7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 /* 0x02000000 was previously the unused CLONE_STOPPED (Start in stopped state)
25 and is now available for re-use. */
26 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
27 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
28 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
29 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
30 #define CLONE_NEWNET 0x40000000 /* New network namespace */
31 #define CLONE_IO 0x80000000 /* Clone io context */
36 #define SCHED_NORMAL 0
40 /* SCHED_ISO: reserved but not implemented yet */
42 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
43 #define SCHED_RESET_ON_FORK 0x40000000
51 #include <asm/param.h> /* for HZ */
53 #include <linux/capability.h>
54 #include <linux/threads.h>
55 #include <linux/kernel.h>
56 #include <linux/types.h>
57 #include <linux/timex.h>
58 #include <linux/jiffies.h>
59 #include <linux/rbtree.h>
60 #include <linux/thread_info.h>
61 #include <linux/cpumask.h>
62 #include <linux/errno.h>
63 #include <linux/nodemask.h>
64 #include <linux/mm_types.h>
66 #include <asm/system.h>
68 #include <asm/ptrace.h>
69 #include <asm/cputime.h>
71 #include <linux/smp.h>
72 #include <linux/sem.h>
73 #include <linux/signal.h>
74 #include <linux/compiler.h>
75 #include <linux/completion.h>
76 #include <linux/pid.h>
77 #include <linux/percpu.h>
78 #include <linux/topology.h>
79 #include <linux/proportions.h>
80 #include <linux/seccomp.h>
81 #include <linux/rcupdate.h>
82 #include <linux/rculist.h>
83 #include <linux/rtmutex.h>
85 #include <linux/time.h>
86 #include <linux/param.h>
87 #include <linux/resource.h>
88 #include <linux/timer.h>
89 #include <linux/hrtimer.h>
90 #include <linux/task_io_accounting.h>
91 #include <linux/latencytop.h>
92 #include <linux/cred.h>
93 #include <linux/llist.h>
95 #include <asm/processor.h>
98 struct futex_pi_state
;
99 struct robust_list_head
;
102 struct perf_event_context
;
106 * List of flags we want to share for kernel threads,
107 * if only because they are not used by them anyway.
109 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
112 * These are the constant used to fake the fixed-point load-average
113 * counting. Some notes:
114 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
115 * a load-average precision of 10 bits integer + 11 bits fractional
116 * - if you want to count load-averages more often, you need more
117 * precision, or rounding will get you. With 2-second counting freq,
118 * the EXP_n values would be 1981, 2034 and 2043 if still using only
121 extern unsigned long avenrun
[]; /* Load averages */
122 extern void get_avenrun(unsigned long *loads
, unsigned long offset
, int shift
);
124 #define FSHIFT 11 /* nr of bits of precision */
125 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
126 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
127 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
128 #define EXP_5 2014 /* 1/exp(5sec/5min) */
129 #define EXP_15 2037 /* 1/exp(5sec/15min) */
131 #define CALC_LOAD(load,exp,n) \
133 load += n*(FIXED_1-exp); \
136 extern unsigned long total_forks
;
137 extern int nr_threads
;
138 DECLARE_PER_CPU(unsigned long, process_counts
);
139 extern int nr_processes(void);
140 extern unsigned long nr_running(void);
141 extern unsigned long nr_uninterruptible(void);
142 extern unsigned long nr_iowait(void);
143 extern unsigned long nr_iowait_cpu(int cpu
);
144 extern unsigned long this_cpu_load(void);
147 extern void calc_global_load(unsigned long ticks
);
149 extern unsigned long get_parent_ip(unsigned long addr
);
154 #ifdef CONFIG_SCHED_DEBUG
155 extern void proc_sched_show_task(struct task_struct
*p
, struct seq_file
*m
);
156 extern void proc_sched_set_task(struct task_struct
*p
);
158 print_cfs_rq(struct seq_file
*m
, int cpu
, struct cfs_rq
*cfs_rq
);
161 proc_sched_show_task(struct task_struct
*p
, struct seq_file
*m
)
164 static inline void proc_sched_set_task(struct task_struct
*p
)
168 print_cfs_rq(struct seq_file
*m
, int cpu
, struct cfs_rq
*cfs_rq
)
174 * Task state bitmask. NOTE! These bits are also
175 * encoded in fs/proc/array.c: get_task_state().
177 * We have two separate sets of flags: task->state
178 * is about runnability, while task->exit_state are
179 * about the task exiting. Confusing, but this way
180 * modifying one set can't modify the other one by
183 #define TASK_RUNNING 0
184 #define TASK_INTERRUPTIBLE 1
185 #define TASK_UNINTERRUPTIBLE 2
186 #define __TASK_STOPPED 4
187 #define __TASK_TRACED 8
188 /* in tsk->exit_state */
189 #define EXIT_ZOMBIE 16
191 /* in tsk->state again */
193 #define TASK_WAKEKILL 128
194 #define TASK_WAKING 256
195 #define TASK_STATE_MAX 512
197 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
199 extern char ___assert_task_state
[1 - 2*!!(
200 sizeof(TASK_STATE_TO_CHAR_STR
)-1 != ilog2(TASK_STATE_MAX
)+1)];
202 /* Convenience macros for the sake of set_task_state */
203 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
204 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
205 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
207 /* Convenience macros for the sake of wake_up */
208 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
209 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
211 /* get_task_state() */
212 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
213 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
216 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
217 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
218 #define task_is_dead(task) ((task)->exit_state != 0)
219 #define task_is_stopped_or_traced(task) \
220 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
221 #define task_contributes_to_load(task) \
222 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
223 (task->flags & PF_FROZEN) == 0)
225 #define __set_task_state(tsk, state_value) \
226 do { (tsk)->state = (state_value); } while (0)
227 #define set_task_state(tsk, state_value) \
228 set_mb((tsk)->state, (state_value))
231 * set_current_state() includes a barrier so that the write of current->state
232 * is correctly serialised wrt the caller's subsequent test of whether to
235 * set_current_state(TASK_UNINTERRUPTIBLE);
236 * if (do_i_need_to_sleep())
239 * If the caller does not need such serialisation then use __set_current_state()
241 #define __set_current_state(state_value) \
242 do { current->state = (state_value); } while (0)
243 #define set_current_state(state_value) \
244 set_mb(current->state, (state_value))
246 /* Task command name length */
247 #define TASK_COMM_LEN 16
249 #include <linux/spinlock.h>
252 * This serializes "schedule()" and also protects
253 * the run-queue from deletions/modifications (but
254 * _adding_ to the beginning of the run-queue has
257 extern rwlock_t tasklist_lock
;
258 extern spinlock_t mmlist_lock
;
262 #ifdef CONFIG_PROVE_RCU
263 extern int lockdep_tasklist_lock_is_held(void);
264 #endif /* #ifdef CONFIG_PROVE_RCU */
266 extern void sched_init(void);
267 extern void sched_init_smp(void);
268 extern asmlinkage
void schedule_tail(struct task_struct
*prev
);
269 extern void init_idle(struct task_struct
*idle
, int cpu
);
270 extern void init_idle_bootup_task(struct task_struct
*idle
);
272 extern int runqueue_is_locked(int cpu
);
274 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
275 extern void select_nohz_load_balancer(int stop_tick
);
276 extern void set_cpu_sd_state_idle(void);
277 extern int get_nohz_timer_target(void);
279 static inline void select_nohz_load_balancer(int stop_tick
) { }
280 static inline void set_cpu_sd_state_idle(void) { }
284 * Only dump TASK_* tasks. (0 for all tasks)
286 extern void show_state_filter(unsigned long state_filter
);
288 static inline void show_state(void)
290 show_state_filter(0);
293 extern void show_regs(struct pt_regs
*);
296 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
297 * task), SP is the stack pointer of the first frame that should be shown in the back
298 * trace (or NULL if the entire call-chain of the task should be shown).
300 extern void show_stack(struct task_struct
*task
, unsigned long *sp
);
302 void io_schedule(void);
303 long io_schedule_timeout(long timeout
);
305 extern void cpu_init (void);
306 extern void trap_init(void);
307 extern void update_process_times(int user
);
308 extern void scheduler_tick(void);
310 extern void sched_show_task(struct task_struct
*p
);
312 #ifdef CONFIG_LOCKUP_DETECTOR
313 extern void touch_softlockup_watchdog(void);
314 extern void touch_softlockup_watchdog_sync(void);
315 extern void touch_all_softlockup_watchdogs(void);
316 extern int proc_dowatchdog_thresh(struct ctl_table
*table
, int write
,
318 size_t *lenp
, loff_t
*ppos
);
319 extern unsigned int softlockup_panic
;
320 void lockup_detector_init(void);
322 static inline void touch_softlockup_watchdog(void)
325 static inline void touch_softlockup_watchdog_sync(void)
328 static inline void touch_all_softlockup_watchdogs(void)
331 static inline void lockup_detector_init(void)
336 #ifdef CONFIG_DETECT_HUNG_TASK
337 extern unsigned int sysctl_hung_task_panic
;
338 extern unsigned long sysctl_hung_task_check_count
;
339 extern unsigned long sysctl_hung_task_timeout_secs
;
340 extern unsigned long sysctl_hung_task_warnings
;
341 extern int proc_dohung_task_timeout_secs(struct ctl_table
*table
, int write
,
343 size_t *lenp
, loff_t
*ppos
);
345 /* Avoid need for ifdefs elsewhere in the code */
346 enum { sysctl_hung_task_timeout_secs
= 0 };
349 /* Attach to any functions which should be ignored in wchan output. */
350 #define __sched __attribute__((__section__(".sched.text")))
352 /* Linker adds these: start and end of __sched functions */
353 extern char __sched_text_start
[], __sched_text_end
[];
355 /* Is this address in the __sched functions? */
356 extern int in_sched_functions(unsigned long addr
);
358 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
359 extern signed long schedule_timeout(signed long timeout
);
360 extern signed long schedule_timeout_interruptible(signed long timeout
);
361 extern signed long schedule_timeout_killable(signed long timeout
);
362 extern signed long schedule_timeout_uninterruptible(signed long timeout
);
363 asmlinkage
void schedule(void);
364 extern int mutex_spin_on_owner(struct mutex
*lock
, struct task_struct
*owner
);
367 struct user_namespace
;
370 * Default maximum number of active map areas, this limits the number of vmas
371 * per mm struct. Users can overwrite this number by sysctl but there is a
374 * When a program's coredump is generated as ELF format, a section is created
375 * per a vma. In ELF, the number of sections is represented in unsigned short.
376 * This means the number of sections should be smaller than 65535 at coredump.
