spi-topcliff-pch: Fix issue for transmitting over 4KByte
[zen-stable.git] / mm / hugetlb.c
blobfece52019c5341113823df6e763ed385b90f33bc
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <linux/io.h>
29 #include <linux/hugetlb.h>
30 #include <linux/node.h>
31 #include "internal.h"
33 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35 unsigned long hugepages_treat_as_movable;
37 static int max_hstate;
38 unsigned int default_hstate_idx;
39 struct hstate hstates[HUGE_MAX_HSTATE];
41 __initdata LIST_HEAD(huge_boot_pages);
43 /* for command line parsing */
44 static struct hstate * __initdata parsed_hstate;
45 static unsigned long __initdata default_hstate_max_huge_pages;
46 static unsigned long __initdata default_hstate_size;
48 #define for_each_hstate(h) \
49 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
54 static DEFINE_SPINLOCK(hugetlb_lock);
56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
58 bool free = (spool->count == 0) && (spool->used_hpages == 0);
60 spin_unlock(&spool->lock);
62 /* If no pages are used, and no other handles to the subpool
63 * remain, free the subpool the subpool remain */
64 if (free)
65 kfree(spool);
68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
70 struct hugepage_subpool *spool;
72 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73 if (!spool)
74 return NULL;
76 spin_lock_init(&spool->lock);
77 spool->count = 1;
78 spool->max_hpages = nr_blocks;
79 spool->used_hpages = 0;
81 return spool;
84 void hugepage_put_subpool(struct hugepage_subpool *spool)
86 spin_lock(&spool->lock);
87 BUG_ON(!spool->count);
88 spool->count--;
89 unlock_or_release_subpool(spool);
92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93 long delta)
95 int ret = 0;
97 if (!spool)
98 return 0;
100 spin_lock(&spool->lock);
101 if ((spool->used_hpages + delta) <= spool->max_hpages) {
102 spool->used_hpages += delta;
103 } else {
104 ret = -ENOMEM;
106 spin_unlock(&spool->lock);
108 return ret;
111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112 long delta)
114 if (!spool)
115 return;
117 spin_lock(&spool->lock);
118 spool->used_hpages -= delta;
119 /* If hugetlbfs_put_super couldn't free spool due to
120 * an outstanding quota reference, free it now. */
121 unlock_or_release_subpool(spool);
124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
126 return HUGETLBFS_SB(inode->i_sb)->spool;
129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
131 return subpool_inode(vma->vm_file->f_dentry->d_inode);
135 * Region tracking -- allows tracking of reservations and instantiated pages
136 * across the pages in a mapping.
138 * The region data structures are protected by a combination of the mmap_sem
139 * and the hugetlb_instantion_mutex. To access or modify a region the caller
140 * must either hold the mmap_sem for write, or the mmap_sem for read and
141 * the hugetlb_instantiation mutex:
143 * down_write(&mm->mmap_sem);
144 * or
145 * down_read(&mm->mmap_sem);
146 * mutex_lock(&hugetlb_instantiation_mutex);
148 struct file_region {
149 struct list_head link;
150 long from;
151 long to;
154 static long region_add(struct list_head *head, long f, long t)
156 struct file_region *rg, *nrg, *trg;
158 /* Locate the region we are either in or before. */
159 list_for_each_entry(rg, head, link)
160 if (f <= rg->to)
161 break;
163 /* Round our left edge to the current segment if it encloses us. */
164 if (f > rg->from)
165 f = rg->from;
167 /* Check for and consume any regions we now overlap with. */
168 nrg = rg;
169 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170 if (&rg->link == head)
171 break;
172 if (rg->from > t)
173 break;
175 /* If this area reaches higher then extend our area to
176 * include it completely. If this is not the first area
177 * which we intend to reuse, free it. */
178 if (rg->to > t)
179 t = rg->to;
180 if (rg != nrg) {
181 list_del(&rg->link);
182 kfree(rg);
185 nrg->from = f;
186 nrg->to = t;
187 return 0;
190 static long region_chg(struct list_head *head, long f, long t)
192 struct file_region *rg, *nrg;
193 long chg = 0;
195 /* Locate the region we are before or in. */
196 list_for_each_entry(rg, head, link)
197 if (f <= rg->to)
198 break;
200 /* If we are below the current region then a new region is required.
201 * Subtle, allocate a new region at the position but make it zero
202 * size such that we can guarantee to record the reservation. */
203 if (&rg->link == head || t < rg->from) {
204 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205 if (!nrg)
206 return -ENOMEM;
207 nrg->from = f;
208 nrg->to = f;
209 INIT_LIST_HEAD(&nrg->link);
210 list_add(&nrg->link, rg->link.prev);
212 return t - f;
215 /* Round our left edge to the current segment if it encloses us. */
216 if (f > rg->from)
217 f = rg->from;
218 chg = t - f;
220 /* Check for and consume any regions we now overlap with. */
221 list_for_each_entry(rg, rg->link.prev, link) {
222 if (&rg->link == head)
223 break;
224 if (rg->from > t)
225 return chg;
227 /* We overlap with this area, if it extends further than
228 * us then we must extend ourselves. Account for its
229 * existing reservation. */
230 if (rg->to > t) {
231 chg += rg->to - t;
232 t = rg->to;
234 chg -= rg->to - rg->from;
236 return chg;
239 static long region_truncate(struct list_head *head, long end)
241 struct file_region *rg, *trg;
242 long chg = 0;
244 /* Locate the region we are either in or before. */
245 list_for_each_entry(rg, head, link)
246 if (end <= rg->to)
247 break;
248 if (&rg->link == head)
249 return 0;
251 /* If we are in the middle of a region then adjust it. */
252 if (end > rg->from) {
253 chg = rg->to - end;
254 rg->to = end;
255 rg = list_entry(rg->link.next, typeof(*rg), link);
258 /* Drop any remaining regions. */
259 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260 if (&rg->link == head)
261 break;
262 chg += rg->to - rg->from;
263 list_del(&rg->link);
264 kfree(rg);
266 return chg;
269 static long region_count(struct list_head *head, long f, long t)
271 struct file_region *rg;
272 long chg = 0;
274 /* Locate each segment we overlap with, and count that overlap. */
275 list_for_each_entry(rg, head, link) {
276 int seg_from;
277 int seg_to;
279 if (rg->to <= f)
280 continue;
281 if (rg->from >= t)
282 break;
284 seg_from = max(rg->from, f);
285 seg_to = min(rg->to, t);
287 chg += seg_to - seg_from;
290 return chg;
294 * Convert the address within this vma to the page offset within
295 * the mapping, in pagecache page units; huge pages here.
297 static pgoff_t vma_hugecache_offset(struct hstate *h,
298 struct vm_area_struct *vma, unsigned long address)
300 return ((address - vma->vm_start) >> huge_page_shift(h)) +
301 (vma->vm_pgoff >> huge_page_order(h));
304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305 unsigned long address)
307 return vma_hugecache_offset(hstate_vma(vma), vma, address);
311 * Return the size of the pages allocated when backing a VMA. In the majority
312 * cases this will be same size as used by the page table entries.
314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
316 struct hstate *hstate;
318 if (!is_vm_hugetlb_page(vma))
319 return PAGE_SIZE;
321 hstate = hstate_vma(vma);
323 return 1UL << (hstate->order + PAGE_SHIFT);
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
328 * Return the page size being used by the MMU to back a VMA. In the majority
329 * of cases, the page size used by the kernel matches the MMU size. On
330 * architectures where it differs, an architecture-specific version of this
331 * function is required.
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
336 return vma_kernel_pagesize(vma);
338 #endif
341 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
342 * bits of the reservation map pointer, which are always clear due to
343 * alignment.
345 #define HPAGE_RESV_OWNER (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
350 * These helpers are used to track how many pages are reserved for
351 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352 * is guaranteed to have their future faults succeed.
354 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355 * the reserve counters are updated with the hugetlb_lock held. It is safe
356 * to reset the VMA at fork() time as it is not in use yet and there is no
357 * chance of the global counters getting corrupted as a result of the values.
359 * The private mapping reservation is represented in a subtly different
360 * manner to a shared mapping. A shared mapping has a region map associated
361 * with the underlying file, this region map represents the backing file
362 * pages which have ever had a reservation assigned which this persists even
363 * after the page is instantiated. A private mapping has a region map
364 * associated with the original mmap which is attached to all VMAs which
365 * reference it, this region map represents those offsets which have consumed
366 * reservation ie. where pages have been instantiated.
368 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
370 return (unsigned long)vma->vm_private_data;
373 static void set_vma_private_data(struct vm_area_struct *vma,
374 unsigned long value)
376 vma->vm_private_data = (void *)value;
379 struct resv_map {
380 struct kref refs;
381 struct list_head regions;
384 static struct resv_map *resv_map_alloc(void)
386 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387 if (!resv_map)
388 return NULL;
390 kref_init(&resv_map->refs);
391 INIT_LIST_HEAD(&resv_map->regions);
393 return resv_map;
396 static void resv_map_release(struct kref *ref)
398 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
400 /* Clear out any active regions before we release the map. */
401 region_truncate(&resv_map->regions, 0);
402 kfree(resv_map);
405 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
407 VM_BUG_ON(!is_vm_hugetlb_page(vma));
408 if (!(vma->vm_flags & VM_MAYSHARE))
409 return (struct resv_map *)(get_vma_private_data(vma) &
410 ~HPAGE_RESV_MASK);
411 return NULL;
414 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
416 VM_BUG_ON(!is_vm_hugetlb_page(vma));
417 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
419 set_vma_private_data(vma, (get_vma_private_data(vma) &
420 HPAGE_RESV_MASK) | (unsigned long)map);
423 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
425 VM_BUG_ON(!is_vm_hugetlb_page(vma));
426 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
428 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
431 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
433 VM_BUG_ON(!is_vm_hugetlb_page(vma));
435 return (get_vma_private_data(vma) & flag) != 0;
438 /* Decrement the reserved pages in the hugepage pool by one */
439 static void decrement_hugepage_resv_vma(struct hstate *h,
440 struct vm_area_struct *vma)
442 if (vma->vm_flags & VM_NORESERVE)
443 return;
445 if (vma->vm_flags & VM_MAYSHARE) {
446 /* Shared mappings always use reserves */
447 h->resv_huge_pages--;
448 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
450 * Only the process that called mmap() has reserves for
451 * private mappings.
