spi-topcliff-pch: Fix issue for transmitting over 4KByte
[zen-stable.git] / fs / ocfs2 / aops.c
blob78b68af3b0e32627b1874277d8ae58003501acb5
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
32 #include <cluster/masklog.h>
34 #include "ocfs2.h"
36 #include "alloc.h"
37 #include "aops.h"
38 #include "dlmglue.h"
39 #include "extent_map.h"
40 #include "file.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "suballoc.h"
44 #include "super.h"
45 #include "symlink.h"
46 #include "refcounttree.h"
47 #include "ocfs2_trace.h"
49 #include "buffer_head_io.h"
51 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52 struct buffer_head *bh_result, int create)
54 int err = -EIO;
55 int status;
56 struct ocfs2_dinode *fe = NULL;
57 struct buffer_head *bh = NULL;
58 struct buffer_head *buffer_cache_bh = NULL;
59 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60 void *kaddr;
62 trace_ocfs2_symlink_get_block(
63 (unsigned long long)OCFS2_I(inode)->ip_blkno,
64 (unsigned long long)iblock, bh_result, create);
66 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
68 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
69 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
70 (unsigned long long)iblock);
71 goto bail;
74 status = ocfs2_read_inode_block(inode, &bh);
75 if (status < 0) {
76 mlog_errno(status);
77 goto bail;
79 fe = (struct ocfs2_dinode *) bh->b_data;
81 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
82 le32_to_cpu(fe->i_clusters))) {
83 mlog(ML_ERROR, "block offset is outside the allocated size: "
84 "%llu\n", (unsigned long long)iblock);
85 goto bail;
88 /* We don't use the page cache to create symlink data, so if
89 * need be, copy it over from the buffer cache. */
90 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
91 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
92 iblock;
93 buffer_cache_bh = sb_getblk(osb->sb, blkno);
94 if (!buffer_cache_bh) {
95 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
96 goto bail;
99 /* we haven't locked out transactions, so a commit
100 * could've happened. Since we've got a reference on
101 * the bh, even if it commits while we're doing the
102 * copy, the data is still good. */
103 if (buffer_jbd(buffer_cache_bh)
104 && ocfs2_inode_is_new(inode)) {
105 kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
106 if (!kaddr) {
107 mlog(ML_ERROR, "couldn't kmap!\n");
108 goto bail;
110 memcpy(kaddr + (bh_result->b_size * iblock),
111 buffer_cache_bh->b_data,
112 bh_result->b_size);
113 kunmap_atomic(kaddr, KM_USER0);
114 set_buffer_uptodate(bh_result);
116 brelse(buffer_cache_bh);
119 map_bh(bh_result, inode->i_sb,
120 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
122 err = 0;
124 bail:
125 brelse(bh);
127 return err;
130 int ocfs2_get_block(struct inode *inode, sector_t iblock,
131 struct buffer_head *bh_result, int create)
133 int err = 0;
134 unsigned int ext_flags;
135 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
136 u64 p_blkno, count, past_eof;
137 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
139 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
140 (unsigned long long)iblock, bh_result, create);
142 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
143 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
144 inode, inode->i_ino);
146 if (S_ISLNK(inode->i_mode)) {
147 /* this always does I/O for some reason. */
148 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
149 goto bail;
152 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
153 &ext_flags);
154 if (err) {
155 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
156 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
157 (unsigned long long)p_blkno);
158 goto bail;
161 if (max_blocks < count)
162 count = max_blocks;
165 * ocfs2 never allocates in this function - the only time we
166 * need to use BH_New is when we're extending i_size on a file
167 * system which doesn't support holes, in which case BH_New
168 * allows __block_write_begin() to zero.
170 * If we see this on a sparse file system, then a truncate has
171 * raced us and removed the cluster. In this case, we clear
172 * the buffers dirty and uptodate bits and let the buffer code
173 * ignore it as a hole.
175 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
176 clear_buffer_dirty(bh_result);
177 clear_buffer_uptodate(bh_result);
178 goto bail;
181 /* Treat the unwritten extent as a hole for zeroing purposes. */
182 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
183 map_bh(bh_result, inode->i_sb, p_blkno);
185 bh_result->b_size = count << inode->i_blkbits;
187 if (!ocfs2_sparse_alloc(osb)) {
188 if (p_blkno == 0) {
189 err = -EIO;
190 mlog(ML_ERROR,
191 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192 (unsigned long long)iblock,
193 (unsigned long long)p_blkno,
194 (unsigned long long)OCFS2_I(inode)->ip_blkno);
195 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
196 dump_stack();
197 goto bail;
201 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
203 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
204 (unsigned long long)past_eof);
205 if (create && (iblock >= past_eof))
206 set_buffer_new(bh_result);
208 bail:
209 if (err < 0)
210 err = -EIO;
212 return err;
215 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
216 struct buffer_head *di_bh)
218 void *kaddr;
219 loff_t size;
220 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
222 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
223 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
224 (unsigned long long)OCFS2_I(inode)->ip_blkno);
225 return -EROFS;
228 size = i_size_read(inode);
230 if (size > PAGE_CACHE_SIZE ||
231 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
232 ocfs2_error(inode->i_sb,
233 "Inode %llu has with inline data has bad size: %Lu",
234 (unsigned long long)OCFS2_I(inode)->ip_blkno,
235 (unsigned long long)size);
236 return -EROFS;
239 kaddr = kmap_atomic(page, KM_USER0);
240 if (size)
241 memcpy(kaddr, di->id2.i_data.id_data, size);
242 /* Clear the remaining part of the page */
243 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
244 flush_dcache_page(page);
245 kunmap_atomic(kaddr, KM_USER0);
247 SetPageUptodate(page);
249 return 0;
252 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
254 int ret;
255 struct buffer_head *di_bh = NULL;
257 BUG_ON(!PageLocked(page));
258 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
260 ret = ocfs2_read_inode_block(inode, &di_bh);
261 if (ret) {
262 mlog_errno(ret);
263 goto out;
266 ret = ocfs2_read_inline_data(inode, page, di_bh);
267 out:
268 unlock_page(page);
270 brelse(di_bh);
271 return ret;
274 static int ocfs2_readpage(struct file *file, struct page *page)
276 struct inode *inode = page->mapping->host;
277 struct ocfs2_inode_info *oi = OCFS2_I(inode);
278 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
279 int ret, unlock = 1;
281 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
282 (page ? page->index : 0));
284 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
285 if (ret != 0) {
286 if (ret == AOP_TRUNCATED_PAGE)
287 unlock = 0;
288 mlog_errno(ret);
289 goto out;
292 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
294 * Unlock the page and cycle ip_alloc_sem so that we don't
295 * busyloop waiting for ip_alloc_sem to unlock
297 ret = AOP_TRUNCATED_PAGE;
298 unlock_page(page);
299 unlock = 0;
300 down_read(&oi->ip_alloc_sem);
301 up_read(&oi->ip_alloc_sem);
302 goto out_inode_unlock;
306 * i_size might have just been updated as we grabed the meta lock. We
307 * might now be discovering a truncate that hit on another node.