377 * Because the kernel adds some informative sections to a image of program at
378 * generating coredump, we need some margin. The number of extra sections is
379 * 1-3 now and depends on arch. We use "5" as safe margin, here.
381 #define MAPCOUNT_ELF_CORE_MARGIN (5)
382 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
384 extern int sysctl_max_map_count
;
386 #include <linux/aio.h>
389 extern void arch_pick_mmap_layout(struct mm_struct
*mm
);
391 arch_get_unmapped_area(struct file
*, unsigned long, unsigned long,
392 unsigned long, unsigned long);
394 arch_get_unmapped_area_topdown(struct file
*filp
, unsigned long addr
,
395 unsigned long len
, unsigned long pgoff
,
396 unsigned long flags
);
397 extern void arch_unmap_area(struct mm_struct
*, unsigned long);
398 extern void arch_unmap_area_topdown(struct mm_struct
*, unsigned long);
400 static inline void arch_pick_mmap_layout(struct mm_struct
*mm
) {}
404 extern void set_dumpable(struct mm_struct
*mm
, int value
);
405 extern int get_dumpable(struct mm_struct
*mm
);
409 #define MMF_DUMPABLE 0 /* core dump is permitted */
410 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
412 #define MMF_DUMPABLE_BITS 2
413 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
415 /* coredump filter bits */
416 #define MMF_DUMP_ANON_PRIVATE 2
417 #define MMF_DUMP_ANON_SHARED 3
418 #define MMF_DUMP_MAPPED_PRIVATE 4
419 #define MMF_DUMP_MAPPED_SHARED 5
420 #define MMF_DUMP_ELF_HEADERS 6
421 #define MMF_DUMP_HUGETLB_PRIVATE 7
422 #define MMF_DUMP_HUGETLB_SHARED 8
424 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
425 #define MMF_DUMP_FILTER_BITS 7
426 #define MMF_DUMP_FILTER_MASK \
427 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
428 #define MMF_DUMP_FILTER_DEFAULT \
429 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
430 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
432 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
433 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
435 # define MMF_DUMP_MASK_DEFAULT_ELF 0
437 /* leave room for more dump flags */
438 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
439 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
441 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
443 struct sighand_struct
{
445 struct k_sigaction action
[_NSIG
];
447 wait_queue_head_t signalfd_wqh
;
450 struct pacct_struct
{
453 unsigned long ac_mem
;
454 cputime_t ac_utime
, ac_stime
;
455 unsigned long ac_minflt
, ac_majflt
;
466 * struct task_cputime - collected CPU time counts
467 * @utime: time spent in user mode, in &cputime_t units
468 * @stime: time spent in kernel mode, in &cputime_t units
469 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
471 * This structure groups together three kinds of CPU time that are
472 * tracked for threads and thread groups. Most things considering
473 * CPU time want to group these counts together and treat all three
474 * of them in parallel.
476 struct task_cputime
{
479 unsigned long long sum_exec_runtime
;
481 /* Alternate field names when used to cache expirations. */
482 #define prof_exp stime
483 #define virt_exp utime
484 #define sched_exp sum_exec_runtime
486 #define INIT_CPUTIME \
487 (struct task_cputime) { \
490 .sum_exec_runtime = 0, \
494 * Disable preemption until the scheduler is running.
495 * Reset by start_kernel()->sched_init()->init_idle().
497 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
498 * before the scheduler is active -- see should_resched().
500 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
503 * struct thread_group_cputimer - thread group interval timer counts
504 * @cputime: thread group interval timers.
505 * @running: non-zero when there are timers running and
506 * @cputime receives updates.
507 * @lock: lock for fields in this struct.
509 * This structure contains the version of task_cputime, above, that is
510 * used for thread group CPU timer calculations.
512 struct thread_group_cputimer
{
513 struct task_cputime cputime
;
518 #include <linux/rwsem.h>
522 * NOTE! "signal_struct" does not have its own
523 * locking, because a shared signal_struct always
524 * implies a shared sighand_struct, so locking
525 * sighand_struct is always a proper superset of
526 * the locking of signal_struct.
528 struct signal_struct
{
533 wait_queue_head_t wait_chldexit
; /* for wait4() */
535 /* current thread group signal load-balancing target: */
536 struct task_struct
*curr_target
;
538 /* shared signal handling: */
539 struct sigpending shared_pending
;
541 /* thread group exit support */
544 * - notify group_exit_task when ->count is equal to notify_count
545 * - everyone except group_exit_task is stopped during signal delivery
546 * of fatal signals, group_exit_task processes the signal.
549 struct task_struct
*group_exit_task
;
551 /* thread group stop support, overloads group_exit_code too */
552 int group_stop_count
;
553 unsigned int flags
; /* see SIGNAL_* flags below */
555 /* POSIX.1b Interval Timers */
556 struct list_head posix_timers
;
558 /* ITIMER_REAL timer for the process */
559 struct hrtimer real_timer
;
560 struct pid
*leader_pid
;
561 ktime_t it_real_incr
;
564 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
565 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
566 * values are defined to 0 and 1 respectively
568 struct cpu_itimer it
[2];
571 * Thread group totals for process CPU timers.
572 * See thread_group_cputimer(), et al, for details.
574 struct thread_group_cputimer cputimer
;
576 /* Earliest-expiration cache. */
577 struct task_cputime cputime_expires
;
579 struct list_head cpu_timers
[3];
581 struct pid
*tty_old_pgrp
;
583 /* boolean value for session group leader */
586 struct tty_struct
*tty
; /* NULL if no tty */
588 #ifdef CONFIG_SCHED_AUTOGROUP
589 struct autogroup
*autogroup
;
592 * Cumulative resource counters for dead threads in the group,
593 * and for reaped dead child processes forked by this group.
594 * Live threads maintain their own counters and add to these
595 * in __exit_signal, except for the group leader.
597 cputime_t utime
, stime
, cutime
, cstime
;
600 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
601 cputime_t prev_utime
, prev_stime
;
603 unsigned long nvcsw
, nivcsw
, cnvcsw
, cnivcsw
;
604 unsigned long min_flt
, maj_flt
, cmin_flt
, cmaj_flt
;
605 unsigned long inblock
, oublock
, cinblock
, coublock
;
606 unsigned long maxrss
, cmaxrss
;
607 struct task_io_accounting ioac
;
610 * Cumulative ns of schedule CPU time fo dead threads in the
611 * group, not including a zombie group leader, (This only differs
612 * from jiffies_to_ns(utime + stime) if sched_clock uses something
613 * other than jiffies.)
615 unsigned long long sum_sched_runtime
;
618 * We don't bother to synchronize most readers of this at all,
619 * because there is no reader checking a limit that actually needs
620 * to get both rlim_cur and rlim_max atomically, and either one
621 * alone is a single word that can safely be read normally.
622 * getrlimit/setrlimit use task_lock(current->group_leader) to
623 * protect this instead of the siglock, because they really
624 * have no need to disable irqs.
626 struct rlimit rlim
[RLIM_NLIMITS
];
628 #ifdef CONFIG_BSD_PROCESS_ACCT
629 struct pacct_struct pacct
; /* per-process accounting information */
631 #ifdef CONFIG_TASKSTATS
632 struct taskstats
*stats
;
636 struct tty_audit_buf
*tty_audit_buf
;
638 #ifdef CONFIG_CGROUPS
640 * group_rwsem prevents new tasks from entering the threadgroup and
641 * member tasks from exiting,a more specifically, setting of
642 * PF_EXITING. fork and exit paths are protected with this rwsem
643 * using threadgroup_change_begin/end(). Users which require
644 * threadgroup to remain stable should use threadgroup_[un]lock()
645 * which also takes care of exec path. Currently, cgroup is the
648 struct rw_semaphore group_rwsem
;
651 int oom_adj
; /* OOM kill score adjustment (bit shift) */
652 int oom_score_adj
; /* OOM kill score adjustment */
653 int oom_score_adj_min
; /* OOM kill score adjustment minimum value.
654 * Only settable by CAP_SYS_RESOURCE. */
656 struct mutex cred_guard_mutex
; /* guard against foreign influences on
657 * credential calculations
658 * (notably. ptrace) */
661 /* Context switch must be unlocked if interrupts are to be enabled */
662 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
663 # define __ARCH_WANT_UNLOCKED_CTXSW
667 * Bits in flags field of signal_struct.
669 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
670 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
671 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
673 * Pending notifications to parent.
675 #define SIGNAL_CLD_STOPPED 0x00000010
676 #define SIGNAL_CLD_CONTINUED 0x00000020
677 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
679 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
681 /* If true, all threads except ->group_exit_task have pending SIGKILL */
682 static inline int signal_group_exit(const struct signal_struct
*sig
)
684 return (sig
->flags
& SIGNAL_GROUP_EXIT
) ||
685 (sig
->group_exit_task
!= NULL
);
689 * Some day this will be a full-fledged user tracking system..
692 atomic_t __count
; /* reference count */
693 atomic_t processes
; /* How many processes does this user have? */
694 atomic_t files
; /* How many open files does this user have? */
695 atomic_t sigpending
; /* How many pending signals does this user have? */
696 #ifdef CONFIG_INOTIFY_USER
697 atomic_t inotify_watches
; /* How many inotify watches does this user have? */
698 atomic_t inotify_devs
; /* How many inotify devs does this user have opened? */
700 #ifdef CONFIG_FANOTIFY
701 atomic_t fanotify_listeners
;
704 atomic_long_t epoll_watches
; /* The number of file descriptors currently watched */
706 #ifdef CONFIG_POSIX_MQUEUE
707 /* protected by mq_lock */
708 unsigned long mq_bytes
; /* How many bytes can be allocated to mqueue? */
710 unsigned long locked_shm
; /* How many pages of mlocked shm ? */
713 struct key
*uid_keyring
; /* UID specific keyring */
714 struct key
*session_keyring
; /* UID's default session keyring */
717 /* Hash table maintenance information */
718 struct hlist_node uidhash_node
;
720 struct user_namespace
*user_ns
;
722 #ifdef CONFIG_PERF_EVENTS
723 atomic_long_t locked_vm
;
727 extern int uids_sysfs_init(void);
729 extern struct user_struct
*find_user(uid_t
);
731 extern struct user_struct root_user
;
732 #define INIT_USER (&root_user)
735 struct backing_dev_info
;
736 struct reclaim_state
;
738 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
740 /* cumulative counters */
741 unsigned long pcount
; /* # of times run on this cpu */
742 unsigned long long run_delay
; /* time spent waiting on a runqueue */
745 unsigned long long last_arrival
,/* when we last ran on a cpu */
746 last_queued
; /* when we were last queued to run */
748 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
750 #ifdef CONFIG_TASK_DELAY_ACCT
751 struct task_delay_info
{
753 unsigned int flags
; /* Private per-task flags */
755 /* For each stat XXX, add following, aligned appropriately
757 * struct timespec XXX_start, XXX_end;
761 * Atomicity of updates to XXX_delay, XXX_count protected by
762 * single lock above (split into XXX_lock if contention is an issue).