453 h->resv_huge_pages--;
457 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
458 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
460 VM_BUG_ON(!is_vm_hugetlb_page(vma));
461 if (!(vma->vm_flags & VM_MAYSHARE))
462 vma->vm_private_data = (void *)0;
465 /* Returns true if the VMA has associated reserve pages */
466 static int vma_has_reserves(struct vm_area_struct *vma)
468 if (vma->vm_flags & VM_MAYSHARE)
469 return 1;
470 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
471 return 1;
472 return 0;
475 static void copy_gigantic_page(struct page *dst, struct page *src)
477 int i;
478 struct hstate *h = page_hstate(src);
479 struct page *dst_base = dst;
480 struct page *src_base = src;
482 for (i = 0; i < pages_per_huge_page(h); ) {
483 cond_resched();
484 copy_highpage(dst, src);
486 i++;
487 dst = mem_map_next(dst, dst_base, i);
488 src = mem_map_next(src, src_base, i);
492 void copy_huge_page(struct page *dst, struct page *src)
494 int i;
495 struct hstate *h = page_hstate(src);
497 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
498 copy_gigantic_page(dst, src);
499 return;
502 might_sleep();
503 for (i = 0; i < pages_per_huge_page(h); i++) {
504 cond_resched();
505 copy_highpage(dst + i, src + i);
509 static void enqueue_huge_page(struct hstate *h, struct page *page)
511 int nid = page_to_nid(page);
512 list_add(&page->lru, &h->hugepage_freelists[nid]);
513 h->free_huge_pages++;
514 h->free_huge_pages_node[nid]++;
517 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
519 struct page *page;
521 if (list_empty(&h->hugepage_freelists[nid]))
522 return NULL;
523 page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
524 list_del(&page->lru);
525 set_page_refcounted(page);
526 h->free_huge_pages--;
527 h->free_huge_pages_node[nid]--;
528 return page;
531 static struct page *dequeue_huge_page_vma(struct hstate *h,
532 struct vm_area_struct *vma,
533 unsigned long address, int avoid_reserve)
535 struct page *page = NULL;
536 struct mempolicy *mpol;
537 nodemask_t *nodemask;
538 struct zonelist *zonelist;
539 struct zone *zone;
540 struct zoneref *z;
542 get_mems_allowed();
543 zonelist = huge_zonelist(vma, address,
544 htlb_alloc_mask, &mpol, &nodemask);
546 * A child process with MAP_PRIVATE mappings created by their parent
547 * have no page reserves. This check ensures that reservations are
548 * not "stolen". The child may still get SIGKILLed
550 if (!vma_has_reserves(vma) &&
551 h->free_huge_pages - h->resv_huge_pages == 0)
552 goto err;
554 /* If reserves cannot be used, ensure enough pages are in the pool */
555 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
556 goto err;
558 for_each_zone_zonelist_nodemask(zone, z, zonelist,
559 MAX_NR_ZONES - 1, nodemask) {
560 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
561 page = dequeue_huge_page_node(h, zone_to_nid(zone));
562 if (page) {
563 if (!avoid_reserve)
564 decrement_hugepage_resv_vma(h, vma);
565 break;
569 err:
570 mpol_cond_put(mpol);
571 put_mems_allowed();
572 return page;
575 static void update_and_free_page(struct hstate *h, struct page *page)
577 int i;
579 VM_BUG_ON(h->order >= MAX_ORDER);
581 h->nr_huge_pages--;
582 h->nr_huge_pages_node[page_to_nid(page)]--;
583 for (i = 0; i < pages_per_huge_page(h); i++) {
584 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
585 1 << PG_referenced | 1 << PG_dirty |
586 1 << PG_active | 1 << PG_reserved |
587 1 << PG_private | 1 << PG_writeback);
589 set_compound_page_dtor(page, NULL);
590 set_page_refcounted(page);
591 arch_release_hugepage(page);
592 __free_pages(page, huge_page_order(h));
595 struct hstate *size_to_hstate(unsigned long size)
597 struct hstate *h;
599 for_each_hstate(h) {
600 if (huge_page_size(h) == size)
601 return h;
603 return NULL;
606 static void free_huge_page(struct page *page)
609 * Can't pass hstate in here because it is called from the
610 * compound page destructor.
612 struct hstate *h = page_hstate(page);
613 int nid = page_to_nid(page);
614 struct hugepage_subpool *spool =
615 (struct hugepage_subpool *)page_private(page);
617 set_page_private(page, 0);
618 page->mapping = NULL;
619 BUG_ON(page_count(page));
620 BUG_ON(page_mapcount(page));
621 INIT_LIST_HEAD(&page->lru);
623 spin_lock(&hugetlb_lock);
624 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
625 update_and_free_page(h, page);
626 h->surplus_huge_pages--;
627 h->surplus_huge_pages_node[nid]--;
628 } else {
629 enqueue_huge_page(h, page);
631 spin_unlock(&hugetlb_lock);
632 hugepage_subpool_put_pages(spool, 1);
635 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
637 set_compound_page_dtor(page, free_huge_page);
638 spin_lock(&hugetlb_lock);
639 h->nr_huge_pages++;
640 h->nr_huge_pages_node[nid]++;
641 spin_unlock(&hugetlb_lock);
642 put_page(page); /* free it into the hugepage allocator */
645 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
647 int i;
648 int nr_pages = 1 << order;
649 struct page *p = page + 1;
651 /* we rely on prep_new_huge_page to set the destructor */
652 set_compound_order(page, order);
653 __SetPageHead(page);
654 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
655 __SetPageTail(p);
656 set_page_count(p, 0);
657 p->first_page = page;
661 int PageHuge(struct page *page)
663 compound_page_dtor *dtor;
665 if (!PageCompound(page))
666 return 0;
668 page = compound_head(page);
669 dtor = get_compound_page_dtor(page);
671 return dtor == free_huge_page;
673 EXPORT_SYMBOL_GPL(PageHuge);
675 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
677 struct page *page;
679 if (h->order >= MAX_ORDER)
680 return NULL;
682 page = alloc_pages_exact_node(nid,
683 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
684 __GFP_REPEAT|__GFP_NOWARN,
685 huge_page_order(h));
686 if (page) {
687 if (arch_prepare_hugepage(page)) {
688 __free_pages(page, huge_page_order(h));
689 return NULL;
691 prep_new_huge_page(h, page, nid);
694 return page;
698 * common helper functions for hstate_next_node_to_{alloc|free}.
699 * We may have allocated or freed a huge page based on a different
700 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
701 * be outside of *nodes_allowed. Ensure that we use an allowed
702 * node for alloc or free.
704 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
706 nid = next_node(nid, *nodes_allowed);
707 if (nid == MAX_NUMNODES)
708 nid = first_node(*nodes_allowed);
709 VM_BUG_ON(nid >= MAX_NUMNODES);
711 return nid;
714 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
716 if (!node_isset(nid, *nodes_allowed))
717 nid = next_node_allowed(nid, nodes_allowed);
718 return nid;
722 * returns the previously saved node ["this node"] from which to
723 * allocate a persistent huge page for the pool and advance the
724 * next node from which to allocate, handling wrap at end of node
725 * mask.
727 static int hstate_next_node_to_alloc(struct hstate *h,
728 nodemask_t *nodes_allowed)
730 int nid;
732 VM_BUG_ON(!nodes_allowed);
734 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
735 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
737 return nid;
740 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
742 struct page *page;
743 int start_nid;
744 int next_nid;
745 int ret = 0;
747 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
748 next_nid = start_nid;
750 do {
751 page = alloc_fresh_huge_page_node(h, next_nid);
752 if (page) {
753 ret = 1;
754 break;
756 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
757 } while (next_nid != start_nid);
759 if (ret)
760 count_vm_event(HTLB_BUDDY_PGALLOC);
761 else
762 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
764 return ret;
768 * helper for free_pool_huge_page() - return the previously saved
769 * node ["this node"] from which to free a huge page. Advance the
770 * next node id whether or not we find a free huge page to free so
771 * that the next attempt to free addresses the next node.
773 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
775 int nid;
777 VM_BUG_ON(!nodes_allowed);
779 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
780 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
782 return nid;
786 * Free huge page from pool from next node to free.
787 * Attempt to keep persistent huge pages more or less
788 * balanced over allowed nodes.
789 * Called with hugetlb_lock locked.
791 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
792 bool acct_surplus)
794 int start_nid;
795 int next_nid;
796 int ret = 0;
798 start_nid = hstate_next_node_to_free(h, nodes_allowed);
799 next_nid = start_nid;
801 do {
803 * If we're returning unused surplus pages, only examine
804 * nodes with surplus pages.
