spi-topcliff-pch: Fix issue for transmitting over 4KByte
[zen-stable.git] / fs / ext4 / inode.c
blobaafc626d64ac3c0cce8aa7f9b75c68213866fdee
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
46 #include <trace/events/ext4.h>
48 #define MPAGE_DA_EXTENT_TAIL 0x01
50 static inline int ext4_begin_ordered_truncate(struct inode *inode,
51 loff_t new_size)
53 trace_ext4_begin_ordered_truncate(inode, new_size);
55 * If jinode is zero, then we never opened the file for
56 * writing, so there's no need to call
57 * jbd2_journal_begin_ordered_truncate() since there's no
58 * outstanding writes we need to flush.
60 if (!EXT4_I(inode)->jinode)
61 return 0;
62 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
63 EXT4_I(inode)->jinode,
64 new_size);
67 static void ext4_invalidatepage(struct page *page, unsigned long offset);
68 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
69 struct buffer_head *bh_result, int create);
70 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
71 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
72 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
73 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
74 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
75 struct inode *inode, struct page *page, loff_t from,
76 loff_t length, int flags);
79 * Test whether an inode is a fast symlink.
81 static int ext4_inode_is_fast_symlink(struct inode *inode)
83 int ea_blocks = EXT4_I(inode)->i_file_acl ?
84 (inode->i_sb->s_blocksize >> 9) : 0;
86 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
90 * Restart the transaction associated with *handle. This does a commit,
91 * so before we call here everything must be consistently dirtied against
92 * this transaction.
94 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
95 int nblocks)
97 int ret;
100 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
101 * moment, get_block can be called only for blocks inside i_size since
102 * page cache has been already dropped and writes are blocked by
103 * i_mutex. So we can safely drop the i_data_sem here.
105 BUG_ON(EXT4_JOURNAL(inode) == NULL);
106 jbd_debug(2, "restarting handle %p\n", handle);
107 up_write(&EXT4_I(inode)->i_data_sem);
108 ret = ext4_journal_restart(handle, nblocks);
109 down_write(&EXT4_I(inode)->i_data_sem);
110 ext4_discard_preallocations(inode);
112 return ret;
116 * Called at the last iput() if i_nlink is zero.
118 void ext4_evict_inode(struct inode *inode)
120 handle_t *handle;
121 int err;
123 trace_ext4_evict_inode(inode);
125 ext4_ioend_wait(inode);
127 if (inode->i_nlink) {
129 * When journalling data dirty buffers are tracked only in the
130 * journal. So although mm thinks everything is clean and
131 * ready for reaping the inode might still have some pages to
132 * write in the running transaction or waiting to be
133 * checkpointed. Thus calling jbd2_journal_invalidatepage()
134 * (via truncate_inode_pages()) to discard these buffers can
135 * cause data loss. Also even if we did not discard these
136 * buffers, we would have no way to find them after the inode
137 * is reaped and thus user could see stale data if he tries to
138 * read them before the transaction is checkpointed. So be
139 * careful and force everything to disk here... We use
140 * ei->i_datasync_tid to store the newest transaction
141 * containing inode's data.
143 * Note that directories do not have this problem because they
144 * don't use page cache.
146 if (ext4_should_journal_data(inode) &&
147 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
148 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
149 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
151 jbd2_log_start_commit(journal, commit_tid);
152 jbd2_log_wait_commit(journal, commit_tid);
153 filemap_write_and_wait(&inode->i_data);
155 truncate_inode_pages(&inode->i_data, 0);
156 goto no_delete;
159 if (!is_bad_inode(inode))
160 dquot_initialize(inode);
162 if (ext4_should_order_data(inode))
163 ext4_begin_ordered_truncate(inode, 0);
164 truncate_inode_pages(&inode->i_data, 0);
166 if (is_bad_inode(inode))
167 goto no_delete;
169 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
170 if (IS_ERR(handle)) {
171 ext4_std_error(inode->i_sb, PTR_ERR(handle));
173 * If we're going to skip the normal cleanup, we still need to
174 * make sure that the in-core orphan linked list is properly
175 * cleaned up.
177 ext4_orphan_del(NULL, inode);
178 goto no_delete;
181 if (IS_SYNC(inode))
182 ext4_handle_sync(handle);
183 inode->i_size = 0;
184 err = ext4_mark_inode_dirty(handle, inode);
185 if (err) {
186 ext4_warning(inode->i_sb,
187 "couldn't mark inode dirty (err %d)", err);
188 goto stop_handle;
190 if (inode->i_blocks)
191 ext4_truncate(inode);
194 * ext4_ext_truncate() doesn't reserve any slop when it
195 * restarts journal transactions; therefore there may not be
196 * enough credits left in the handle to remove the inode from
197 * the orphan list and set the dtime field.
199 if (!ext4_handle_has_enough_credits(handle, 3)) {
200 err = ext4_journal_extend(handle, 3);
201 if (err > 0)
202 err = ext4_journal_restart(handle, 3);
203 if (err != 0) {
204 ext4_warning(inode->i_sb,
205 "couldn't extend journal (err %d)", err);
206 stop_handle:
207 ext4_journal_stop(handle);
208 ext4_orphan_del(NULL, inode);
209 goto no_delete;
214 * Kill off the orphan record which ext4_truncate created.
215 * AKPM: I think this can be inside the above `if'.
216 * Note that ext4_orphan_del() has to be able to cope with the
217 * deletion of a non-existent orphan - this is because we don't
218 * know if ext4_truncate() actually created an orphan record.
219 * (Well, we could do this if we need to, but heck - it works)
221 ext4_orphan_del(handle, inode);
222 EXT4_I(inode)->i_dtime = get_seconds();
225 * One subtle ordering requirement: if anything has gone wrong
226 * (transaction abort, IO errors, whatever), then we can still
227 * do these next steps (the fs will already have been marked as
228 * having errors), but we can't free the inode if the mark_dirty
229 * fails.
231 if (ext4_mark_inode_dirty(handle, inode))
232 /* If that failed, just do the required in-core inode clear. */
233 ext4_clear_inode(inode);
234 else
235 ext4_free_inode(handle, inode);
236 ext4_journal_stop(handle);
237 return;
238 no_delete:
239 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
242 #ifdef CONFIG_QUOTA
243 qsize_t *ext4_get_reserved_space(struct inode *inode)
245 return &EXT4_I(inode)->i_reserved_quota;
247 #endif
250 * Calculate the number of metadata blocks need to reserve
251 * to allocate a block located at @lblock
253 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
255 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
256 return ext4_ext_calc_metadata_amount(inode, lblock);
258 return ext4_ind_calc_metadata_amount(inode, lblock);
262 * Called with i_data_sem down, which is important since we can call
263 * ext4_discard_preallocations() from here.
265 void ext4_da_update_reserve_space(struct inode *inode,
266 int used, int quota_claim)
268 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
269 struct ext4_inode_info *ei = EXT4_I(inode);
271 spin_lock(&ei->i_block_reservation_lock);
272 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
273 if (unlikely(used > ei->i_reserved_data_blocks)) {
274 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
275 "with only %d reserved data blocks\n",
276 __func__, inode->i_ino, used,
277 ei->i_reserved_data_blocks);
278 WARN_ON(1);
279 used = ei->i_reserved_data_blocks;
282 /* Update per-inode reservations */
283 ei->i_reserved_data_blocks -= used;
284 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
285 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
286 used + ei->i_allocated_meta_blocks);
287 ei->i_allocated_meta_blocks = 0;
289 if (ei->i_reserved_data_blocks == 0) {
291 * We can release all of the reserved metadata blocks
292 * only when we have written all of the delayed
293 * allocation blocks.
295 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
296 ei->i_reserved_meta_blocks);
297 ei->i_reserved_meta_blocks = 0;
298 ei->i_da_metadata_calc_len = 0;
300 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
302 /* Update quota subsystem for data blocks */
303 if (quota_claim)
304 dquot_claim_block(inode, EXT4_C2B(sbi, used));
305 else {
307 * We did fallocate with an offset that is already delayed
308 * allocated. So on delayed allocated writeback we should
309 * not re-claim the quota for fallocated blocks.
311 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
315 * If we have done all the pending block allocations and if
316 * there aren't any writers on the inode, we can discard the
317 * inode's preallocations.
319 if ((ei->i_reserved_data_blocks == 0) &&
320 (atomic_read(&inode->i_writecount) == 0))
321 ext4_discard_preallocations(inode);
324 static int __check_block_validity(struct inode *inode, const char *func,
325 unsigned int line,
326 struct ext4_map_blocks *map)
328 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
329 map->m_len)) {
330 ext4_error_inode(inode, func, line, map->m_pblk,
331 "lblock %lu mapped to illegal pblock "
332 "(length %d)", (unsigned long) map->m_lblk,
333 map->m_len);
334 return -EIO;
336 return 0;
339 #define check_block_validity(inode, map) \
340 __check_block_validity((inode), __func__, __LINE__, (map))
343 * Return the number of contiguous dirty pages in a given inode
344 * starting at page frame idx.
346 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
347 unsigned int max_pages)
349 struct address_space *mapping = inode->i_mapping;
350 pgoff_t index;
351 struct pagevec pvec;
352 pgoff_t num = 0;
353 int i, nr_pages, done = 0;
355 if (max_pages == 0)
356 return 0;
357 pagevec_init(&pvec, 0);
358 while (!done) {
359 index = idx;
360 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
361 PAGECACHE_TAG_DIRTY,
362 (pgoff_t)PAGEVEC_SIZE);
363 if (nr_pages == 0)
364 break;
365 for (i = 0; i < nr_pages; i++) {
366 struct page *page = pvec.pages[i];
367 struct buffer_head *bh, *head;
369 lock_page(page);
370 if (unlikely(page->mapping != mapping) ||
371 !PageDirty(page) ||
372 PageWriteback(page) ||
373 page->index != idx) {
374 done = 1;
375 unlock_page(page);
376 break;
378 if (page_has_buffers(page)) {
379 bh = head = page_buffers(page);
380 do {
381 if (!buffer_delay(bh) &&
382 !buffer_unwritten(bh))
383 done = 1;
384 bh = bh->b_this_page;
385 } while (!done && (bh != head));
387 unlock_page(page);
388 if (done)
389 break;
390 idx++;
391 num++;
392 if (num >= max_pages) {
393 done = 1;
394 break;
397 pagevec_release(&pvec);
399 return num;
403 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
405 static void set_buffers_da_mapped(struct inode *inode,
406 struct ext4_map_blocks *map)
408 struct address_space *mapping = inode->i_mapping;
409 struct pagevec pvec;
410 int i, nr_pages;
411 pgoff_t index, end;
413 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
414 end = (map->m_lblk + map->m_len - 1) >>
415 (PAGE_CACHE_SHIFT - inode->i_blkbits);
417 pagevec_init(&pvec, 0);
418 while (index <= end) {
419 nr_pages = pagevec_lookup(&pvec, mapping, index,
420 min(end - index + 1,
421 (pgoff_t)PAGEVEC_SIZE));
422 if (nr_pages == 0)
423 break;
424 for (i = 0; i < nr_pages; i++) {
425 struct page *page = pvec.pages[i];
426 struct buffer_head *bh, *head;
428 if (unlikely(page->mapping != mapping) ||
429 !PageDirty(page))
430 break;
432 if (page_has_buffers(page)) {
433 bh = head = page_buffers(page);
434 do {
435 set_buffer_da_mapped(bh);
436 bh = bh->b_this_page;
437 } while (bh != head);
439 index++;
441 pagevec_release(&pvec);
446 * The ext4_map_blocks() function tries to look up the requested blocks,
447 * and returns if the blocks are already mapped.
449 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
450 * and store the allocated blocks in the result buffer head and mark it
451 * mapped.
453 * If file type is extents based, it will call ext4_ext_map_blocks(),
454 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
455 * based files
457 * On success, it returns the number of blocks being mapped or allocate.
458 * if create==0 and the blocks are pre-allocated and uninitialized block,
459 * the result buffer head is unmapped. If the create ==1, it will make sure
460 * the buffer head is mapped.
462 * It returns 0 if plain look up failed (blocks have not been allocated), in
463 * that case, buffer head is unmapped
465 * It returns the error in case of allocation failure.
467 int ext4_map_blocks(handle_t *handle, struct inode *inode,
468 struct ext4_map_blocks *map, int flags)
470 int retval;
472 map->m_flags = 0;
473 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
474 "logical block %lu\n", inode->i_ino, flags, map->m_len,
475 (unsigned long) map->m_lblk);
477 * Try to see if we can get the block without requesting a new
478 * file system block.
480 down_read((&EXT4_I(inode)->i_data_sem));
481 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
482 retval = ext4_ext_map_blocks(handle, inode, map, flags &
483 EXT4_GET_BLOCKS_KEEP_SIZE);
484 } else {
485 retval = ext4_ind_map_blocks(handle, inode, map, flags &
486 EXT4_GET_BLOCKS_KEEP_SIZE);
488 up_read((&EXT4_I(inode)->i_data_sem));
490 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
491 int ret = check_block_validity(inode, map);
492 if (ret != 0)
493 return ret;
496 /* If it is only a block(s) look up */
497 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
498 return retval;
501 * Returns if the blocks have already allocated
503 * Note that if blocks have been preallocated
504 * ext4_ext_get_block() returns the create = 0
505 * with buffer head unmapped.
507 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
508 return retval;
511 * When we call get_blocks without the create flag, the
512 * BH_Unwritten flag could have gotten set if the blocks
513 * requested were part of a uninitialized extent. We need to
514 * clear this flag now that we are committed to convert all or
515 * part of the uninitialized extent to be an initialized
516 * extent. This is because we need to avoid the combination
517 * of BH_Unwritten and BH_Mapped flags being simultaneously
518 * set on the buffer_head.
520 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
523 * New blocks allocate and/or writing to uninitialized extent
524 * will possibly result in updating i_data, so we take
525 * the write lock of i_data_sem, and call get_blocks()
526 * with create == 1 flag.
528 down_write((&EXT4_I(inode)->i_data_sem));
531 * if the caller is from delayed allocation writeout path
532 * we have already reserved fs blocks for allocation
533 * let the underlying get_block() function know to
534 * avoid double accounting
536 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
537 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
539 * We need to check for EXT4 here because migrate
540 * could have changed the inode type in between
542 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
543 retval = ext4_ext_map_blocks(handle, inode, map, flags);
544 } else {
545 retval = ext4_ind_map_blocks(handle, inode, map, flags);
547 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
549 * We allocated new blocks which will result in
550 * i_data's format changing. Force the migrate
551 * to fail by clearing migrate flags
553 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
557 * Update reserved blocks/metadata blocks after successful
558 * block allocation which had been deferred till now. We don't
559 * support fallocate for non extent files. So we can update
560 * reserve space here.
562 if ((retval > 0) &&
563 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
564 ext4_da_update_reserve_space(inode, retval, 1);
566 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
567 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
569 /* If we have successfully mapped the delayed allocated blocks,
570 * set the BH_Da_Mapped bit on them. Its important to do this
571 * under the protection of i_data_sem.
573 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
574 set_buffers_da_mapped(inode, map);
577 up_write((&EXT4_I(inode)->i_data_sem));
578 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
579 int ret = check_block_validity(inode, map);
580 if (ret != 0)
581 return ret;
583 return retval;
586 /* Maximum number of blocks we map for direct IO at once. */
587 #define DIO_MAX_BLOCKS 4096
589 static int _ext4_get_block(struct inode *inode, sector_t iblock,
590 struct buffer_head *bh, int flags)
592 handle_t *handle = ext4_journal_current_handle();
593 struct ext4_map_blocks map;
594 int ret = 0, started = 0;
595 int dio_credits;
597 map.m_lblk = iblock;
598 map.m_len = bh->b_size >> inode->i_blkbits;
600 if (flags && !handle) {
601 /* Direct IO write... */
602 if (map.m_len > DIO_MAX_BLOCKS)
603 map.m_len = DIO_MAX_BLOCKS;
604 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
605 handle = ext4_journal_start(inode, dio_credits);
606 if (IS_ERR(handle)) {
607 ret = PTR_ERR(handle);
608 return ret;
610 started = 1;
613 ret = ext4_map_blocks(handle, inode, &map, flags);
614 if (ret > 0) {
615 map_bh(bh, inode->i_sb, map.m_pblk);
616 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
617 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
618 ret = 0;
620 if (started)
621 ext4_journal_stop(handle);
622 return ret;
625 int ext4_get_block(struct inode *inode, sector_t iblock,
626 struct buffer_head *bh, int create)
628 return _ext4_get_block(inode, iblock, bh,
629 create ? EXT4_GET_BLOCKS_CREATE : 0);
633 * `handle' can be NULL if create is zero
635 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
636 ext4_lblk_t block, int create, int *errp)
638 struct ext4_map_blocks map;
639 struct buffer_head *bh;
640 int fatal = 0, err;
642 J_ASSERT(handle != NULL || create == 0);
644 map.m_lblk = block;
645 map.m_len = 1;
646 err = ext4_map_blocks(handle, inode, &map,
647 create ? EXT4_GET_BLOCKS_CREATE : 0);
649 if (err < 0)
650 *errp = err;
651 if (err <= 0)
652 return NULL;
653 *errp = 0;
655 bh = sb_getblk(inode->i_sb, map.m_pblk);
656 if (!bh) {
657 *errp = -EIO;
658 return NULL;
660 if (map.m_flags & EXT4_MAP_NEW) {
661 J_ASSERT(create != 0);
662 J_ASSERT(handle != NULL);
665 * Now that we do not always journal data, we should
666 * keep in mind whether this should always journal the
667 * new buffer as metadata. For now, regular file
668 * writes use ext4_get_block instead, so it's not a
669 * problem.