766 * XXX_count is incremented on every XXX operation, the delay
767 * associated with the operation is added to XXX_delay.
768 * XXX_delay contains the accumulated delay time in nanoseconds.
770 struct timespec blkio_start
, blkio_end
; /* Shared by blkio, swapin */
771 u64 blkio_delay
; /* wait for sync block io completion */
772 u64 swapin_delay
; /* wait for swapin block io completion */
773 u32 blkio_count
; /* total count of the number of sync block */
774 /* io operations performed */
775 u32 swapin_count
; /* total count of the number of swapin block */
776 /* io operations performed */
778 struct timespec freepages_start
, freepages_end
;
779 u64 freepages_delay
; /* wait for memory reclaim */
780 u32 freepages_count
; /* total count of memory reclaim */
782 #endif /* CONFIG_TASK_DELAY_ACCT */
784 static inline int sched_info_on(void)
786 #ifdef CONFIG_SCHEDSTATS
788 #elif defined(CONFIG_TASK_DELAY_ACCT)
789 extern int delayacct_on
;
804 * Increase resolution of nice-level calculations for 64-bit architectures.
805 * The extra resolution improves shares distribution and load balancing of
806 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
807 * hierarchies, especially on larger systems. This is not a user-visible change
808 * and does not change the user-interface for setting shares/weights.
810 * We increase resolution only if we have enough bits to allow this increased
811 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
812 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
815 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
816 # define SCHED_LOAD_RESOLUTION 10
817 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
818 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
820 # define SCHED_LOAD_RESOLUTION 0
821 # define scale_load(w) (w)
822 # define scale_load_down(w) (w)
825 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
826 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
829 * Increase resolution of cpu_power calculations
831 #define SCHED_POWER_SHIFT 10
832 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT)
835 * sched-domains (multiprocessor balancing) declarations:
838 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
839 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
840 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
841 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
842 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
843 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
844 #define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */
845 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
846 #define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */
847 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
848 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
849 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
850 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
851 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
853 enum powersavings_balance_level
{
854 POWERSAVINGS_BALANCE_NONE
= 0, /* No power saving load balance */
855 POWERSAVINGS_BALANCE_BASIC
, /* Fill one thread/core/package
856 * first for long running threads
858 POWERSAVINGS_BALANCE_WAKEUP
, /* Also bias task wakeups to semi-idle
859 * cpu package for power savings
861 MAX_POWERSAVINGS_BALANCE_LEVELS
864 extern int sched_mc_power_savings
, sched_smt_power_savings
;
866 static inline int sd_balance_for_mc_power(void)
868 if (sched_smt_power_savings
)
869 return SD_POWERSAVINGS_BALANCE
;
871 if (!sched_mc_power_savings
)
872 return SD_PREFER_SIBLING
;
877 static inline int sd_balance_for_package_power(void)
879 if (sched_mc_power_savings
| sched_smt_power_savings
)
880 return SD_POWERSAVINGS_BALANCE
;
882 return SD_PREFER_SIBLING
;
885 extern int __weak
arch_sd_sibiling_asym_packing(void);
888 * Optimise SD flags for power savings:
889 * SD_BALANCE_NEWIDLE helps aggressive task consolidation and power savings.
890 * Keep default SD flags if sched_{smt,mc}_power_saving=0
893 static inline int sd_power_saving_flags(void)
895 if (sched_mc_power_savings
| sched_smt_power_savings
)
896 return SD_BALANCE_NEWIDLE
;
901 struct sched_group_power
{
904 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
907 unsigned int power
, power_orig
;
909 * Number of busy cpus in this group.
911 atomic_t nr_busy_cpus
;
915 struct sched_group
*next
; /* Must be a circular list */
918 unsigned int group_weight
;
919 struct sched_group_power
*sgp
;
922 * The CPUs this group covers.
924 * NOTE: this field is variable length. (Allocated dynamically
925 * by attaching extra space to the end of the structure,
926 * depending on how many CPUs the kernel has booted up with)
928 unsigned long cpumask
[0];
931 static inline struct cpumask
*sched_group_cpus(struct sched_group
*sg
)
933 return to_cpumask(sg
->cpumask
);
937 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
938 * @group: The group whose first cpu is to be returned.
940 static inline unsigned int group_first_cpu(struct sched_group
*group
)
942 return cpumask_first(sched_group_cpus(group
));
945 struct sched_domain_attr
{
946 int relax_domain_level
;
949 #define SD_ATTR_INIT (struct sched_domain_attr) { \
950 .relax_domain_level = -1, \
953 extern int sched_domain_level_max
;
955 struct sched_domain
{
956 /* These fields must be setup */
957 struct sched_domain
*parent
; /* top domain must be null terminated */
958 struct sched_domain
*child
; /* bottom domain must be null terminated */
959 struct sched_group
*groups
; /* the balancing groups of the domain */
960 unsigned long min_interval
; /* Minimum balance interval ms */
961 unsigned long max_interval
; /* Maximum balance interval ms */
962 unsigned int busy_factor
; /* less balancing by factor if busy */
963 unsigned int imbalance_pct
; /* No balance until over watermark */
964 unsigned int cache_nice_tries
; /* Leave cache hot tasks for # tries */
965 unsigned int busy_idx
;
966 unsigned int idle_idx
;
967 unsigned int newidle_idx
;
968 unsigned int wake_idx
;
969 unsigned int forkexec_idx
;
970 unsigned int smt_gain
;
971 int flags
; /* See SD_* */
974 /* Runtime fields. */
975 unsigned long last_balance
; /* init to jiffies. units in jiffies */
976 unsigned int balance_interval
; /* initialise to 1. units in ms. */
977 unsigned int nr_balance_failed
; /* initialise to 0 */
981 #ifdef CONFIG_SCHEDSTATS
982 /* load_balance() stats */
983 unsigned int lb_count
[CPU_MAX_IDLE_TYPES
];
984 unsigned int lb_failed
[CPU_MAX_IDLE_TYPES
];
985 unsigned int lb_balanced
[CPU_MAX_IDLE_TYPES
];
986 unsigned int lb_imbalance
[CPU_MAX_IDLE_TYPES
];
987 unsigned int lb_gained
[CPU_MAX_IDLE_TYPES
];
988 unsigned int lb_hot_gained
[CPU_MAX_IDLE_TYPES
];
989 unsigned int lb_nobusyg
[CPU_MAX_IDLE_TYPES
];
990 unsigned int lb_nobusyq
[CPU_MAX_IDLE_TYPES
];
992 /* Active load balancing */
993 unsigned int alb_count
;
994 unsigned int alb_failed
;
995 unsigned int alb_pushed
;
997 /* SD_BALANCE_EXEC stats */
998 unsigned int sbe_count
;
999 unsigned int sbe_balanced
;
1000 unsigned int sbe_pushed
;
1002 /* SD_BALANCE_FORK stats */
1003 unsigned int sbf_count
;
1004 unsigned int sbf_balanced
;
1005 unsigned int sbf_pushed
;
1007 /* try_to_wake_up() stats */
1008 unsigned int ttwu_wake_remote
;
1009 unsigned int ttwu_move_affine
;
1010 unsigned int ttwu_move_balance
;
1012 #ifdef CONFIG_SCHED_DEBUG
1016 void *private; /* used during construction */
1017 struct rcu_head rcu
; /* used during destruction */
1020 unsigned int span_weight
;
1022 * Span of all CPUs in this domain.