308 * block_read_full_page->get_block freaks out if it is asked to read
309 * beyond the end of a file, so we check here. Callers
310 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
311 * and notice that the page they just read isn't needed.
313 * XXX sys_readahead() seems to get that wrong?
315 if (start >= i_size_read(inode)) {
316 zero_user(page, 0, PAGE_SIZE);
317 SetPageUptodate(page);
318 ret = 0;
319 goto out_alloc;
322 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
323 ret = ocfs2_readpage_inline(inode, page);
324 else
325 ret = block_read_full_page(page, ocfs2_get_block);
326 unlock = 0;
328 out_alloc:
329 up_read(&OCFS2_I(inode)->ip_alloc_sem);
330 out_inode_unlock:
331 ocfs2_inode_unlock(inode, 0);
332 out:
333 if (unlock)
334 unlock_page(page);
335 return ret;
339 * This is used only for read-ahead. Failures or difficult to handle
340 * situations are safe to ignore.
342 * Right now, we don't bother with BH_Boundary - in-inode extent lists
343 * are quite large (243 extents on 4k blocks), so most inodes don't
344 * grow out to a tree. If need be, detecting boundary extents could
345 * trivially be added in a future version of ocfs2_get_block().
347 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
348 struct list_head *pages, unsigned nr_pages)
350 int ret, err = -EIO;
351 struct inode *inode = mapping->host;
352 struct ocfs2_inode_info *oi = OCFS2_I(inode);
353 loff_t start;
354 struct page *last;
357 * Use the nonblocking flag for the dlm code to avoid page
358 * lock inversion, but don't bother with retrying.
360 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
361 if (ret)
362 return err;
364 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
365 ocfs2_inode_unlock(inode, 0);
366 return err;
370 * Don't bother with inline-data. There isn't anything
371 * to read-ahead in that case anyway...
373 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
374 goto out_unlock;
377 * Check whether a remote node truncated this file - we just
378 * drop out in that case as it's not worth handling here.
380 last = list_entry(pages->prev, struct page, lru);
381 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
382 if (start >= i_size_read(inode))
383 goto out_unlock;
385 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
387 out_unlock:
388 up_read(&oi->ip_alloc_sem);
389 ocfs2_inode_unlock(inode, 0);
391 return err;
394 /* Note: Because we don't support holes, our allocation has
395 * already happened (allocation writes zeros to the file data)
396 * so we don't have to worry about ordered writes in
397 * ocfs2_writepage.
399 * ->writepage is called during the process of invalidating the page cache
400 * during blocked lock processing. It can't block on any cluster locks
401 * to during block mapping. It's relying on the fact that the block
402 * mapping can't have disappeared under the dirty pages that it is
403 * being asked to write back.
405 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
407 trace_ocfs2_writepage(
408 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
409 page->index);
411 return block_write_full_page(page, ocfs2_get_block, wbc);
414 /* Taken from ext3. We don't necessarily need the full blown
415 * functionality yet, but IMHO it's better to cut and paste the whole
416 * thing so we can avoid introducing our own bugs (and easily pick up
417 * their fixes when they happen) --Mark */
418 int walk_page_buffers( handle_t *handle,
419 struct buffer_head *head,
420 unsigned from,
421 unsigned to,
422 int *partial,
423 int (*fn)( handle_t *handle,
424 struct buffer_head *bh))
426 struct buffer_head *bh;
427 unsigned block_start, block_end;
428 unsigned blocksize = head->b_size;
429 int err, ret = 0;
430 struct buffer_head *next;
432 for ( bh = head, block_start = 0;
433 ret == 0 && (bh != head || !block_start);
434 block_start = block_end, bh = next)
436 next = bh->b_this_page;
437 block_end = block_start + blocksize;
438 if (block_end <= from || block_start >= to) {
439 if (partial && !buffer_uptodate(bh))
440 *partial = 1;
441 continue;
443 err = (*fn)(handle, bh);
444 if (!ret)
445 ret = err;
447 return ret;
450 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
452 sector_t status;
453 u64 p_blkno = 0;
454 int err = 0;
455 struct inode *inode = mapping->host;
457 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
458 (unsigned long long)block);
460 /* We don't need to lock journal system files, since they aren't
461 * accessed concurrently from multiple nodes.
463 if (!INODE_JOURNAL(inode)) {
464 err = ocfs2_inode_lock(inode, NULL, 0);
465 if (err) {
466 if (err != -ENOENT)
467 mlog_errno(err);
468 goto bail;
470 down_read(&OCFS2_I(inode)->ip_alloc_sem);
473 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
474 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
475 NULL);
477 if (!INODE_JOURNAL(inode)) {
478 up_read(&OCFS2_I(inode)->ip_alloc_sem);
479 ocfs2_inode_unlock(inode, 0);
482 if (err) {
483 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
484 (unsigned long long)block);
485 mlog_errno(err);
486 goto bail;
489 bail:
490 status = err ? 0 : p_blkno;
492 return status;
496 * TODO: Make this into a generic get_blocks function.
498 * From do_direct_io in direct-io.c:
499 * "So what we do is to permit the ->get_blocks function to populate
500 * bh.b_size with the size of IO which is permitted at this offset and
501 * this i_blkbits."
503 * This function is called directly from get_more_blocks in direct-io.c.
505 * called like this: dio->get_blocks(dio->inode, fs_startblk,
506 * fs_count, map_bh, dio->rw == WRITE);
508 * Note that we never bother to allocate blocks here, and thus ignore the
509 * create argument.
511 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
512 struct buffer_head *bh_result, int create)
514 int ret;
515 u64 p_blkno, inode_blocks, contig_blocks;
516 unsigned int ext_flags;
517 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
518 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
520 /* This function won't even be called if the request isn't all
521 * nicely aligned and of the right size, so there's no need
522 * for us to check any of that. */
524 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
526 /* This figures out the size of the next contiguous block, and
527 * our logical offset */
528 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
529 &contig_blocks, &ext_flags);
530 if (ret) {
531 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
532 (unsigned long long)iblock);
533 ret = -EIO;
534 goto bail;
537 /* We should already CoW the refcounted extent in case of create. */
538 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
541 * get_more_blocks() expects us to describe a hole by clearing
542 * the mapped bit on bh_result().