671 lock_buffer(bh);
672 BUFFER_TRACE(bh, "call get_create_access");
673 fatal = ext4_journal_get_create_access(handle, bh);
674 if (!fatal && !buffer_uptodate(bh)) {
675 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
676 set_buffer_uptodate(bh);
678 unlock_buffer(bh);
679 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
680 err = ext4_handle_dirty_metadata(handle, inode, bh);
681 if (!fatal)
682 fatal = err;
683 } else {
684 BUFFER_TRACE(bh, "not a new buffer");
686 if (fatal) {
687 *errp = fatal;
688 brelse(bh);
689 bh = NULL;
691 return bh;
694 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
695 ext4_lblk_t block, int create, int *err)
697 struct buffer_head *bh;
699 bh = ext4_getblk(handle, inode, block, create, err);
700 if (!bh)
701 return bh;
702 if (buffer_uptodate(bh))
703 return bh;
704 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
705 wait_on_buffer(bh);
706 if (buffer_uptodate(bh))
707 return bh;
708 put_bh(bh);
709 *err = -EIO;
710 return NULL;
713 static int walk_page_buffers(handle_t *handle,
714 struct buffer_head *head,
715 unsigned from,
716 unsigned to,
717 int *partial,
718 int (*fn)(handle_t *handle,
719 struct buffer_head *bh))
721 struct buffer_head *bh;
722 unsigned block_start, block_end;
723 unsigned blocksize = head->b_size;
724 int err, ret = 0;
725 struct buffer_head *next;
727 for (bh = head, block_start = 0;
728 ret == 0 && (bh != head || !block_start);
729 block_start = block_end, bh = next) {
730 next = bh->b_this_page;
731 block_end = block_start + blocksize;
732 if (block_end <= from || block_start >= to) {
733 if (partial && !buffer_uptodate(bh))
734 *partial = 1;
735 continue;
737 err = (*fn)(handle, bh);
738 if (!ret)
739 ret = err;
741 return ret;
745 * To preserve ordering, it is essential that the hole instantiation and
746 * the data write be encapsulated in a single transaction. We cannot
747 * close off a transaction and start a new one between the ext4_get_block()
748 * and the commit_write(). So doing the jbd2_journal_start at the start of
749 * prepare_write() is the right place.
751 * Also, this function can nest inside ext4_writepage() ->
752 * block_write_full_page(). In that case, we *know* that ext4_writepage()
753 * has generated enough buffer credits to do the whole page. So we won't
754 * block on the journal in that case, which is good, because the caller may
755 * be PF_MEMALLOC.
757 * By accident, ext4 can be reentered when a transaction is open via
758 * quota file writes. If we were to commit the transaction while thus
759 * reentered, there can be a deadlock - we would be holding a quota
760 * lock, and the commit would never complete if another thread had a
761 * transaction open and was blocking on the quota lock - a ranking
762 * violation.
764 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
765 * will _not_ run commit under these circumstances because handle->h_ref
766 * is elevated. We'll still have enough credits for the tiny quotafile
767 * write.
769 static int do_journal_get_write_access(handle_t *handle,
770 struct buffer_head *bh)
772 int dirty = buffer_dirty(bh);
773 int ret;
775 if (!buffer_mapped(bh) || buffer_freed(bh))
776 return 0;
778 * __block_write_begin() could have dirtied some buffers. Clean
779 * the dirty bit as jbd2_journal_get_write_access() could complain
780 * otherwise about fs integrity issues. Setting of the dirty bit
781 * by __block_write_begin() isn't a real problem here as we clear
782 * the bit before releasing a page lock and thus writeback cannot
783 * ever write the buffer.
785 if (dirty)
786 clear_buffer_dirty(bh);
787 ret = ext4_journal_get_write_access(handle, bh);
788 if (!ret && dirty)
789 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
790 return ret;
793 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
794 struct buffer_head *bh_result, int create);
795 static int ext4_write_begin(struct file *file, struct address_space *mapping,
796 loff_t pos, unsigned len, unsigned flags,
797 struct page **pagep, void **fsdata)
799 struct inode *inode = mapping->host;
800 int ret, needed_blocks;
801 handle_t *handle;
802 int retries = 0;
803 struct page *page;
804 pgoff_t index;
805 unsigned from, to;
807 trace_ext4_write_begin(inode, pos, len, flags);
809 * Reserve one block more for addition to orphan list in case
810 * we allocate blocks but write fails for some reason
812 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
813 index = pos >> PAGE_CACHE_SHIFT;
814 from = pos & (PAGE_CACHE_SIZE - 1);
815 to = from + len;
817 retry:
818 handle = ext4_journal_start(inode, needed_blocks);
819 if (IS_ERR(handle)) {
820 ret = PTR_ERR(handle);
821 goto out;
824 /* We cannot recurse into the filesystem as the transaction is already
825 * started */
826 flags |= AOP_FLAG_NOFS;
828 page = grab_cache_page_write_begin(mapping, index, flags);
829 if (!page) {
830 ext4_journal_stop(handle);
831 ret = -ENOMEM;
832 goto out;
834 *pagep = page;
836 if (ext4_should_dioread_nolock(inode))
837 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
838 else
839 ret = __block_write_begin(page, pos, len, ext4_get_block);
841 if (!ret && ext4_should_journal_data(inode)) {
842 ret = walk_page_buffers(handle, page_buffers(page),
843 from, to, NULL, do_journal_get_write_access);
846 if (ret) {
847 unlock_page(page);
848 page_cache_release(page);
850 * __block_write_begin may have instantiated a few blocks
851 * outside i_size. Trim these off again. Don't need
852 * i_size_read because we hold i_mutex.
854 * Add inode to orphan list in case we crash before
855 * truncate finishes
857 if (pos + len > inode->i_size && ext4_can_truncate(inode))
858 ext4_orphan_add(handle, inode);
860 ext4_journal_stop(handle);
861 if (pos + len > inode->i_size) {
862 ext4_truncate_failed_write(inode);
864 * If truncate failed early the inode might
865 * still be on the orphan list; we need to
866 * make sure the inode is removed from the
867 * orphan list in that case.
869 if (inode->i_nlink)
870 ext4_orphan_del(NULL, inode);
874 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
875 goto retry;
876 out:
877 return ret;
880 /* For write_end() in data=journal mode */
881 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
883 if (!buffer_mapped(bh) || buffer_freed(bh))
884 return 0;
885 set_buffer_uptodate(bh);
886 return ext4_handle_dirty_metadata(handle, NULL, bh);
889 static int ext4_generic_write_end(struct file *file,
890 struct address_space *mapping,
891 loff_t pos, unsigned len, unsigned copied,
892 struct page *page, void *fsdata)
894 int i_size_changed = 0;
895 struct inode *inode = mapping->host;
896 handle_t *handle = ext4_journal_current_handle();
898 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
901 * No need to use i_size_read() here, the i_size
902 * cannot change under us because we hold i_mutex.
904 * But it's important to update i_size while still holding page lock:
905 * page writeout could otherwise come in and zero beyond i_size.
907 if (pos + copied > inode->i_size) {
908 i_size_write(inode, pos + copied);
909 i_size_changed = 1;
912 if (pos + copied > EXT4_I(inode)->i_disksize) {
913 /* We need to mark inode dirty even if
914 * new_i_size is less that inode->i_size
915 * bu greater than i_disksize.(hint delalloc)
917 ext4_update_i_disksize(inode, (pos + copied));
918 i_size_changed = 1;
920 unlock_page(page);
921 page_cache_release(page);
924 * Don't mark the inode dirty under page lock. First, it unnecessarily
925 * makes the holding time of page lock longer. Second, it forces lock
926 * ordering of page lock and transaction start for journaling
927 * filesystems.
929 if (i_size_changed)
930 ext4_mark_inode_dirty(handle, inode);
932 return copied;
936 * We need to pick up the new inode size which generic_commit_write gave us
937 * `file' can be NULL - eg, when called from page_symlink().
939 * ext4 never places buffers on inode->i_mapping->private_list. metadata
940 * buffers are managed internally.
942 static int ext4_ordered_write_end(struct file *file,
943 struct address_space *mapping,
944 loff_t pos, unsigned len, unsigned copied,
945 struct page *page, void *fsdata)
947 handle_t *handle = ext4_journal_current_handle();
948 struct inode *inode = mapping->host;
949 int ret = 0, ret2;
951 trace_ext4_ordered_write_end(inode, pos, len, copied);
952 ret = ext4_jbd2_file_inode(handle, inode);
954 if (ret == 0) {
955 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
956 page, fsdata);
957 copied = ret2;
958 if (pos + len > inode->i_size && ext4_can_truncate(inode))
959 /* if we have allocated more blocks and copied
960 * less. We will have blocks allocated outside
961 * inode->i_size. So truncate them
963 ext4_orphan_add(handle, inode);
964 if (ret2 < 0)
965 ret = ret2;
966 } else {
967 unlock_page(page);
968 page_cache_release(page);
971 ret2 = ext4_journal_stop(handle);
972 if (!ret)
973 ret = ret2;
975 if (pos + len > inode->i_size) {
976 ext4_truncate_failed_write(inode);
978 * If truncate failed early the inode might still be
979 * on the orphan list; we need to make sure the inode
980 * is removed from the orphan list in that case.
982 if (inode->i_nlink)
983 ext4_orphan_del(NULL, inode);
987 return ret ? ret : copied;
990 static int ext4_writeback_write_end(struct file *file,
991 struct address_space *mapping,
992 loff_t pos, unsigned len, unsigned copied,
993 struct page *page, void *fsdata)
995 handle_t *handle = ext4_journal_current_handle();
996 struct inode *inode = mapping->host;
997 int ret = 0, ret2;
999 trace_ext4_writeback_write_end(inode, pos, len, copied);
1000 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1001 page, fsdata);
1002 copied = ret2;
1003 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1004 /* if we have allocated more blocks and copied
1005 * less. We will have blocks allocated outside
1006 * inode->i_size. So truncate them
1008 ext4_orphan_add(handle, inode);
1010 if (ret2 < 0)
1011 ret = ret2;
1013 ret2 = ext4_journal_stop(handle);
1014 if (!ret)
1015 ret = ret2;
1017 if (pos + len > inode->i_size) {
1018 ext4_truncate_failed_write(inode);
1020 * If truncate failed early the inode might still be
1021 * on the orphan list; we need to make sure the inode
1022 * is removed from the orphan list in that case.
1024 if (inode->i_nlink)
1025 ext4_orphan_del(NULL, inode);
1028 return ret ? ret : copied;
1031 static int ext4_journalled_write_end(struct file *file,
1032 struct address_space *mapping,
1033 loff_t pos, unsigned len, unsigned copied,
1034 struct page *page, void *fsdata)
1036 handle_t *handle = ext4_journal_current_handle();
1037 struct inode *inode = mapping->host;
1038 int ret = 0, ret2;
1039 int partial = 0;
1040 unsigned from, to;
1041 loff_t new_i_size;
1043 trace_ext4_journalled_write_end(inode, pos, len, copied);
1044 from = pos & (PAGE_CACHE_SIZE - 1);
1045 to = from + len;
1047 BUG_ON(!ext4_handle_valid(handle));
1049 if (copied < len) {
1050 if (!PageUptodate(page))
1051 copied = 0;
1052 page_zero_new_buffers(page, from+copied, to);
1055 ret = walk_page_buffers(handle, page_buffers(page), from,
1056 to, &partial, write_end_fn);
1057 if (!partial)
1058 SetPageUptodate(page);
1059 new_i_size = pos + copied;
1060 if (new_i_size > inode->i_size)
1061 i_size_write(inode, pos+copied);
1062 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1063 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1064 if (new_i_size > EXT4_I(inode)->i_disksize) {
1065 ext4_update_i_disksize(inode, new_i_size);
1066 ret2 = ext4_mark_inode_dirty(handle, inode);
1067 if (!ret)
1068 ret = ret2;
1071 unlock_page(page);
1072 page_cache_release(page);
1073 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1074 /* if we have allocated more blocks and copied
1075 * less. We will have blocks allocated outside
1076 * inode->i_size. So truncate them
1078 ext4_orphan_add(handle, inode);
1080 ret2 = ext4_journal_stop(handle);
1081 if (!ret)
1082 ret = ret2;
1083 if (pos + len > inode->i_size) {
1084 ext4_truncate_failed_write(inode);
1086 * If truncate failed early the inode might still be
1087 * on the orphan list; we need to make sure the inode
1088 * is removed from the orphan list in that case.
1090 if (inode->i_nlink)
1091 ext4_orphan_del(NULL, inode);
1094 return ret ? ret : copied;
1098 * Reserve a single cluster located at lblock
1100 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1102 int retries = 0;
1103 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1104 struct ext4_inode_info *ei = EXT4_I(inode);
1105 unsigned int md_needed;
1106 int ret;
1109 * recalculate the amount of metadata blocks to reserve
1110 * in order to allocate nrblocks
1111 * worse case is one extent per block
1113 repeat:
1114 spin_lock(&ei->i_block_reservation_lock);
1115 md_needed = EXT4_NUM_B2C(sbi,
1116 ext4_calc_metadata_amount(inode, lblock));
1117 trace_ext4_da_reserve_space(inode, md_needed);
1118 spin_unlock(&ei->i_block_reservation_lock);
1121 * We will charge metadata quota at writeout time; this saves
1122 * us from metadata over-estimation, though we may go over by
1123 * a small amount in the end. Here we just reserve for data.
1125 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1126 if (ret)
1127 return ret;
1129 * We do still charge estimated metadata to the sb though;
1130 * we cannot afford to run out of free blocks.
1132 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1133 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1134 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1135 yield();
1136 goto repeat;
1138 return -ENOSPC;
1140 spin_lock(&ei->i_block_reservation_lock);
1141 ei->i_reserved_data_blocks++;
1142 ei->i_reserved_meta_blocks += md_needed;
1143 spin_unlock(&ei->i_block_reservation_lock);
1145 return 0; /* success */
1148 static void ext4_da_release_space(struct inode *inode, int to_free)
1150 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1151 struct ext4_inode_info *ei = EXT4_I(inode);
1153 if (!to_free)
1154 return; /* Nothing to release, exit */
1156 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1158 trace_ext4_da_release_space(inode, to_free);
1159 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1161 * if there aren't enough reserved blocks, then the
1162 * counter is messed up somewhere. Since this
1163 * function is called from invalidate page, it's
1164 * harmless to return without any action.
1166 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1167 "ino %lu, to_free %d with only %d reserved "
1168 "data blocks\n", inode->i_ino, to_free,
1169 ei->i_reserved_data_blocks);
1170 WARN_ON(1);
1171 to_free = ei->i_reserved_data_blocks;
1173 ei->i_reserved_data_blocks -= to_free;
1175 if (ei->i_reserved_data_blocks == 0) {
1177 * We can release all of the reserved metadata blocks
1178 * only when we have written all of the delayed
1179 * allocation blocks.
1180 * Note that in case of bigalloc, i_reserved_meta_blocks,
1181 * i_reserved_data_blocks, etc. refer to number of clusters.
1183 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1184 ei->i_reserved_meta_blocks);
1185 ei->i_reserved_meta_blocks = 0;
1186 ei->i_da_metadata_calc_len = 0;
1189 /* update fs dirty data blocks counter */
1190 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1192 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1194 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1197 static void ext4_da_page_release_reservation(struct page *page,
1198 unsigned long offset)
1200 int to_release = 0;
1201 struct buffer_head *head, *bh;
1202 unsigned int curr_off = 0;
1203 struct inode *inode = page->mapping->host;
1204 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1205 int num_clusters;
1207 head = page_buffers(page);
1208 bh = head;
1209 do {
1210 unsigned int next_off = curr_off + bh->b_size;
1212 if ((offset <= curr_off) && (buffer_delay(bh))) {
1213 to_release++;
1214 clear_buffer_delay(bh);
1215 clear_buffer_da_mapped(bh);
1217 curr_off = next_off;
1218 } while ((bh = bh->b_this_page) != head);
1220 /* If we have released all the blocks belonging to a cluster, then we
1221 * need to release the reserved space for that cluster. */
1222 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1223 while (num_clusters > 0) {
1224 ext4_fsblk_t lblk;
1225 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1226 ((num_clusters - 1) << sbi->s_cluster_bits);
1227 if (sbi->s_cluster_ratio == 1 ||
1228 !ext4_find_delalloc_cluster(inode, lblk, 1))
1229 ext4_da_release_space(inode, 1);
1231 num_clusters--;
1236 * Delayed allocation stuff
1240 * mpage_da_submit_io - walks through extent of pages and try to write
1241 * them with writepage() call back
1243 * @mpd->inode: inode
1244 * @mpd->first_page: first page of the extent
1245 * @mpd->next_page: page after the last page of the extent
1247 * By the time mpage_da_submit_io() is called we expect all blocks
1248 * to be allocated. this may be wrong if allocation failed.