1024 * NOTE: this field is variable length. (Allocated dynamically
1025 * by attaching extra space to the end of the structure,
1026 * depending on how many CPUs the kernel has booted up with)
1028 unsigned long span
[0];
1031 static inline struct cpumask
*sched_domain_span(struct sched_domain
*sd
)
1033 return to_cpumask(sd
->span
);
1036 extern void partition_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
1037 struct sched_domain_attr
*dattr_new
);
1039 /* Allocate an array of sched domains, for partition_sched_domains(). */
1040 cpumask_var_t
*alloc_sched_domains(unsigned int ndoms
);
1041 void free_sched_domains(cpumask_var_t doms
[], unsigned int ndoms
);
1043 /* Test a flag in parent sched domain */
1044 static inline int test_sd_parent(struct sched_domain
*sd
, int flag
)
1046 if (sd
->parent
&& (sd
->parent
->flags
& flag
))
1052 unsigned long default_scale_freq_power(struct sched_domain
*sd
, int cpu
);
1053 unsigned long default_scale_smt_power(struct sched_domain
*sd
, int cpu
);
1055 #else /* CONFIG_SMP */
1057 struct sched_domain_attr
;
1060 partition_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
1061 struct sched_domain_attr
*dattr_new
)
1064 #endif /* !CONFIG_SMP */
1067 struct io_context
; /* See blkdev.h */
1070 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1071 extern void prefetch_stack(struct task_struct
*t
);
1073 static inline void prefetch_stack(struct task_struct
*t
) { }
1076 struct audit_context
; /* See audit.c */
1078 struct pipe_inode_info
;
1079 struct uts_namespace
;
1082 struct sched_domain
;
1087 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */
1088 #define WF_FORK 0x02 /* child wakeup after fork */
1089 #define WF_MIGRATED 0x04 /* internal use, task got migrated */
1091 #define ENQUEUE_WAKEUP 1
1092 #define ENQUEUE_HEAD 2
1094 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1096 #define ENQUEUE_WAKING 0
1099 #define DEQUEUE_SLEEP 1
1101 struct sched_class
{
1102 const struct sched_class
*next
;
1104 void (*enqueue_task
) (struct rq
*rq
, struct task_struct
*p
, int flags
);
1105 void (*dequeue_task
) (struct rq
*rq
, struct task_struct
*p
, int flags
);
1106 void (*yield_task
) (struct rq
*rq
);
1107 bool (*yield_to_task
) (struct rq
*rq
, struct task_struct
*p
, bool preempt
);
1109 void (*check_preempt_curr
) (struct rq
*rq
, struct task_struct
*p
, int flags
);
1111 struct task_struct
* (*pick_next_task
) (struct rq
*rq
);
1112 void (*put_prev_task
) (struct rq
*rq
, struct task_struct
*p
);
1115 int (*select_task_rq
)(struct task_struct
*p
, int sd_flag
, int flags
);
1117 void (*pre_schedule
) (struct rq
*this_rq
, struct task_struct
*task
);
1118 void (*post_schedule
) (struct rq
*this_rq
);
1119 void (*task_waking
) (struct task_struct
*task
);
1120 void (*task_woken
) (struct rq
*this_rq
, struct task_struct
*task
);
1122 void (*set_cpus_allowed
)(struct task_struct
*p
,
1123 const struct cpumask
*newmask
);
1125 void (*rq_online
)(struct rq
*rq
);
1126 void (*rq_offline
)(struct rq
*rq
);
1129 void (*set_curr_task
) (struct rq
*rq
);
1130 void (*task_tick
) (struct rq
*rq
, struct task_struct
*p
, int queued
);
1131 void (*task_fork
) (struct task_struct
*p
);
1133 void (*switched_from
) (struct rq
*this_rq
, struct task_struct
*task
);
1134 void (*switched_to
) (struct rq
*this_rq
, struct task_struct
*task
);
1135 void (*prio_changed
) (struct rq
*this_rq
, struct task_struct
*task
,
1138 unsigned int (*get_rr_interval
) (struct rq
*rq
,
1139 struct task_struct
*task
);
1141 #ifdef CONFIG_FAIR_GROUP_SCHED
1142 void (*task_move_group
) (struct task_struct
*p
, int on_rq
);
1146 struct load_weight
{
1147 unsigned long weight
, inv_weight
;
1150 #ifdef CONFIG_SCHEDSTATS
1151 struct sched_statistics
{
1161 s64 sum_sleep_runtime
;
1168 u64 nr_migrations_cold
;
1169 u64 nr_failed_migrations_affine
;
1170 u64 nr_failed_migrations_running
;
1171 u64 nr_failed_migrations_hot
;
1172 u64 nr_forced_migrations
;
1175 u64 nr_wakeups_sync
;
1176 u64 nr_wakeups_migrate
;
1177 u64 nr_wakeups_local
;
1178 u64 nr_wakeups_remote
;
1179 u64 nr_wakeups_affine
;
1180 u64 nr_wakeups_affine_attempts
;
1181 u64 nr_wakeups_passive
;
1182 u64 nr_wakeups_idle
;
1186 struct sched_entity
{
1187 struct load_weight load
; /* for load-balancing */
1188 struct rb_node run_node
;
1189 struct list_head group_node
;
1193 u64 sum_exec_runtime
;
1195 u64 prev_sum_exec_runtime
;
1199 #ifdef CONFIG_SCHEDSTATS
1200 struct sched_statistics statistics
;
1203 #ifdef CONFIG_FAIR_GROUP_SCHED
1204 struct sched_entity
*parent
;
1205 /* rq on which this entity is (to be) queued: */
1206 struct cfs_rq
*cfs_rq
;
1207 /* rq "owned" by this entity/group: */
1208 struct cfs_rq
*my_q
;
1212 struct sched_rt_entity
{
1213 struct list_head run_list
;
1214 unsigned long timeout
;
1215 unsigned int time_slice
;
1216 int nr_cpus_allowed
;
1218 struct sched_rt_entity
*back
;
1219 #ifdef CONFIG_RT_GROUP_SCHED
1220 struct sched_rt_entity
*parent
;
1221 /* rq on which this entity is (to be) queued: */
1222 struct rt_rq
*rt_rq
;
1223 /* rq "owned" by this entity/group: */
1230 enum perf_event_task_context
{
1231 perf_invalid_context
= -1,
1232 perf_hw_context
= 0,
1234 perf_nr_task_contexts
,
1237 struct task_struct
{
1238 volatile long state
; /* -1 unrunnable, 0 runnable, >0 stopped */
1241 unsigned int flags
; /* per process flags, defined below */
1242 unsigned int ptrace
;
1245 struct llist_node wake_entry
;
1250 int prio
, static_prio
, normal_prio
;
1251 unsigned int rt_priority
;
1252 const struct sched_class
*sched_class
;
1253 struct sched_entity se
;
1254 struct sched_rt_entity rt
;
1256 #ifdef CONFIG_PREEMPT_NOTIFIERS
1257 /* list of struct preempt_notifier: */
1258 struct hlist_head preempt_notifiers
;
1262 * fpu_counter contains the number of consecutive context switches
1263 * that the FPU is used. If this is over a threshold, the lazy fpu
1264 * saving becomes unlazy to save the trap. This is an unsigned char
1265 * so that after 256 times the counter wraps and the behavior turns
1266 * lazy again; this to deal with bursty apps that only use FPU for
1269 unsigned char fpu_counter
;
1270 #ifdef CONFIG_BLK_DEV_IO_TRACE
1271 unsigned int btrace_seq
;
1274 unsigned int policy
;
1275 cpumask_t cpus_allowed
;
1277 #ifdef CONFIG_PREEMPT_RCU
1278 int rcu_read_lock_nesting
;
1279 char rcu_read_unlock_special
;
1280 struct list_head rcu_node_entry
;
1281 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1282 #ifdef CONFIG_TREE_PREEMPT_RCU
1283 struct rcu_node
*rcu_blocked_node
;
1284 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1285 #ifdef CONFIG_RCU_BOOST
1286 struct rt_mutex
*rcu_boost_mutex
;
1287 #endif /* #ifdef CONFIG_RCU_BOOST */
1289 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1290 struct sched_info sched_info
;
1293 struct list_head tasks
;
1295 struct plist_node pushable_tasks
;
1298 struct mm_struct
*mm
, *active_mm
;
1299 #ifdef CONFIG_COMPAT_BRK
1300 unsigned brk_randomized
:1;
1302 #if defined(SPLIT_RSS_COUNTING)
1303 struct task_rss_stat rss_stat
;
1307 int exit_code
, exit_signal
;
1308 int pdeath_signal
; /* The signal sent when the parent dies */
1309 unsigned int jobctl
; /* JOBCTL_*, siglock protected */
1311 unsigned int personality
;
1312 unsigned did_exec
:1;
1313 unsigned in_execve
:1; /* Tell the LSMs that the process is doing an
1315 unsigned in_iowait
:1;
1318 /* Revert to default priority/policy when forking */
1319 unsigned sched_reset_on_fork
:1;
1320 unsigned sched_contributes_to_load
:1;
1325 #ifdef CONFIG_CC_STACKPROTECTOR
1326 /* Canary value for the -fstack-protector gcc feature */
1327 unsigned long stack_canary
;
1331 * pointers to (original) parent process, youngest child, younger sibling,
1332 * older sibling, respectively. (p->father can be replaced with
1333 * p->real_parent->pid)
1335 struct task_struct __rcu
*real_parent
; /* real parent process */
1336 struct task_struct __rcu
*parent
; /* recipient of SIGCHLD, wait4() reports */
1338 * children/sibling forms the list of my natural children
1340 struct list_head children
; /* list of my children */
1341 struct list_head sibling
; /* linkage in my parent's children list */
1342 struct task_struct
*group_leader
; /* threadgroup leader */
1345 * ptraced is the list of tasks this task is using ptrace on.
1346 * This includes both natural children and PTRACE_ATTACH targets.
1347 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1349 struct list_head ptraced
;
1350 struct list_head ptrace_entry
;
1352 /* PID/PID hash table linkage. */
1353 struct pid_link pids
[PIDTYPE_MAX
];
1354 struct list_head thread_group
;
1356 struct completion
*vfork_done
; /* for vfork() */
1357 int __user
*set_child_tid
; /* CLONE_CHILD_SETTID */
1358 int __user
*clear_child_tid
; /* CLONE_CHILD_CLEARTID */
1360 cputime_t utime
, stime
, utimescaled
, stimescaled
;
1362 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1363 cputime_t prev_utime
, prev_stime
;
1365 unsigned long nvcsw
, nivcsw
; /* context switch counts */
1366 struct timespec start_time
; /* monotonic time */
1367 struct timespec real_start_time
; /* boot based time */
1368 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1369 unsigned long min_flt
, maj_flt
;
1371 struct task_cputime cputime_expires
;
1372 struct list_head cpu_timers
[3];
1374 /* process credentials */
1375 const struct cred __rcu
*real_cred
; /* objective and real subjective task
1376 * credentials (COW) */
1377 const struct cred __rcu
*cred
; /* effective (overridable) subjective task
1378 * credentials (COW) */
1379 struct cred
*replacement_session_keyring
; /* for KEYCTL_SESSION_TO_PARENT */
1381 char comm
[TASK_COMM_LEN
]; /* executable name excluding path
1382 - access with [gs]et_task_comm (which lock
1383 it with task_lock())
1384 - initialized normally by setup_new_exec */
1385 /* file system info */
1386 int link_count
, total_link_count
;
1387 #ifdef CONFIG_SYSVIPC
1389 struct sysv_sem sysvsem
;
1391 #ifdef CONFIG_DETECT_HUNG_TASK
1392 /* hung task detection */
1393 unsigned long last_switch_count
;
1395 /* CPU-specific state of this task */
1396 struct thread_struct thread
;
1397 /* filesystem information */
1398 struct fs_struct
*fs
;
1399 /* open file information */
1400 struct files_struct
*files
;
1402 struct nsproxy
*nsproxy
;
1403 /* signal handlers */
1404 struct signal_struct
*signal
;
1405 struct sighand_struct
*sighand
;
1407 sigset_t blocked
, real_blocked
;
1408 sigset_t saved_sigmask
; /* restored if set_restore_sigmask() was used */
1409 struct sigpending pending
;
1411 unsigned long sas_ss_sp
;
1413 int (*notifier
)(void *priv
);
1414 void *notifier_data
;
1415 sigset_t
*notifier_mask
;
1416 struct audit_context
*audit_context
;
1417 #ifdef CONFIG_AUDITSYSCALL
1419 unsigned int sessionid
;
1423 /* Thread group tracking */
1426 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1428 spinlock_t alloc_lock
;
1430 #ifdef CONFIG_GENERIC_HARDIRQS
1431 /* IRQ handler threads */
1432 struct irqaction
*irqaction
;
1435 /* Protection of the PI data structures: */
1436 raw_spinlock_t pi_lock
;
1438 #ifdef CONFIG_RT_MUTEXES