806 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
807 !list_empty(&h->hugepage_freelists[next_nid])) {
808 struct page *page =
809 list_entry(h->hugepage_freelists[next_nid].next,
810 struct page, lru);
811 list_del(&page->lru);
812 h->free_huge_pages--;
813 h->free_huge_pages_node[next_nid]--;
814 if (acct_surplus) {
815 h->surplus_huge_pages--;
816 h->surplus_huge_pages_node[next_nid]--;
818 update_and_free_page(h, page);
819 ret = 1;
820 break;
822 next_nid = hstate_next_node_to_free(h, nodes_allowed);
823 } while (next_nid != start_nid);
825 return ret;
828 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
830 struct page *page;
831 unsigned int r_nid;
833 if (h->order >= MAX_ORDER)
834 return NULL;
837 * Assume we will successfully allocate the surplus page to
838 * prevent racing processes from causing the surplus to exceed
839 * overcommit
841 * This however introduces a different race, where a process B
842 * tries to grow the static hugepage pool while alloc_pages() is
843 * called by process A. B will only examine the per-node
844 * counters in determining if surplus huge pages can be
845 * converted to normal huge pages in adjust_pool_surplus(). A
846 * won't be able to increment the per-node counter, until the
847 * lock is dropped by B, but B doesn't drop hugetlb_lock until
848 * no more huge pages can be converted from surplus to normal
849 * state (and doesn't try to convert again). Thus, we have a
850 * case where a surplus huge page exists, the pool is grown, and
851 * the surplus huge page still exists after, even though it
852 * should just have been converted to a normal huge page. This
853 * does not leak memory, though, as the hugepage will be freed
854 * once it is out of use. It also does not allow the counters to
855 * go out of whack in adjust_pool_surplus() as we don't modify
856 * the node values until we've gotten the hugepage and only the
857 * per-node value is checked there.
859 spin_lock(&hugetlb_lock);
860 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
861 spin_unlock(&hugetlb_lock);
862 return NULL;
863 } else {
864 h->nr_huge_pages++;
865 h->surplus_huge_pages++;
867 spin_unlock(&hugetlb_lock);
869 if (nid == NUMA_NO_NODE)
870 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
871 __GFP_REPEAT|__GFP_NOWARN,
872 huge_page_order(h));
873 else
874 page = alloc_pages_exact_node(nid,
875 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
876 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
878 if (page && arch_prepare_hugepage(page)) {
879 __free_pages(page, huge_page_order(h));
880 page = NULL;
883 spin_lock(&hugetlb_lock);
884 if (page) {
885 r_nid = page_to_nid(page);
886 set_compound_page_dtor(page, free_huge_page);
888 * We incremented the global counters already
890 h->nr_huge_pages_node[r_nid]++;
891 h->surplus_huge_pages_node[r_nid]++;
892 __count_vm_event(HTLB_BUDDY_PGALLOC);
893 } else {
894 h->nr_huge_pages--;
895 h->surplus_huge_pages--;
896 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
898 spin_unlock(&hugetlb_lock);
900 return page;
904 * This allocation function is useful in the context where vma is irrelevant.
905 * E.g. soft-offlining uses this function because it only cares physical
906 * address of error page.
908 struct page *alloc_huge_page_node(struct hstate *h, int nid)
910 struct page *page;
912 spin_lock(&hugetlb_lock);
913 page = dequeue_huge_page_node(h, nid);
914 spin_unlock(&hugetlb_lock);
916 if (!page)
917 page = alloc_buddy_huge_page(h, nid);
919 return page;
923 * Increase the hugetlb pool such that it can accommodate a reservation
924 * of size 'delta'.
926 static int gather_surplus_pages(struct hstate *h, int delta)
928 struct list_head surplus_list;
929 struct page *page, *tmp;
930 int ret, i;
931 int needed, allocated;
933 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
934 if (needed <= 0) {
935 h->resv_huge_pages += delta;
936 return 0;
939 allocated = 0;
940 INIT_LIST_HEAD(&surplus_list);
942 ret = -ENOMEM;
943 retry:
944 spin_unlock(&hugetlb_lock);
945 for (i = 0; i < needed; i++) {
946 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
947 if (!page)
949 * We were not able to allocate enough pages to
950 * satisfy the entire reservation so we free what
951 * we've allocated so far.
953 goto free;
955 list_add(&page->lru, &surplus_list);
957 allocated += needed;
960 * After retaking hugetlb_lock, we need to recalculate 'needed'
961 * because either resv_huge_pages or free_huge_pages may have changed.
963 spin_lock(&hugetlb_lock);
964 needed = (h->resv_huge_pages + delta) -
965 (h->free_huge_pages + allocated);
966 if (needed > 0)
967 goto retry;
970 * The surplus_list now contains _at_least_ the number of extra pages
971 * needed to accommodate the reservation. Add the appropriate number
972 * of pages to the hugetlb pool and free the extras back to the buddy
973 * allocator. Commit the entire reservation here to prevent another
974 * process from stealing the pages as they are added to the pool but
975 * before they are reserved.
977 needed += allocated;
978 h->resv_huge_pages += delta;
979 ret = 0;
981 /* Free the needed pages to the hugetlb pool */
982 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
983 if ((--needed) < 0)
984 break;
985 list_del(&page->lru);
987 * This page is now managed by the hugetlb allocator and has
988 * no users -- drop the buddy allocator's reference.
990 put_page_testzero(page);
991 VM_BUG_ON(page_count(page));
992 enqueue_huge_page(h, page);
994 spin_unlock(&hugetlb_lock);
996 /* Free unnecessary surplus pages to the buddy allocator */
997 free:
998 if (!list_empty(&surplus_list)) {
999 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1000 list_del(&page->lru);
1001 put_page(page);
1004 spin_lock(&hugetlb_lock);
1006 return ret;
1010 * When releasing a hugetlb pool reservation, any surplus pages that were
1011 * allocated to satisfy the reservation must be explicitly freed if they were
1012 * never used.
1013 * Called with hugetlb_lock held.
1015 static void return_unused_surplus_pages(struct hstate *h,
1016 unsigned long unused_resv_pages)
1018 unsigned long nr_pages;
1020 /* Uncommit the reservation */
1021 h->resv_huge_pages -= unused_resv_pages;
1023 /* Cannot return gigantic pages currently */
1024 if (h->order >= MAX_ORDER)
1025 return;
1027 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1030 * We want to release as many surplus pages as possible, spread
1031 * evenly across all nodes with memory. Iterate across these nodes
1032 * until we can no longer free unreserved surplus pages. This occurs
1033 * when the nodes with surplus pages have no free pages.
1034 * free_pool_huge_page() will balance the the freed pages across the
1035 * on-line nodes with memory and will handle the hstate accounting.
1037 while (nr_pages--) {
1038 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
1039 break;
1044 * Determine if the huge page at addr within the vma has an associated
1045 * reservation. Where it does not we will need to logically increase
1046 * reservation and actually increase subpool usage before an allocation
1047 * can occur. Where any new reservation would be required the
1048 * reservation change is prepared, but not committed. Once the page
1049 * has been allocated from the subpool and instantiated the change should
1050 * be committed via vma_commit_reservation. No action is required on
1051 * failure.
1053 static long vma_needs_reservation(struct hstate *h,
1054 struct vm_area_struct *vma, unsigned long addr)
1056 struct address_space *mapping = vma->vm_file->f_mapping;
1057 struct inode *inode = mapping->host;
1059 if (vma->vm_flags & VM_MAYSHARE) {
1060 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1061 return region_chg(&inode->i_mapping->private_list,
1062 idx, idx + 1);
1064 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1065 return 1;
1067 } else {
1068 long err;
1069 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1070 struct resv_map *reservations = vma_resv_map(vma);
1072 err = region_chg(&reservations->regions, idx, idx + 1);
1073 if (err < 0)
1074 return err;
1075 return 0;
1078 static void vma_commit_reservation(struct hstate *h,
1079 struct vm_area_struct *vma, unsigned long addr)
1081 struct address_space *mapping = vma->vm_file->f_mapping;
1082 struct inode *inode = mapping->host;
1084 if (vma->vm_flags & VM_MAYSHARE) {
1085 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1086 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1088 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1089 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1090 struct resv_map *reservations = vma_resv_map(vma);
1092 /* Mark this page used in the map. */
1093 region_add(&reservations->regions, idx, idx + 1);
1097 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1098 unsigned long addr, int avoid_reserve)
1100 struct hugepage_subpool *spool = subpool_vma(vma);
1101 struct hstate *h = hstate_vma(vma);
1102 struct page *page;
1103 long chg;
1106 * Processes that did not create the mapping will have no
1107 * reserves and will not have accounted against subpool
1108 * limit. Check that the subpool limit can be made before
1109 * satisfying the allocation MAP_NORESERVE mappings may also
1110 * need pages and subpool limit allocated allocated if no reserve
1111 * mapping overlaps.
1113 chg = vma_needs_reservation(h, vma, addr);
1114 if (chg < 0)
1115 return ERR_PTR(-VM_FAULT_OOM);
1116 if (chg)
1117 if (hugepage_subpool_get_pages(spool, chg))
1118 return ERR_PTR(-VM_FAULT_SIGBUS);
1120 spin_lock(&hugetlb_lock);
1121 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1122 spin_unlock(&hugetlb_lock);
1124 if (!page) {
1125 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1126 if (!page) {
1127 hugepage_subpool_put_pages(spool, chg);
1128 return ERR_PTR(-VM_FAULT_SIGBUS);
1132 set_page_private(page, (unsigned long)spool);
1134 vma_commit_reservation(h, vma, addr);
1136 return page;
1139 int __weak alloc_bootmem_huge_page(struct hstate *h)
1141 struct huge_bootmem_page *m;
1142 int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1144 while (nr_nodes) {
1145 void *addr;
1147 addr = __alloc_bootmem_node_nopanic(
1148 NODE_DATA(hstate_next_node_to_alloc(h,
1149 &node_states[N_HIGH_MEMORY])),
1150 huge_page_size(h), huge_page_size(h), 0);
1152 if (addr) {
1154 * Use the beginning of the huge page to store the
1155 * huge_bootmem_page struct (until gather_bootmem
1156 * puts them into the mem_map).