1250 * As pages are already locked by write_cache_pages(), we can't use it
1252 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1253 struct ext4_map_blocks *map)
1255 struct pagevec pvec;
1256 unsigned long index, end;
1257 int ret = 0, err, nr_pages, i;
1258 struct inode *inode = mpd->inode;
1259 struct address_space *mapping = inode->i_mapping;
1260 loff_t size = i_size_read(inode);
1261 unsigned int len, block_start;
1262 struct buffer_head *bh, *page_bufs = NULL;
1263 int journal_data = ext4_should_journal_data(inode);
1264 sector_t pblock = 0, cur_logical = 0;
1265 struct ext4_io_submit io_submit;
1267 BUG_ON(mpd->next_page <= mpd->first_page);
1268 memset(&io_submit, 0, sizeof(io_submit));
1270 * We need to start from the first_page to the next_page - 1
1271 * to make sure we also write the mapped dirty buffer_heads.
1272 * If we look at mpd->b_blocknr we would only be looking
1273 * at the currently mapped buffer_heads.
1275 index = mpd->first_page;
1276 end = mpd->next_page - 1;
1278 pagevec_init(&pvec, 0);
1279 while (index <= end) {
1280 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1281 if (nr_pages == 0)
1282 break;
1283 for (i = 0; i < nr_pages; i++) {
1284 int commit_write = 0, skip_page = 0;
1285 struct page *page = pvec.pages[i];
1287 index = page->index;
1288 if (index > end)
1289 break;
1291 if (index == size >> PAGE_CACHE_SHIFT)
1292 len = size & ~PAGE_CACHE_MASK;
1293 else
1294 len = PAGE_CACHE_SIZE;
1295 if (map) {
1296 cur_logical = index << (PAGE_CACHE_SHIFT -
1297 inode->i_blkbits);
1298 pblock = map->m_pblk + (cur_logical -
1299 map->m_lblk);
1301 index++;
1303 BUG_ON(!PageLocked(page));
1304 BUG_ON(PageWriteback(page));
1307 * If the page does not have buffers (for
1308 * whatever reason), try to create them using
1309 * __block_write_begin. If this fails,
1310 * skip the page and move on.
1312 if (!page_has_buffers(page)) {
1313 if (__block_write_begin(page, 0, len,
1314 noalloc_get_block_write)) {
1315 skip_page:
1316 unlock_page(page);
1317 continue;
1319 commit_write = 1;
1322 bh = page_bufs = page_buffers(page);
1323 block_start = 0;
1324 do {
1325 if (!bh)
1326 goto skip_page;
1327 if (map && (cur_logical >= map->m_lblk) &&
1328 (cur_logical <= (map->m_lblk +
1329 (map->m_len - 1)))) {
1330 if (buffer_delay(bh)) {
1331 clear_buffer_delay(bh);
1332 bh->b_blocknr = pblock;
1334 if (buffer_da_mapped(bh))
1335 clear_buffer_da_mapped(bh);
1336 if (buffer_unwritten(bh) ||
1337 buffer_mapped(bh))
1338 BUG_ON(bh->b_blocknr != pblock);
1339 if (map->m_flags & EXT4_MAP_UNINIT)
1340 set_buffer_uninit(bh);
1341 clear_buffer_unwritten(bh);
1345 * skip page if block allocation undone and
1346 * block is dirty
1348 if (ext4_bh_delay_or_unwritten(NULL, bh))
1349 skip_page = 1;
1350 bh = bh->b_this_page;
1351 block_start += bh->b_size;
1352 cur_logical++;
1353 pblock++;
1354 } while (bh != page_bufs);
1356 if (skip_page)
1357 goto skip_page;
1359 if (commit_write)
1360 /* mark the buffer_heads as dirty & uptodate */
1361 block_commit_write(page, 0, len);
1363 clear_page_dirty_for_io(page);
1365 * Delalloc doesn't support data journalling,
1366 * but eventually maybe we'll lift this
1367 * restriction.
1369 if (unlikely(journal_data && PageChecked(page)))
1370 err = __ext4_journalled_writepage(page, len);
1371 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1372 err = ext4_bio_write_page(&io_submit, page,
1373 len, mpd->wbc);
1374 else if (buffer_uninit(page_bufs)) {
1375 ext4_set_bh_endio(page_bufs, inode);
1376 err = block_write_full_page_endio(page,
1377 noalloc_get_block_write,
1378 mpd->wbc, ext4_end_io_buffer_write);
1379 } else
1380 err = block_write_full_page(page,
1381 noalloc_get_block_write, mpd->wbc);
1383 if (!err)
1384 mpd->pages_written++;
1386 * In error case, we have to continue because
1387 * remaining pages are still locked
1389 if (ret == 0)
1390 ret = err;
1392 pagevec_release(&pvec);
1394 ext4_io_submit(&io_submit);
1395 return ret;
1398 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1400 int nr_pages, i;
1401 pgoff_t index, end;
1402 struct pagevec pvec;
1403 struct inode *inode = mpd->inode;
1404 struct address_space *mapping = inode->i_mapping;
1406 index = mpd->first_page;
1407 end = mpd->next_page - 1;
1408 while (index <= end) {
1409 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1410 if (nr_pages == 0)
1411 break;
1412 for (i = 0; i < nr_pages; i++) {
1413 struct page *page = pvec.pages[i];
1414 if (page->index > end)
1415 break;
1416 BUG_ON(!PageLocked(page));
1417 BUG_ON(PageWriteback(page));
1418 block_invalidatepage(page, 0);
1419 ClearPageUptodate(page);
1420 unlock_page(page);
1422 index = pvec.pages[nr_pages - 1]->index + 1;
1423 pagevec_release(&pvec);
1425 return;
1428 static void ext4_print_free_blocks(struct inode *inode)
1430 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1431 printk(KERN_CRIT "Total free blocks count %lld\n",
1432 EXT4_C2B(EXT4_SB(inode->i_sb),
1433 ext4_count_free_clusters(inode->i_sb)));
1434 printk(KERN_CRIT "Free/Dirty block details\n");
1435 printk(KERN_CRIT "free_blocks=%lld\n",
1436 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1437 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1438 printk(KERN_CRIT "dirty_blocks=%lld\n",
1439 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1440 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1441 printk(KERN_CRIT "Block reservation details\n");
1442 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
1443 EXT4_I(inode)->i_reserved_data_blocks);
1444 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
1445 EXT4_I(inode)->i_reserved_meta_blocks);
1446 return;
1450 * mpage_da_map_and_submit - go through given space, map them
1451 * if necessary, and then submit them for I/O
1453 * @mpd - bh describing space
1455 * The function skips space we know is already mapped to disk blocks.
1458 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1460 int err, blks, get_blocks_flags;
1461 struct ext4_map_blocks map, *mapp = NULL;
1462 sector_t next = mpd->b_blocknr;
1463 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1464 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1465 handle_t *handle = NULL;
1468 * If the blocks are mapped already, or we couldn't accumulate
1469 * any blocks, then proceed immediately to the submission stage.
1471 if ((mpd->b_size == 0) ||
1472 ((mpd->b_state & (1 << BH_Mapped)) &&
1473 !(mpd->b_state & (1 << BH_Delay)) &&
1474 !(mpd->b_state & (1 << BH_Unwritten))))
1475 goto submit_io;
1477 handle = ext4_journal_current_handle();
1478 BUG_ON(!handle);
1481 * Call ext4_map_blocks() to allocate any delayed allocation
1482 * blocks, or to convert an uninitialized extent to be
1483 * initialized (in the case where we have written into
1484 * one or more preallocated blocks).
1486 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1487 * indicate that we are on the delayed allocation path. This
1488 * affects functions in many different parts of the allocation
1489 * call path. This flag exists primarily because we don't
1490 * want to change *many* call functions, so ext4_map_blocks()
1491 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1492 * inode's allocation semaphore is taken.
1494 * If the blocks in questions were delalloc blocks, set
1495 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1496 * variables are updated after the blocks have been allocated.
1498 map.m_lblk = next;
1499 map.m_len = max_blocks;
1500 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1501 if (ext4_should_dioread_nolock(mpd->inode))
1502 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1503 if (mpd->b_state & (1 << BH_Delay))
1504 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1506 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1507 if (blks < 0) {
1508 struct super_block *sb = mpd->inode->i_sb;
1510 err = blks;
1512 * If get block returns EAGAIN or ENOSPC and there
1513 * appears to be free blocks we will just let
1514 * mpage_da_submit_io() unlock all of the pages.
1516 if (err == -EAGAIN)
1517 goto submit_io;
1519 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1520 mpd->retval = err;
1521 goto submit_io;
1525 * get block failure will cause us to loop in
1526 * writepages, because a_ops->writepage won't be able
1527 * to make progress. The page will be redirtied by
1528 * writepage and writepages will again try to write
1529 * the same.
1531 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1532 ext4_msg(sb, KERN_CRIT,
1533 "delayed block allocation failed for inode %lu "
1534 "at logical offset %llu with max blocks %zd "
1535 "with error %d", mpd->inode->i_ino,
1536 (unsigned long long) next,
1537 mpd->b_size >> mpd->inode->i_blkbits, err);
1538 ext4_msg(sb, KERN_CRIT,
1539 "This should not happen!! Data will be lost\n");
1540 if (err == -ENOSPC)
1541 ext4_print_free_blocks(mpd->inode);
1543 /* invalidate all the pages */
1544 ext4_da_block_invalidatepages(mpd);
1546 /* Mark this page range as having been completed */
1547 mpd->io_done = 1;
1548 return;
1550 BUG_ON(blks == 0);
1552 mapp = &map;
1553 if (map.m_flags & EXT4_MAP_NEW) {
1554 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1555 int i;
1557 for (i = 0; i < map.m_len; i++)
1558 unmap_underlying_metadata(bdev, map.m_pblk + i);
1560 if (ext4_should_order_data(mpd->inode)) {
1561 err = ext4_jbd2_file_inode(handle, mpd->inode);
1562 if (err) {
1563 /* Only if the journal is aborted */
1564 mpd->retval = err;
1565 goto submit_io;
1571 * Update on-disk size along with block allocation.
1573 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1574 if (disksize > i_size_read(mpd->inode))
1575 disksize = i_size_read(mpd->inode);
1576 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1577 ext4_update_i_disksize(mpd->inode, disksize);
1578 err = ext4_mark_inode_dirty(handle, mpd->inode);
1579 if (err)
1580 ext4_error(mpd->inode->i_sb,
1581 "Failed to mark inode %lu dirty",
1582 mpd->inode->i_ino);
1585 submit_io:
1586 mpage_da_submit_io(mpd, mapp);
1587 mpd->io_done = 1;
1590 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1591 (1 << BH_Delay) | (1 << BH_Unwritten))
1594 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1596 * @mpd->lbh - extent of blocks
1597 * @logical - logical number of the block in the file
1598 * @bh - bh of the block (used to access block's state)
1600 * the function is used to collect contig. blocks in same state
1602 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1603 sector_t logical, size_t b_size,
1604 unsigned long b_state)
1606 sector_t next;
1607 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1610 * XXX Don't go larger than mballoc is willing to allocate
1611 * This is a stopgap solution. We eventually need to fold
1612 * mpage_da_submit_io() into this function and then call
1613 * ext4_map_blocks() multiple times in a loop
1615 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1616 goto flush_it;
1618 /* check if thereserved journal credits might overflow */
1619 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1620 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1622 * With non-extent format we are limited by the journal
1623 * credit available. Total credit needed to insert
1624 * nrblocks contiguous blocks is dependent on the
1625 * nrblocks. So limit nrblocks.
1627 goto flush_it;
1628 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1629 EXT4_MAX_TRANS_DATA) {
1631 * Adding the new buffer_head would make it cross the
1632 * allowed limit for which we have journal credit
1633 * reserved. So limit the new bh->b_size
1635 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1636 mpd->inode->i_blkbits;
1637 /* we will do mpage_da_submit_io in the next loop */
1641 * First block in the extent
1643 if (mpd->b_size == 0) {
1644 mpd->b_blocknr = logical;
1645 mpd->b_size = b_size;
1646 mpd->b_state = b_state & BH_FLAGS;
1647 return;
1650 next = mpd->b_blocknr + nrblocks;
1652 * Can we merge the block to our big extent?
1654 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1655 mpd->b_size += b_size;
1656 return;
1659 flush_it:
1661 * We couldn't merge the block to our extent, so we
1662 * need to flush current extent and start new one
1664 mpage_da_map_and_submit(mpd);
1665 return;
1668 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1670 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1674 * This function is grabs code from the very beginning of
1675 * ext4_map_blocks, but assumes that the caller is from delayed write
1676 * time. This function looks up the requested blocks and sets the
1677 * buffer delay bit under the protection of i_data_sem.
1679 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1680 struct ext4_map_blocks *map,
1681 struct buffer_head *bh)
1683 int retval;
1684 sector_t invalid_block = ~((sector_t) 0xffff);
1686 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1687 invalid_block = ~0;
1689 map->m_flags = 0;
1690 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1691 "logical block %lu\n", inode->i_ino, map->m_len,
1692 (unsigned long) map->m_lblk);
1694 * Try to see if we can get the block without requesting a new
1695 * file system block.
1697 down_read((&EXT4_I(inode)->i_data_sem));
1698 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1699 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1700 else
1701 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1703 if (retval == 0) {
1705 * XXX: __block_prepare_write() unmaps passed block,
1706 * is it OK?
1708 /* If the block was allocated from previously allocated cluster,
1709 * then we dont need to reserve it again. */
1710 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1711 retval = ext4_da_reserve_space(inode, iblock);
1712 if (retval)
1713 /* not enough space to reserve */
1714 goto out_unlock;
1717 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1718 * and it should not appear on the bh->b_state.
1720 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1722 map_bh(bh, inode->i_sb, invalid_block);
1723 set_buffer_new(bh);
1724 set_buffer_delay(bh);
1727 out_unlock:
1728 up_read((&EXT4_I(inode)->i_data_sem));
1730 return retval;
1734 * This is a special get_blocks_t callback which is used by
1735 * ext4_da_write_begin(). It will either return mapped block or
1736 * reserve space for a single block.
1738 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1739 * We also have b_blocknr = -1 and b_bdev initialized properly
1741 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1742 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1743 * initialized properly.
1745 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1746 struct buffer_head *bh, int create)
1748 struct ext4_map_blocks map;
1749 int ret = 0;
1751 BUG_ON(create == 0);
1752 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1754 map.m_lblk = iblock;
1755 map.m_len = 1;
1758 * first, we need to know whether the block is allocated already
1759 * preallocated blocks are unmapped but should treated
1760 * the same as allocated blocks.
1762 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1763 if (ret <= 0)
1764 return ret;
1766 map_bh(bh, inode->i_sb, map.m_pblk);
1767 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1769 if (buffer_unwritten(bh)) {
1770 /* A delayed write to unwritten bh should be marked
1771 * new and mapped. Mapped ensures that we don't do
1772 * get_block multiple times when we write to the same
1773 * offset and new ensures that we do proper zero out
1774 * for partial write.
1776 set_buffer_new(bh);
1777 set_buffer_mapped(bh);
1779 return 0;
1783 * This function is used as a standard get_block_t calback function
1784 * when there is no desire to allocate any blocks. It is used as a
1785 * callback function for block_write_begin() and block_write_full_page().
1786 * These functions should only try to map a single block at a time.
1788 * Since this function doesn't do block allocations even if the caller
1789 * requests it by passing in create=1, it is critically important that
1790 * any caller checks to make sure that any buffer heads are returned
1791 * by this function are either all already mapped or marked for
1792 * delayed allocation before calling block_write_full_page(). Otherwise,
1793 * b_blocknr could be left unitialized, and the page write functions will
1794 * be taken by surprise.