544 * Consider an unwritten extent as a hole.
546 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
547 map_bh(bh_result, inode->i_sb, p_blkno);
548 else
549 clear_buffer_mapped(bh_result);
551 /* make sure we don't map more than max_blocks blocks here as
552 that's all the kernel will handle at this point. */
553 if (max_blocks < contig_blocks)
554 contig_blocks = max_blocks;
555 bh_result->b_size = contig_blocks << blocksize_bits;
556 bail:
557 return ret;
561 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
562 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
563 * to protect io on one node from truncation on another.
565 static void ocfs2_dio_end_io(struct kiocb *iocb,
566 loff_t offset,
567 ssize_t bytes,
568 void *private,
569 int ret,
570 bool is_async)
572 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
573 int level;
574 wait_queue_head_t *wq = ocfs2_ioend_wq(inode);
576 /* this io's submitter should not have unlocked this before we could */
577 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
579 if (ocfs2_iocb_is_sem_locked(iocb))
580 ocfs2_iocb_clear_sem_locked(iocb);
582 if (ocfs2_iocb_is_unaligned_aio(iocb)) {
583 ocfs2_iocb_clear_unaligned_aio(iocb);
585 if (atomic_dec_and_test(&OCFS2_I(inode)->ip_unaligned_aio) &&
586 waitqueue_active(wq)) {
587 wake_up_all(wq);
591 ocfs2_iocb_clear_rw_locked(iocb);
593 level = ocfs2_iocb_rw_locked_level(iocb);
594 ocfs2_rw_unlock(inode, level);
596 if (is_async)
597 aio_complete(iocb, ret, 0);
598 inode_dio_done(inode);
602 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
603 * from ext3. PageChecked() bits have been removed as OCFS2 does not
604 * do journalled data.
606 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
608 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
610 jbd2_journal_invalidatepage(journal, page, offset);
613 static int ocfs2_releasepage(struct page *page, gfp_t wait)
615 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
617 if (!page_has_buffers(page))
618 return 0;
619 return jbd2_journal_try_to_free_buffers(journal, page, wait);
622 static ssize_t ocfs2_direct_IO(int rw,
623 struct kiocb *iocb,
624 const struct iovec *iov,
625 loff_t offset,
626 unsigned long nr_segs)
628 struct file *file = iocb->ki_filp;
629 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
632 * Fallback to buffered I/O if we see an inode without
633 * extents.
635 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
636 return 0;
638 /* Fallback to buffered I/O if we are appending. */
639 if (i_size_read(inode) <= offset)
640 return 0;
642 return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
643 iov, offset, nr_segs,
644 ocfs2_direct_IO_get_blocks,
645 ocfs2_dio_end_io, NULL, 0);
648 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
649 u32 cpos,
650 unsigned int *start,
651 unsigned int *end)
653 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
655 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
656 unsigned int cpp;
658 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
660 cluster_start = cpos % cpp;
661 cluster_start = cluster_start << osb->s_clustersize_bits;
663 cluster_end = cluster_start + osb->s_clustersize;
666 BUG_ON(cluster_start > PAGE_SIZE);
667 BUG_ON(cluster_end > PAGE_SIZE);
669 if (start)
670 *start = cluster_start;
671 if (end)
672 *end = cluster_end;
676 * 'from' and 'to' are the region in the page to avoid zeroing.
678 * If pagesize > clustersize, this function will avoid zeroing outside
679 * of the cluster boundary.
681 * from == to == 0 is code for "zero the entire cluster region"
683 static void ocfs2_clear_page_regions(struct page *page,
684 struct ocfs2_super *osb, u32 cpos,
685 unsigned from, unsigned to)
687 void *kaddr;
688 unsigned int cluster_start, cluster_end;
690 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
692 kaddr = kmap_atomic(page, KM_USER0);
694 if (from || to) {
695 if (from > cluster_start)
696 memset(kaddr + cluster_start, 0, from - cluster_start);
697 if (to < cluster_end)
698 memset(kaddr + to, 0, cluster_end - to);
699 } else {
700 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
703 kunmap_atomic(kaddr, KM_USER0);
707 * Nonsparse file systems fully allocate before we get to the write
708 * code. This prevents ocfs2_write() from tagging the write as an
709 * allocating one, which means ocfs2_map_page_blocks() might try to
710 * read-in the blocks at the tail of our file. Avoid reading them by
711 * testing i_size against each block offset.
713 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
714 unsigned int block_start)
716 u64 offset = page_offset(page) + block_start;
718 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
719 return 1;
721 if (i_size_read(inode) > offset)
722 return 1;
724 return 0;
728 * Some of this taken from __block_write_begin(). We already have our
729 * mapping by now though, and the entire write will be allocating or
730 * it won't, so not much need to use BH_New.
732 * This will also skip zeroing, which is handled externally.
734 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
735 struct inode *inode, unsigned int from,
736 unsigned int to, int new)
738 int ret = 0;
739 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
740 unsigned int block_end, block_start;
741 unsigned int bsize = 1 << inode->i_blkbits;
743 if (!page_has_buffers(page))
744 create_empty_buffers(page, bsize, 0);
746 head = page_buffers(page);
747 for (bh = head, block_start = 0; bh != head || !block_start;
748 bh = bh->b_this_page, block_start += bsize) {
749 block_end = block_start + bsize;
751 clear_buffer_new(bh);
754 * Ignore blocks outside of our i/o range -
755 * they may belong to unallocated clusters.
757 if (block_start >= to || block_end <= from) {
758 if (PageUptodate(page))
759 set_buffer_uptodate(bh);
760 continue;
764 * For an allocating write with cluster size >= page
765 * size, we always write the entire page.
767 if (new)
768 set_buffer_new(bh);
770 if (!buffer_mapped(bh)) {
771 map_bh(bh, inode->i_sb, *p_blkno);
772 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
775 if (PageUptodate(page)) {
776 if (!buffer_uptodate(bh))
777 set_buffer_uptodate(bh);
778 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
779 !buffer_new(bh) &&
780 ocfs2_should_read_blk(inode, page, block_start) &&
781 (block_start < from || block_end > to)) {
782 ll_rw_block(READ, 1, &bh);
783 *wait_bh++=bh;
786 *p_blkno = *p_blkno + 1;
790 * If we issued read requests - let them complete.