1439 /* PI waiters blocked on a rt_mutex held by this task */
1440 struct plist_head pi_waiters
;
1441 /* Deadlock detection and priority inheritance handling */
1442 struct rt_mutex_waiter
*pi_blocked_on
;
1445 #ifdef CONFIG_DEBUG_MUTEXES
1446 /* mutex deadlock detection */
1447 struct mutex_waiter
*blocked_on
;
1449 #ifdef CONFIG_TRACE_IRQFLAGS
1450 unsigned int irq_events
;
1451 unsigned long hardirq_enable_ip
;
1452 unsigned long hardirq_disable_ip
;
1453 unsigned int hardirq_enable_event
;
1454 unsigned int hardirq_disable_event
;
1455 int hardirqs_enabled
;
1456 int hardirq_context
;
1457 unsigned long softirq_disable_ip
;
1458 unsigned long softirq_enable_ip
;
1459 unsigned int softirq_disable_event
;
1460 unsigned int softirq_enable_event
;
1461 int softirqs_enabled
;
1462 int softirq_context
;
1464 #ifdef CONFIG_LOCKDEP
1465 # define MAX_LOCK_DEPTH 48UL
1468 unsigned int lockdep_recursion
;
1469 struct held_lock held_locks
[MAX_LOCK_DEPTH
];
1470 gfp_t lockdep_reclaim_gfp
;
1473 /* journalling filesystem info */
1476 /* stacked block device info */
1477 struct bio_list
*bio_list
;
1480 /* stack plugging */
1481 struct blk_plug
*plug
;
1485 struct reclaim_state
*reclaim_state
;
1487 struct backing_dev_info
*backing_dev_info
;
1489 struct io_context
*io_context
;
1491 unsigned long ptrace_message
;
1492 siginfo_t
*last_siginfo
; /* For ptrace use. */
1493 struct task_io_accounting ioac
;
1494 #if defined(CONFIG_TASK_XACCT)
1495 u64 acct_rss_mem1
; /* accumulated rss usage */
1496 u64 acct_vm_mem1
; /* accumulated virtual memory usage */
1497 cputime_t acct_timexpd
; /* stime + utime since last update */
1499 #ifdef CONFIG_CPUSETS
1500 nodemask_t mems_allowed
; /* Protected by alloc_lock */
1501 int mems_allowed_change_disable
;
1502 int cpuset_mem_spread_rotor
;
1503 int cpuset_slab_spread_rotor
;
1505 #ifdef CONFIG_CGROUPS
1506 /* Control Group info protected by css_set_lock */
1507 struct css_set __rcu
*cgroups
;
1508 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1509 struct list_head cg_list
;
1512 struct robust_list_head __user
*robust_list
;
1513 #ifdef CONFIG_COMPAT
1514 struct compat_robust_list_head __user
*compat_robust_list
;
1516 struct list_head pi_state_list
;
1517 struct futex_pi_state
*pi_state_cache
;
1519 #ifdef CONFIG_PERF_EVENTS
1520 struct perf_event_context
*perf_event_ctxp
[perf_nr_task_contexts
];
1521 struct mutex perf_event_mutex
;
1522 struct list_head perf_event_list
;
1525 struct mempolicy
*mempolicy
; /* Protected by alloc_lock */
1527 short pref_node_fork
;
1529 struct rcu_head rcu
;
1532 * cache last used pipe for splice
1534 struct pipe_inode_info
*splice_pipe
;
1535 #ifdef CONFIG_TASK_DELAY_ACCT
1536 struct task_delay_info
*delays
;
1538 #ifdef CONFIG_FAULT_INJECTION
1542 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1543 * balance_dirty_pages() for some dirty throttling pause
1546 int nr_dirtied_pause
;
1547 unsigned long dirty_paused_when
; /* start of a write-and-pause period */
1549 #ifdef CONFIG_LATENCYTOP
1550 int latency_record_count
;
1551 struct latency_record latency_record
[LT_SAVECOUNT
];
1554 * time slack values; these are used to round up poll() and
1555 * select() etc timeout values. These are in nanoseconds.
1557 unsigned long timer_slack_ns
;
1558 unsigned long default_timer_slack_ns
;
1560 struct list_head
*scm_work_list
;
1561 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1562 /* Index of current stored address in ret_stack */
1564 /* Stack of return addresses for return function tracing */
1565 struct ftrace_ret_stack
*ret_stack
;
1566 /* time stamp for last schedule */
1567 unsigned long long ftrace_timestamp
;
1569 * Number of functions that haven't been traced
1570 * because of depth overrun.
1572 atomic_t trace_overrun
;
1573 /* Pause for the tracing */
1574 atomic_t tracing_graph_pause
;
1576 #ifdef CONFIG_TRACING
1577 /* state flags for use by tracers */
1578 unsigned long trace
;
1579 /* bitmask and counter of trace recursion */
1580 unsigned long trace_recursion
;
1581 #endif /* CONFIG_TRACING */
1582 #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
1583 struct memcg_batch_info
{
1584 int do_batch
; /* incremented when batch uncharge started */
1585 struct mem_cgroup
*memcg
; /* target memcg of uncharge */
1586 unsigned long nr_pages
; /* uncharged usage */
1587 unsigned long memsw_nr_pages
; /* uncharged mem+swap usage */
1590 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1591 atomic_t ptrace_bp_refcnt
;
1595 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1596 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1599 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1600 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1601 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1602 * values are inverted: lower p->prio value means higher priority.
1604 * The MAX_USER_RT_PRIO value allows the actual maximum
1605 * RT priority to be separate from the value exported to
1606 * user-space. This allows kernel threads to set their
1607 * priority to a value higher than any user task. Note:
1608 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1611 #define MAX_USER_RT_PRIO 100
1612 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1614 #define MAX_PRIO (MAX_RT_PRIO + 40)
1615 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1617 static inline int rt_prio(int prio
)
1619 if (unlikely(prio
< MAX_RT_PRIO
))
1624 static inline int rt_task(struct task_struct
*p
)
1626 return rt_prio(p
->prio
);
1629 static inline struct pid
*task_pid(struct task_struct
*task
)
1631 return task
->pids
[PIDTYPE_PID
].pid
;
1634 static inline struct pid
*task_tgid(struct task_struct
*task
)
1636 return task
->group_leader
->pids
[PIDTYPE_PID
].pid
;
1640 * Without tasklist or rcu lock it is not safe to dereference
1641 * the result of task_pgrp/task_session even if task == current,
1642 * we can race with another thread doing sys_setsid/sys_setpgid.
1644 static inline struct pid
*task_pgrp(struct task_struct
*task
)
1646 return task
->group_leader
->pids
[PIDTYPE_PGID
].pid
;
1649 static inline struct pid
*task_session(struct task_struct
*task
)
1651 return task
->group_leader
->pids
[PIDTYPE_SID
].pid
;
1654 struct pid_namespace
;
1657 * the helpers to get the task's different pids as they are seen
1658 * from various namespaces
1660 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1661 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1663 * task_xid_nr_ns() : id seen from the ns specified;
1665 * set_task_vxid() : assigns a virtual id to a task;
1667 * see also pid_nr() etc in include/linux/pid.h
1669 pid_t
__task_pid_nr_ns(struct task_struct
*task
, enum pid_type type
,
1670 struct pid_namespace
*ns
);
1672 static inline pid_t
task_pid_nr(struct task_struct
*tsk
)
1677 static inline pid_t
task_pid_nr_ns(struct task_struct
*tsk
,
1678 struct pid_namespace
*ns
)
1680 return __task_pid_nr_ns(tsk
, PIDTYPE_PID
, ns
);
1683 static inline pid_t
task_pid_vnr(struct task_struct
*tsk
)
1685 return __task_pid_nr_ns(tsk
, PIDTYPE_PID
, NULL
);
1689 static inline pid_t
task_tgid_nr(struct task_struct
*tsk
)
1694 pid_t
task_tgid_nr_ns(struct task_struct
*tsk
, struct pid_namespace
*ns
);
1696 static inline pid_t
task_tgid_vnr(struct task_struct
*tsk
)
1698 return pid_vnr(task_tgid(tsk
));
1702 static inline pid_t
task_pgrp_nr_ns(struct task_struct
*tsk
,
1703 struct pid_namespace
*ns
)
1705 return __task_pid_nr_ns(tsk
, PIDTYPE_PGID
, ns
);
1708 static inline pid_t
task_pgrp_vnr(struct task_struct
*tsk
)
1710 return __task_pid_nr_ns(tsk
, PIDTYPE_PGID
, NULL
);
1714 static inline pid_t
task_session_nr_ns(struct task_struct
*tsk
,
1715 struct pid_namespace
*ns
)
1717 return __task_pid_nr_ns(tsk
, PIDTYPE_SID
, ns
);
1720 static inline pid_t
task_session_vnr(struct task_struct
*tsk
)
1722 return __task_pid_nr_ns(tsk
, PIDTYPE_SID
, NULL
);
1725 /* obsolete, do not use */
1726 static inline pid_t
task_pgrp_nr(struct task_struct
*tsk
)
1728 return task_pgrp_nr_ns(tsk
, &init_pid_ns
);
1732 * pid_alive - check that a task structure is not stale
1733 * @p: Task structure to be checked.
1735 * Test if a process is not yet dead (at most zombie state)
1736 * If pid_alive fails, then pointers within the task structure
1737 * can be stale and must not be dereferenced.
1739 static inline int pid_alive(struct task_struct
*p
)
1741 return p
->pids
[PIDTYPE_PID
].pid
!= NULL
;
1745 * is_global_init - check if a task structure is init
1746 * @tsk: Task structure to be checked.
1748 * Check if a task structure is the first user space task the kernel created.
1750 static inline int is_global_init(struct task_struct
*tsk
)
1752 return tsk
->pid
== 1;
1756 * is_container_init:
1757 * check whether in the task is init in its own pid namespace.
1759 extern int is_container_init(struct task_struct
*tsk
);
1761 extern struct pid
*cad_pid
;
1763 extern void free_task(struct task_struct
*tsk
);
1764 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1766 extern void __put_task_struct(struct task_struct
*t
);
1768 static inline void put_task_struct(struct task_struct
*t
)
1770 if (atomic_dec_and_test(&t
->usage
))
1771 __put_task_struct(t
);
1774 extern void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
);
1775 extern void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
);
1780 #define PF_EXITING 0x00000004 /* getting shut down */
1781 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1782 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1783 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1784 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1785 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1786 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1787 #define PF_DUMPCORE 0x00000200 /* dumped core */
1788 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1789 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1790 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1791 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1792 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1793 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1794 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1795 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1796 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1797 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1798 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1799 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1800 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1801 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1802 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1803 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1804 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1805 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1806 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1809 * Only the _current_ task can read/write to tsk->flags, but other
1810 * tasks can access tsk->flags in readonly mode for example
1811 * with tsk_used_math (like during threaded core dumping).