1796 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1797 struct buffer_head *bh_result, int create)
1799 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1800 return _ext4_get_block(inode, iblock, bh_result, 0);
1803 static int bget_one(handle_t *handle, struct buffer_head *bh)
1805 get_bh(bh);
1806 return 0;
1809 static int bput_one(handle_t *handle, struct buffer_head *bh)
1811 put_bh(bh);
1812 return 0;
1815 static int __ext4_journalled_writepage(struct page *page,
1816 unsigned int len)
1818 struct address_space *mapping = page->mapping;
1819 struct inode *inode = mapping->host;
1820 struct buffer_head *page_bufs;
1821 handle_t *handle = NULL;
1822 int ret = 0;
1823 int err;
1825 ClearPageChecked(page);
1826 page_bufs = page_buffers(page);
1827 BUG_ON(!page_bufs);
1828 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1829 /* As soon as we unlock the page, it can go away, but we have
1830 * references to buffers so we are safe */
1831 unlock_page(page);
1833 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1834 if (IS_ERR(handle)) {
1835 ret = PTR_ERR(handle);
1836 goto out;
1839 BUG_ON(!ext4_handle_valid(handle));
1841 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1842 do_journal_get_write_access);
1844 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1845 write_end_fn);
1846 if (ret == 0)
1847 ret = err;
1848 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1849 err = ext4_journal_stop(handle);
1850 if (!ret)
1851 ret = err;
1853 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1854 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1855 out:
1856 return ret;
1859 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1860 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1863 * Note that we don't need to start a transaction unless we're journaling data
1864 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1865 * need to file the inode to the transaction's list in ordered mode because if
1866 * we are writing back data added by write(), the inode is already there and if
1867 * we are writing back data modified via mmap(), no one guarantees in which
1868 * transaction the data will hit the disk. In case we are journaling data, we
1869 * cannot start transaction directly because transaction start ranks above page
1870 * lock so we have to do some magic.
1872 * This function can get called via...
1873 * - ext4_da_writepages after taking page lock (have journal handle)
1874 * - journal_submit_inode_data_buffers (no journal handle)
1875 * - shrink_page_list via pdflush (no journal handle)
1876 * - grab_page_cache when doing write_begin (have journal handle)
1878 * We don't do any block allocation in this function. If we have page with
1879 * multiple blocks we need to write those buffer_heads that are mapped. This
1880 * is important for mmaped based write. So if we do with blocksize 1K
1881 * truncate(f, 1024);
1882 * a = mmap(f, 0, 4096);
1883 * a[0] = 'a';
1884 * truncate(f, 4096);
1885 * we have in the page first buffer_head mapped via page_mkwrite call back
1886 * but other buffer_heads would be unmapped but dirty (dirty done via the
1887 * do_wp_page). So writepage should write the first block. If we modify
1888 * the mmap area beyond 1024 we will again get a page_fault and the
1889 * page_mkwrite callback will do the block allocation and mark the
1890 * buffer_heads mapped.
1892 * We redirty the page if we have any buffer_heads that is either delay or
1893 * unwritten in the page.
1895 * We can get recursively called as show below.
1897 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1898 * ext4_writepage()
1900 * But since we don't do any block allocation we should not deadlock.
1901 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1903 static int ext4_writepage(struct page *page,
1904 struct writeback_control *wbc)
1906 int ret = 0, commit_write = 0;
1907 loff_t size;
1908 unsigned int len;
1909 struct buffer_head *page_bufs = NULL;
1910 struct inode *inode = page->mapping->host;
1912 trace_ext4_writepage(page);
1913 size = i_size_read(inode);
1914 if (page->index == size >> PAGE_CACHE_SHIFT)
1915 len = size & ~PAGE_CACHE_MASK;
1916 else
1917 len = PAGE_CACHE_SIZE;
1920 * If the page does not have buffers (for whatever reason),
1921 * try to create them using __block_write_begin. If this
1922 * fails, redirty the page and move on.
1924 if (!page_has_buffers(page)) {
1925 if (__block_write_begin(page, 0, len,
1926 noalloc_get_block_write)) {
1927 redirty_page:
1928 redirty_page_for_writepage(wbc, page);
1929 unlock_page(page);
1930 return 0;
1932 commit_write = 1;
1934 page_bufs = page_buffers(page);
1935 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1936 ext4_bh_delay_or_unwritten)) {
1938 * We don't want to do block allocation, so redirty
1939 * the page and return. We may reach here when we do
1940 * a journal commit via journal_submit_inode_data_buffers.
1941 * We can also reach here via shrink_page_list but it
1942 * should never be for direct reclaim so warn if that
1943 * happens
1945 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1946 PF_MEMALLOC);
1947 goto redirty_page;
1949 if (commit_write)
1950 /* now mark the buffer_heads as dirty and uptodate */
1951 block_commit_write(page, 0, len);
1953 if (PageChecked(page) && ext4_should_journal_data(inode))
1955 * It's mmapped pagecache. Add buffers and journal it. There
1956 * doesn't seem much point in redirtying the page here.
1958 return __ext4_journalled_writepage(page, len);
1960 if (buffer_uninit(page_bufs)) {
1961 ext4_set_bh_endio(page_bufs, inode);
1962 ret = block_write_full_page_endio(page, noalloc_get_block_write,
1963 wbc, ext4_end_io_buffer_write);
1964 } else
1965 ret = block_write_full_page(page, noalloc_get_block_write,
1966 wbc);
1968 return ret;
1972 * This is called via ext4_da_writepages() to
1973 * calculate the total number of credits to reserve to fit
1974 * a single extent allocation into a single transaction,
1975 * ext4_da_writpeages() will loop calling this before
1976 * the block allocation.
1979 static int ext4_da_writepages_trans_blocks(struct inode *inode)
1981 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
1984 * With non-extent format the journal credit needed to
1985 * insert nrblocks contiguous block is dependent on
1986 * number of contiguous block. So we will limit
1987 * number of contiguous block to a sane value
1989 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
1990 (max_blocks > EXT4_MAX_TRANS_DATA))
1991 max_blocks = EXT4_MAX_TRANS_DATA;
1993 return ext4_chunk_trans_blocks(inode, max_blocks);
1997 * write_cache_pages_da - walk the list of dirty pages of the given
1998 * address space and accumulate pages that need writing, and call
1999 * mpage_da_map_and_submit to map a single contiguous memory region
2000 * and then write them.
2002 static int write_cache_pages_da(struct address_space *mapping,
2003 struct writeback_control *wbc,
2004 struct mpage_da_data *mpd,
2005 pgoff_t *done_index)
2007 struct buffer_head *bh, *head;
2008 struct inode *inode = mapping->host;
2009 struct pagevec pvec;
2010 unsigned int nr_pages;
2011 sector_t logical;
2012 pgoff_t index, end;
2013 long nr_to_write = wbc->nr_to_write;
2014 int i, tag, ret = 0;
2016 memset(mpd, 0, sizeof(struct mpage_da_data));
2017 mpd->wbc = wbc;
2018 mpd->inode = inode;
2019 pagevec_init(&pvec, 0);
2020 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2021 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2023 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2024 tag = PAGECACHE_TAG_TOWRITE;
2025 else
2026 tag = PAGECACHE_TAG_DIRTY;
2028 *done_index = index;
2029 while (index <= end) {
2030 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2031 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2032 if (nr_pages == 0)
2033 return 0;
2035 for (i = 0; i < nr_pages; i++) {
2036 struct page *page = pvec.pages[i];
2039 * At this point, the page may be truncated or
2040 * invalidated (changing page->mapping to NULL), or
2041 * even swizzled back from swapper_space to tmpfs file
2042 * mapping. However, page->index will not change
2043 * because we have a reference on the page.
2045 if (page->index > end)
2046 goto out;
2048 *done_index = page->index + 1;
2051 * If we can't merge this page, and we have
2052 * accumulated an contiguous region, write it
2054 if ((mpd->next_page != page->index) &&
2055 (mpd->next_page != mpd->first_page)) {
2056 mpage_da_map_and_submit(mpd);
2057 goto ret_extent_tail;
2060 lock_page(page);
2063 * If the page is no longer dirty, or its
2064 * mapping no longer corresponds to inode we
2065 * are writing (which means it has been
2066 * truncated or invalidated), or the page is
2067 * already under writeback and we are not
2068 * doing a data integrity writeback, skip the page
2070 if (!PageDirty(page) ||
2071 (PageWriteback(page) &&
2072 (wbc->sync_mode == WB_SYNC_NONE)) ||
2073 unlikely(page->mapping != mapping)) {
2074 unlock_page(page);
2075 continue;
2078 wait_on_page_writeback(page);
2079 BUG_ON(PageWriteback(page));
2081 if (mpd->next_page != page->index)
2082 mpd->first_page = page->index;
2083 mpd->next_page = page->index + 1;
2084 logical = (sector_t) page->index <<
2085 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2087 if (!page_has_buffers(page)) {
2088 mpage_add_bh_to_extent(mpd, logical,
2089 PAGE_CACHE_SIZE,
2090 (1 << BH_Dirty) | (1 << BH_Uptodate));
2091 if (mpd->io_done)
2092 goto ret_extent_tail;
2093 } else {
2095 * Page with regular buffer heads,
2096 * just add all dirty ones
2098 head = page_buffers(page);
2099 bh = head;
2100 do {
2101 BUG_ON(buffer_locked(bh));
2103 * We need to try to allocate
2104 * unmapped blocks in the same page.
2105 * Otherwise we won't make progress
2106 * with the page in ext4_writepage
2108 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2109 mpage_add_bh_to_extent(mpd, logical,
2110 bh->b_size,
2111 bh->b_state);
2112 if (mpd->io_done)
2113 goto ret_extent_tail;
2114 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2116 * mapped dirty buffer. We need
2117 * to update the b_state
2118 * because we look at b_state
2119 * in mpage_da_map_blocks. We
2120 * don't update b_size because
2121 * if we find an unmapped
2122 * buffer_head later we need to
2123 * use the b_state flag of that
2124 * buffer_head.
2126 if (mpd->b_size == 0)
2127 mpd->b_state = bh->b_state & BH_FLAGS;
2129 logical++;
2130 } while ((bh = bh->b_this_page) != head);
2133 if (nr_to_write > 0) {
2134 nr_to_write--;
2135 if (nr_to_write == 0 &&
2136 wbc->sync_mode == WB_SYNC_NONE)
2138 * We stop writing back only if we are
2139 * not doing integrity sync. In case of
2140 * integrity sync we have to keep going
2141 * because someone may be concurrently
2142 * dirtying pages, and we might have
2143 * synced a lot of newly appeared dirty
2144 * pages, but have not synced all of the
2145 * old dirty pages.
2147 goto out;
2150 pagevec_release(&pvec);
2151 cond_resched();
2153 return 0;
2154 ret_extent_tail:
2155 ret = MPAGE_DA_EXTENT_TAIL;
2156 out:
2157 pagevec_release(&pvec);
2158 cond_resched();
2159 return ret;
2163 static int ext4_da_writepages(struct address_space *mapping,
2164 struct writeback_control *wbc)
2166 pgoff_t index;
2167 int range_whole = 0;
2168 handle_t *handle = NULL;
2169 struct mpage_da_data mpd;
2170 struct inode *inode = mapping->host;
2171 int pages_written = 0;
2172 unsigned int max_pages;
2173 int range_cyclic, cycled = 1, io_done = 0;
2174 int needed_blocks, ret = 0;
2175 long desired_nr_to_write, nr_to_writebump = 0;
2176 loff_t range_start = wbc->range_start;
2177 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2178 pgoff_t done_index = 0;
2179 pgoff_t end;
2180 struct blk_plug plug;
2182 trace_ext4_da_writepages(inode, wbc);
2185 * No pages to write? This is mainly a kludge to avoid starting
2186 * a transaction for special inodes like journal inode on last iput()
2187 * because that could violate lock ordering on umount
2189 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2190 return 0;
2193 * If the filesystem has aborted, it is read-only, so return
2194 * right away instead of dumping stack traces later on that
2195 * will obscure the real source of the problem. We test
2196 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2197 * the latter could be true if the filesystem is mounted
2198 * read-only, and in that case, ext4_da_writepages should
2199 * *never* be called, so if that ever happens, we would want
2200 * the stack trace.
2202 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2203 return -EROFS;
2205 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2206 range_whole = 1;
2208 range_cyclic = wbc->range_cyclic;
2209 if (wbc->range_cyclic) {
2210 index = mapping->writeback_index;
2211 if (index)
2212 cycled = 0;
2213 wbc->range_start = index << PAGE_CACHE_SHIFT;
2214 wbc->range_end = LLONG_MAX;
2215 wbc->range_cyclic = 0;
2216 end = -1;
2217 } else {
2218 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2219 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2223 * This works around two forms of stupidity. The first is in
2224 * the writeback code, which caps the maximum number of pages
2225 * written to be 1024 pages. This is wrong on multiple
2226 * levels; different architectues have a different page size,
2227 * which changes the maximum amount of data which gets
2228 * written. Secondly, 4 megabytes is way too small. XFS
2229 * forces this value to be 16 megabytes by multiplying
2230 * nr_to_write parameter by four, and then relies on its
2231 * allocator to allocate larger extents to make them
2232 * contiguous. Unfortunately this brings us to the second
2233 * stupidity, which is that ext4's mballoc code only allocates
2234 * at most 2048 blocks. So we force contiguous writes up to
2235 * the number of dirty blocks in the inode, or
2236 * sbi->max_writeback_mb_bump whichever is smaller.
2238 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2239 if (!range_cyclic && range_whole) {
2240 if (wbc->nr_to_write == LONG_MAX)
2241 desired_nr_to_write = wbc->nr_to_write;
2242 else
2243 desired_nr_to_write = wbc->nr_to_write * 8;
2244 } else
2245 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2246 max_pages);
2247 if (desired_nr_to_write > max_pages)
2248 desired_nr_to_write = max_pages;
2250 if (wbc->nr_to_write < desired_nr_to_write) {
2251 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2252 wbc->nr_to_write = desired_nr_to_write;
2255 retry:
2256 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2257 tag_pages_for_writeback(mapping, index, end);
2259 blk_start_plug(&plug);
2260 while (!ret && wbc->nr_to_write > 0) {
2263 * we insert one extent at a time. So we need
2264 * credit needed for single extent allocation.
2265 * journalled mode is currently not supported
2266 * by delalloc
2268 BUG_ON(ext4_should_journal_data(inode));
2269 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2271 /* start a new transaction*/
2272 handle = ext4_journal_start(inode, needed_blocks);
2273 if (IS_ERR(handle)) {
2274 ret = PTR_ERR(handle);
2275 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2276 "%ld pages, ino %lu; err %d", __func__,
2277 wbc->nr_to_write, inode->i_ino, ret);
2278 blk_finish_plug(&plug);
2279 goto out_writepages;
2283 * Now call write_cache_pages_da() to find the next
2284 * contiguous region of logical blocks that need
2285 * blocks to be allocated by ext4 and submit them.
2287 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2289 * If we have a contiguous extent of pages and we
2290 * haven't done the I/O yet, map the blocks and submit
2291 * them for I/O.
2293 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2294 mpage_da_map_and_submit(&mpd);
2295 ret = MPAGE_DA_EXTENT_TAIL;
2297 trace_ext4_da_write_pages(inode, &mpd);
2298 wbc->nr_to_write -= mpd.pages_written;
2300 ext4_journal_stop(handle);
2302 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2303 /* commit the transaction which would
2304 * free blocks released in the transaction
2305 * and try again
2307 jbd2_journal_force_commit_nested(sbi->s_journal);
2308 ret = 0;
2309 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2311 * Got one extent now try with rest of the pages.
2312 * If mpd.retval is set -EIO, journal is aborted.
2313 * So we don't need to write any more.
2315 pages_written += mpd.pages_written;
2316 ret = mpd.retval;
2317 io_done = 1;
2318 } else if (wbc->nr_to_write)
2320 * There is no more writeout needed
2321 * or we requested for a noblocking writeout
2322 * and we found the device congested
2324 break;
2326 blk_finish_plug(&plug);
2327 if (!io_done && !cycled) {
2328 cycled = 1;
2329 index = 0;
2330 wbc->range_start = index << PAGE_CACHE_SHIFT;
2331 wbc->range_end = mapping->writeback_index - 1;
2332 goto retry;
2335 /* Update index */
2336 wbc->range_cyclic = range_cyclic;
2337 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2339 * set the writeback_index so that range_cyclic
2340 * mode will write it back later
2342 mapping->writeback_index = done_index;
2344 out_writepages:
2345 wbc->nr_to_write -= nr_to_writebump;
2346 wbc->range_start = range_start;
2347 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2348 return ret;
2351 #define FALL_BACK_TO_NONDELALLOC 1
2352 static int ext4_nonda_switch(struct super_block *sb)
2354 s64 free_blocks, dirty_blocks;
2355 struct ext4_sb_info *sbi = EXT4_SB(sb);
2358 * switch to non delalloc mode if we are running low
2359 * on free block. The free block accounting via percpu
2360 * counters can get slightly wrong with percpu_counter_batch getting
2361 * accumulated on each CPU without updating global counters
2362 * Delalloc need an accurate free block accounting. So switch
2363 * to non delalloc when we are near to error range.
2365 free_blocks = EXT4_C2B(sbi,
2366 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2367 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2368 if (2 * free_blocks < 3 * dirty_blocks ||
2369 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2371 * free block count is less than 150% of dirty blocks
2372 * or free blocks is less than watermark
2374 return 1;
2377 * Even if we don't switch but are nearing capacity,
2378 * start pushing delalloc when 1/2 of free blocks are dirty.