792 while(wait_bh > wait) {
793 wait_on_buffer(*--wait_bh);
794 if (!buffer_uptodate(*wait_bh))
795 ret = -EIO;
798 if (ret == 0 || !new)
799 return ret;
802 * If we get -EIO above, zero out any newly allocated blocks
803 * to avoid exposing stale data.
805 bh = head;
806 block_start = 0;
807 do {
808 block_end = block_start + bsize;
809 if (block_end <= from)
810 goto next_bh;
811 if (block_start >= to)
812 break;
814 zero_user(page, block_start, bh->b_size);
815 set_buffer_uptodate(bh);
816 mark_buffer_dirty(bh);
818 next_bh:
819 block_start = block_end;
820 bh = bh->b_this_page;
821 } while (bh != head);
823 return ret;
826 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
827 #define OCFS2_MAX_CTXT_PAGES 1
828 #else
829 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
830 #endif
832 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
835 * Describe the state of a single cluster to be written to.
837 struct ocfs2_write_cluster_desc {
838 u32 c_cpos;
839 u32 c_phys;
841 * Give this a unique field because c_phys eventually gets
842 * filled.
844 unsigned c_new;
845 unsigned c_unwritten;
846 unsigned c_needs_zero;
849 struct ocfs2_write_ctxt {
850 /* Logical cluster position / len of write */
851 u32 w_cpos;
852 u32 w_clen;
854 /* First cluster allocated in a nonsparse extend */
855 u32 w_first_new_cpos;
857 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
860 * This is true if page_size > cluster_size.
862 * It triggers a set of special cases during write which might
863 * have to deal with allocating writes to partial pages.
865 unsigned int w_large_pages;
868 * Pages involved in this write.
870 * w_target_page is the page being written to by the user.
872 * w_pages is an array of pages which always contains
873 * w_target_page, and in the case of an allocating write with
874 * page_size < cluster size, it will contain zero'd and mapped
875 * pages adjacent to w_target_page which need to be written
876 * out in so that future reads from that region will get
877 * zero's.
879 unsigned int w_num_pages;
880 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
881 struct page *w_target_page;
884 * w_target_locked is used for page_mkwrite path indicating no unlocking
885 * against w_target_page in ocfs2_write_end_nolock.
887 unsigned int w_target_locked:1;
890 * ocfs2_write_end() uses this to know what the real range to
891 * write in the target should be.
893 unsigned int w_target_from;
894 unsigned int w_target_to;
897 * We could use journal_current_handle() but this is cleaner,
898 * IMHO -Mark
900 handle_t *w_handle;
902 struct buffer_head *w_di_bh;
904 struct ocfs2_cached_dealloc_ctxt w_dealloc;
907 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
909 int i;
911 for(i = 0; i < num_pages; i++) {
912 if (pages[i]) {
913 unlock_page(pages[i]);
914 mark_page_accessed(pages[i]);
915 page_cache_release(pages[i]);
920 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
922 int i;
925 * w_target_locked is only set to true in the page_mkwrite() case.
926 * The intent is to allow us to lock the target page from write_begin()
927 * to write_end(). The caller must hold a ref on w_target_page.
929 if (wc->w_target_locked) {
930 BUG_ON(!wc->w_target_page);
931 for (i = 0; i < wc->w_num_pages; i++) {
932 if (wc->w_target_page == wc->w_pages[i]) {
933 wc->w_pages[i] = NULL;
934 break;
937 mark_page_accessed(wc->w_target_page);
938 page_cache_release(wc->w_target_page);
940 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
942 brelse(wc->w_di_bh);
943 kfree(wc);
946 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
947 struct ocfs2_super *osb, loff_t pos,
948 unsigned len, struct buffer_head *di_bh)
950 u32 cend;
951 struct ocfs2_write_ctxt *wc;
953 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
954 if (!wc)
955 return -ENOMEM;
957 wc->w_cpos = pos >> osb->s_clustersize_bits;
958 wc->w_first_new_cpos = UINT_MAX;
959 cend = (pos + len - 1) >> osb->s_clustersize_bits;
960 wc->w_clen = cend - wc->w_cpos + 1;
961 get_bh(di_bh);
962 wc->w_di_bh = di_bh;
964 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
965 wc->w_large_pages = 1;
966 else
967 wc->w_large_pages = 0;
969 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
971 *wcp = wc;
973 return 0;
977 * If a page has any new buffers, zero them out here, and mark them uptodate
978 * and dirty so they'll be written out (in order to prevent uninitialised
979 * block data from leaking). And clear the new bit.
981 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
983 unsigned int block_start, block_end;
984 struct buffer_head *head, *bh;
986 BUG_ON(!PageLocked(page));
987 if (!page_has_buffers(page))
988 return;
990 bh = head = page_buffers(page);
991 block_start = 0;
992 do {
993 block_end = block_start + bh->b_size;
995 if (buffer_new(bh)) {
996 if (block_end > from && block_start < to) {
997 if (!PageUptodate(page)) {
998 unsigned start, end;
1000 start = max(from, block_start);
1001 end = min(to, block_end);
1003 zero_user_segment(page, start, end);
1004 set_buffer_uptodate(bh);
1007 clear_buffer_new(bh);
1008 mark_buffer_dirty(bh);
1012 block_start = block_end;
1013 bh = bh->b_this_page;
1014 } while (bh != head);
1018 * Only called when we have a failure during allocating write to write
1019 * zero's to the newly allocated region.
1021 static void ocfs2_write_failure(struct inode *inode,
1022 struct ocfs2_write_ctxt *wc,
1023 loff_t user_pos, unsigned user_len)
1025 int i;
1026 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1027 to = user_pos + user_len;
1028 struct page *tmppage;
1030 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1032 for(i = 0; i < wc->w_num_pages; i++) {
1033 tmppage = wc->w_pages[i];
1035 if (page_has_buffers(tmppage)) {
1036 if (ocfs2_should_order_data(inode))
1037 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1039 block_commit_write(tmppage, from, to);
1044 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1045 struct ocfs2_write_ctxt *wc,
1046 struct page *page, u32 cpos,
1047 loff_t user_pos, unsigned user_len,
1048 int new)
1050 int ret;
1051 unsigned int map_from = 0, map_to = 0;
1052 unsigned int cluster_start, cluster_end;
1053 unsigned int user_data_from = 0, user_data_to = 0;
1055 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1056 &cluster_start, &cluster_end);
1058 /* treat the write as new if the a hole/lseek spanned across
1059 * the page boundary.