1812 * There is however an exception to this rule during ptrace
1813 * or during fork: the ptracer task is allowed to write to the
1814 * child->flags of its traced child (same goes for fork, the parent
1815 * can write to the child->flags), because we're guaranteed the
1816 * child is not running and in turn not changing child->flags
1817 * at the same time the parent does it.
1819 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1820 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1821 #define clear_used_math() clear_stopped_child_used_math(current)
1822 #define set_used_math() set_stopped_child_used_math(current)
1823 #define conditional_stopped_child_used_math(condition, child) \
1824 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1825 #define conditional_used_math(condition) \
1826 conditional_stopped_child_used_math(condition, current)
1827 #define copy_to_stopped_child_used_math(child) \
1828 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1829 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1830 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1831 #define used_math() tsk_used_math(current)
1834 * task->jobctl flags
1836 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
1838 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
1839 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
1840 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
1841 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
1842 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
1843 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
1844 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
1846 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
1847 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
1848 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
1849 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
1850 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
1851 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
1852 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
1854 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1855 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1857 extern bool task_set_jobctl_pending(struct task_struct
*task
,
1859 extern void task_clear_jobctl_trapping(struct task_struct
*task
);
1860 extern void task_clear_jobctl_pending(struct task_struct
*task
,
1863 #ifdef CONFIG_PREEMPT_RCU
1865 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1866 #define RCU_READ_UNLOCK_BOOSTED (1 << 1) /* boosted while in RCU read-side. */
1867 #define RCU_READ_UNLOCK_NEED_QS (1 << 2) /* RCU core needs CPU response. */
1869 static inline void rcu_copy_process(struct task_struct
*p
)
1871 p
->rcu_read_lock_nesting
= 0;
1872 p
->rcu_read_unlock_special
= 0;
1873 #ifdef CONFIG_TREE_PREEMPT_RCU
1874 p
->rcu_blocked_node
= NULL
;
1875 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1876 #ifdef CONFIG_RCU_BOOST
1877 p
->rcu_boost_mutex
= NULL
;
1878 #endif /* #ifdef CONFIG_RCU_BOOST */
1879 INIT_LIST_HEAD(&p
->rcu_node_entry
);
1884 static inline void rcu_copy_process(struct task_struct
*p
)
1891 extern void do_set_cpus_allowed(struct task_struct
*p
,
1892 const struct cpumask
*new_mask
);
1894 extern int set_cpus_allowed_ptr(struct task_struct
*p
,
1895 const struct cpumask
*new_mask
);
1897 static inline void do_set_cpus_allowed(struct task_struct
*p
,
1898 const struct cpumask
*new_mask
)
1901 static inline int set_cpus_allowed_ptr(struct task_struct
*p
,
1902 const struct cpumask
*new_mask
)
1904 if (!cpumask_test_cpu(0, new_mask
))
1910 #ifndef CONFIG_CPUMASK_OFFSTACK
1911 static inline int set_cpus_allowed(struct task_struct
*p
, cpumask_t new_mask
)
1913 return set_cpus_allowed_ptr(p
, &new_mask
);
1918 * Do not use outside of architecture code which knows its limitations.
1920 * sched_clock() has no promise of monotonicity or bounded drift between
1921 * CPUs, use (which you should not) requires disabling IRQs.
1923 * Please use one of the three interfaces below.
1925 extern unsigned long long notrace
sched_clock(void);
1927 * See the comment in kernel/sched_clock.c
1929 extern u64
cpu_clock(int cpu
);
1930 extern u64
local_clock(void);
1931 extern u64
sched_clock_cpu(int cpu
);
1934 extern void sched_clock_init(void);
1936 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1937 static inline void sched_clock_tick(void)
1941 static inline void sched_clock_idle_sleep_event(void)
1945 static inline void sched_clock_idle_wakeup_event(u64 delta_ns
)
1950 * Architectures can set this to 1 if they have specified
1951 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1952 * but then during bootup it turns out that sched_clock()
1953 * is reliable after all:
1955 extern int sched_clock_stable
;
1957 extern void sched_clock_tick(void);
1958 extern void sched_clock_idle_sleep_event(void);
1959 extern void sched_clock_idle_wakeup_event(u64 delta_ns
);
1962 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1964 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1965 * The reason for this explicit opt-in is not to have perf penalty with
1966 * slow sched_clocks.
1968 extern void enable_sched_clock_irqtime(void);
1969 extern void disable_sched_clock_irqtime(void);
1971 static inline void enable_sched_clock_irqtime(void) {}
1972 static inline void disable_sched_clock_irqtime(void) {}
1975 extern unsigned long long
1976 task_sched_runtime(struct task_struct
*task
);
1978 /* sched_exec is called by processes performing an exec */
1980 extern void sched_exec(void);
1982 #define sched_exec() {}
1985 extern void sched_clock_idle_sleep_event(void);
1986 extern void sched_clock_idle_wakeup_event(u64 delta_ns
);
1988 #ifdef CONFIG_HOTPLUG_CPU
1989 extern void idle_task_exit(void);
1991 static inline void idle_task_exit(void) {}
1994 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1995 extern void wake_up_idle_cpu(int cpu
);
1997 static inline void wake_up_idle_cpu(int cpu
) { }
2000 extern unsigned int sysctl_sched_latency
;
2001 extern unsigned int sysctl_sched_min_granularity
;
2002 extern unsigned int sysctl_sched_wakeup_granularity
;
2003 extern unsigned int sysctl_sched_child_runs_first
;
2005 enum sched_tunable_scaling
{
2006 SCHED_TUNABLESCALING_NONE
,
2007 SCHED_TUNABLESCALING_LOG
,
2008 SCHED_TUNABLESCALING_LINEAR
,
2009 SCHED_TUNABLESCALING_END
,
2011 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling
;
2013 #ifdef CONFIG_SCHED_DEBUG
2014 extern unsigned int sysctl_sched_migration_cost
;
2015 extern unsigned int sysctl_sched_nr_migrate
;
2016 extern unsigned int sysctl_sched_time_avg
;
2017 extern unsigned int sysctl_timer_migration
;
2018 extern unsigned int sysctl_sched_shares_window
;
2020 int sched_proc_update_handler(struct ctl_table
*table
, int write
,
2021 void __user
*buffer
, size_t *length
,
2024 #ifdef CONFIG_SCHED_DEBUG
2025 static inline unsigned int get_sysctl_timer_migration(void)
2027 return sysctl_timer_migration
;
2030 static inline unsigned int get_sysctl_timer_migration(void)
2035 extern unsigned int sysctl_sched_rt_period
;
2036 extern int sysctl_sched_rt_runtime
;
2038 int sched_rt_handler(struct ctl_table
*table
, int write
,
2039 void __user
*buffer
, size_t *lenp
,
2042 #ifdef CONFIG_SCHED_AUTOGROUP
2043 extern unsigned int sysctl_sched_autogroup_enabled
;
2045 extern void sched_autogroup_create_attach(struct task_struct
*p
);
2046 extern void sched_autogroup_detach(struct task_struct
*p
);
2047 extern void sched_autogroup_fork(struct signal_struct
*sig
);
2048 extern void sched_autogroup_exit(struct signal_struct
*sig
);
2049 #ifdef CONFIG_PROC_FS
2050 extern void proc_sched_autogroup_show_task(struct task_struct
*p
, struct seq_file
*m
);
2051 extern int proc_sched_autogroup_set_nice(struct task_struct
*p
, int *nice
);
2054 static inline void sched_autogroup_create_attach(struct task_struct
*p
) { }
2055 static inline void sched_autogroup_detach(struct task_struct
*p
) { }
2056 static inline void sched_autogroup_fork(struct signal_struct
*sig
) { }
2057 static inline void sched_autogroup_exit(struct signal_struct
*sig
) { }
2060 #ifdef CONFIG_CFS_BANDWIDTH
2061 extern unsigned int sysctl_sched_cfs_bandwidth_slice
;
2064 #ifdef CONFIG_RT_MUTEXES
2065 extern int rt_mutex_getprio(struct task_struct
*p
);
2066 extern void rt_mutex_setprio(struct task_struct
*p
, int prio
);
2067 extern void rt_mutex_adjust_pi(struct task_struct
*p
);
2069 static inline int rt_mutex_getprio(struct task_struct
*p
)
2071 return p
->normal_prio
;
2073 # define rt_mutex_adjust_pi(p) do { } while (0)
2076 extern bool yield_to(struct task_struct
*p
, bool preempt
);
2077 extern void set_user_nice(struct task_struct
*p
, long nice
);
2078 extern int task_prio(const struct task_struct
*p
);
2079 extern int task_nice(const struct task_struct
*p
);
2080 extern int can_nice(const struct task_struct
*p
, const int nice
);
2081 extern int task_curr(const struct task_struct
*p
);
2082 extern int idle_cpu(int cpu
);
2083 extern int sched_setscheduler(struct task_struct
*, int,
2084 const struct sched_param
*);
2085 extern int sched_setscheduler_nocheck(struct task_struct
*, int,
2086 const struct sched_param
*);
2087 extern struct task_struct
*idle_task(int cpu
);
2089 * is_idle_task - is the specified task an idle task?
2090 * @p: the task in question.
2092 static inline bool is_idle_task(const struct task_struct
*p
)
2096 extern struct task_struct
*curr_task(int cpu
);
2097 extern void set_curr_task(int cpu
, struct task_struct
*p
);
2102 * The default (Linux) execution domain.