2380 if (free_blocks < 2 * dirty_blocks)
2381 writeback_inodes_sb_if_idle(sb, WB_REASON_FS_FREE_SPACE);
2383 return 0;
2386 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2387 loff_t pos, unsigned len, unsigned flags,
2388 struct page **pagep, void **fsdata)
2390 int ret, retries = 0;
2391 struct page *page;
2392 pgoff_t index;
2393 struct inode *inode = mapping->host;
2394 handle_t *handle;
2396 index = pos >> PAGE_CACHE_SHIFT;
2398 if (ext4_nonda_switch(inode->i_sb)) {
2399 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2400 return ext4_write_begin(file, mapping, pos,
2401 len, flags, pagep, fsdata);
2403 *fsdata = (void *)0;
2404 trace_ext4_da_write_begin(inode, pos, len, flags);
2405 retry:
2407 * With delayed allocation, we don't log the i_disksize update
2408 * if there is delayed block allocation. But we still need
2409 * to journalling the i_disksize update if writes to the end
2410 * of file which has an already mapped buffer.
2412 handle = ext4_journal_start(inode, 1);
2413 if (IS_ERR(handle)) {
2414 ret = PTR_ERR(handle);
2415 goto out;
2417 /* We cannot recurse into the filesystem as the transaction is already
2418 * started */
2419 flags |= AOP_FLAG_NOFS;
2421 page = grab_cache_page_write_begin(mapping, index, flags);
2422 if (!page) {
2423 ext4_journal_stop(handle);
2424 ret = -ENOMEM;
2425 goto out;
2427 *pagep = page;
2429 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2430 if (ret < 0) {
2431 unlock_page(page);
2432 ext4_journal_stop(handle);
2433 page_cache_release(page);
2435 * block_write_begin may have instantiated a few blocks
2436 * outside i_size. Trim these off again. Don't need
2437 * i_size_read because we hold i_mutex.
2439 if (pos + len > inode->i_size)
2440 ext4_truncate_failed_write(inode);
2443 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2444 goto retry;
2445 out:
2446 return ret;
2450 * Check if we should update i_disksize
2451 * when write to the end of file but not require block allocation
2453 static int ext4_da_should_update_i_disksize(struct page *page,
2454 unsigned long offset)
2456 struct buffer_head *bh;
2457 struct inode *inode = page->mapping->host;
2458 unsigned int idx;
2459 int i;
2461 bh = page_buffers(page);
2462 idx = offset >> inode->i_blkbits;
2464 for (i = 0; i < idx; i++)
2465 bh = bh->b_this_page;
2467 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2468 return 0;
2469 return 1;
2472 static int ext4_da_write_end(struct file *file,
2473 struct address_space *mapping,
2474 loff_t pos, unsigned len, unsigned copied,
2475 struct page *page, void *fsdata)
2477 struct inode *inode = mapping->host;
2478 int ret = 0, ret2;
2479 handle_t *handle = ext4_journal_current_handle();
2480 loff_t new_i_size;
2481 unsigned long start, end;
2482 int write_mode = (int)(unsigned long)fsdata;
2484 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2485 switch (ext4_inode_journal_mode(inode)) {
2486 case EXT4_INODE_ORDERED_DATA_MODE:
2487 return ext4_ordered_write_end(file, mapping, pos,
2488 len, copied, page, fsdata);
2489 case EXT4_INODE_WRITEBACK_DATA_MODE:
2490 return ext4_writeback_write_end(file, mapping, pos,
2491 len, copied, page, fsdata);
2492 default:
2493 BUG();
2497 trace_ext4_da_write_end(inode, pos, len, copied);
2498 start = pos & (PAGE_CACHE_SIZE - 1);
2499 end = start + copied - 1;
2502 * generic_write_end() will run mark_inode_dirty() if i_size
2503 * changes. So let's piggyback the i_disksize mark_inode_dirty
2504 * into that.
2507 new_i_size = pos + copied;
2508 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2509 if (ext4_da_should_update_i_disksize(page, end)) {
2510 down_write(&EXT4_I(inode)->i_data_sem);
2511 if (new_i_size > EXT4_I(inode)->i_disksize) {
2513 * Updating i_disksize when extending file
2514 * without needing block allocation
2516 if (ext4_should_order_data(inode))
2517 ret = ext4_jbd2_file_inode(handle,
2518 inode);
2520 EXT4_I(inode)->i_disksize = new_i_size;
2522 up_write(&EXT4_I(inode)->i_data_sem);
2523 /* We need to mark inode dirty even if
2524 * new_i_size is less that inode->i_size
2525 * bu greater than i_disksize.(hint delalloc)
2527 ext4_mark_inode_dirty(handle, inode);
2530 ret2 = generic_write_end(file, mapping, pos, len, copied,
2531 page, fsdata);
2532 copied = ret2;
2533 if (ret2 < 0)
2534 ret = ret2;
2535 ret2 = ext4_journal_stop(handle);
2536 if (!ret)
2537 ret = ret2;
2539 return ret ? ret : copied;
2542 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2545 * Drop reserved blocks
2547 BUG_ON(!PageLocked(page));
2548 if (!page_has_buffers(page))
2549 goto out;
2551 ext4_da_page_release_reservation(page, offset);
2553 out:
2554 ext4_invalidatepage(page, offset);
2556 return;
2560 * Force all delayed allocation blocks to be allocated for a given inode.
2562 int ext4_alloc_da_blocks(struct inode *inode)
2564 trace_ext4_alloc_da_blocks(inode);
2566 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2567 !EXT4_I(inode)->i_reserved_meta_blocks)
2568 return 0;
2571 * We do something simple for now. The filemap_flush() will
2572 * also start triggering a write of the data blocks, which is
2573 * not strictly speaking necessary (and for users of
2574 * laptop_mode, not even desirable). However, to do otherwise
2575 * would require replicating code paths in:
2577 * ext4_da_writepages() ->
2578 * write_cache_pages() ---> (via passed in callback function)
2579 * __mpage_da_writepage() -->
2580 * mpage_add_bh_to_extent()
2581 * mpage_da_map_blocks()
2583 * The problem is that write_cache_pages(), located in
2584 * mm/page-writeback.c, marks pages clean in preparation for
2585 * doing I/O, which is not desirable if we're not planning on
2586 * doing I/O at all.
2588 * We could call write_cache_pages(), and then redirty all of
2589 * the pages by calling redirty_page_for_writepage() but that
2590 * would be ugly in the extreme. So instead we would need to
2591 * replicate parts of the code in the above functions,
2592 * simplifying them because we wouldn't actually intend to
2593 * write out the pages, but rather only collect contiguous
2594 * logical block extents, call the multi-block allocator, and
2595 * then update the buffer heads with the block allocations.
2597 * For now, though, we'll cheat by calling filemap_flush(),
2598 * which will map the blocks, and start the I/O, but not
2599 * actually wait for the I/O to complete.
2601 return filemap_flush(inode->i_mapping);
2605 * bmap() is special. It gets used by applications such as lilo and by
2606 * the swapper to find the on-disk block of a specific piece of data.
2608 * Naturally, this is dangerous if the block concerned is still in the
2609 * journal. If somebody makes a swapfile on an ext4 data-journaling
2610 * filesystem and enables swap, then they may get a nasty shock when the
2611 * data getting swapped to that swapfile suddenly gets overwritten by
2612 * the original zero's written out previously to the journal and
2613 * awaiting writeback in the kernel's buffer cache.
2615 * So, if we see any bmap calls here on a modified, data-journaled file,
2616 * take extra steps to flush any blocks which might be in the cache.
2618 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2620 struct inode *inode = mapping->host;
2621 journal_t *journal;
2622 int err;
2624 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2625 test_opt(inode->i_sb, DELALLOC)) {
2627 * With delalloc we want to sync the file
2628 * so that we can make sure we allocate
2629 * blocks for file
2631 filemap_write_and_wait(mapping);
2634 if (EXT4_JOURNAL(inode) &&
2635 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2637 * This is a REALLY heavyweight approach, but the use of
2638 * bmap on dirty files is expected to be extremely rare:
2639 * only if we run lilo or swapon on a freshly made file
2640 * do we expect this to happen.
2642 * (bmap requires CAP_SYS_RAWIO so this does not
2643 * represent an unprivileged user DOS attack --- we'd be
2644 * in trouble if mortal users could trigger this path at
2645 * will.)
2647 * NB. EXT4_STATE_JDATA is not set on files other than
2648 * regular files. If somebody wants to bmap a directory
2649 * or symlink and gets confused because the buffer
2650 * hasn't yet been flushed to disk, they deserve
2651 * everything they get.
2654 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2655 journal = EXT4_JOURNAL(inode);
2656 jbd2_journal_lock_updates(journal);
2657 err = jbd2_journal_flush(journal);
2658 jbd2_journal_unlock_updates(journal);
2660 if (err)
2661 return 0;
2664 return generic_block_bmap(mapping, block, ext4_get_block);
2667 static int ext4_readpage(struct file *file, struct page *page)
2669 trace_ext4_readpage(page);
2670 return mpage_readpage(page, ext4_get_block);
2673 static int
2674 ext4_readpages(struct file *file, struct address_space *mapping,
2675 struct list_head *pages, unsigned nr_pages)
2677 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2680 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2682 struct buffer_head *head, *bh;
2683 unsigned int curr_off = 0;
2685 if (!page_has_buffers(page))
2686 return;
2687 head = bh = page_buffers(page);
2688 do {
2689 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2690 && bh->b_private) {
2691 ext4_free_io_end(bh->b_private);
2692 bh->b_private = NULL;
2693 bh->b_end_io = NULL;
2695 curr_off = curr_off + bh->b_size;
2696 bh = bh->b_this_page;
2697 } while (bh != head);
2700 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2702 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2704 trace_ext4_invalidatepage(page, offset);
2707 * free any io_end structure allocated for buffers to be discarded
2709 if (ext4_should_dioread_nolock(page->mapping->host))
2710 ext4_invalidatepage_free_endio(page, offset);
2712 * If it's a full truncate we just forget about the pending dirtying
2714 if (offset == 0)
2715 ClearPageChecked(page);
2717 if (journal)
2718 jbd2_journal_invalidatepage(journal, page, offset);
2719 else
2720 block_invalidatepage(page, offset);
2723 static int ext4_releasepage(struct page *page, gfp_t wait)
2725 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2727 trace_ext4_releasepage(page);
2729 WARN_ON(PageChecked(page));
2730 if (!page_has_buffers(page))
2731 return 0;
2732 if (journal)
2733 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2734 else
2735 return try_to_free_buffers(page);
2739 * ext4_get_block used when preparing for a DIO write or buffer write.
2740 * We allocate an uinitialized extent if blocks haven't been allocated.
2741 * The extent will be converted to initialized after the IO is complete.
2743 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2744 struct buffer_head *bh_result, int create)
2746 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2747 inode->i_ino, create);
2748 return _ext4_get_block(inode, iblock, bh_result,
2749 EXT4_GET_BLOCKS_IO_CREATE_EXT);
2752 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2753 ssize_t size, void *private, int ret,
2754 bool is_async)
2756 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2757 ext4_io_end_t *io_end = iocb->private;
2758 struct workqueue_struct *wq;
2759 unsigned long flags;
2760 struct ext4_inode_info *ei;
2762 /* if not async direct IO or dio with 0 bytes write, just return */
2763 if (!io_end || !size)
2764 goto out;
2766 ext_debug("ext4_end_io_dio(): io_end 0x%p "
2767 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
2768 iocb->private, io_end->inode->i_ino, iocb, offset,
2769 size);
2771 iocb->private = NULL;
2773 /* if not aio dio with unwritten extents, just free io and return */
2774 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2775 ext4_free_io_end(io_end);
2776 out:
2777 if (is_async)
2778 aio_complete(iocb, ret, 0);
2779 inode_dio_done(inode);
2780 return;
2783 io_end->offset = offset;
2784 io_end->size = size;
2785 if (is_async) {
2786 io_end->iocb = iocb;
2787 io_end->result = ret;
2789 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2791 /* Add the io_end to per-inode completed aio dio list*/
2792 ei = EXT4_I(io_end->inode);
2793 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2794 list_add_tail(&io_end->list, &ei->i_completed_io_list);
2795 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2797 /* queue the work to convert unwritten extents to written */
2798 queue_work(wq, &io_end->work);
2801 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2803 ext4_io_end_t *io_end = bh->b_private;
2804 struct workqueue_struct *wq;
2805 struct inode *inode;
2806 unsigned long flags;
2808 if (!test_clear_buffer_uninit(bh) || !io_end)
2809 goto out;
2811 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2812 printk("sb umounted, discard end_io request for inode %lu\n",
2813 io_end->inode->i_ino);
2814 ext4_free_io_end(io_end);
2815 goto out;
2819 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2820 * but being more careful is always safe for the future change.
2822 inode = io_end->inode;
2823 ext4_set_io_unwritten_flag(inode, io_end);
2825 /* Add the io_end to per-inode completed io list*/
2826 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2827 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2828 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2830 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2831 /* queue the work to convert unwritten extents to written */
2832 queue_work(wq, &io_end->work);
2833 out:
2834 bh->b_private = NULL;
2835 bh->b_end_io = NULL;
2836 clear_buffer_uninit(bh);
2837 end_buffer_async_write(bh, uptodate);
2840 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2842 ext4_io_end_t *io_end;
2843 struct page *page = bh->b_page;
2844 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2845 size_t size = bh->b_size;
2847 retry:
2848 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2849 if (!io_end) {
2850 pr_warn_ratelimited("%s: allocation fail\n", __func__);
2851 schedule();
2852 goto retry;
2854 io_end->offset = offset;
2855 io_end->size = size;
2857 * We need to hold a reference to the page to make sure it
2858 * doesn't get evicted before ext4_end_io_work() has a chance
2859 * to convert the extent from written to unwritten.
2861 io_end->page = page;
2862 get_page(io_end->page);
2864 bh->b_private = io_end;
2865 bh->b_end_io = ext4_end_io_buffer_write;
2866 return 0;
2870 * For ext4 extent files, ext4 will do direct-io write to holes,
2871 * preallocated extents, and those write extend the file, no need to
2872 * fall back to buffered IO.
2874 * For holes, we fallocate those blocks, mark them as uninitialized
2875 * If those blocks were preallocated, we mark sure they are splited, but
2876 * still keep the range to write as uninitialized.
2878 * The unwrritten extents will be converted to written when DIO is completed.
2879 * For async direct IO, since the IO may still pending when return, we
2880 * set up an end_io call back function, which will do the conversion
2881 * when async direct IO completed.
2883 * If the O_DIRECT write will extend the file then add this inode to the
2884 * orphan list. So recovery will truncate it back to the original size
2885 * if the machine crashes during the write.
2888 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2889 const struct iovec *iov, loff_t offset,
2890 unsigned long nr_segs)
2892 struct file *file = iocb->ki_filp;
2893 struct inode *inode = file->f_mapping->host;
2894 ssize_t ret;
2895 size_t count = iov_length(iov, nr_segs);
2897 loff_t final_size = offset + count;
2898 if (rw == WRITE && final_size <= inode->i_size) {
2900 * We could direct write to holes and fallocate.
2902 * Allocated blocks to fill the hole are marked as uninitialized
2903 * to prevent parallel buffered read to expose the stale data
2904 * before DIO complete the data IO.
2906 * As to previously fallocated extents, ext4 get_block
2907 * will just simply mark the buffer mapped but still
2908 * keep the extents uninitialized.
2910 * for non AIO case, we will convert those unwritten extents
2911 * to written after return back from blockdev_direct_IO.
2913 * for async DIO, the conversion needs to be defered when
2914 * the IO is completed. The ext4 end_io callback function
2915 * will be called to take care of the conversion work.
2916 * Here for async case, we allocate an io_end structure to
2917 * hook to the iocb.
2919 iocb->private = NULL;
2920 EXT4_I(inode)->cur_aio_dio = NULL;
2921 if (!is_sync_kiocb(iocb)) {
2922 ext4_io_end_t *io_end =
2923 ext4_init_io_end(inode, GFP_NOFS);
2924 if (!io_end)
2925 return -ENOMEM;
2926 io_end->flag |= EXT4_IO_END_DIRECT;
2927 iocb->private = io_end;
2929 * we save the io structure for current async
2930 * direct IO, so that later ext4_map_blocks()
2931 * could flag the io structure whether there
2932 * is a unwritten extents needs to be converted
2933 * when IO is completed.
2935 EXT4_I(inode)->cur_aio_dio = iocb->private;
2938 ret = __blockdev_direct_IO(rw, iocb, inode,
2939 inode->i_sb->s_bdev, iov,
2940 offset, nr_segs,
2941 ext4_get_block_write,
2942 ext4_end_io_dio,
2943 NULL,
2944 DIO_LOCKING | DIO_SKIP_HOLES);
2945 if (iocb->private)
2946 EXT4_I(inode)->cur_aio_dio = NULL;
2948 * The io_end structure takes a reference to the inode,
2949 * that structure needs to be destroyed and the
2950 * reference to the inode need to be dropped, when IO is
2951 * complete, even with 0 byte write, or failed.