1061 new = new | ((i_size_read(inode) <= page_offset(page)) &&
1062 (page_offset(page) <= user_pos));
1064 if (page == wc->w_target_page) {
1065 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1066 map_to = map_from + user_len;
1068 if (new)
1069 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1070 cluster_start, cluster_end,
1071 new);
1072 else
1073 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1074 map_from, map_to, new);
1075 if (ret) {
1076 mlog_errno(ret);
1077 goto out;
1080 user_data_from = map_from;
1081 user_data_to = map_to;
1082 if (new) {
1083 map_from = cluster_start;
1084 map_to = cluster_end;
1086 } else {
1088 * If we haven't allocated the new page yet, we
1089 * shouldn't be writing it out without copying user
1090 * data. This is likely a math error from the caller.
1092 BUG_ON(!new);
1094 map_from = cluster_start;
1095 map_to = cluster_end;
1097 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1098 cluster_start, cluster_end, new);
1099 if (ret) {
1100 mlog_errno(ret);
1101 goto out;
1106 * Parts of newly allocated pages need to be zero'd.
1108 * Above, we have also rewritten 'to' and 'from' - as far as
1109 * the rest of the function is concerned, the entire cluster
1110 * range inside of a page needs to be written.
1112 * We can skip this if the page is up to date - it's already
1113 * been zero'd from being read in as a hole.
1115 if (new && !PageUptodate(page))
1116 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1117 cpos, user_data_from, user_data_to);
1119 flush_dcache_page(page);
1121 out:
1122 return ret;
1126 * This function will only grab one clusters worth of pages.
1128 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1129 struct ocfs2_write_ctxt *wc,
1130 u32 cpos, loff_t user_pos,
1131 unsigned user_len, int new,
1132 struct page *mmap_page)
1134 int ret = 0, i;
1135 unsigned long start, target_index, end_index, index;
1136 struct inode *inode = mapping->host;
1137 loff_t last_byte;
1139 target_index = user_pos >> PAGE_CACHE_SHIFT;
1142 * Figure out how many pages we'll be manipulating here. For
1143 * non allocating write, we just change the one
1144 * page. Otherwise, we'll need a whole clusters worth. If we're
1145 * writing past i_size, we only need enough pages to cover the
1146 * last page of the write.
1148 if (new) {
1149 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1150 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1152 * We need the index *past* the last page we could possibly
1153 * touch. This is the page past the end of the write or
1154 * i_size, whichever is greater.
1156 last_byte = max(user_pos + user_len, i_size_read(inode));
1157 BUG_ON(last_byte < 1);
1158 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1159 if ((start + wc->w_num_pages) > end_index)
1160 wc->w_num_pages = end_index - start;
1161 } else {
1162 wc->w_num_pages = 1;
1163 start = target_index;
1166 for(i = 0; i < wc->w_num_pages; i++) {
1167 index = start + i;
1169 if (index == target_index && mmap_page) {
1171 * ocfs2_pagemkwrite() is a little different
1172 * and wants us to directly use the page
1173 * passed in.
1175 lock_page(mmap_page);
1177 /* Exit and let the caller retry */
1178 if (mmap_page->mapping != mapping) {
1179 WARN_ON(mmap_page->mapping);
1180 unlock_page(mmap_page);
1181 ret = -EAGAIN;
1182 goto out;
1185 page_cache_get(mmap_page);
1186 wc->w_pages[i] = mmap_page;
1187 wc->w_target_locked = true;
1188 } else {
1189 wc->w_pages[i] = find_or_create_page(mapping, index,
1190 GFP_NOFS);
1191 if (!wc->w_pages[i]) {
1192 ret = -ENOMEM;
1193 mlog_errno(ret);
1194 goto out;
1198 if (index == target_index)
1199 wc->w_target_page = wc->w_pages[i];
1201 out:
1202 if (ret)
1203 wc->w_target_locked = false;
1204 return ret;
1208 * Prepare a single cluster for write one cluster into the file.
1210 static int ocfs2_write_cluster(struct address_space *mapping,
1211 u32 phys, unsigned int unwritten,
1212 unsigned int should_zero,
1213 struct ocfs2_alloc_context *data_ac,
1214 struct ocfs2_alloc_context *meta_ac,
1215 struct ocfs2_write_ctxt *wc, u32 cpos,
1216 loff_t user_pos, unsigned user_len)
1218 int ret, i, new;
1219 u64 v_blkno, p_blkno;
1220 struct inode *inode = mapping->host;
1221 struct ocfs2_extent_tree et;
1223 new = phys == 0 ? 1 : 0;
1224 if (new) {
1225 u32 tmp_pos;
1228 * This is safe to call with the page locks - it won't take
1229 * any additional semaphores or cluster locks.
1231 tmp_pos = cpos;
1232 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1233 &tmp_pos, 1, 0, wc->w_di_bh,
1234 wc->w_handle, data_ac,
1235 meta_ac, NULL);
1237 * This shouldn't happen because we must have already
1238 * calculated the correct meta data allocation required. The
1239 * internal tree allocation code should know how to increase
1240 * transaction credits itself.
1242 * If need be, we could handle -EAGAIN for a
1243 * RESTART_TRANS here.
1245 mlog_bug_on_msg(ret == -EAGAIN,
1246 "Inode %llu: EAGAIN return during allocation.\n",
1247 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1248 if (ret < 0) {
1249 mlog_errno(ret);
1250 goto out;
1252 } else if (unwritten) {
1253 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1254 wc->w_di_bh);
1255 ret = ocfs2_mark_extent_written(inode, &et,
1256 wc->w_handle, cpos, 1, phys,
1257 meta_ac, &wc->w_dealloc);
1258 if (ret < 0) {
1259 mlog_errno(ret);
1260 goto out;
1264 if (should_zero)
1265 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1266 else
1267 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1270 * The only reason this should fail is due to an inability to
1271 * find the extent added.
1273 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1274 NULL);
1275 if (ret < 0) {
1276 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1277 "at logical block %llu",
1278 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1279 (unsigned long long)v_blkno);
1280 goto out;
1283 BUG_ON(p_blkno == 0);
1285 for(i = 0; i < wc->w_num_pages; i++) {
1286 int tmpret;
1288 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1289 wc->w_pages[i], cpos,
1290 user_pos, user_len,
1291 should_zero);
1292 if (tmpret) {
1293 mlog_errno(tmpret);
1294 if (ret == 0)
1295 ret = tmpret;
1300 * We only have cleanup to do in case of allocating write.