1158 m = addr;
1159 goto found;
1161 nr_nodes--;
1163 return 0;
1165 found:
1166 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1167 /* Put them into a private list first because mem_map is not up yet */
1168 list_add(&m->list, &huge_boot_pages);
1169 m->hstate = h;
1170 return 1;
1173 static void prep_compound_huge_page(struct page *page, int order)
1175 if (unlikely(order > (MAX_ORDER - 1)))
1176 prep_compound_gigantic_page(page, order);
1177 else
1178 prep_compound_page(page, order);
1181 /* Put bootmem huge pages into the standard lists after mem_map is up */
1182 static void __init gather_bootmem_prealloc(void)
1184 struct huge_bootmem_page *m;
1186 list_for_each_entry(m, &huge_boot_pages, list) {
1187 struct hstate *h = m->hstate;
1188 struct page *page;
1190 #ifdef CONFIG_HIGHMEM
1191 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1192 free_bootmem_late((unsigned long)m,
1193 sizeof(struct huge_bootmem_page));
1194 #else
1195 page = virt_to_page(m);
1196 #endif
1197 __ClearPageReserved(page);
1198 WARN_ON(page_count(page) != 1);
1199 prep_compound_huge_page(page, h->order);
1200 prep_new_huge_page(h, page, page_to_nid(page));
1202 * If we had gigantic hugepages allocated at boot time, we need
1203 * to restore the 'stolen' pages to totalram_pages in order to
1204 * fix confusing memory reports from free(1) and another
1205 * side-effects, like CommitLimit going negative.
1207 if (h->order > (MAX_ORDER - 1))
1208 totalram_pages += 1 << h->order;
1212 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1214 unsigned long i;
1216 for (i = 0; i < h->max_huge_pages; ++i) {
1217 if (h->order >= MAX_ORDER) {
1218 if (!alloc_bootmem_huge_page(h))
1219 break;
1220 } else if (!alloc_fresh_huge_page(h,
1221 &node_states[N_HIGH_MEMORY]))
1222 break;
1224 h->max_huge_pages = i;
1227 static void __init hugetlb_init_hstates(void)
1229 struct hstate *h;
1231 for_each_hstate(h) {
1232 /* oversize hugepages were init'ed in early boot */
1233 if (h->order < MAX_ORDER)
1234 hugetlb_hstate_alloc_pages(h);
1238 static char * __init memfmt(char *buf, unsigned long n)
1240 if (n >= (1UL << 30))
1241 sprintf(buf, "%lu GB", n >> 30);
1242 else if (n >= (1UL << 20))
1243 sprintf(buf, "%lu MB", n >> 20);
1244 else
1245 sprintf(buf, "%lu KB", n >> 10);
1246 return buf;
1249 static void __init report_hugepages(void)
1251 struct hstate *h;
1253 for_each_hstate(h) {
1254 char buf[32];
1255 printk(KERN_INFO "HugeTLB registered %s page size, "
1256 "pre-allocated %ld pages\n",
1257 memfmt(buf, huge_page_size(h)),
1258 h->free_huge_pages);
1262 #ifdef CONFIG_HIGHMEM
1263 static void try_to_free_low(struct hstate *h, unsigned long count,
1264 nodemask_t *nodes_allowed)
1266 int i;
1268 if (h->order >= MAX_ORDER)
1269 return;
1271 for_each_node_mask(i, *nodes_allowed) {
1272 struct page *page, *next;
1273 struct list_head *freel = &h->hugepage_freelists[i];
1274 list_for_each_entry_safe(page, next, freel, lru) {
1275 if (count >= h->nr_huge_pages)
1276 return;
1277 if (PageHighMem(page))
1278 continue;
1279 list_del(&page->lru);
1280 update_and_free_page(h, page);
1281 h->free_huge_pages--;
1282 h->free_huge_pages_node[page_to_nid(page)]--;
1286 #else
1287 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1288 nodemask_t *nodes_allowed)
1291 #endif
1294 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1295 * balanced by operating on them in a round-robin fashion.
1296 * Returns 1 if an adjustment was made.
1298 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1299 int delta)
1301 int start_nid, next_nid;
1302 int ret = 0;
1304 VM_BUG_ON(delta != -1 && delta != 1);
1306 if (delta < 0)
1307 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1308 else
1309 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1310 next_nid = start_nid;
1312 do {
1313 int nid = next_nid;
1314 if (delta < 0) {
1316 * To shrink on this node, there must be a surplus page
1318 if (!h->surplus_huge_pages_node[nid]) {
1319 next_nid = hstate_next_node_to_alloc(h,
1320 nodes_allowed);
1321 continue;
1324 if (delta > 0) {
1326 * Surplus cannot exceed the total number of pages
1328 if (h->surplus_huge_pages_node[nid] >=
1329 h->nr_huge_pages_node[nid]) {
1330 next_nid = hstate_next_node_to_free(h,
1331 nodes_allowed);
1332 continue;
1336 h->surplus_huge_pages += delta;
1337 h->surplus_huge_pages_node[nid] += delta;
1338 ret = 1;
1339 break;
1340 } while (next_nid != start_nid);
1342 return ret;
1345 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1346 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1347 nodemask_t *nodes_allowed)
1349 unsigned long min_count, ret;
1351 if (h->order >= MAX_ORDER)
1352 return h->max_huge_pages;
1355 * Increase the pool size
1356 * First take pages out of surplus state. Then make up the
1357 * remaining difference by allocating fresh huge pages.
1359 * We might race with alloc_buddy_huge_page() here and be unable
1360 * to convert a surplus huge page to a normal huge page. That is
1361 * not critical, though, it just means the overall size of the
1362 * pool might be one hugepage larger than it needs to be, but
1363 * within all the constraints specified by the sysctls.
1365 spin_lock(&hugetlb_lock);
1366 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1367 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1368 break;
1371 while (count > persistent_huge_pages(h)) {
1373 * If this allocation races such that we no longer need the
1374 * page, free_huge_page will handle it by freeing the page
1375 * and reducing the surplus.
1377 spin_unlock(&hugetlb_lock);
1378 ret = alloc_fresh_huge_page(h, nodes_allowed);
1379 spin_lock(&hugetlb_lock);
1380 if (!ret)
1381 goto out;
1383 /* Bail for signals. Probably ctrl-c from user */
1384 if (signal_pending(current))
1385 goto out;
1389 * Decrease the pool size
1390 * First return free pages to the buddy allocator (being careful
1391 * to keep enough around to satisfy reservations). Then place
1392 * pages into surplus state as needed so the pool will shrink
1393 * to the desired size as pages become free.
1395 * By placing pages into the surplus state independent of the
1396 * overcommit value, we are allowing the surplus pool size to
1397 * exceed overcommit. There are few sane options here. Since
1398 * alloc_buddy_huge_page() is checking the global counter,
1399 * though, we'll note that we're not allowed to exceed surplus
1400 * and won't grow the pool anywhere else. Not until one of the
1401 * sysctls are changed, or the surplus pages go out of use.
1403 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1404 min_count = max(count, min_count);
1405 try_to_free_low(h, min_count, nodes_allowed);
1406 while (min_count < persistent_huge_pages(h)) {
1407 if (!free_pool_huge_page(h, nodes_allowed, 0))
1408 break;
1410 while (count < persistent_huge_pages(h)) {
1411 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1412 break;
1414 out:
1415 ret = persistent_huge_pages(h);
1416 spin_unlock(&hugetlb_lock);
1417 return ret;
1420 #define HSTATE_ATTR_RO(_name) \
1421 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1423 #define HSTATE_ATTR(_name) \
1424 static struct kobj_attribute _name##_attr = \
1425 __ATTR(_name, 0644, _name##_show, _name##_store)
1427 static struct kobject *hugepages_kobj;
1428 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1430 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1432 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1434 int i;
1436 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1437 if (hstate_kobjs[i] == kobj) {
1438 if (nidp)
1439 *nidp = NUMA_NO_NODE;
1440 return &hstates[i];
1443 return kobj_to_node_hstate(kobj, nidp);
1446 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1447 struct kobj_attribute *attr, char *buf)
1449 struct hstate *h;
1450 unsigned long nr_huge_pages;
1451 int nid;
1453 h = kobj_to_hstate(kobj, &nid);
1454 if (nid == NUMA_NO_NODE)
1455 nr_huge_pages = h->nr_huge_pages;
1456 else
1457 nr_huge_pages = h->nr_huge_pages_node[nid];
1459 return sprintf(buf, "%lu\n", nr_huge_pages);
1462 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1463 struct kobject *kobj, struct kobj_attribute *attr,
1464 const char *buf, size_t len)
1466 int err;
1467 int nid;
1468 unsigned long count;
1469 struct hstate *h;
1470 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1472 err = strict_strtoul(buf, 10, &count);
1473 if (err)
1474 goto out;
1476 h = kobj_to_hstate(kobj, &nid);
1477 if (h->order >= MAX_ORDER) {
1478 err = -EINVAL;
1479 goto out;
1482 if (nid == NUMA_NO_NODE) {
1484 * global hstate attribute
1486 if (!(obey_mempolicy &&
1487 init_nodemask_of_mempolicy(nodes_allowed))) {
1488 NODEMASK_FREE(nodes_allowed);
1489 nodes_allowed = &node_states[N_HIGH_MEMORY];
1491 } else if (nodes_allowed) {
1493 * per node hstate attribute: adjust count to global,
1494 * but restrict alloc/free to the specified node.
1496 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1497 init_nodemask_of_node(nodes_allowed, nid);
1498 } else
1499 nodes_allowed = &node_states[N_HIGH_MEMORY];
1501 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1503 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1504 NODEMASK_FREE(nodes_allowed);
1506 return len;
1507 out:
1508 NODEMASK_FREE(nodes_allowed);
1509 return err;
1512 static ssize_t nr_hugepages_show(struct kobject *kobj,
1513 struct kobj_attribute *attr, char *buf)
1515 return nr_hugepages_show_common(kobj, attr, buf);
1518 static ssize_t nr_hugepages_store(struct kobject *kobj,
1519 struct kobj_attribute *attr, const char *buf, size_t len)
1521 return nr_hugepages_store_common(false, kobj, attr, buf, len);
1523 HSTATE_ATTR(nr_hugepages);
1525 #ifdef CONFIG_NUMA
1528 * hstate attribute for optionally mempolicy-based constraint on persistent
1529 * huge page alloc/free.