2953 * In the successful AIO DIO case, the io_end structure will be
2954 * desctroyed and the reference to the inode will be dropped
2955 * after the end_io call back function is called.
2957 * In the case there is 0 byte write, or error case, since
2958 * VFS direct IO won't invoke the end_io call back function,
2959 * we need to free the end_io structure here.
2961 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
2962 ext4_free_io_end(iocb->private);
2963 iocb->private = NULL;
2964 } else if (ret > 0 && ext4_test_inode_state(inode,
2965 EXT4_STATE_DIO_UNWRITTEN)) {
2966 int err;
2968 * for non AIO case, since the IO is already
2969 * completed, we could do the conversion right here
2971 err = ext4_convert_unwritten_extents(inode,
2972 offset, ret);
2973 if (err < 0)
2974 ret = err;
2975 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
2977 return ret;
2980 /* for write the the end of file case, we fall back to old way */
2981 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2984 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2985 const struct iovec *iov, loff_t offset,
2986 unsigned long nr_segs)
2988 struct file *file = iocb->ki_filp;
2989 struct inode *inode = file->f_mapping->host;
2990 ssize_t ret;
2993 * If we are doing data journalling we don't support O_DIRECT
2995 if (ext4_should_journal_data(inode))
2996 return 0;
2998 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
2999 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3000 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3001 else
3002 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3003 trace_ext4_direct_IO_exit(inode, offset,
3004 iov_length(iov, nr_segs), rw, ret);
3005 return ret;
3009 * Pages can be marked dirty completely asynchronously from ext4's journalling
3010 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3011 * much here because ->set_page_dirty is called under VFS locks. The page is
3012 * not necessarily locked.
3014 * We cannot just dirty the page and leave attached buffers clean, because the
3015 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3016 * or jbddirty because all the journalling code will explode.
3018 * So what we do is to mark the page "pending dirty" and next time writepage
3019 * is called, propagate that into the buffers appropriately.
3021 static int ext4_journalled_set_page_dirty(struct page *page)
3023 SetPageChecked(page);
3024 return __set_page_dirty_nobuffers(page);
3027 static const struct address_space_operations ext4_ordered_aops = {
3028 .readpage = ext4_readpage,
3029 .readpages = ext4_readpages,
3030 .writepage = ext4_writepage,
3031 .write_begin = ext4_write_begin,
3032 .write_end = ext4_ordered_write_end,
3033 .bmap = ext4_bmap,
3034 .invalidatepage = ext4_invalidatepage,
3035 .releasepage = ext4_releasepage,
3036 .direct_IO = ext4_direct_IO,
3037 .migratepage = buffer_migrate_page,
3038 .is_partially_uptodate = block_is_partially_uptodate,
3039 .error_remove_page = generic_error_remove_page,
3042 static const struct address_space_operations ext4_writeback_aops = {
3043 .readpage = ext4_readpage,
3044 .readpages = ext4_readpages,
3045 .writepage = ext4_writepage,
3046 .write_begin = ext4_write_begin,
3047 .write_end = ext4_writeback_write_end,
3048 .bmap = ext4_bmap,
3049 .invalidatepage = ext4_invalidatepage,
3050 .releasepage = ext4_releasepage,
3051 .direct_IO = ext4_direct_IO,
3052 .migratepage = buffer_migrate_page,
3053 .is_partially_uptodate = block_is_partially_uptodate,
3054 .error_remove_page = generic_error_remove_page,
3057 static const struct address_space_operations ext4_journalled_aops = {
3058 .readpage = ext4_readpage,
3059 .readpages = ext4_readpages,
3060 .writepage = ext4_writepage,
3061 .write_begin = ext4_write_begin,
3062 .write_end = ext4_journalled_write_end,
3063 .set_page_dirty = ext4_journalled_set_page_dirty,
3064 .bmap = ext4_bmap,
3065 .invalidatepage = ext4_invalidatepage,
3066 .releasepage = ext4_releasepage,
3067 .direct_IO = ext4_direct_IO,
3068 .is_partially_uptodate = block_is_partially_uptodate,
3069 .error_remove_page = generic_error_remove_page,
3072 static const struct address_space_operations ext4_da_aops = {
3073 .readpage = ext4_readpage,
3074 .readpages = ext4_readpages,
3075 .writepage = ext4_writepage,
3076 .writepages = ext4_da_writepages,
3077 .write_begin = ext4_da_write_begin,
3078 .write_end = ext4_da_write_end,
3079 .bmap = ext4_bmap,
3080 .invalidatepage = ext4_da_invalidatepage,
3081 .releasepage = ext4_releasepage,
3082 .direct_IO = ext4_direct_IO,
3083 .migratepage = buffer_migrate_page,
3084 .is_partially_uptodate = block_is_partially_uptodate,
3085 .error_remove_page = generic_error_remove_page,
3088 void ext4_set_aops(struct inode *inode)
3090 switch (ext4_inode_journal_mode(inode)) {
3091 case EXT4_INODE_ORDERED_DATA_MODE:
3092 if (test_opt(inode->i_sb, DELALLOC))
3093 inode->i_mapping->a_ops = &ext4_da_aops;
3094 else
3095 inode->i_mapping->a_ops = &ext4_ordered_aops;
3096 break;
3097 case EXT4_INODE_WRITEBACK_DATA_MODE:
3098 if (test_opt(inode->i_sb, DELALLOC))
3099 inode->i_mapping->a_ops = &ext4_da_aops;
3100 else
3101 inode->i_mapping->a_ops = &ext4_writeback_aops;
3102 break;
3103 case EXT4_INODE_JOURNAL_DATA_MODE:
3104 inode->i_mapping->a_ops = &ext4_journalled_aops;
3105 break;
3106 default:
3107 BUG();
3113 * ext4_discard_partial_page_buffers()
3114 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3115 * This function finds and locks the page containing the offset
3116 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3117 * Calling functions that already have the page locked should call
3118 * ext4_discard_partial_page_buffers_no_lock directly.
3120 int ext4_discard_partial_page_buffers(handle_t *handle,
3121 struct address_space *mapping, loff_t from,
3122 loff_t length, int flags)
3124 struct inode *inode = mapping->host;
3125 struct page *page;
3126 int err = 0;
3128 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3129 mapping_gfp_mask(mapping) & ~__GFP_FS);
3130 if (!page)
3131 return -ENOMEM;
3133 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3134 from, length, flags);
3136 unlock_page(page);
3137 page_cache_release(page);
3138 return err;
3142 * ext4_discard_partial_page_buffers_no_lock()
3143 * Zeros a page range of length 'length' starting from offset 'from'.
3144 * Buffer heads that correspond to the block aligned regions of the
3145 * zeroed range will be unmapped. Unblock aligned regions
3146 * will have the corresponding buffer head mapped if needed so that
3147 * that region of the page can be updated with the partial zero out.
3149 * This function assumes that the page has already been locked. The
3150 * The range to be discarded must be contained with in the given page.
3151 * If the specified range exceeds the end of the page it will be shortened
3152 * to the end of the page that corresponds to 'from'. This function is
3153 * appropriate for updating a page and it buffer heads to be unmapped and
3154 * zeroed for blocks that have been either released, or are going to be
3155 * released.
3157 * handle: The journal handle
3158 * inode: The files inode
3159 * page: A locked page that contains the offset "from"
3160 * from: The starting byte offset (from the begining of the file)
3161 * to begin discarding
3162 * len: The length of bytes to discard
3163 * flags: Optional flags that may be used:
3165 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3166 * Only zero the regions of the page whose buffer heads
3167 * have already been unmapped. This flag is appropriate
3168 * for updateing the contents of a page whose blocks may
3169 * have already been released, and we only want to zero
3170 * out the regions that correspond to those released blocks.
3172 * Returns zero on sucess or negative on failure.
3174 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3175 struct inode *inode, struct page *page, loff_t from,
3176 loff_t length, int flags)
3178 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3179 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3180 unsigned int blocksize, max, pos;
3181 ext4_lblk_t iblock;
3182 struct buffer_head *bh;
3183 int err = 0;
3185 blocksize = inode->i_sb->s_blocksize;
3186 max = PAGE_CACHE_SIZE - offset;
3188 if (index != page->index)
3189 return -EINVAL;
3192 * correct length if it does not fall between
3193 * 'from' and the end of the page
3195 if (length > max || length < 0)
3196 length = max;
3198 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3200 if (!page_has_buffers(page))
3201 create_empty_buffers(page, blocksize, 0);
3203 /* Find the buffer that contains "offset" */
3204 bh = page_buffers(page);
3205 pos = blocksize;
3206 while (offset >= pos) {
3207 bh = bh->b_this_page;
3208 iblock++;
3209 pos += blocksize;
3212 pos = offset;
3213 while (pos < offset + length) {
3214 unsigned int end_of_block, range_to_discard;
3216 err = 0;
3218 /* The length of space left to zero and unmap */
3219 range_to_discard = offset + length - pos;
3221 /* The length of space until the end of the block */
3222 end_of_block = blocksize - (pos & (blocksize-1));
3225 * Do not unmap or zero past end of block
3226 * for this buffer head
3228 if (range_to_discard > end_of_block)
3229 range_to_discard = end_of_block;
3233 * Skip this buffer head if we are only zeroing unampped
3234 * regions of the page
3236 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3237 buffer_mapped(bh))
3238 goto next;
3240 /* If the range is block aligned, unmap */
3241 if (range_to_discard == blocksize) {
3242 clear_buffer_dirty(bh);
3243 bh->b_bdev = NULL;
3244 clear_buffer_mapped(bh);
3245 clear_buffer_req(bh);
3246 clear_buffer_new(bh);
3247 clear_buffer_delay(bh);
3248 clear_buffer_unwritten(bh);
3249 clear_buffer_uptodate(bh);
3250 zero_user(page, pos, range_to_discard);
3251 BUFFER_TRACE(bh, "Buffer discarded");
3252 goto next;
3256 * If this block is not completely contained in the range
3257 * to be discarded, then it is not going to be released. Because
3258 * we need to keep this block, we need to make sure this part
3259 * of the page is uptodate before we modify it by writeing
3260 * partial zeros on it.
3262 if (!buffer_mapped(bh)) {
3264 * Buffer head must be mapped before we can read
3265 * from the block
3267 BUFFER_TRACE(bh, "unmapped");
3268 ext4_get_block(inode, iblock, bh, 0);
3269 /* unmapped? It's a hole - nothing to do */
3270 if (!buffer_mapped(bh)) {
3271 BUFFER_TRACE(bh, "still unmapped");
3272 goto next;
3276 /* Ok, it's mapped. Make sure it's up-to-date */
3277 if (PageUptodate(page))
3278 set_buffer_uptodate(bh);
3280 if (!buffer_uptodate(bh)) {
3281 err = -EIO;
3282 ll_rw_block(READ, 1, &bh);
3283 wait_on_buffer(bh);
3284 /* Uhhuh. Read error. Complain and punt.*/
3285 if (!buffer_uptodate(bh))
3286 goto next;
3289 if (ext4_should_journal_data(inode)) {
3290 BUFFER_TRACE(bh, "get write access");
3291 err = ext4_journal_get_write_access(handle, bh);
3292 if (err)
3293 goto next;
3296 zero_user(page, pos, range_to_discard);
3298 err = 0;
3299 if (ext4_should_journal_data(inode)) {
3300 err = ext4_handle_dirty_metadata(handle, inode, bh);
3301 } else
3302 mark_buffer_dirty(bh);
3304 BUFFER_TRACE(bh, "Partial buffer zeroed");
3305 next:
3306 bh = bh->b_this_page;
3307 iblock++;
3308 pos += range_to_discard;
3311 return err;
3314 int ext4_can_truncate(struct inode *inode)
3316 if (S_ISREG(inode->i_mode))
3317 return 1;
3318 if (S_ISDIR(inode->i_mode))
3319 return 1;
3320 if (S_ISLNK(inode->i_mode))
3321 return !ext4_inode_is_fast_symlink(inode);
3322 return 0;
3326 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3327 * associated with the given offset and length
3329 * @inode: File inode
3330 * @offset: The offset where the hole will begin
3331 * @len: The length of the hole
3333 * Returns: 0 on sucess or negative on failure
3336 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3338 struct inode *inode = file->f_path.dentry->d_inode;
3339 if (!S_ISREG(inode->i_mode))
3340 return -ENOTSUPP;
3342 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3343 /* TODO: Add support for non extent hole punching */
3344 return -ENOTSUPP;
3347 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3348 /* TODO: Add support for bigalloc file systems */
3349 return -ENOTSUPP;
3352 return ext4_ext_punch_hole(file, offset, length);
3356 * ext4_truncate()
3358 * We block out ext4_get_block() block instantiations across the entire
3359 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3360 * simultaneously on behalf of the same inode.
3362 * As we work through the truncate and commit bits of it to the journal there
3363 * is one core, guiding principle: the file's tree must always be consistent on
3364 * disk. We must be able to restart the truncate after a crash.
3366 * The file's tree may be transiently inconsistent in memory (although it
3367 * probably isn't), but whenever we close off and commit a journal transaction,
3368 * the contents of (the filesystem + the journal) must be consistent and
3369 * restartable. It's pretty simple, really: bottom up, right to left (although
3370 * left-to-right works OK too).
3372 * Note that at recovery time, journal replay occurs *before* the restart of
3373 * truncate against the orphan inode list.
3375 * The committed inode has the new, desired i_size (which is the same as
3376 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3377 * that this inode's truncate did not complete and it will again call
3378 * ext4_truncate() to have another go. So there will be instantiated blocks
3379 * to the right of the truncation point in a crashed ext4 filesystem. But
3380 * that's fine - as long as they are linked from the inode, the post-crash
3381 * ext4_truncate() run will find them and release them.
3383 void ext4_truncate(struct inode *inode)
3385 trace_ext4_truncate_enter(inode);
3387 if (!ext4_can_truncate(inode))
3388 return;
3390 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3392 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3393 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3395 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3396 ext4_ext_truncate(inode);
3397 else
3398 ext4_ind_truncate(inode);
3400 trace_ext4_truncate_exit(inode);
3404 * ext4_get_inode_loc returns with an extra refcount against the inode's
3405 * underlying buffer_head on success. If 'in_mem' is true, we have all
3406 * data in memory that is needed to recreate the on-disk version of this
3407 * inode.
3409 static int __ext4_get_inode_loc(struct inode *inode,
3410 struct ext4_iloc *iloc, int in_mem)
3412 struct ext4_group_desc *gdp;
3413 struct buffer_head *bh;
3414 struct super_block *sb = inode->i_sb;
3415 ext4_fsblk_t block;
3416 int inodes_per_block, inode_offset;
3418 iloc->bh = NULL;
3419 if (!ext4_valid_inum(sb, inode->i_ino))
3420 return -EIO;
3422 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3423 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3424 if (!gdp)
3425 return -EIO;
3428 * Figure out the offset within the block group inode table
3430 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3431 inode_offset = ((inode->i_ino - 1) %
3432 EXT4_INODES_PER_GROUP(sb));
3433 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3434 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3436 bh = sb_getblk(sb, block);
3437 if (!bh) {
3438 EXT4_ERROR_INODE_BLOCK(inode, block,
3439 "unable to read itable block");
3440 return -EIO;
3442 if (!buffer_uptodate(bh)) {
3443 lock_buffer(bh);
3446 * If the buffer has the write error flag, we have failed
3447 * to write out another inode in the same block. In this
3448 * case, we don't have to read the block because we may
3449 * read the old inode data successfully.
3451 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3452 set_buffer_uptodate(bh);
3454 if (buffer_uptodate(bh)) {
3455 /* someone brought it uptodate while we waited */
3456 unlock_buffer(bh);
3457 goto has_buffer;
3461 * If we have all information of the inode in memory and this
3462 * is the only valid inode in the block, we need not read the
3463 * block.
3465 if (in_mem) {
3466 struct buffer_head *bitmap_bh;
3467 int i, start;
3469 start = inode_offset & ~(inodes_per_block - 1);
3471 /* Is the inode bitmap in cache? */
3472 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3473 if (!bitmap_bh)
3474 goto make_io;
3477 * If the inode bitmap isn't in cache then the
3478 * optimisation may end up performing two reads instead
3479 * of one, so skip it.
3481 if (!buffer_uptodate(bitmap_bh)) {
3482 brelse(bitmap_bh);
3483 goto make_io;
3485 for (i = start; i < start + inodes_per_block; i++) {
3486 if (i == inode_offset)
3487 continue;
3488 if (ext4_test_bit(i, bitmap_bh->b_data))
3489 break;
3491 brelse(bitmap_bh);
3492 if (i == start + inodes_per_block) {
3493 /* all other inodes are free, so skip I/O */
3494 memset(bh->b_data, 0, bh->b_size);
3495 set_buffer_uptodate(bh);
3496 unlock_buffer(bh);
3497 goto has_buffer;
3501 make_io:
3503 * If we need to do any I/O, try to pre-readahead extra
3504 * blocks from the inode table.