1302 if (ret && new)
1303 ocfs2_write_failure(inode, wc, user_pos, user_len);
1305 out:
1307 return ret;
1310 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1311 struct ocfs2_alloc_context *data_ac,
1312 struct ocfs2_alloc_context *meta_ac,
1313 struct ocfs2_write_ctxt *wc,
1314 loff_t pos, unsigned len)
1316 int ret, i;
1317 loff_t cluster_off;
1318 unsigned int local_len = len;
1319 struct ocfs2_write_cluster_desc *desc;
1320 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1322 for (i = 0; i < wc->w_clen; i++) {
1323 desc = &wc->w_desc[i];
1326 * We have to make sure that the total write passed in
1327 * doesn't extend past a single cluster.
1329 local_len = len;
1330 cluster_off = pos & (osb->s_clustersize - 1);
1331 if ((cluster_off + local_len) > osb->s_clustersize)
1332 local_len = osb->s_clustersize - cluster_off;
1334 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1335 desc->c_unwritten,
1336 desc->c_needs_zero,
1337 data_ac, meta_ac,
1338 wc, desc->c_cpos, pos, local_len);
1339 if (ret) {
1340 mlog_errno(ret);
1341 goto out;
1344 len -= local_len;
1345 pos += local_len;
1348 ret = 0;
1349 out:
1350 return ret;
1354 * ocfs2_write_end() wants to know which parts of the target page it
1355 * should complete the write on. It's easiest to compute them ahead of
1356 * time when a more complete view of the write is available.
1358 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1359 struct ocfs2_write_ctxt *wc,
1360 loff_t pos, unsigned len, int alloc)
1362 struct ocfs2_write_cluster_desc *desc;
1364 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1365 wc->w_target_to = wc->w_target_from + len;
1367 if (alloc == 0)
1368 return;
1371 * Allocating write - we may have different boundaries based
1372 * on page size and cluster size.
1374 * NOTE: We can no longer compute one value from the other as
1375 * the actual write length and user provided length may be
1376 * different.
1379 if (wc->w_large_pages) {
1381 * We only care about the 1st and last cluster within
1382 * our range and whether they should be zero'd or not. Either
1383 * value may be extended out to the start/end of a
1384 * newly allocated cluster.
1386 desc = &wc->w_desc[0];
1387 if (desc->c_needs_zero)
1388 ocfs2_figure_cluster_boundaries(osb,
1389 desc->c_cpos,
1390 &wc->w_target_from,
1391 NULL);
1393 desc = &wc->w_desc[wc->w_clen - 1];
1394 if (desc->c_needs_zero)
1395 ocfs2_figure_cluster_boundaries(osb,
1396 desc->c_cpos,
1397 NULL,
1398 &wc->w_target_to);
1399 } else {
1400 wc->w_target_from = 0;
1401 wc->w_target_to = PAGE_CACHE_SIZE;
1406 * Populate each single-cluster write descriptor in the write context
1407 * with information about the i/o to be done.
1409 * Returns the number of clusters that will have to be allocated, as
1410 * well as a worst case estimate of the number of extent records that
1411 * would have to be created during a write to an unwritten region.
1413 static int ocfs2_populate_write_desc(struct inode *inode,
1414 struct ocfs2_write_ctxt *wc,
1415 unsigned int *clusters_to_alloc,
1416 unsigned int *extents_to_split)
1418 int ret;
1419 struct ocfs2_write_cluster_desc *desc;
1420 unsigned int num_clusters = 0;
1421 unsigned int ext_flags = 0;
1422 u32 phys = 0;
1423 int i;
1425 *clusters_to_alloc = 0;
1426 *extents_to_split = 0;
1428 for (i = 0; i < wc->w_clen; i++) {
1429 desc = &wc->w_desc[i];
1430 desc->c_cpos = wc->w_cpos + i;
1432 if (num_clusters == 0) {
1434 * Need to look up the next extent record.
1436 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1437 &num_clusters, &ext_flags);
1438 if (ret) {
1439 mlog_errno(ret);
1440 goto out;
1443 /* We should already CoW the refcountd extent. */
1444 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1447 * Assume worst case - that we're writing in
1448 * the middle of the extent.
1450 * We can assume that the write proceeds from
1451 * left to right, in which case the extent
1452 * insert code is smart enough to coalesce the
1453 * next splits into the previous records created.
1455 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1456 *extents_to_split = *extents_to_split + 2;
1457 } else if (phys) {
1459 * Only increment phys if it doesn't describe
1460 * a hole.
1462 phys++;
1466 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1467 * file that got extended. w_first_new_cpos tells us
1468 * where the newly allocated clusters are so we can
1469 * zero them.
1471 if (desc->c_cpos >= wc->w_first_new_cpos) {
1472 BUG_ON(phys == 0);
1473 desc->c_needs_zero = 1;
1476 desc->c_phys = phys;
1477 if (phys == 0) {
1478 desc->c_new = 1;
1479 desc->c_needs_zero = 1;
1480 *clusters_to_alloc = *clusters_to_alloc + 1;
1483 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1484 desc->c_unwritten = 1;
1485 desc->c_needs_zero = 1;
1488 num_clusters--;
1491 ret = 0;
1492 out:
1493 return ret;
1496 static int ocfs2_write_begin_inline(struct address_space *mapping,
1497 struct inode *inode,
1498 struct ocfs2_write_ctxt *wc)
1500 int ret;
1501 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1502 struct page *page;
1503 handle_t *handle;
1504 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1506 page = find_or_create_page(mapping, 0, GFP_NOFS);
1507 if (!page) {
1508 ret = -ENOMEM;
1509 mlog_errno(ret);
1510 goto out;
1513 * If we don't set w_num_pages then this page won't get unlocked
1514 * and freed on cleanup of the write context.
1516 wc->w_pages[0] = wc->w_target_page = page;
1517 wc->w_num_pages = 1;
1519 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1520 if (IS_ERR(handle)) {
1521 ret = PTR_ERR(handle);
1522 mlog_errno(ret);
1523 goto out;
1526 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1527 OCFS2_JOURNAL_ACCESS_WRITE);
1528 if (ret) {
1529 ocfs2_commit_trans(osb, handle);
1531 mlog_errno(ret);
1532 goto out;
1535 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1536 ocfs2_set_inode_data_inline(inode, di);
1538 if (!PageUptodate(page)) {
1539 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1540 if (ret) {
1541 ocfs2_commit_trans(osb, handle);
1543 goto out;
1547 wc->w_handle = handle;
1548 out:
1549 return ret;
1552 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1554 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1556 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1557 return 1;
1558 return 0;
1561 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1562 struct inode *inode, loff_t pos,
1563 unsigned len, struct page *mmap_page,
1564 struct ocfs2_write_ctxt *wc)
1566 int ret, written = 0;
1567 loff_t end = pos + len;
1568 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1569 struct ocfs2_dinode *di = NULL;
1571 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1572 len, (unsigned long long)pos,
1573 oi->ip_dyn_features);
1576 * Handle inodes which already have inline data 1st.