2104 extern struct exec_domain default_exec_domain
;
2106 union thread_union
{
2107 struct thread_info thread_info
;
2108 unsigned long stack
[THREAD_SIZE
/sizeof(long)];
2111 #ifndef __HAVE_ARCH_KSTACK_END
2112 static inline int kstack_end(void *addr
)
2114 /* Reliable end of stack detection:
2115 * Some APM bios versions misalign the stack
2117 return !(((unsigned long)addr
+sizeof(void*)-1) & (THREAD_SIZE
-sizeof(void*)));
2121 extern union thread_union init_thread_union
;
2122 extern struct task_struct init_task
;
2124 extern struct mm_struct init_mm
;
2126 extern struct pid_namespace init_pid_ns
;
2129 * find a task by one of its numerical ids
2131 * find_task_by_pid_ns():
2132 * finds a task by its pid in the specified namespace
2133 * find_task_by_vpid():
2134 * finds a task by its virtual pid
2136 * see also find_vpid() etc in include/linux/pid.h
2139 extern struct task_struct
*find_task_by_vpid(pid_t nr
);
2140 extern struct task_struct
*find_task_by_pid_ns(pid_t nr
,
2141 struct pid_namespace
*ns
);
2143 extern void __set_special_pids(struct pid
*pid
);
2145 /* per-UID process charging. */
2146 extern struct user_struct
* alloc_uid(struct user_namespace
*, uid_t
);
2147 static inline struct user_struct
*get_uid(struct user_struct
*u
)
2149 atomic_inc(&u
->__count
);
2152 extern void free_uid(struct user_struct
*);
2153 extern void release_uids(struct user_namespace
*ns
);
2155 #include <asm/current.h>
2157 extern void xtime_update(unsigned long ticks
);
2159 extern int wake_up_state(struct task_struct
*tsk
, unsigned int state
);
2160 extern int wake_up_process(struct task_struct
*tsk
);
2161 extern void wake_up_new_task(struct task_struct
*tsk
);
2163 extern void kick_process(struct task_struct
*tsk
);
2165 static inline void kick_process(struct task_struct
*tsk
) { }
2167 extern void sched_fork(struct task_struct
*p
);
2168 extern void sched_dead(struct task_struct
*p
);
2170 extern void proc_caches_init(void);
2171 extern void flush_signals(struct task_struct
*);
2172 extern void __flush_signals(struct task_struct
*);
2173 extern void ignore_signals(struct task_struct
*);
2174 extern void flush_signal_handlers(struct task_struct
*, int force_default
);
2175 extern int dequeue_signal(struct task_struct
*tsk
, sigset_t
*mask
, siginfo_t
*info
);
2177 static inline int dequeue_signal_lock(struct task_struct
*tsk
, sigset_t
*mask
, siginfo_t
*info
)
2179 unsigned long flags
;
2182 spin_lock_irqsave(&tsk
->sighand
->siglock
, flags
);
2183 ret
= dequeue_signal(tsk
, mask
, info
);
2184 spin_unlock_irqrestore(&tsk
->sighand
->siglock
, flags
);
2189 extern void block_all_signals(int (*notifier
)(void *priv
), void *priv
,
2191 extern void unblock_all_signals(void);
2192 extern void release_task(struct task_struct
* p
);
2193 extern int send_sig_info(int, struct siginfo
*, struct task_struct
*);
2194 extern int force_sigsegv(int, struct task_struct
*);
2195 extern int force_sig_info(int, struct siginfo
*, struct task_struct
*);
2196 extern int __kill_pgrp_info(int sig
, struct siginfo
*info
, struct pid
*pgrp
);
2197 extern int kill_pid_info(int sig
, struct siginfo
*info
, struct pid
*pid
);
2198 extern int kill_pid_info_as_cred(int, struct siginfo
*, struct pid
*,
2199 const struct cred
*, u32
);
2200 extern int kill_pgrp(struct pid
*pid
, int sig
, int priv
);
2201 extern int kill_pid(struct pid
*pid
, int sig
, int priv
);
2202 extern int kill_proc_info(int, struct siginfo
*, pid_t
);
2203 extern __must_check
bool do_notify_parent(struct task_struct
*, int);
2204 extern void __wake_up_parent(struct task_struct
*p
, struct task_struct
*parent
);
2205 extern void force_sig(int, struct task_struct
*);
2206 extern int send_sig(int, struct task_struct
*, int);
2207 extern int zap_other_threads(struct task_struct
*p
);
2208 extern struct sigqueue
*sigqueue_alloc(void);
2209 extern void sigqueue_free(struct sigqueue
*);
2210 extern int send_sigqueue(struct sigqueue
*, struct task_struct
*, int group
);
2211 extern int do_sigaction(int, struct k_sigaction
*, struct k_sigaction
*);
2212 extern int do_sigaltstack(const stack_t __user
*, stack_t __user
*, unsigned long);
2214 static inline int kill_cad_pid(int sig
, int priv
)
2216 return kill_pid(cad_pid
, sig
, priv
);
2219 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2220 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2221 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2222 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2225 * True if we are on the alternate signal stack.
2227 static inline int on_sig_stack(unsigned long sp
)
2229 #ifdef CONFIG_STACK_GROWSUP
2230 return sp
>= current
->sas_ss_sp
&&
2231 sp
- current
->sas_ss_sp
< current
->sas_ss_size
;
2233 return sp
> current
->sas_ss_sp
&&
2234 sp
- current
->sas_ss_sp
<= current
->sas_ss_size
;
2238 static inline int sas_ss_flags(unsigned long sp
)
2240 return (current
->sas_ss_size
== 0 ? SS_DISABLE
2241 : on_sig_stack(sp
) ? SS_ONSTACK
: 0);
2245 * Routines for handling mm_structs
2247 extern struct mm_struct
* mm_alloc(void);
2249 /* mmdrop drops the mm and the page tables */
2250 extern void __mmdrop(struct mm_struct
*);
2251 static inline void mmdrop(struct mm_struct
* mm
)
2253 if (unlikely(atomic_dec_and_test(&mm
->mm_count
)))
2257 /* mmput gets rid of the mappings and all user-space */
2258 extern void mmput(struct mm_struct
*);
2259 /* Grab a reference to a task's mm, if it is not already going away */
2260 extern struct mm_struct
*get_task_mm(struct task_struct
*task
);
2262 * Grab a reference to a task's mm, if it is not already going away
2263 * and ptrace_may_access with the mode parameter passed to it
2266 extern struct mm_struct
*mm_access(struct task_struct
*task
, unsigned int mode
);
2267 /* Remove the current tasks stale references to the old mm_struct */
2268 extern void mm_release(struct task_struct
*, struct mm_struct
*);
2269 /* Allocate a new mm structure and copy contents from tsk->mm */
2270 extern struct mm_struct
*dup_mm(struct task_struct
*tsk
);
2272 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2273 struct task_struct
*, struct pt_regs
*);
2274 extern void flush_thread(void);
2275 extern void exit_thread(void);
2277 extern void exit_files(struct task_struct
*);
2278 extern void __cleanup_sighand(struct sighand_struct
*);
2280 extern void exit_itimers(struct signal_struct
*);
2281 extern void flush_itimer_signals(void);
2283 extern void do_group_exit(int);
2285 extern void daemonize(const char *, ...);
2286 extern int allow_signal(int);
2287 extern int disallow_signal(int);
2289 extern int do_execve(const char *,
2290 const char __user
* const __user
*,
2291 const char __user
* const __user
*, struct pt_regs
*);
2292 extern long do_fork(unsigned long, unsigned long, struct pt_regs
*, unsigned long, int __user
*, int __user
*);
2293 struct task_struct
*fork_idle(int);
2295 extern void set_task_comm(struct task_struct
*tsk
, char *from
);
2296 extern char *get_task_comm(char *to
, struct task_struct
*tsk
);
2299 void scheduler_ipi(void);
2300 extern unsigned long wait_task_inactive(struct task_struct
*, long match_state
);
2302 static inline void scheduler_ipi(void) { }
2303 static inline unsigned long wait_task_inactive(struct task_struct
*p
,
2310 #define next_task(p) \
2311 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2313 #define for_each_process(p) \
2314 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2316 extern bool current_is_single_threaded(void);
2319 * Careful: do_each_thread/while_each_thread is a double loop so
2320 * 'break' will not work as expected - use goto instead.
2322 #define do_each_thread(g, t) \
2323 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2325 #define while_each_thread(g, t) \
2326 while ((t = next_thread(t)) != g)
2328 static inline int get_nr_threads(struct task_struct
*tsk
)
2330 return tsk
->signal
->nr_threads
;
2333 static inline bool thread_group_leader(struct task_struct
*p
)
2335 return p
->exit_signal
>= 0;
2338 /* Do to the insanities of de_thread it is possible for a process
2339 * to have the pid of the thread group leader without actually being
2340 * the thread group leader. For iteration through the pids in proc
2341 * all we care about is that we have a task with the appropriate
2342 * pid, we don't actually care if we have the right task.
2344 static inline int has_group_leader_pid(struct task_struct
*p
)
2346 return p
->pid
== p
->tgid
;
2350 int same_thread_group(struct task_struct
*p1
, struct task_struct
*p2
)
2352 return p1
->tgid
== p2
->tgid
;
2355 static inline struct task_struct
*next_thread(const struct task_struct
*p
)
2357 return list_entry_rcu(p
->thread_group
.next
,
2358 struct task_struct
, thread_group
);
2361 static inline int thread_group_empty(struct task_struct
*p
)
2363 return list_empty(&p
->thread_group
);
2366 #define delay_group_leader(p) \
2367 (thread_group_leader(p) && !thread_group_empty(p))
2370 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2371 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2372 * pins the final release of task.io_context. Also protects ->cpuset and
2373 * ->cgroup.subsys[]. And ->vfork_done.
2375 * Nests both inside and outside of read_lock(&tasklist_lock).
2376 * It must not be nested with write_lock_irq(&tasklist_lock),
2377 * neither inside nor outside.
2379 static inline void task_lock(struct task_struct
*p
)
2381 spin_lock(&p
->alloc_lock
);
2384 static inline void task_unlock(struct task_struct
*p
)
2386 spin_unlock(&p
->alloc_lock
);
2389 extern struct sighand_struct
*__lock_task_sighand(struct task_struct
*tsk
,
2390 unsigned long *flags
);
2392 #define lock_task_sighand(tsk, flags) \
2393 ({ struct sighand_struct *__ss; \
2394 __cond_lock(&(tsk)->sighand->siglock, \
2395 (__ss = __lock_task_sighand(tsk, flags))); \
2399 static inline void unlock_task_sighand(struct task_struct *tsk,
2400 unsigned long *flags
)
2402 spin_unlock_irqrestore(&tsk
->sighand
->siglock
, *flags
);
2405 #ifdef CONFIG_CGROUPS
2406 static inline void threadgroup_change_begin(struct task_struct
*tsk
)
2408 down_read(&tsk
->signal
->group_rwsem
);
2410 static inline void threadgroup_change_end(struct task_struct
*tsk
)
2412 up_read(&tsk
->signal
->group_rwsem
);
2416 * threadgroup_lock - lock threadgroup
2417 * @tsk: member task of the threadgroup to lock
2419 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2420 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2421 * perform exec. This is useful for cases where the threadgroup needs to
2422 * stay stable across blockable operations.
2424 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2425 * synchronization. While held, no new task will be added to threadgroup
2426 * and no existing live task will have its PF_EXITING set.
2428 * During exec, a task goes and puts its thread group through unusual
2429 * changes. After de-threading, exclusive access is assumed to resources
2430 * which are usually shared by tasks in the same group - e.g. sighand may
2431 * be replaced with a new one. Also, the exec'ing task takes over group
2432 * leader role including its pid. Exclude these changes while locked by
2433 * grabbing cred_guard_mutex which is used to synchronize exec path.