3506 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3507 ext4_fsblk_t b, end, table;
3508 unsigned num;
3510 table = ext4_inode_table(sb, gdp);
3511 /* s_inode_readahead_blks is always a power of 2 */
3512 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3513 if (table > b)
3514 b = table;
3515 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3516 num = EXT4_INODES_PER_GROUP(sb);
3517 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3518 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3519 num -= ext4_itable_unused_count(sb, gdp);
3520 table += num / inodes_per_block;
3521 if (end > table)
3522 end = table;
3523 while (b <= end)
3524 sb_breadahead(sb, b++);
3528 * There are other valid inodes in the buffer, this inode
3529 * has in-inode xattrs, or we don't have this inode in memory.
3530 * Read the block from disk.
3532 trace_ext4_load_inode(inode);
3533 get_bh(bh);
3534 bh->b_end_io = end_buffer_read_sync;
3535 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3536 wait_on_buffer(bh);
3537 if (!buffer_uptodate(bh)) {
3538 EXT4_ERROR_INODE_BLOCK(inode, block,
3539 "unable to read itable block");
3540 brelse(bh);
3541 return -EIO;
3544 has_buffer:
3545 iloc->bh = bh;
3546 return 0;
3549 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3551 /* We have all inode data except xattrs in memory here. */
3552 return __ext4_get_inode_loc(inode, iloc,
3553 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3556 void ext4_set_inode_flags(struct inode *inode)
3558 unsigned int flags = EXT4_I(inode)->i_flags;
3560 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3561 if (flags & EXT4_SYNC_FL)
3562 inode->i_flags |= S_SYNC;
3563 if (flags & EXT4_APPEND_FL)
3564 inode->i_flags |= S_APPEND;
3565 if (flags & EXT4_IMMUTABLE_FL)
3566 inode->i_flags |= S_IMMUTABLE;
3567 if (flags & EXT4_NOATIME_FL)
3568 inode->i_flags |= S_NOATIME;
3569 if (flags & EXT4_DIRSYNC_FL)
3570 inode->i_flags |= S_DIRSYNC;
3573 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3574 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3576 unsigned int vfs_fl;
3577 unsigned long old_fl, new_fl;
3579 do {
3580 vfs_fl = ei->vfs_inode.i_flags;
3581 old_fl = ei->i_flags;
3582 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3583 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3584 EXT4_DIRSYNC_FL);
3585 if (vfs_fl & S_SYNC)
3586 new_fl |= EXT4_SYNC_FL;
3587 if (vfs_fl & S_APPEND)
3588 new_fl |= EXT4_APPEND_FL;
3589 if (vfs_fl & S_IMMUTABLE)
3590 new_fl |= EXT4_IMMUTABLE_FL;
3591 if (vfs_fl & S_NOATIME)
3592 new_fl |= EXT4_NOATIME_FL;
3593 if (vfs_fl & S_DIRSYNC)
3594 new_fl |= EXT4_DIRSYNC_FL;
3595 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3598 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3599 struct ext4_inode_info *ei)
3601 blkcnt_t i_blocks ;
3602 struct inode *inode = &(ei->vfs_inode);
3603 struct super_block *sb = inode->i_sb;
3605 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3606 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3607 /* we are using combined 48 bit field */
3608 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3609 le32_to_cpu(raw_inode->i_blocks_lo);
3610 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3611 /* i_blocks represent file system block size */
3612 return i_blocks << (inode->i_blkbits - 9);
3613 } else {
3614 return i_blocks;
3616 } else {
3617 return le32_to_cpu(raw_inode->i_blocks_lo);
3621 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3623 struct ext4_iloc iloc;
3624 struct ext4_inode *raw_inode;
3625 struct ext4_inode_info *ei;
3626 struct inode *inode;
3627 journal_t *journal = EXT4_SB(sb)->s_journal;
3628 long ret;
3629 int block;
3631 inode = iget_locked(sb, ino);
3632 if (!inode)
3633 return ERR_PTR(-ENOMEM);
3634 if (!(inode->i_state & I_NEW))
3635 return inode;
3637 ei = EXT4_I(inode);
3638 iloc.bh = NULL;
3640 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3641 if (ret < 0)
3642 goto bad_inode;
3643 raw_inode = ext4_raw_inode(&iloc);
3644 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3645 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3646 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3647 if (!(test_opt(inode->i_sb, NO_UID32))) {
3648 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3649 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3651 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3653 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
3654 ei->i_dir_start_lookup = 0;
3655 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3656 /* We now have enough fields to check if the inode was active or not.
3657 * This is needed because nfsd might try to access dead inodes
3658 * the test is that same one that e2fsck uses
3659 * NeilBrown 1999oct15
3661 if (inode->i_nlink == 0) {
3662 if (inode->i_mode == 0 ||
3663 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3664 /* this inode is deleted */
3665 ret = -ESTALE;
3666 goto bad_inode;
3668 /* The only unlinked inodes we let through here have
3669 * valid i_mode and are being read by the orphan
3670 * recovery code: that's fine, we're about to complete
3671 * the process of deleting those. */
3673 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3674 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3675 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3676 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3677 ei->i_file_acl |=
3678 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3679 inode->i_size = ext4_isize(raw_inode);
3680 ei->i_disksize = inode->i_size;
3681 #ifdef CONFIG_QUOTA
3682 ei->i_reserved_quota = 0;
3683 #endif
3684 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3685 ei->i_block_group = iloc.block_group;
3686 ei->i_last_alloc_group = ~0;
3688 * NOTE! The in-memory inode i_data array is in little-endian order
3689 * even on big-endian machines: we do NOT byteswap the block numbers!
3691 for (block = 0; block < EXT4_N_BLOCKS; block++)
3692 ei->i_data[block] = raw_inode->i_block[block];
3693 INIT_LIST_HEAD(&ei->i_orphan);
3696 * Set transaction id's of transactions that have to be committed
3697 * to finish f[data]sync. We set them to currently running transaction
3698 * as we cannot be sure that the inode or some of its metadata isn't
3699 * part of the transaction - the inode could have been reclaimed and
3700 * now it is reread from disk.
3702 if (journal) {
3703 transaction_t *transaction;
3704 tid_t tid;
3706 read_lock(&journal->j_state_lock);
3707 if (journal->j_running_transaction)
3708 transaction = journal->j_running_transaction;
3709 else
3710 transaction = journal->j_committing_transaction;
3711 if (transaction)
3712 tid = transaction->t_tid;
3713 else
3714 tid = journal->j_commit_sequence;
3715 read_unlock(&journal->j_state_lock);
3716 ei->i_sync_tid = tid;
3717 ei->i_datasync_tid = tid;
3720 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3721 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3722 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3723 EXT4_INODE_SIZE(inode->i_sb)) {
3724 ret = -EIO;
3725 goto bad_inode;
3727 if (ei->i_extra_isize == 0) {
3728 /* The extra space is currently unused. Use it. */
3729 ei->i_extra_isize = sizeof(struct ext4_inode) -
3730 EXT4_GOOD_OLD_INODE_SIZE;
3731 } else {
3732 __le32 *magic = (void *)raw_inode +
3733 EXT4_GOOD_OLD_INODE_SIZE +
3734 ei->i_extra_isize;
3735 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3736 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3738 } else
3739 ei->i_extra_isize = 0;
3741 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3742 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3743 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3744 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3746 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3747 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3748 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3749 inode->i_version |=
3750 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3753 ret = 0;
3754 if (ei->i_file_acl &&
3755 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3756 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3757 ei->i_file_acl);
3758 ret = -EIO;
3759 goto bad_inode;
3760 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3761 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3762 (S_ISLNK(inode->i_mode) &&
3763 !ext4_inode_is_fast_symlink(inode)))
3764 /* Validate extent which is part of inode */
3765 ret = ext4_ext_check_inode(inode);
3766 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3767 (S_ISLNK(inode->i_mode) &&
3768 !ext4_inode_is_fast_symlink(inode))) {
3769 /* Validate block references which are part of inode */
3770 ret = ext4_ind_check_inode(inode);
3772 if (ret)
3773 goto bad_inode;
3775 if (S_ISREG(inode->i_mode)) {
3776 inode->i_op = &ext4_file_inode_operations;
3777 inode->i_fop = &ext4_file_operations;
3778 ext4_set_aops(inode);
3779 } else if (S_ISDIR(inode->i_mode)) {
3780 inode->i_op = &ext4_dir_inode_operations;
3781 inode->i_fop = &ext4_dir_operations;
3782 } else if (S_ISLNK(inode->i_mode)) {
3783 if (ext4_inode_is_fast_symlink(inode)) {
3784 inode->i_op = &ext4_fast_symlink_inode_operations;
3785 nd_terminate_link(ei->i_data, inode->i_size,
3786 sizeof(ei->i_data) - 1);
3787 } else {
3788 inode->i_op = &ext4_symlink_inode_operations;
3789 ext4_set_aops(inode);
3791 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3792 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3793 inode->i_op = &ext4_special_inode_operations;
3794 if (raw_inode->i_block[0])
3795 init_special_inode(inode, inode->i_mode,
3796 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3797 else
3798 init_special_inode(inode, inode->i_mode,
3799 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3800 } else {
3801 ret = -EIO;
3802 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3803 goto bad_inode;
3805 brelse(iloc.bh);
3806 ext4_set_inode_flags(inode);
3807 unlock_new_inode(inode);
3808 return inode;
3810 bad_inode:
3811 brelse(iloc.bh);
3812 iget_failed(inode);
3813 return ERR_PTR(ret);
3816 static int ext4_inode_blocks_set(handle_t *handle,
3817 struct ext4_inode *raw_inode,
3818 struct ext4_inode_info *ei)
3820 struct inode *inode = &(ei->vfs_inode);
3821 u64 i_blocks = inode->i_blocks;
3822 struct super_block *sb = inode->i_sb;
3824 if (i_blocks <= ~0U) {
3826 * i_blocks can be represnted in a 32 bit variable
3827 * as multiple of 512 bytes
3829 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3830 raw_inode->i_blocks_high = 0;
3831 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3832 return 0;
3834 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3835 return -EFBIG;
3837 if (i_blocks <= 0xffffffffffffULL) {
3839 * i_blocks can be represented in a 48 bit variable
3840 * as multiple of 512 bytes
3842 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3843 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3844 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3845 } else {
3846 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3847 /* i_block is stored in file system block size */
3848 i_blocks = i_blocks >> (inode->i_blkbits - 9);
3849 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3850 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3852 return 0;
3856 * Post the struct inode info into an on-disk inode location in the
3857 * buffer-cache. This gobbles the caller's reference to the
3858 * buffer_head in the inode location struct.
3860 * The caller must have write access to iloc->bh.
3862 static int ext4_do_update_inode(handle_t *handle,
3863 struct inode *inode,
3864 struct ext4_iloc *iloc)
3866 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3867 struct ext4_inode_info *ei = EXT4_I(inode);
3868 struct buffer_head *bh = iloc->bh;
3869 int err = 0, rc, block;
3871 /* For fields not not tracking in the in-memory inode,
3872 * initialise them to zero for new inodes. */
3873 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3874 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3876 ext4_get_inode_flags(ei);
3877 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3878 if (!(test_opt(inode->i_sb, NO_UID32))) {
3879 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3880 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3882 * Fix up interoperability with old kernels. Otherwise, old inodes get
3883 * re-used with the upper 16 bits of the uid/gid intact
3885 if (!ei->i_dtime) {
3886 raw_inode->i_uid_high =
3887 cpu_to_le16(high_16_bits(inode->i_uid));
3888 raw_inode->i_gid_high =
3889 cpu_to_le16(high_16_bits(inode->i_gid));
3890 } else {
3891 raw_inode->i_uid_high = 0;
3892 raw_inode->i_gid_high = 0;
3894 } else {
3895 raw_inode->i_uid_low =
3896 cpu_to_le16(fs_high2lowuid(inode->i_uid));
3897 raw_inode->i_gid_low =
3898 cpu_to_le16(fs_high2lowgid(inode->i_gid));
3899 raw_inode->i_uid_high = 0;
3900 raw_inode->i_gid_high = 0;
3902 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3904 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
3905 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
3906 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
3907 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
3909 if (ext4_inode_blocks_set(handle, raw_inode, ei))
3910 goto out_brelse;
3911 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3912 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
3913 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3914 cpu_to_le32(EXT4_OS_HURD))
3915 raw_inode->i_file_acl_high =
3916 cpu_to_le16(ei->i_file_acl >> 32);
3917 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
3918 ext4_isize_set(raw_inode, ei->i_disksize);
3919 if (ei->i_disksize > 0x7fffffffULL) {
3920 struct super_block *sb = inode->i_sb;
3921 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
3922 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
3923 EXT4_SB(sb)->s_es->s_rev_level ==
3924 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
3925 /* If this is the first large file
3926 * created, add a flag to the superblock.
3928 err = ext4_journal_get_write_access(handle,
3929 EXT4_SB(sb)->s_sbh);
3930 if (err)
3931 goto out_brelse;
3932 ext4_update_dynamic_rev(sb);
3933 EXT4_SET_RO_COMPAT_FEATURE(sb,
3934 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
3935 sb->s_dirt = 1;
3936 ext4_handle_sync(handle);
3937 err = ext4_handle_dirty_metadata(handle, NULL,
3938 EXT4_SB(sb)->s_sbh);
3941 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3942 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3943 if (old_valid_dev(inode->i_rdev)) {
3944 raw_inode->i_block[0] =
3945 cpu_to_le32(old_encode_dev(inode->i_rdev));
3946 raw_inode->i_block[1] = 0;
3947 } else {
3948 raw_inode->i_block[0] = 0;
3949 raw_inode->i_block[1] =
3950 cpu_to_le32(new_encode_dev(inode->i_rdev));
3951 raw_inode->i_block[2] = 0;
3953 } else
3954 for (block = 0; block < EXT4_N_BLOCKS; block++)
3955 raw_inode->i_block[block] = ei->i_data[block];
3957 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
3958 if (ei->i_extra_isize) {
3959 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3960 raw_inode->i_version_hi =
3961 cpu_to_le32(inode->i_version >> 32);
3962 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3965 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3966 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
3967 if (!err)
3968 err = rc;
3969 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
3971 ext4_update_inode_fsync_trans(handle, inode, 0);
3972 out_brelse:
3973 brelse(bh);
3974 ext4_std_error(inode->i_sb, err);
3975 return err;
3979 * ext4_write_inode()
3981 * We are called from a few places:
3983 * - Within generic_file_write() for O_SYNC files.
3984 * Here, there will be no transaction running. We wait for any running
3985 * trasnaction to commit.
3987 * - Within sys_sync(), kupdate and such.
3988 * We wait on commit, if tol to.
3990 * - Within prune_icache() (PF_MEMALLOC == true)
3991 * Here we simply return. We can't afford to block kswapd on the
3992 * journal commit.
3994 * In all cases it is actually safe for us to return without doing anything,
3995 * because the inode has been copied into a raw inode buffer in
3996 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
3997 * knfsd.
3999 * Note that we are absolutely dependent upon all inode dirtiers doing the
4000 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4001 * which we are interested.
4003 * It would be a bug for them to not do this. The code:
4005 * mark_inode_dirty(inode)
4006 * stuff();
4007 * inode->i_size = expr;
4009 * is in error because a kswapd-driven write_inode() could occur while
4010 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4011 * will no longer be on the superblock's dirty inode list.
4013 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4015 int err;
4017 if (current->flags & PF_MEMALLOC)
4018 return 0;
4020 if (EXT4_SB(inode->i_sb)->s_journal) {
4021 if (ext4_journal_current_handle()) {
4022 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4023 dump_stack();
4024 return -EIO;
4027 if (wbc->sync_mode != WB_SYNC_ALL)
4028 return 0;
4030 err = ext4_force_commit(inode->i_sb);
4031 } else {
4032 struct ext4_iloc iloc;
4034 err = __ext4_get_inode_loc(inode, &iloc, 0);
4035 if (err)
4036 return err;
4037 if (wbc->sync_mode == WB_SYNC_ALL)
4038 sync_dirty_buffer(iloc.bh);
4039 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4040 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4041 "IO error syncing inode");
4042 err = -EIO;
4044 brelse(iloc.bh);
4046 return err;
4050 * ext4_setattr()
4052 * Called from notify_change.
4054 * We want to trap VFS attempts to truncate the file as soon as
4055 * possible. In particular, we want to make sure that when the VFS
4056 * shrinks i_size, we put the inode on the orphan list and modify
4057 * i_disksize immediately, so that during the subsequent flushing of
4058 * dirty pages and freeing of disk blocks, we can guarantee that any
4059 * commit will leave the blocks being flushed in an unused state on
4060 * disk. (On recovery, the inode will get truncated and the blocks will
4061 * be freed, so we have a strong guarantee that no future commit will
4062 * leave these blocks visible to the user.)
4064 * Another thing we have to assure is that if we are in ordered mode
4065 * and inode is still attached to the committing transaction, we must
4066 * we start writeout of all the dirty pages which are being truncated.
4067 * This way we are sure that all the data written in the previous
4068 * transaction are already on disk (truncate waits for pages under
4069 * writeback).