1578 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1579 if (mmap_page == NULL &&
1580 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1581 goto do_inline_write;
1584 * The write won't fit - we have to give this inode an
1585 * inline extent list now.
1587 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1588 if (ret)
1589 mlog_errno(ret);
1590 goto out;
1594 * Check whether the inode can accept inline data.
1596 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1597 return 0;
1600 * Check whether the write can fit.
1602 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1603 if (mmap_page ||
1604 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1605 return 0;
1607 do_inline_write:
1608 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1609 if (ret) {
1610 mlog_errno(ret);
1611 goto out;
1615 * This signals to the caller that the data can be written
1616 * inline.
1618 written = 1;
1619 out:
1620 return written ? written : ret;
1624 * This function only does anything for file systems which can't
1625 * handle sparse files.
1627 * What we want to do here is fill in any hole between the current end
1628 * of allocation and the end of our write. That way the rest of the
1629 * write path can treat it as an non-allocating write, which has no
1630 * special case code for sparse/nonsparse files.
1632 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1633 struct buffer_head *di_bh,
1634 loff_t pos, unsigned len,
1635 struct ocfs2_write_ctxt *wc)
1637 int ret;
1638 loff_t newsize = pos + len;
1640 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1642 if (newsize <= i_size_read(inode))
1643 return 0;
1645 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1646 if (ret)
1647 mlog_errno(ret);
1649 wc->w_first_new_cpos =
1650 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1652 return ret;
1655 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1656 loff_t pos)
1658 int ret = 0;
1660 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1661 if (pos > i_size_read(inode))
1662 ret = ocfs2_zero_extend(inode, di_bh, pos);
1664 return ret;
1668 * Try to flush truncate logs if we can free enough clusters from it.
1669 * As for return value, "< 0" means error, "0" no space and "1" means
1670 * we have freed enough spaces and let the caller try to allocate again.
1672 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1673 unsigned int needed)
1675 tid_t target;
1676 int ret = 0;
1677 unsigned int truncated_clusters;
1679 mutex_lock(&osb->osb_tl_inode->i_mutex);
1680 truncated_clusters = osb->truncated_clusters;
1681 mutex_unlock(&osb->osb_tl_inode->i_mutex);
1684 * Check whether we can succeed in allocating if we free
1685 * the truncate log.
1687 if (truncated_clusters < needed)
1688 goto out;
1690 ret = ocfs2_flush_truncate_log(osb);
1691 if (ret) {
1692 mlog_errno(ret);
1693 goto out;
1696 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1697 jbd2_log_wait_commit(osb->journal->j_journal, target);
1698 ret = 1;
1700 out:
1701 return ret;
1704 int ocfs2_write_begin_nolock(struct file *filp,
1705 struct address_space *mapping,
1706 loff_t pos, unsigned len, unsigned flags,
1707 struct page **pagep, void **fsdata,
1708 struct buffer_head *di_bh, struct page *mmap_page)
1710 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1711 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1712 struct ocfs2_write_ctxt *wc;
1713 struct inode *inode = mapping->host;
1714 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1715 struct ocfs2_dinode *di;
1716 struct ocfs2_alloc_context *data_ac = NULL;
1717 struct ocfs2_alloc_context *meta_ac = NULL;
1718 handle_t *handle;
1719 struct ocfs2_extent_tree et;
1720 int try_free = 1, ret1;
1722 try_again:
1723 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1724 if (ret) {
1725 mlog_errno(ret);
1726 return ret;
1729 if (ocfs2_supports_inline_data(osb)) {
1730 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1731 mmap_page, wc);
1732 if (ret == 1) {
1733 ret = 0;
1734 goto success;
1736 if (ret < 0) {
1737 mlog_errno(ret);
1738 goto out;
1742 if (ocfs2_sparse_alloc(osb))
1743 ret = ocfs2_zero_tail(inode, di_bh, pos);
1744 else
1745 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1746 wc);
1747 if (ret) {
1748 mlog_errno(ret);
1749 goto out;
1752 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1753 if (ret < 0) {
1754 mlog_errno(ret);
1755 goto out;
1756 } else if (ret == 1) {
1757 clusters_need = wc->w_clen;
1758 ret = ocfs2_refcount_cow(inode, filp, di_bh,
1759 wc->w_cpos, wc->w_clen, UINT_MAX);
1760 if (ret) {
1761 mlog_errno(ret);
1762 goto out;
1766 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1767 &extents_to_split);
1768 if (ret) {
1769 mlog_errno(ret);
1770 goto out;
1772 clusters_need += clusters_to_alloc;
1774 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1776 trace_ocfs2_write_begin_nolock(
1777 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1778 (long long)i_size_read(inode),
1779 le32_to_cpu(di->i_clusters),
1780 pos, len, flags, mmap_page,
1781 clusters_to_alloc, extents_to_split);
1784 * We set w_target_from, w_target_to here so that
1785 * ocfs2_write_end() knows which range in the target page to
1786 * write out. An allocation requires that we write the entire
1787 * cluster range.
1789 if (clusters_to_alloc || extents_to_split) {
1791 * XXX: We are stretching the limits of
1792 * ocfs2_lock_allocators(). It greatly over-estimates
1793 * the work to be done.
1795 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1796 wc->w_di_bh);
1797 ret = ocfs2_lock_allocators(inode, &et,
1798 clusters_to_alloc, extents_to_split,
1799 &data_ac, &meta_ac);
1800 if (ret) {
1801 mlog_errno(ret);
1802 goto out;
1805 if (data_ac)
1806 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1808 credits = ocfs2_calc_extend_credits(inode->i_sb,
1809 &di->id2.i_list,
1810 clusters_to_alloc);
1815 * We have to zero sparse allocated clusters, unwritten extent clusters,
1816 * and non-sparse clusters we just extended. For non-sparse writes,
1817 * we know zeros will only be needed in the first and/or last cluster.
1819 if (clusters_to_alloc || extents_to_split ||
1820 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1821 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1822 cluster_of_pages = 1;
1823 else
1824 cluster_of_pages = 0;
1826 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1828 handle = ocfs2_start_trans(osb, credits);
1829 if (IS_ERR(handle)) {
1830 ret = PTR_ERR(handle);
1831 mlog_errno(ret);
1832 goto out;
1835 wc->w_handle = handle;
1837 if (clusters_to_alloc) {
1838 ret = dquot_alloc_space_nodirty(inode,
1839 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1840 if (ret)
1841 goto out_commit;
1844 * We don't want this to fail in ocfs2_write_end(), so do it
1845 * here.