1531 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1532 struct kobj_attribute *attr, char *buf)
1534 return nr_hugepages_show_common(kobj, attr, buf);
1537 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1538 struct kobj_attribute *attr, const char *buf, size_t len)
1540 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1542 HSTATE_ATTR(nr_hugepages_mempolicy);
1543 #endif
1546 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1547 struct kobj_attribute *attr, char *buf)
1549 struct hstate *h = kobj_to_hstate(kobj, NULL);
1550 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1553 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1554 struct kobj_attribute *attr, const char *buf, size_t count)
1556 int err;
1557 unsigned long input;
1558 struct hstate *h = kobj_to_hstate(kobj, NULL);
1560 if (h->order >= MAX_ORDER)
1561 return -EINVAL;
1563 err = strict_strtoul(buf, 10, &input);
1564 if (err)
1565 return err;
1567 spin_lock(&hugetlb_lock);
1568 h->nr_overcommit_huge_pages = input;
1569 spin_unlock(&hugetlb_lock);
1571 return count;
1573 HSTATE_ATTR(nr_overcommit_hugepages);
1575 static ssize_t free_hugepages_show(struct kobject *kobj,
1576 struct kobj_attribute *attr, char *buf)
1578 struct hstate *h;
1579 unsigned long free_huge_pages;
1580 int nid;
1582 h = kobj_to_hstate(kobj, &nid);
1583 if (nid == NUMA_NO_NODE)
1584 free_huge_pages = h->free_huge_pages;
1585 else
1586 free_huge_pages = h->free_huge_pages_node[nid];
1588 return sprintf(buf, "%lu\n", free_huge_pages);
1590 HSTATE_ATTR_RO(free_hugepages);
1592 static ssize_t resv_hugepages_show(struct kobject *kobj,
1593 struct kobj_attribute *attr, char *buf)
1595 struct hstate *h = kobj_to_hstate(kobj, NULL);
1596 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1598 HSTATE_ATTR_RO(resv_hugepages);
1600 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1601 struct kobj_attribute *attr, char *buf)
1603 struct hstate *h;
1604 unsigned long surplus_huge_pages;
1605 int nid;
1607 h = kobj_to_hstate(kobj, &nid);
1608 if (nid == NUMA_NO_NODE)
1609 surplus_huge_pages = h->surplus_huge_pages;
1610 else
1611 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1613 return sprintf(buf, "%lu\n", surplus_huge_pages);
1615 HSTATE_ATTR_RO(surplus_hugepages);
1617 static struct attribute *hstate_attrs[] = {
1618 &nr_hugepages_attr.attr,
1619 &nr_overcommit_hugepages_attr.attr,
1620 &free_hugepages_attr.attr,
1621 &resv_hugepages_attr.attr,
1622 &surplus_hugepages_attr.attr,
1623 #ifdef CONFIG_NUMA
1624 &nr_hugepages_mempolicy_attr.attr,
1625 #endif
1626 NULL,
1629 static struct attribute_group hstate_attr_group = {
1630 .attrs = hstate_attrs,
1633 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1634 struct kobject **hstate_kobjs,
1635 struct attribute_group *hstate_attr_group)
1637 int retval;
1638 int hi = h - hstates;
1640 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1641 if (!hstate_kobjs[hi])
1642 return -ENOMEM;
1644 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1645 if (retval)
1646 kobject_put(hstate_kobjs[hi]);
1648 return retval;
1651 static void __init hugetlb_sysfs_init(void)
1653 struct hstate *h;
1654 int err;
1656 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1657 if (!hugepages_kobj)
1658 return;
1660 for_each_hstate(h) {
1661 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1662 hstate_kobjs, &hstate_attr_group);
1663 if (err)
1664 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1665 h->name);
1669 #ifdef CONFIG_NUMA
1672 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1673 * with node devices in node_devices[] using a parallel array. The array
1674 * index of a node device or _hstate == node id.
1675 * This is here to avoid any static dependency of the node device driver, in
1676 * the base kernel, on the hugetlb module.
1678 struct node_hstate {
1679 struct kobject *hugepages_kobj;
1680 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1682 struct node_hstate node_hstates[MAX_NUMNODES];
1685 * A subset of global hstate attributes for node devices
1687 static struct attribute *per_node_hstate_attrs[] = {
1688 &nr_hugepages_attr.attr,
1689 &free_hugepages_attr.attr,
1690 &surplus_hugepages_attr.attr,
1691 NULL,
1694 static struct attribute_group per_node_hstate_attr_group = {
1695 .attrs = per_node_hstate_attrs,
1699 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1700 * Returns node id via non-NULL nidp.
1702 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1704 int nid;
1706 for (nid = 0; nid < nr_node_ids; nid++) {
1707 struct node_hstate *nhs = &node_hstates[nid];
1708 int i;
1709 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1710 if (nhs->hstate_kobjs[i] == kobj) {
1711 if (nidp)
1712 *nidp = nid;
1713 return &hstates[i];
1717 BUG();
1718 return NULL;
1722 * Unregister hstate attributes from a single node device.
1723 * No-op if no hstate attributes attached.
1725 void hugetlb_unregister_node(struct node *node)
1727 struct hstate *h;
1728 struct node_hstate *nhs = &node_hstates[node->dev.id];
1730 if (!nhs->hugepages_kobj)
1731 return; /* no hstate attributes */
1733 for_each_hstate(h)
1734 if (nhs->hstate_kobjs[h - hstates]) {
1735 kobject_put(nhs->hstate_kobjs[h - hstates]);
1736 nhs->hstate_kobjs[h - hstates] = NULL;
1739 kobject_put(nhs->hugepages_kobj);
1740 nhs->hugepages_kobj = NULL;
1744 * hugetlb module exit: unregister hstate attributes from node devices
1745 * that have them.
1747 static void hugetlb_unregister_all_nodes(void)
1749 int nid;
1752 * disable node device registrations.
1754 register_hugetlbfs_with_node(NULL, NULL);
1757 * remove hstate attributes from any nodes that have them.
1759 for (nid = 0; nid < nr_node_ids; nid++)
1760 hugetlb_unregister_node(&node_devices[nid]);
1764 * Register hstate attributes for a single node device.
1765 * No-op if attributes already registered.
1767 void hugetlb_register_node(struct node *node)
1769 struct hstate *h;
1770 struct node_hstate *nhs = &node_hstates[node->dev.id];
1771 int err;
1773 if (nhs->hugepages_kobj)
1774 return; /* already allocated */
1776 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1777 &node->dev.kobj);
1778 if (!nhs->hugepages_kobj)
1779 return;
1781 for_each_hstate(h) {
1782 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1783 nhs->hstate_kobjs,
1784 &per_node_hstate_attr_group);
1785 if (err) {
1786 printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1787 " for node %d\n",
1788 h->name, node->dev.id);
1789 hugetlb_unregister_node(node);
1790 break;
1796 * hugetlb init time: register hstate attributes for all registered node
1797 * devices of nodes that have memory. All on-line nodes should have
1798 * registered their associated device by this time.
1800 static void hugetlb_register_all_nodes(void)
1802 int nid;
1804 for_each_node_state(nid, N_HIGH_MEMORY) {
1805 struct node *node = &node_devices[nid];
1806 if (node->dev.id == nid)
1807 hugetlb_register_node(node);
1811 * Let the node device driver know we're here so it can
1812 * [un]register hstate attributes on node hotplug.
1814 register_hugetlbfs_with_node(hugetlb_register_node,
1815 hugetlb_unregister_node);
1817 #else /* !CONFIG_NUMA */
1819 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1821 BUG();
1822 if (nidp)
1823 *nidp = -1;
1824 return NULL;
1827 static void hugetlb_unregister_all_nodes(void) { }
1829 static void hugetlb_register_all_nodes(void) { }
1831 #endif
1833 static void __exit hugetlb_exit(void)
1835 struct hstate *h;
1837 hugetlb_unregister_all_nodes();
1839 for_each_hstate(h) {
1840 kobject_put(hstate_kobjs[h - hstates]);
1843 kobject_put(hugepages_kobj);
1845 module_exit(hugetlb_exit);
1847 static int __init hugetlb_init(void)
1849 /* Some platform decide whether they support huge pages at boot
1850 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1851 * there is no such support
1853 if (HPAGE_SHIFT == 0)
1854 return 0;
1856 if (!size_to_hstate(default_hstate_size)) {
1857 default_hstate_size = HPAGE_SIZE;
1858 if (!size_to_hstate(default_hstate_size))
1859 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1861 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1862 if (default_hstate_max_huge_pages)
1863 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1865 hugetlb_init_hstates();
1867 gather_bootmem_prealloc();
1869 report_hugepages();
1871 hugetlb_sysfs_init();
1873 hugetlb_register_all_nodes();
1875 return 0;
1877 module_init(hugetlb_init);
1879 /* Should be called on processing a hugepagesz=... option */
1880 void __init hugetlb_add_hstate(unsigned order)
1882 struct hstate *h;
1883 unsigned long i;
1885 if (size_to_hstate(PAGE_SIZE << order)) {
1886 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1887 return;
1889 BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1890 BUG_ON(order == 0);
1891 h = &hstates[max_hstate++];
1892 h->order = order;
1893 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1894 h->nr_huge_pages = 0;
1895 h->free_huge_pages = 0;
1896 for (i = 0; i < MAX_NUMNODES; ++i)
1897 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1898 h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1899 h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1900 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1901 huge_page_size(h)/1024);
1903 parsed_hstate = h;
1906 static int __init hugetlb_nrpages_setup(char *s)
1908 unsigned long *mhp;
1909 static unsigned long *last_mhp;
1912 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1913 * so this hugepages= parameter goes to the "default hstate".