2435 static inline void threadgroup_lock(struct task_struct
*tsk
)
2438 * exec uses exit for de-threading nesting group_rwsem inside
2439 * cred_guard_mutex. Grab cred_guard_mutex first.
2441 mutex_lock(&tsk
->signal
->cred_guard_mutex
);
2442 down_write(&tsk
->signal
->group_rwsem
);
2446 * threadgroup_unlock - unlock threadgroup
2447 * @tsk: member task of the threadgroup to unlock
2449 * Reverse threadgroup_lock().
2451 static inline void threadgroup_unlock(struct task_struct
*tsk
)
2453 up_write(&tsk
->signal
->group_rwsem
);
2454 mutex_unlock(&tsk
->signal
->cred_guard_mutex
);
2457 static inline void threadgroup_change_begin(struct task_struct
*tsk
) {}
2458 static inline void threadgroup_change_end(struct task_struct
*tsk
) {}
2459 static inline void threadgroup_lock(struct task_struct
*tsk
) {}
2460 static inline void threadgroup_unlock(struct task_struct
*tsk
) {}
2463 #ifndef __HAVE_THREAD_FUNCTIONS
2465 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2466 #define task_stack_page(task) ((task)->stack)
2468 static inline void setup_thread_stack(struct task_struct
*p
, struct task_struct
*org
)
2470 *task_thread_info(p
) = *task_thread_info(org
);
2471 task_thread_info(p
)->task
= p
;
2474 static inline unsigned long *end_of_stack(struct task_struct
*p
)
2476 return (unsigned long *)(task_thread_info(p
) + 1);
2481 static inline int object_is_on_stack(void *obj
)
2483 void *stack
= task_stack_page(current
);
2485 return (obj
>= stack
) && (obj
< (stack
+ THREAD_SIZE
));
2488 extern void thread_info_cache_init(void);
2490 #ifdef CONFIG_DEBUG_STACK_USAGE
2491 static inline unsigned long stack_not_used(struct task_struct
*p
)
2493 unsigned long *n
= end_of_stack(p
);
2495 do { /* Skip over canary */
2499 return (unsigned long)n
- (unsigned long)end_of_stack(p
);
2503 /* set thread flags in other task's structures
2504 * - see asm/thread_info.h for TIF_xxxx flags available
2506 static inline void set_tsk_thread_flag(struct task_struct
*tsk
, int flag
)
2508 set_ti_thread_flag(task_thread_info(tsk
), flag
);
2511 static inline void clear_tsk_thread_flag(struct task_struct
*tsk
, int flag
)
2513 clear_ti_thread_flag(task_thread_info(tsk
), flag
);
2516 static inline int test_and_set_tsk_thread_flag(struct task_struct
*tsk
, int flag
)
2518 return test_and_set_ti_thread_flag(task_thread_info(tsk
), flag
);
2521 static inline int test_and_clear_tsk_thread_flag(struct task_struct
*tsk
, int flag
)
2523 return test_and_clear_ti_thread_flag(task_thread_info(tsk
), flag
);
2526 static inline int test_tsk_thread_flag(struct task_struct
*tsk
, int flag
)
2528 return test_ti_thread_flag(task_thread_info(tsk
), flag
);
2531 static inline void set_tsk_need_resched(struct task_struct
*tsk
)
2533 set_tsk_thread_flag(tsk
,TIF_NEED_RESCHED
);
2536 static inline void clear_tsk_need_resched(struct task_struct
*tsk
)
2538 clear_tsk_thread_flag(tsk
,TIF_NEED_RESCHED
);
2541 static inline int test_tsk_need_resched(struct task_struct
*tsk
)
2543 return unlikely(test_tsk_thread_flag(tsk
,TIF_NEED_RESCHED
));
2546 static inline int restart_syscall(void)
2548 set_tsk_thread_flag(current
, TIF_SIGPENDING
);
2549 return -ERESTARTNOINTR
;
2552 static inline int signal_pending(struct task_struct
*p
)
2554 return unlikely(test_tsk_thread_flag(p
,TIF_SIGPENDING
));
2557 static inline int __fatal_signal_pending(struct task_struct
*p
)
2559 return unlikely(sigismember(&p
->pending
.signal
, SIGKILL
));
2562 static inline int fatal_signal_pending(struct task_struct
*p
)
2564 return signal_pending(p
) && __fatal_signal_pending(p
);
2567 static inline int signal_pending_state(long state
, struct task_struct
*p
)
2569 if (!(state
& (TASK_INTERRUPTIBLE
| TASK_WAKEKILL
)))
2571 if (!signal_pending(p
))
2574 return (state
& TASK_INTERRUPTIBLE
) || __fatal_signal_pending(p
);
2577 static inline int need_resched(void)
2579 return unlikely(test_thread_flag(TIF_NEED_RESCHED
));
2583 * cond_resched() and cond_resched_lock(): latency reduction via
2584 * explicit rescheduling in places that are safe. The return
2585 * value indicates whether a reschedule was done in fact.
2586 * cond_resched_lock() will drop the spinlock before scheduling,
2587 * cond_resched_softirq() will enable bhs before scheduling.
2589 extern int _cond_resched(void);
2591 #define cond_resched() ({ \
2592 __might_sleep(__FILE__, __LINE__, 0); \
2596 extern int __cond_resched_lock(spinlock_t
*lock
);
2598 #ifdef CONFIG_PREEMPT_COUNT
2599 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2601 #define PREEMPT_LOCK_OFFSET 0
2604 #define cond_resched_lock(lock) ({ \
2605 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2606 __cond_resched_lock(lock); \
2609 extern int __cond_resched_softirq(void);
2611 #define cond_resched_softirq() ({ \
2612 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2613 __cond_resched_softirq(); \
2617 * Does a critical section need to be broken due to another
2618 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2619 * but a general need for low latency)
2621 static inline int spin_needbreak(spinlock_t
*lock
)
2623 #ifdef CONFIG_PREEMPT
2624 return spin_is_contended(lock
);
2631 * Thread group CPU time accounting.
2633 void thread_group_cputime(struct task_struct
*tsk
, struct task_cputime
*times
);
2634 void thread_group_cputimer(struct task_struct
*tsk
, struct task_cputime
*times
);
2636 static inline void thread_group_cputime_init(struct signal_struct
*sig
)
2638 raw_spin_lock_init(&sig
->cputimer
.lock
);
2642 * Reevaluate whether the task has signals pending delivery.
2643 * Wake the task if so.
2644 * This is required every time the blocked sigset_t changes.
2645 * callers must hold sighand->siglock.
2647 extern void recalc_sigpending_and_wake(struct task_struct
*t
);
2648 extern void recalc_sigpending(void);
2650 extern void signal_wake_up(struct task_struct
*t
, int resume_stopped
);
2653 * Wrappers for p->thread_info->cpu access. No-op on UP.
2657 static inline unsigned int task_cpu(const struct task_struct
*p
)
2659 return task_thread_info(p
)->cpu
;
2662 extern void set_task_cpu(struct task_struct
*p
, unsigned int cpu
);
2666 static inline unsigned int task_cpu(const struct task_struct
*p
)
2671 static inline void set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
2675 #endif /* CONFIG_SMP */
2677 extern long sched_setaffinity(pid_t pid
, const struct cpumask
*new_mask
);
2678 extern long sched_getaffinity(pid_t pid
, struct cpumask
*mask
);
2680 extern void normalize_rt_tasks(void);
2682 #ifdef CONFIG_CGROUP_SCHED
2684 extern struct task_group root_task_group
;
2686 extern struct task_group
*sched_create_group(struct task_group
*parent
);
2687 extern void sched_destroy_group(struct task_group
*tg
);
2688 extern void sched_move_task(struct task_struct
*tsk
);
2689 #ifdef CONFIG_FAIR_GROUP_SCHED
2690 extern int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
);
2691 extern unsigned long sched_group_shares(struct task_group
*tg
);
2693 #ifdef CONFIG_RT_GROUP_SCHED
2694 extern int sched_group_set_rt_runtime(struct task_group
*tg
,
2695 long rt_runtime_us
);
2696 extern long sched_group_rt_runtime(struct task_group
*tg
);
2697 extern int sched_group_set_rt_period(struct task_group
*tg
,
2699 extern long sched_group_rt_period(struct task_group
*tg
);
2700 extern int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
);
2704 extern int task_can_switch_user(struct user_struct
*up
,
2705 struct task_struct
*tsk
);
2707 #ifdef CONFIG_TASK_XACCT
2708 static inline void add_rchar(struct task_struct
*tsk
, ssize_t amt
)
2710 tsk
->ioac
.rchar
+= amt
;
2713 static inline void add_wchar(struct task_struct
*tsk
, ssize_t amt
)
2715 tsk
->ioac
.wchar
+= amt
;
2718 static inline void inc_syscr(struct task_struct
*tsk
)
2723 static inline void inc_syscw(struct task_struct
*tsk
)
2728 static inline void add_rchar(struct task_struct
*tsk
, ssize_t amt
)
2732 static inline void add_wchar(struct task_struct
*tsk
, ssize_t amt
)
2736 static inline void inc_syscr(struct task_struct
*tsk
)
2740 static inline void inc_syscw(struct task_struct
*tsk
)
2745 #ifndef TASK_SIZE_OF
2746 #define TASK_SIZE_OF(tsk) TASK_SIZE
2749 #ifdef CONFIG_MM_OWNER
2750 extern void mm_update_next_owner(struct mm_struct
*mm
);
2751 extern void mm_init_owner(struct mm_struct
*mm
, struct task_struct
*p
);
2753 static inline void mm_update_next_owner(struct mm_struct
*mm
)
2757 static inline void mm_init_owner(struct mm_struct
*mm
, struct task_struct
*p
)
2760 #endif /* CONFIG_MM_OWNER */
2762 static inline unsigned long task_rlimit(const struct task_struct
*tsk
,
2765 return ACCESS_ONCE(tsk
->signal
->rlim
[limit
].rlim_cur
);
2768 static inline unsigned long task_rlimit_max(const struct task_struct
*tsk
,
2771 return ACCESS_ONCE(tsk
->signal
->rlim
[limit
].rlim_max
);
2774 static inline unsigned long rlimit(unsigned int limit
)
2776 return task_rlimit(current
, limit
);
2779 static inline unsigned long rlimit_max(unsigned int limit
)
2781 return task_rlimit_max(current
, limit
);
2784 #endif /* __KERNEL__ */