1847 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1848 OCFS2_JOURNAL_ACCESS_WRITE);
1849 if (ret) {
1850 mlog_errno(ret);
1851 goto out_quota;
1855 * Fill our page array first. That way we've grabbed enough so
1856 * that we can zero and flush if we error after adding the
1857 * extent.
1859 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1860 cluster_of_pages, mmap_page);
1861 if (ret && ret != -EAGAIN) {
1862 mlog_errno(ret);
1863 goto out_quota;
1867 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1868 * the target page. In this case, we exit with no error and no target
1869 * page. This will trigger the caller, page_mkwrite(), to re-try
1870 * the operation.
1872 if (ret == -EAGAIN) {
1873 BUG_ON(wc->w_target_page);
1874 ret = 0;
1875 goto out_quota;
1878 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1879 len);
1880 if (ret) {
1881 mlog_errno(ret);
1882 goto out_quota;
1885 if (data_ac)
1886 ocfs2_free_alloc_context(data_ac);
1887 if (meta_ac)
1888 ocfs2_free_alloc_context(meta_ac);
1890 success:
1891 *pagep = wc->w_target_page;
1892 *fsdata = wc;
1893 return 0;
1894 out_quota:
1895 if (clusters_to_alloc)
1896 dquot_free_space(inode,
1897 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1898 out_commit:
1899 ocfs2_commit_trans(osb, handle);
1901 out:
1902 ocfs2_free_write_ctxt(wc);
1904 if (data_ac)
1905 ocfs2_free_alloc_context(data_ac);
1906 if (meta_ac)
1907 ocfs2_free_alloc_context(meta_ac);
1909 if (ret == -ENOSPC && try_free) {
1911 * Try to free some truncate log so that we can have enough
1912 * clusters to allocate.
1914 try_free = 0;
1916 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1917 if (ret1 == 1)
1918 goto try_again;
1920 if (ret1 < 0)
1921 mlog_errno(ret1);
1924 return ret;
1927 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1928 loff_t pos, unsigned len, unsigned flags,
1929 struct page **pagep, void **fsdata)
1931 int ret;
1932 struct buffer_head *di_bh = NULL;
1933 struct inode *inode = mapping->host;
1935 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1936 if (ret) {
1937 mlog_errno(ret);
1938 return ret;
1942 * Take alloc sem here to prevent concurrent lookups. That way
1943 * the mapping, zeroing and tree manipulation within
1944 * ocfs2_write() will be safe against ->readpage(). This
1945 * should also serve to lock out allocation from a shared
1946 * writeable region.
1948 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1950 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
1951 fsdata, di_bh, NULL);
1952 if (ret) {
1953 mlog_errno(ret);
1954 goto out_fail;
1957 brelse(di_bh);
1959 return 0;
1961 out_fail:
1962 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1964 brelse(di_bh);
1965 ocfs2_inode_unlock(inode, 1);
1967 return ret;
1970 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1971 unsigned len, unsigned *copied,
1972 struct ocfs2_dinode *di,
1973 struct ocfs2_write_ctxt *wc)
1975 void *kaddr;
1977 if (unlikely(*copied < len)) {
1978 if (!PageUptodate(wc->w_target_page)) {
1979 *copied = 0;
1980 return;
1984 kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1985 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1986 kunmap_atomic(kaddr, KM_USER0);
1988 trace_ocfs2_write_end_inline(
1989 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1990 (unsigned long long)pos, *copied,
1991 le16_to_cpu(di->id2.i_data.id_count),
1992 le16_to_cpu(di->i_dyn_features));
1995 int ocfs2_write_end_nolock(struct address_space *mapping,
1996 loff_t pos, unsigned len, unsigned copied,
1997 struct page *page, void *fsdata)
1999 int i;
2000 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2001 struct inode *inode = mapping->host;
2002 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2003 struct ocfs2_write_ctxt *wc = fsdata;
2004 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2005 handle_t *handle = wc->w_handle;
2006 struct page *tmppage;
2008 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2009 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2010 goto out_write_size;
2013 if (unlikely(copied < len)) {
2014 if (!PageUptodate(wc->w_target_page))
2015 copied = 0;
2017 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2018 start+len);
2020 flush_dcache_page(wc->w_target_page);
2022 for(i = 0; i < wc->w_num_pages; i++) {
2023 tmppage = wc->w_pages[i];
2025 if (tmppage == wc->w_target_page) {
2026 from = wc->w_target_from;
2027 to = wc->w_target_to;
2029 BUG_ON(from > PAGE_CACHE_SIZE ||
2030 to > PAGE_CACHE_SIZE ||
2031 to < from);
2032 } else {
2034 * Pages adjacent to the target (if any) imply
2035 * a hole-filling write in which case we want
2036 * to flush their entire range.
2038 from = 0;
2039 to = PAGE_CACHE_SIZE;
2042 if (page_has_buffers(tmppage)) {
2043 if (ocfs2_should_order_data(inode))
2044 ocfs2_jbd2_file_inode(wc->w_handle, inode);
2045 block_commit_write(tmppage, from, to);
2049 out_write_size:
2050 pos += copied;
2051 if (pos > inode->i_size) {
2052 i_size_write(inode, pos);
2053 mark_inode_dirty(inode);
2055 inode->i_blocks = ocfs2_inode_sector_count(inode);
2056 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2057 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2058 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2059 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2060 ocfs2_journal_dirty(handle, wc->w_di_bh);
2062 ocfs2_commit_trans(osb, handle);
2064 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2066 ocfs2_free_write_ctxt(wc);
2068 return copied;
2071 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2072 loff_t pos, unsigned len, unsigned copied,
2073 struct page *page, void *fsdata)
2075 int ret;
2076 struct inode *inode = mapping->host;
2078 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2080 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2081 ocfs2_inode_unlock(inode, 1);
2083 return ret;
2086 const struct address_space_operations ocfs2_aops = {
2087 .readpage = ocfs2_readpage,
2088 .readpages = ocfs2_readpages,
2089 .writepage = ocfs2_writepage,
2090 .write_begin = ocfs2_write_begin,
2091 .write_end = ocfs2_write_end,
2092 .bmap = ocfs2_bmap,
2093 .direct_IO = ocfs2_direct_IO,
2094 .invalidatepage = ocfs2_invalidatepage,
2095 .releasepage = ocfs2_releasepage,
2096 .migratepage = buffer_migrate_page,
2097 .is_partially_uptodate = block_is_partially_uptodate,
2098 .error_remove_page = generic_error_remove_page,