1915 if (!max_hstate)
1916 mhp = &default_hstate_max_huge_pages;
1917 else
1918 mhp = &parsed_hstate->max_huge_pages;
1920 if (mhp == last_mhp) {
1921 printk(KERN_WARNING "hugepages= specified twice without "
1922 "interleaving hugepagesz=, ignoring\n");
1923 return 1;
1926 if (sscanf(s, "%lu", mhp) <= 0)
1927 *mhp = 0;
1930 * Global state is always initialized later in hugetlb_init.
1931 * But we need to allocate >= MAX_ORDER hstates here early to still
1932 * use the bootmem allocator.
1934 if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1935 hugetlb_hstate_alloc_pages(parsed_hstate);
1937 last_mhp = mhp;
1939 return 1;
1941 __setup("hugepages=", hugetlb_nrpages_setup);
1943 static int __init hugetlb_default_setup(char *s)
1945 default_hstate_size = memparse(s, &s);
1946 return 1;
1948 __setup("default_hugepagesz=", hugetlb_default_setup);
1950 static unsigned int cpuset_mems_nr(unsigned int *array)
1952 int node;
1953 unsigned int nr = 0;
1955 for_each_node_mask(node, cpuset_current_mems_allowed)
1956 nr += array[node];
1958 return nr;
1961 #ifdef CONFIG_SYSCTL
1962 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1963 struct ctl_table *table, int write,
1964 void __user *buffer, size_t *length, loff_t *ppos)
1966 struct hstate *h = &default_hstate;
1967 unsigned long tmp;
1968 int ret;
1970 tmp = h->max_huge_pages;
1972 if (write && h->order >= MAX_ORDER)
1973 return -EINVAL;
1975 table->data = &tmp;
1976 table->maxlen = sizeof(unsigned long);
1977 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
1978 if (ret)
1979 goto out;
1981 if (write) {
1982 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1983 GFP_KERNEL | __GFP_NORETRY);
1984 if (!(obey_mempolicy &&
1985 init_nodemask_of_mempolicy(nodes_allowed))) {
1986 NODEMASK_FREE(nodes_allowed);
1987 nodes_allowed = &node_states[N_HIGH_MEMORY];
1989 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
1991 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1992 NODEMASK_FREE(nodes_allowed);
1994 out:
1995 return ret;
1998 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1999 void __user *buffer, size_t *length, loff_t *ppos)
2002 return hugetlb_sysctl_handler_common(false, table, write,
2003 buffer, length, ppos);
2006 #ifdef CONFIG_NUMA
2007 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2008 void __user *buffer, size_t *length, loff_t *ppos)
2010 return hugetlb_sysctl_handler_common(true, table, write,
2011 buffer, length, ppos);
2013 #endif /* CONFIG_NUMA */
2015 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2016 void __user *buffer,
2017 size_t *length, loff_t *ppos)
2019 proc_dointvec(table, write, buffer, length, ppos);
2020 if (hugepages_treat_as_movable)
2021 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2022 else
2023 htlb_alloc_mask = GFP_HIGHUSER;
2024 return 0;
2027 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2028 void __user *buffer,
2029 size_t *length, loff_t *ppos)
2031 struct hstate *h = &default_hstate;
2032 unsigned long tmp;
2033 int ret;
2035 tmp = h->nr_overcommit_huge_pages;
2037 if (write && h->order >= MAX_ORDER)
2038 return -EINVAL;
2040 table->data = &tmp;
2041 table->maxlen = sizeof(unsigned long);
2042 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2043 if (ret)
2044 goto out;
2046 if (write) {
2047 spin_lock(&hugetlb_lock);
2048 h->nr_overcommit_huge_pages = tmp;
2049 spin_unlock(&hugetlb_lock);
2051 out:
2052 return ret;
2055 #endif /* CONFIG_SYSCTL */
2057 void hugetlb_report_meminfo(struct seq_file *m)
2059 struct hstate *h = &default_hstate;
2060 seq_printf(m,
2061 "HugePages_Total: %5lu\n"
2062 "HugePages_Free: %5lu\n"
2063 "HugePages_Rsvd: %5lu\n"
2064 "HugePages_Surp: %5lu\n"
2065 "Hugepagesize: %8lu kB\n",
2066 h->nr_huge_pages,
2067 h->free_huge_pages,
2068 h->resv_huge_pages,
2069 h->surplus_huge_pages,
2070 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2073 int hugetlb_report_node_meminfo(int nid, char *buf)
2075 struct hstate *h = &default_hstate;
2076 return sprintf(buf,
2077 "Node %d HugePages_Total: %5u\n"
2078 "Node %d HugePages_Free: %5u\n"
2079 "Node %d HugePages_Surp: %5u\n",
2080 nid, h->nr_huge_pages_node[nid],
2081 nid, h->free_huge_pages_node[nid],
2082 nid, h->surplus_huge_pages_node[nid]);
2085 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2086 unsigned long hugetlb_total_pages(void)
2088 struct hstate *h = &default_hstate;
2089 return h->nr_huge_pages * pages_per_huge_page(h);
2092 static int hugetlb_acct_memory(struct hstate *h, long delta)
2094 int ret = -ENOMEM;
2096 spin_lock(&hugetlb_lock);
2098 * When cpuset is configured, it breaks the strict hugetlb page
2099 * reservation as the accounting is done on a global variable. Such
2100 * reservation is completely rubbish in the presence of cpuset because
2101 * the reservation is not checked against page availability for the
2102 * current cpuset. Application can still potentially OOM'ed by kernel
2103 * with lack of free htlb page in cpuset that the task is in.
2104 * Attempt to enforce strict accounting with cpuset is almost
2105 * impossible (or too ugly) because cpuset is too fluid that
2106 * task or memory node can be dynamically moved between cpusets.
2108 * The change of semantics for shared hugetlb mapping with cpuset is
2109 * undesirable. However, in order to preserve some of the semantics,
2110 * we fall back to check against current free page availability as
2111 * a best attempt and hopefully to minimize the impact of changing
2112 * semantics that cpuset has.
2114 if (delta > 0) {
2115 if (gather_surplus_pages(h, delta) < 0)
2116 goto out;
2118 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2119 return_unused_surplus_pages(h, delta);
2120 goto out;
2124 ret = 0;
2125 if (delta < 0)
2126 return_unused_surplus_pages(h, (unsigned long) -delta);
2128 out:
2129 spin_unlock(&hugetlb_lock);
2130 return ret;
2133 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2135 struct resv_map *reservations = vma_resv_map(vma);
2138 * This new VMA should share its siblings reservation map if present.
2139 * The VMA will only ever have a valid reservation map pointer where
2140 * it is being copied for another still existing VMA. As that VMA
2141 * has a reference to the reservation map it cannot disappear until
2142 * after this open call completes. It is therefore safe to take a
2143 * new reference here without additional locking.
2145 if (reservations)
2146 kref_get(&reservations->refs);
2149 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2151 struct hstate *h = hstate_vma(vma);
2152 struct resv_map *reservations = vma_resv_map(vma);
2153 struct hugepage_subpool *spool = subpool_vma(vma);
2154 unsigned long reserve;
2155 unsigned long start;
2156 unsigned long end;
2158 if (reservations) {
2159 start = vma_hugecache_offset(h, vma, vma->vm_start);
2160 end = vma_hugecache_offset(h, vma, vma->vm_end);
2162 reserve = (end - start) -
2163 region_count(&reservations->regions, start, end);
2165 kref_put(&reservations->refs, resv_map_release);
2167 if (reserve) {
2168 hugetlb_acct_memory(h, -reserve);
2169 hugepage_subpool_put_pages(spool, reserve);
2175 * We cannot handle pagefaults against hugetlb pages at all. They cause
2176 * handle_mm_fault() to try to instantiate regular-sized pages in the
2177 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2178 * this far.
2180 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2182 BUG();
2183 return 0;
2186 const struct vm_operations_struct hugetlb_vm_ops = {
2187 .fault = hugetlb_vm_op_fault,
2188 .open = hugetlb_vm_op_open,
2189 .close = hugetlb_vm_op_close,
2192 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2193 int writable)
2195 pte_t entry;
2197 if (writable) {
2198 entry =
2199 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2200 } else {
2201 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2203 entry = pte_mkyoung(entry);
2204 entry = pte_mkhuge(entry);
2206 return entry;
2209 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2210 unsigned long address, pte_t *ptep)
2212 pte_t entry;
2214 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2215 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2216 update_mmu_cache(vma, address, ptep);
2220 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2221 struct vm_area_struct *vma)
2223 pte_t *src_pte, *dst_pte, entry;
2224 struct page *ptepage;
2225 unsigned long addr;
2226 int cow;
2227 struct hstate *h = hstate_vma(vma);
2228 unsigned long sz = huge_page_size(h);
2230 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2232 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2233 src_pte = huge_pte_offset(src, addr);
2234 if (!src_pte)
2235 continue;
2236 dst_pte = huge_pte_alloc(dst, addr, sz);
2237 if (!dst_pte)
2238 goto nomem;
2240 /* If the pagetables are shared don't copy or take references */
2241 if (dst_pte == src_pte)
2242 continue;
2244 spin_lock(&dst->page_table_lock);
2245 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2246 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2247 if (cow)
2248 huge_ptep_set_wrprotect(src, addr, src_pte);
2249 entry = huge_ptep_get(src_pte);
2250 ptepage = pte_page(entry);
2251 get_page(ptepage);
2252 page_dup_rmap(ptepage);
2253 set_huge_pte_at(dst, addr, dst_pte, entry);
2255 spin_unlock(&src->page_table_lock);
2256 spin_unlock(&dst->page_table_lock);
2258 return 0;
2260 nomem:
2261 return -ENOMEM;
2264 static int is_hugetlb_entry_migration(pte_t pte)
2266 swp_entry_t swp;
2268 if (huge_pte_none(pte) || pte_present(pte))
2269 return 0;
2270 swp = pte_to_swp_entry(pte);
2271 if (non_swap_entry(swp) && is_migration_entry(swp))
2272 return 1;
2273 else
2274 return 0;
2277 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2279 swp_entry_t swp;
2281 if (huge_pte_none(pte) || pte_present(pte))
2282 return 0;
2283 swp = pte_to_swp_entry(pte);
2284 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2285 return 1;
2286 else
2287 return 0;
2290 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2291 unsigned long end, struct page *ref_page)
2293 struct mm_struct *mm = vma->vm_mm;
2294 unsigned long address;
2295 pte_t *ptep;
2296 pte_t pte;
2297 struct page *page;
2298 struct page *tmp;
2299 struct hstate *h = hstate_vma(vma);
2300 unsigned long sz = huge_page_size(h);
2303 * A page gathering list, protected by per file i_mmap_mutex. The
2304 * lock is used to avoid list corruption from multiple unmapping
2305 * of the same page since we are using page->lru.