4071 * Called with inode->i_mutex down.
4073 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4075 struct inode *inode = dentry->d_inode;
4076 int error, rc = 0;
4077 int orphan = 0;
4078 const unsigned int ia_valid = attr->ia_valid;
4080 error = inode_change_ok(inode, attr);
4081 if (error)
4082 return error;
4084 if (is_quota_modification(inode, attr))
4085 dquot_initialize(inode);
4086 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4087 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4088 handle_t *handle;
4090 /* (user+group)*(old+new) structure, inode write (sb,
4091 * inode block, ? - but truncate inode update has it) */
4092 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4093 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4094 if (IS_ERR(handle)) {
4095 error = PTR_ERR(handle);
4096 goto err_out;
4098 error = dquot_transfer(inode, attr);
4099 if (error) {
4100 ext4_journal_stop(handle);
4101 return error;
4103 /* Update corresponding info in inode so that everything is in
4104 * one transaction */
4105 if (attr->ia_valid & ATTR_UID)
4106 inode->i_uid = attr->ia_uid;
4107 if (attr->ia_valid & ATTR_GID)
4108 inode->i_gid = attr->ia_gid;
4109 error = ext4_mark_inode_dirty(handle, inode);
4110 ext4_journal_stop(handle);
4113 if (attr->ia_valid & ATTR_SIZE) {
4114 inode_dio_wait(inode);
4116 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4117 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4119 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4120 return -EFBIG;
4124 if (S_ISREG(inode->i_mode) &&
4125 attr->ia_valid & ATTR_SIZE &&
4126 (attr->ia_size < inode->i_size)) {
4127 handle_t *handle;
4129 handle = ext4_journal_start(inode, 3);
4130 if (IS_ERR(handle)) {
4131 error = PTR_ERR(handle);
4132 goto err_out;
4134 if (ext4_handle_valid(handle)) {
4135 error = ext4_orphan_add(handle, inode);
4136 orphan = 1;
4138 EXT4_I(inode)->i_disksize = attr->ia_size;
4139 rc = ext4_mark_inode_dirty(handle, inode);
4140 if (!error)
4141 error = rc;
4142 ext4_journal_stop(handle);
4144 if (ext4_should_order_data(inode)) {
4145 error = ext4_begin_ordered_truncate(inode,
4146 attr->ia_size);
4147 if (error) {
4148 /* Do as much error cleanup as possible */
4149 handle = ext4_journal_start(inode, 3);
4150 if (IS_ERR(handle)) {
4151 ext4_orphan_del(NULL, inode);
4152 goto err_out;
4154 ext4_orphan_del(handle, inode);
4155 orphan = 0;
4156 ext4_journal_stop(handle);
4157 goto err_out;
4162 if (attr->ia_valid & ATTR_SIZE) {
4163 if (attr->ia_size != i_size_read(inode)) {
4164 truncate_setsize(inode, attr->ia_size);
4165 ext4_truncate(inode);
4166 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
4167 ext4_truncate(inode);
4170 if (!rc) {
4171 setattr_copy(inode, attr);
4172 mark_inode_dirty(inode);
4176 * If the call to ext4_truncate failed to get a transaction handle at
4177 * all, we need to clean up the in-core orphan list manually.
4179 if (orphan && inode->i_nlink)
4180 ext4_orphan_del(NULL, inode);
4182 if (!rc && (ia_valid & ATTR_MODE))
4183 rc = ext4_acl_chmod(inode);
4185 err_out:
4186 ext4_std_error(inode->i_sb, error);
4187 if (!error)
4188 error = rc;
4189 return error;
4192 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4193 struct kstat *stat)
4195 struct inode *inode;
4196 unsigned long delalloc_blocks;
4198 inode = dentry->d_inode;
4199 generic_fillattr(inode, stat);
4202 * We can't update i_blocks if the block allocation is delayed
4203 * otherwise in the case of system crash before the real block
4204 * allocation is done, we will have i_blocks inconsistent with
4205 * on-disk file blocks.
4206 * We always keep i_blocks updated together with real
4207 * allocation. But to not confuse with user, stat
4208 * will return the blocks that include the delayed allocation
4209 * blocks for this file.
4211 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4213 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4214 return 0;
4217 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4219 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4220 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4221 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4225 * Account for index blocks, block groups bitmaps and block group
4226 * descriptor blocks if modify datablocks and index blocks
4227 * worse case, the indexs blocks spread over different block groups
4229 * If datablocks are discontiguous, they are possible to spread over
4230 * different block groups too. If they are contiuguous, with flexbg,
4231 * they could still across block group boundary.
4233 * Also account for superblock, inode, quota and xattr blocks
4235 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4237 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4238 int gdpblocks;
4239 int idxblocks;
4240 int ret = 0;
4243 * How many index blocks need to touch to modify nrblocks?
4244 * The "Chunk" flag indicating whether the nrblocks is
4245 * physically contiguous on disk
4247 * For Direct IO and fallocate, they calls get_block to allocate
4248 * one single extent at a time, so they could set the "Chunk" flag
4250 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4252 ret = idxblocks;
4255 * Now let's see how many group bitmaps and group descriptors need
4256 * to account
4258 groups = idxblocks;
4259 if (chunk)
4260 groups += 1;
4261 else
4262 groups += nrblocks;
4264 gdpblocks = groups;
4265 if (groups > ngroups)
4266 groups = ngroups;
4267 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4268 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4270 /* bitmaps and block group descriptor blocks */
4271 ret += groups + gdpblocks;
4273 /* Blocks for super block, inode, quota and xattr blocks */
4274 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4276 return ret;
4280 * Calculate the total number of credits to reserve to fit
4281 * the modification of a single pages into a single transaction,
4282 * which may include multiple chunks of block allocations.
4284 * This could be called via ext4_write_begin()
4286 * We need to consider the worse case, when
4287 * one new block per extent.
4289 int ext4_writepage_trans_blocks(struct inode *inode)
4291 int bpp = ext4_journal_blocks_per_page(inode);
4292 int ret;
4294 ret = ext4_meta_trans_blocks(inode, bpp, 0);
4296 /* Account for data blocks for journalled mode */
4297 if (ext4_should_journal_data(inode))
4298 ret += bpp;
4299 return ret;
4303 * Calculate the journal credits for a chunk of data modification.
4305 * This is called from DIO, fallocate or whoever calling
4306 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4308 * journal buffers for data blocks are not included here, as DIO
4309 * and fallocate do no need to journal data buffers.
4311 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4313 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4317 * The caller must have previously called ext4_reserve_inode_write().
4318 * Give this, we know that the caller already has write access to iloc->bh.
4320 int ext4_mark_iloc_dirty(handle_t *handle,
4321 struct inode *inode, struct ext4_iloc *iloc)
4323 int err = 0;
4325 if (test_opt(inode->i_sb, I_VERSION))
4326 inode_inc_iversion(inode);
4328 /* the do_update_inode consumes one bh->b_count */
4329 get_bh(iloc->bh);
4331 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4332 err = ext4_do_update_inode(handle, inode, iloc);
4333 put_bh(iloc->bh);
4334 return err;
4338 * On success, We end up with an outstanding reference count against
4339 * iloc->bh. This _must_ be cleaned up later.
4343 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4344 struct ext4_iloc *iloc)
4346 int err;
4348 err = ext4_get_inode_loc(inode, iloc);
4349 if (!err) {
4350 BUFFER_TRACE(iloc->bh, "get_write_access");
4351 err = ext4_journal_get_write_access(handle, iloc->bh);
4352 if (err) {
4353 brelse(iloc->bh);
4354 iloc->bh = NULL;
4357 ext4_std_error(inode->i_sb, err);
4358 return err;
4362 * Expand an inode by new_extra_isize bytes.
4363 * Returns 0 on success or negative error number on failure.
4365 static int ext4_expand_extra_isize(struct inode *inode,
4366 unsigned int new_extra_isize,
4367 struct ext4_iloc iloc,
4368 handle_t *handle)
4370 struct ext4_inode *raw_inode;
4371 struct ext4_xattr_ibody_header *header;
4373 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4374 return 0;
4376 raw_inode = ext4_raw_inode(&iloc);
4378 header = IHDR(inode, raw_inode);
4380 /* No extended attributes present */
4381 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4382 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4383 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4384 new_extra_isize);
4385 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4386 return 0;
4389 /* try to expand with EAs present */
4390 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4391 raw_inode, handle);
4395 * What we do here is to mark the in-core inode as clean with respect to inode
4396 * dirtiness (it may still be data-dirty).
4397 * This means that the in-core inode may be reaped by prune_icache
4398 * without having to perform any I/O. This is a very good thing,
4399 * because *any* task may call prune_icache - even ones which
4400 * have a transaction open against a different journal.
4402 * Is this cheating? Not really. Sure, we haven't written the
4403 * inode out, but prune_icache isn't a user-visible syncing function.
4404 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4405 * we start and wait on commits.
4407 * Is this efficient/effective? Well, we're being nice to the system
4408 * by cleaning up our inodes proactively so they can be reaped
4409 * without I/O. But we are potentially leaving up to five seconds'
4410 * worth of inodes floating about which prune_icache wants us to
4411 * write out. One way to fix that would be to get prune_icache()
4412 * to do a write_super() to free up some memory. It has the desired
4413 * effect.
4415 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4417 struct ext4_iloc iloc;
4418 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4419 static unsigned int mnt_count;
4420 int err, ret;
4422 might_sleep();
4423 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4424 err = ext4_reserve_inode_write(handle, inode, &iloc);
4425 if (ext4_handle_valid(handle) &&
4426 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4427 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4429 * We need extra buffer credits since we may write into EA block
4430 * with this same handle. If journal_extend fails, then it will
4431 * only result in a minor loss of functionality for that inode.
4432 * If this is felt to be critical, then e2fsck should be run to
4433 * force a large enough s_min_extra_isize.
4435 if ((jbd2_journal_extend(handle,
4436 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4437 ret = ext4_expand_extra_isize(inode,
4438 sbi->s_want_extra_isize,
4439 iloc, handle);
4440 if (ret) {
4441 ext4_set_inode_state(inode,
4442 EXT4_STATE_NO_EXPAND);
4443 if (mnt_count !=
4444 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4445 ext4_warning(inode->i_sb,
4446 "Unable to expand inode %lu. Delete"
4447 " some EAs or run e2fsck.",
4448 inode->i_ino);
4449 mnt_count =
4450 le16_to_cpu(sbi->s_es->s_mnt_count);
4455 if (!err)
4456 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4457 return err;
4461 * ext4_dirty_inode() is called from __mark_inode_dirty()
4463 * We're really interested in the case where a file is being extended.
4464 * i_size has been changed by generic_commit_write() and we thus need
4465 * to include the updated inode in the current transaction.
4467 * Also, dquot_alloc_block() will always dirty the inode when blocks
4468 * are allocated to the file.
4470 * If the inode is marked synchronous, we don't honour that here - doing
4471 * so would cause a commit on atime updates, which we don't bother doing.
4472 * We handle synchronous inodes at the highest possible level.
4474 void ext4_dirty_inode(struct inode *inode, int flags)
4476 handle_t *handle;
4478 handle = ext4_journal_start(inode, 2);
4479 if (IS_ERR(handle))
4480 goto out;
4482 ext4_mark_inode_dirty(handle, inode);
4484 ext4_journal_stop(handle);
4485 out:
4486 return;
4489 #if 0
4491 * Bind an inode's backing buffer_head into this transaction, to prevent
4492 * it from being flushed to disk early. Unlike
4493 * ext4_reserve_inode_write, this leaves behind no bh reference and
4494 * returns no iloc structure, so the caller needs to repeat the iloc
4495 * lookup to mark the inode dirty later.
4497 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4499 struct ext4_iloc iloc;
4501 int err = 0;
4502 if (handle) {
4503 err = ext4_get_inode_loc(inode, &iloc);
4504 if (!err) {
4505 BUFFER_TRACE(iloc.bh, "get_write_access");
4506 err = jbd2_journal_get_write_access(handle, iloc.bh);
4507 if (!err)
4508 err = ext4_handle_dirty_metadata(handle,
4509 NULL,
4510 iloc.bh);
4511 brelse(iloc.bh);
4514 ext4_std_error(inode->i_sb, err);
4515 return err;
4517 #endif
4519 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4521 journal_t *journal;
4522 handle_t *handle;
4523 int err;
4526 * We have to be very careful here: changing a data block's
4527 * journaling status dynamically is dangerous. If we write a
4528 * data block to the journal, change the status and then delete
4529 * that block, we risk forgetting to revoke the old log record
4530 * from the journal and so a subsequent replay can corrupt data.
4531 * So, first we make sure that the journal is empty and that
4532 * nobody is changing anything.
4535 journal = EXT4_JOURNAL(inode);
4536 if (!journal)
4537 return 0;
4538 if (is_journal_aborted(journal))
4539 return -EROFS;
4540 /* We have to allocate physical blocks for delalloc blocks
4541 * before flushing journal. otherwise delalloc blocks can not
4542 * be allocated any more. even more truncate on delalloc blocks
4543 * could trigger BUG by flushing delalloc blocks in journal.
4544 * There is no delalloc block in non-journal data mode.
4546 if (val && test_opt(inode->i_sb, DELALLOC)) {
4547 err = ext4_alloc_da_blocks(inode);
4548 if (err < 0)
4549 return err;
4552 jbd2_journal_lock_updates(journal);
4555 * OK, there are no updates running now, and all cached data is
4556 * synced to disk. We are now in a completely consistent state
4557 * which doesn't have anything in the journal, and we know that
4558 * no filesystem updates are running, so it is safe to modify
4559 * the inode's in-core data-journaling state flag now.
4562 if (val)
4563 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4564 else {
4565 jbd2_journal_flush(journal);
4566 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4568 ext4_set_aops(inode);
4570 jbd2_journal_unlock_updates(journal);
4572 /* Finally we can mark the inode as dirty. */
4574 handle = ext4_journal_start(inode, 1);
4575 if (IS_ERR(handle))
4576 return PTR_ERR(handle);
4578 err = ext4_mark_inode_dirty(handle, inode);
4579 ext4_handle_sync(handle);
4580 ext4_journal_stop(handle);
4581 ext4_std_error(inode->i_sb, err);
4583 return err;
4586 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4588 return !buffer_mapped(bh);
4591 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4593 struct page *page = vmf->page;
4594 loff_t size;
4595 unsigned long len;
4596 int ret;
4597 struct file *file = vma->vm_file;
4598 struct inode *inode = file->f_path.dentry->d_inode;
4599 struct address_space *mapping = inode->i_mapping;
4600 handle_t *handle;
4601 get_block_t *get_block;
4602 int retries = 0;
4605 * This check is racy but catches the common case. We rely on
4606 * __block_page_mkwrite() to do a reliable check.
4608 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
4609 /* Delalloc case is easy... */
4610 if (test_opt(inode->i_sb, DELALLOC) &&
4611 !ext4_should_journal_data(inode) &&
4612 !ext4_nonda_switch(inode->i_sb)) {
4613 do {
4614 ret = __block_page_mkwrite(vma, vmf,
4615 ext4_da_get_block_prep);
4616 } while (ret == -ENOSPC &&
4617 ext4_should_retry_alloc(inode->i_sb, &retries));
4618 goto out_ret;
4621 lock_page(page);
4622 size = i_size_read(inode);
4623 /* Page got truncated from under us? */
4624 if (page->mapping != mapping || page_offset(page) > size) {
4625 unlock_page(page);
4626 ret = VM_FAULT_NOPAGE;
4627 goto out;
4630 if (page->index == size >> PAGE_CACHE_SHIFT)
4631 len = size & ~PAGE_CACHE_MASK;
4632 else
4633 len = PAGE_CACHE_SIZE;
4635 * Return if we have all the buffers mapped. This avoids the need to do
4636 * journal_start/journal_stop which can block and take a long time
4638 if (page_has_buffers(page)) {
4639 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4640 ext4_bh_unmapped)) {
4641 /* Wait so that we don't change page under IO */
4642 wait_on_page_writeback(page);
4643 ret = VM_FAULT_LOCKED;
4644 goto out;
4647 unlock_page(page);
4648 /* OK, we need to fill the hole... */
4649 if (ext4_should_dioread_nolock(inode))
4650 get_block = ext4_get_block_write;
4651 else
4652 get_block = ext4_get_block;
4653 retry_alloc:
4654 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4655 if (IS_ERR(handle)) {
4656 ret = VM_FAULT_SIGBUS;
4657 goto out;
4659 ret = __block_page_mkwrite(vma, vmf, get_block);
4660 if (!ret && ext4_should_journal_data(inode)) {
4661 if (walk_page_buffers(handle, page_buffers(page), 0,
4662 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4663 unlock_page(page);
4664 ret = VM_FAULT_SIGBUS;
4665 ext4_journal_stop(handle);
4666 goto out;
4668 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4670 ext4_journal_stop(handle);
4671 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4672 goto retry_alloc;
4673 out_ret:
4674 ret = block_page_mkwrite_return(ret);
4675 out:
4676 return ret;