
;
3158 struct btrfs_root
*log
;
3159 struct btrfs_fs_info
*fs_info
= log_root_tree
->fs_info
;
3160 struct walk_control wc
= {
3161 .process_func
= process_one_buffer
,
3165 path
= btrfs_alloc_path();
3169 fs_info
->log_root_recovering
= 1;
3171 trans
= btrfs_start_transaction(fs_info
->tree_root
, 0);
3172 BUG_ON(IS_ERR(trans
));
3177 ret
= walk_log_tree(trans
, log_root_tree
, &wc
);
3181 key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
3182 key
.offset
= (u64
)-1;
3183 btrfs_set_key_type(&key
, BTRFS_ROOT_ITEM_KEY
);
3186 ret
= btrfs_search_slot(NULL
, log_root_tree
, &key
, path
, 0, 0);
3190 if (path
->slots
[0] == 0)
3194 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
3196 btrfs_release_path(path
);
3197 if (found_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
3200 log
= btrfs_read_fs_root_no_radix(log_root_tree
,
3202 BUG_ON(IS_ERR(log
));
3204 tmp_key
.objectid
= found_key
.offset
;
3205 tmp_key
.type
= BTRFS_ROOT_ITEM_KEY
;
3206 tmp_key
.offset
= (u64
)-1;
3208 wc
.replay_dest
= btrfs_read_fs_root_no_name(fs_info
, &tmp_key
);
3209 BUG_ON(IS_ERR_OR_NULL(wc
.replay_dest
));
3211 wc
.replay_dest
->log_root
= log
;
3212 btrfs_record_root_in_trans(trans
, wc
.replay_dest
);
3213 ret
= walk_log_tree(trans
, log
, &wc
);
3216 if (wc
.stage
== LOG_WALK_REPLAY_ALL
) {
3217 ret
= fixup_inode_link_counts(trans
, wc
.replay_dest
,
3222 key
.offset
= found_key
.offset
- 1;
3223 wc
.replay_dest
->log_root
= NULL
;
3224 free_extent_buffer(log
->node
);
3225 free_extent_buffer(log
->commit_root
);
3228 if (found_key
.offset
== 0)
3231 btrfs_release_path(path
);
3233 /* step one is to pin it all, step two is to replay just inodes */
3236 wc
.process_func
= replay_one_buffer
;
3237 wc
.stage
= LOG_WALK_REPLAY_INODES
;
3240 /* step three is to replay everything */
3241 if (wc
.stage
< LOG_WALK_REPLAY_ALL
) {
3246 btrfs_free_path(path
);
3248 free_extent_buffer(log_root_tree
->node
);
3249 log_root_tree
->log_root
= NULL
;
3250 fs_info
->log_root_recovering
= 0;
3252 /* step 4: commit the transaction, which also unpins the blocks */
3253 btrfs_commit_transaction(trans
, fs_info
->tree_root
);
3255 kfree(log_root_tree
);
3260 * there are some corner cases where we want to force a full
3261 * commit instead of allowing a directory to be logged.
3263 * They revolve around files there were unlinked from the directory, and
3264 * this function updates the parent directory so that a full commit is
3265 * properly done if it is fsync'd later after the unlinks are done.
3267 void btrfs_record_unlink_dir(struct btrfs_trans_handle
*trans
,
3268 struct inode
*dir
, struct inode
*inode
,
3272 * when we're logging a file, if it hasn't been renamed
3273 * or unlinked, and its inode is fully committed on disk,
3274 * we don't have to worry about walking up the directory chain
3275 * to log its parents.
3277 * So, we use the last_unlink_trans field to put this transid
3278 * into the file. When the file is logged we check it and
3279 * don't log the parents if the file is fully on disk.
3281 if (S_ISREG(inode
->i_mode
))
3282 BTRFS_I(inode
)->last_unlink_trans
= trans
->transid
;
3285 * if this directory was already logged any new
3286 * names for this file/dir will get recorded
3289 if (BTRFS_I(dir
)->logged_trans
== trans
->transid
)
3293 * if the inode we're about to unlink was logged,
3294 * the log will be properly updated for any new names
3296 if (BTRFS_I(inode
)->logged_trans
== trans
->transid
)
3300 * when renaming files across directories, if the directory
3301 * there we're unlinking from gets fsync'd later on, there's
3302 * no way to find the destination directory later and fsync it
3303 * properly. So, we have to be conservative and force commits
3304 * so the new name gets discovered.
3309 /* we can safely do the unlink without any special recording */
3313 BTRFS_I(dir
)->last_unlink_trans
= trans
->transid
;
3317 * Call this after adding a new name for a file and it will properly
3318 * update the log to reflect the new name.
3320 * It will return zero if all goes well, and it will return 1 if a
3321 * full transaction commit is required.
3323 int btrfs_log_new_name(struct btrfs_trans_handle
*trans
,
3324 struct inode
*inode
, struct inode
*old_dir
,
3325 struct dentry
*parent
)
3327 struct btrfs_root
* root
= BTRFS_I(inode
)->root
;
3330 * this will force the logging code to walk the dentry chain
3333 if (S_ISREG(inode
->i_mode
))
3334 BTRFS_I(inode
)->last_unlink_trans
= trans
->transid
;
3337 * if this inode hasn't been logged and directory we're renaming it
3338 * from hasn't been logged, we don't need to log it
3340 if (BTRFS_I(inode
)->logged_trans
<=
3341 root
->fs_info
->last_trans_committed
&&
3342 (!old_dir
|| BTRFS_I(old_dir
)->logged_trans
<=
3343 root
->fs_info
->last_trans_committed
))
3346 return btrfs_log_inode_parent(trans
, root
, inode
, parent
, 1);