2307 LIST_HEAD(page_list);
2309 WARN_ON(!is_vm_hugetlb_page(vma));
2310 BUG_ON(start & ~huge_page_mask(h));
2311 BUG_ON(end & ~huge_page_mask(h));
2313 mmu_notifier_invalidate_range_start(mm, start, end);
2314 spin_lock(&mm->page_table_lock);
2315 for (address = start; address < end; address += sz) {
2316 ptep = huge_pte_offset(mm, address);
2317 if (!ptep)
2318 continue;
2320 if (huge_pmd_unshare(mm, &address, ptep))
2321 continue;
2324 * If a reference page is supplied, it is because a specific
2325 * page is being unmapped, not a range. Ensure the page we
2326 * are about to unmap is the actual page of interest.
2328 if (ref_page) {
2329 pte = huge_ptep_get(ptep);
2330 if (huge_pte_none(pte))
2331 continue;
2332 page = pte_page(pte);
2333 if (page != ref_page)
2334 continue;
2337 * Mark the VMA as having unmapped its page so that
2338 * future faults in this VMA will fail rather than
2339 * looking like data was lost
2341 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2344 pte = huge_ptep_get_and_clear(mm, address, ptep);
2345 if (huge_pte_none(pte))
2346 continue;
2349 * HWPoisoned hugepage is already unmapped and dropped reference
2351 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2352 continue;
2354 page = pte_page(pte);
2355 if (pte_dirty(pte))
2356 set_page_dirty(page);
2357 list_add(&page->lru, &page_list);
2359 flush_tlb_range(vma, start, end);
2360 spin_unlock(&mm->page_table_lock);
2361 mmu_notifier_invalidate_range_end(mm, start, end);
2362 list_for_each_entry_safe(page, tmp, &page_list, lru) {
2363 page_remove_rmap(page);
2364 list_del(&page->lru);
2365 put_page(page);
2369 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2370 unsigned long end, struct page *ref_page)
2372 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2373 __unmap_hugepage_range(vma, start, end, ref_page);
2374 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2378 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2379 * mappping it owns the reserve page for. The intention is to unmap the page
2380 * from other VMAs and let the children be SIGKILLed if they are faulting the
2381 * same region.
2383 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2384 struct page *page, unsigned long address)
2386 struct hstate *h = hstate_vma(vma);
2387 struct vm_area_struct *iter_vma;
2388 struct address_space *mapping;
2389 struct prio_tree_iter iter;
2390 pgoff_t pgoff;
2393 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2394 * from page cache lookup which is in HPAGE_SIZE units.
2396 address = address & huge_page_mask(h);
2397 pgoff = vma_hugecache_offset(h, vma, address);
2398 mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
2401 * Take the mapping lock for the duration of the table walk. As
2402 * this mapping should be shared between all the VMAs,
2403 * __unmap_hugepage_range() is called as the lock is already held
2405 mutex_lock(&mapping->i_mmap_mutex);
2406 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2407 /* Do not unmap the current VMA */
2408 if (iter_vma == vma)
2409 continue;
2412 * Unmap the page from other VMAs without their own reserves.
2413 * They get marked to be SIGKILLed if they fault in these
2414 * areas. This is because a future no-page fault on this VMA
2415 * could insert a zeroed page instead of the data existing
2416 * from the time of fork. This would look like data corruption
2418 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2419 __unmap_hugepage_range(iter_vma,
2420 address, address + huge_page_size(h),
2421 page);
2423 mutex_unlock(&mapping->i_mmap_mutex);
2425 return 1;
2429 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2430 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2431 * cannot race with other handlers or page migration.
2432 * Keep the pte_same checks anyway to make transition from the mutex easier.
2434 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2435 unsigned long address, pte_t *ptep, pte_t pte,
2436 struct page *pagecache_page)
2438 struct hstate *h = hstate_vma(vma);
2439 struct page *old_page, *new_page;
2440 int avoidcopy;
2441 int outside_reserve = 0;
2443 old_page = pte_page(pte);
2445 retry_avoidcopy:
2446 /* If no-one else is actually using this page, avoid the copy
2447 * and just make the page writable */
2448 avoidcopy = (page_mapcount(old_page) == 1);
2449 if (avoidcopy) {
2450 if (PageAnon(old_page))
2451 page_move_anon_rmap(old_page, vma, address);
2452 set_huge_ptep_writable(vma, address, ptep);
2453 return 0;
2457 * If the process that created a MAP_PRIVATE mapping is about to
2458 * perform a COW due to a shared page count, attempt to satisfy
2459 * the allocation without using the existing reserves. The pagecache
2460 * page is used to determine if the reserve at this address was
2461 * consumed or not. If reserves were used, a partial faulted mapping
2462 * at the time of fork() could consume its reserves on COW instead
2463 * of the full address range.
2465 if (!(vma->vm_flags & VM_MAYSHARE) &&
2466 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2467 old_page != pagecache_page)
2468 outside_reserve = 1;
2470 page_cache_get(old_page);
2472 /* Drop page_table_lock as buddy allocator may be called */
2473 spin_unlock(&mm->page_table_lock);
2474 new_page = alloc_huge_page(vma, address, outside_reserve);
2476 if (IS_ERR(new_page)) {
2477 page_cache_release(old_page);
2480 * If a process owning a MAP_PRIVATE mapping fails to COW,
2481 * it is due to references held by a child and an insufficient
2482 * huge page pool. To guarantee the original mappers
2483 * reliability, unmap the page from child processes. The child
2484 * may get SIGKILLed if it later faults.
2486 if (outside_reserve) {
2487 BUG_ON(huge_pte_none(pte));
2488 if (unmap_ref_private(mm, vma, old_page, address)) {
2489 BUG_ON(huge_pte_none(pte));
2490 spin_lock(&mm->page_table_lock);
2491 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2492 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2493 goto retry_avoidcopy;
2495 * race occurs while re-acquiring page_table_lock, and
2496 * our job is done.
2498 return 0;
2500 WARN_ON_ONCE(1);
2503 /* Caller expects lock to be held */
2504 spin_lock(&mm->page_table_lock);
2505 return -PTR_ERR(new_page);
2509 * When the original hugepage is shared one, it does not have
2510 * anon_vma prepared.
2512 if (unlikely(anon_vma_prepare(vma))) {
2513 page_cache_release(new_page);
2514 page_cache_release(old_page);
2515 /* Caller expects lock to be held */
2516 spin_lock(&mm->page_table_lock);
2517 return VM_FAULT_OOM;
2520 copy_user_huge_page(new_page, old_page, address, vma,
2521 pages_per_huge_page(h));
2522 __SetPageUptodate(new_page);
2525 * Retake the page_table_lock to check for racing updates
2526 * before the page tables are altered
2528 spin_lock(&mm->page_table_lock);
2529 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2530 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2531 /* Break COW */
2532 mmu_notifier_invalidate_range_start(mm,
2533 address & huge_page_mask(h),
2534 (address & huge_page_mask(h)) + huge_page_size(h));
2535 huge_ptep_clear_flush(vma, address, ptep);
2536 set_huge_pte_at(mm, address, ptep,
2537 make_huge_pte(vma, new_page, 1));
2538 page_remove_rmap(old_page);
2539 hugepage_add_new_anon_rmap(new_page, vma, address);
2540 /* Make the old page be freed below */
2541 new_page = old_page;
2542 mmu_notifier_invalidate_range_end(mm,
2543 address & huge_page_mask(h),
2544 (address & huge_page_mask(h)) + huge_page_size(h));
2546 page_cache_release(new_page);
2547 page_cache_release(old_page);
2548 return 0;
2551 /* Return the pagecache page at a given address within a VMA */
2552 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2553 struct vm_area_struct *vma, unsigned long address)
2555 struct address_space *mapping;
2556 pgoff_t idx;
2558 mapping = vma->vm_file->f_mapping;
2559 idx = vma_hugecache_offset(h, vma, address);
2561 return find_lock_page(mapping, idx);
2565 * Return whether there is a pagecache page to back given address within VMA.
2566 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2568 static bool hugetlbfs_pagecache_present(struct hstate *h,
2569 struct vm_area_struct *vma, unsigned long address)
2571 struct address_space *mapping;
2572 pgoff_t idx;
2573 struct page *page;
2575 mapping = vma->vm_file->f_mapping;
2576 idx = vma_hugecache_offset(h, vma, address);
2578 page = find_get_page(mapping, idx);
2579 if (page)
2580 put_page(page);
2581 return page != NULL;
2584 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2585 unsigned long address, pte_t *ptep, unsigned int flags)
2587 struct hstate *h = hstate_vma(vma);
2588 int ret = VM_FAULT_SIGBUS;
2589 int anon_rmap = 0;
2590 pgoff_t idx;
2591 unsigned long size;
2592 struct page *page;
2593 struct address_space *mapping;
2594 pte_t new_pte;
2597 * Currently, we are forced to kill the process in the event the
2598 * original mapper has unmapped pages from the child due to a failed
2599 * COW. Warn that such a situation has occurred as it may not be obvious
2601 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2602 printk(KERN_WARNING
2603 "PID %d killed due to inadequate hugepage pool\n",
2604 current->pid);
2605 return ret;
2608 mapping = vma->vm_file->f_mapping;
2609 idx = vma_hugecache_offset(h, vma, address);
2612 * Use page lock to guard against racing truncation
2613 * before we get page_table_lock.
2615 retry:
2616 page = find_lock_page(mapping, idx);
2617 if (!page) {
2618 size = i_size_read(mapping->host) >> huge_page_shift(h);
2619 if (idx >= size)
2620 goto out;
2621 page = alloc_huge_page(vma, address, 0);
2622 if (IS_ERR(page)) {
2623 ret = -PTR_ERR(page);
2624 goto out;
2626 clear_huge_page(page, address, pages_per_huge_page(h));
2627 __SetPageUptodate(page);
2629 if (vma->vm_flags & VM_MAYSHARE) {
2630 int err;
2631 struct inode *inode = mapping->host;
2633 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2634 if (err) {
2635 put_page(page);
2636 if (err == -EEXIST)
2637 goto retry;
2638 goto out;
2641 spin_lock(&inode->i_lock);
2642 inode->i_blocks += blocks_per_huge_page(h);
2643 spin_unlock(&inode->i_lock);
2644 } else {
2645 lock_page(page);
2646 if (unlikely(anon_vma_prepare(vma))) {
2647 ret = VM_FAULT_OOM;
2648 goto backout_unlocked;
2650 anon_rmap = 1;
2652 } else {
2654 * If memory error occurs between mmap() and fault, some process
2655 * don't have hwpoisoned swap entry for errored virtual address.
2656 * So we need to block hugepage fault by PG_hwpoison bit check.
2658 if (unlikely(PageHWPoison(page))) {
2659 ret = VM_FAULT_HWPOISON |
2660 VM_FAULT_SET_HINDEX(h - hstates);
2661 goto backout_unlocked;
2666 * If we are going to COW a private mapping later, we examine the
2667 * pending reservations for this page now. This will ensure that
2668 * any allocations necessary to record that reservation occur outside
2669 * the spinlock.
2671 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2672 if (vma_needs_reservation(h, vma, address) < 0) {
2673 ret = VM_FAULT_OOM;
2674 goto backout_unlocked;
2677 spin_lock(&mm->page_table_lock);
2678 size = i_size_read(mapping->host) >> huge_page_shift(h);
2679 if (idx >= size)
2680 goto backout;
2682 ret = 0;
2683 if (!huge_pte_none(huge_ptep_get(ptep)))
2684 goto backout;
2686 if (anon_rmap)
2687 hugepage_add_new_anon_rmap(page, vma, address);
2688 else
2689 page_dup_rmap(page);
2690 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2691 && (vma->vm_flags & VM_SHARED)));
2692 set_huge_pte_at(mm, address, ptep, new_pte);
2694 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2695 /* Optimization, do the COW without a second fault */
2696 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2699 spin_unlock(&mm->page_table_lock);
2700 unlock_page(page);
2701 out:
2702 return ret;
2704 backout:
2705 spin_unlock(&mm->page_table_lock);
2706 backout_unlocked:
2707 unlock_page(page);
2708 put_page(page);
2709 goto out;
2712 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2713 unsigned long address, unsigned int flags)
2715 pte_t *ptep;
2716 pte_t entry;
2717 int ret;
2718 struct page *page = NULL;
2719 struct page *pagecache_page = NULL;
2720 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2721 struct hstate *h = hstate_vma(vma);
2723 address &= huge_page_mask(h);
2725 ptep = huge_pte_offset(mm, address);
2726 if (ptep) {
2727 entry = huge_ptep_get(ptep);
2728 if (unlikely(is_hugetlb_entry_migration(entry))) {
2729 migration_entry_wait(mm, (pmd_t *)ptep, address);
2730 return 0;
2731 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2732 return VM_FAULT_HWPOISON_LARGE |
2733 VM_FAULT_SET_HINDEX(h - hstates);
2736 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2737 if (!ptep)
2738 return VM_FAULT_OOM;
2741 * Serialize hugepage allocation and instantiation, so that we don't
2742 * get spurious allocation failures if two CPUs race to instantiate
2743 * the same page in the page cache.
2745 mutex_lock(&hugetlb_instantiation_mutex);
2746 entry = huge_ptep_get(ptep);
2747 if (huge_pte_none(entry)) {
2748 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2749 goto out_mutex;
2752 ret = 0;
2755 * If we are going to COW the mapping later, we examine the pending
2756 * reservations for this page now. This will ensure that any
2757 * allocations necessary to record that reservation occur outside the
2758 * spinlock. For private mappings, we also lookup the pagecache
2759 * page now as it is used to determine if a reservation has been
2760 * consumed.
2762 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2763 if (vma_needs_reservation(h, vma, address) < 0) {
2764 ret = VM_FAULT_OOM;
2765 goto out_mutex;
2768 if (!(vma->vm_flags & VM_MAYSHARE))
2769 pagecache_page = hugetlbfs_pagecache_page(h,
2770 vma, address);
2774 * hugetlb_cow() requires page locks of pte_page(entry) and
2775 * pagecache_page, so here we need take the former one
2776 * when page != pagecache_page or !pagecache_page.
2777 * Note that locking order is always pagecache_page -> page,
2778 * so no worry about deadlock.
2780 page = pte_page(entry);
2781 get_page(page);
2782 if (page != pagecache_page)
2783 lock_page(page);
2785 spin_lock(&mm->page_table_lock);
2786 /* Check for a racing update before calling hugetlb_cow */
2787 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2788 goto out_page_table_lock;
2791 if (flags & FAULT_FLAG_WRITE) {
2792 if (!pte_write(entry)) {
2793 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2794 pagecache_page);
2795 goto out_page_table_lock;
2797 entry = pte_mkdirty(entry);
2799 entry = pte_mkyoung(entry);
2800 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2801 flags & FAULT_FLAG_WRITE))
2802 update_mmu_cache(vma, address, ptep);
2804 out_page_table_lock:
2805 spin_unlock(&mm->page_table_lock);
2807 if (pagecache_page) {
2808 unlock_page(pagecache_page);
2809 put_page(pagecache_page);
2811 if (page != pagecache_page)
2812 unlock_page(page);
2813 put_page(page);
2815 out_mutex:
2816 mutex_unlock(&hugetlb_instantiation_mutex);
2818 return ret;
2821 /* Can be overriden by architectures */
2822 __attribute__((weak)) struct page *
2823 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2824 pud_t *pud, int write)
2826 BUG();
2827 return NULL;
2830 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2831 struct page **pages, struct vm_area_struct **vmas,
2832 unsigned long *position, int *length, int i,
2833 unsigned int flags)
2835 unsigned long pfn_offset;
2836 unsigned long vaddr = *position;
2837 int remainder = *length;
2838 struct hstate *h = hstate_vma(vma);
2840 spin_lock(&mm->page_table_lock);
2841 while (vaddr < vma->vm_end && remainder) {
2842 pte_t *pte;
2843 int absent;
2844 struct page *page;
2847 * Some archs (sparc64, sh*) have multiple pte_ts to
2848 * each hugepage. We have to make sure we get the
2849 * first, for the page indexing below to work.
2851 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2852 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2855 * When coredumping, it suits get_dump_page if we just return
2856 * an error where there's an empty slot with no huge pagecache
2857 * to back it. This way, we avoid allocating a hugepage, and
2858 * the sparse dumpfile avoids allocating disk blocks, but its
2859 * huge holes still show up with zeroes where they need to be.
2861 if (absent && (flags & FOLL_DUMP) &&
2862 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2863 remainder = 0;
2864 break;
2867 if (absent ||
2868 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2869 int ret;
2871 spin_unlock(&mm->page_table_lock);
2872 ret = hugetlb_fault(mm, vma, vaddr,
2873 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2874 spin_lock(&mm->page_table_lock);
2875 if (!(ret & VM_FAULT_ERROR))
2876 continue;
2878 remainder = 0;
2879 break;
2882 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2883 page = pte_page(huge_ptep_get(pte));
2884 same_page:
2885 if (pages) {
2886 pages[i] = mem_map_offset(page, pfn_offset);
2887 get_page(pages[i]);
2890 if (vmas)
2891 vmas[i] = vma;
2893 vaddr += PAGE_SIZE;
2894 ++pfn_offset;
2895 --remainder;
2896 ++i;
2897 if (vaddr < vma->vm_end && remainder &&
2898 pfn_offset < pages_per_huge_page(h)) {
2900 * We use pfn_offset to avoid touching the pageframes
2901 * of this compound page.
2903 goto same_page;
2906 spin_unlock(&mm->page_table_lock);
2907 *length = remainder;
2908 *position = vaddr;
2910 return i ? i : -EFAULT;
2913 void hugetlb_change_protection(struct vm_area_struct *vma,
2914 unsigned long address, unsigned long end, pgprot_t newprot)
2916 struct mm_struct *mm = vma->vm_mm;
2917 unsigned long start = address;
2918 pte_t *ptep;
2919 pte_t pte;
2920 struct hstate *h = hstate_vma(vma);
2922 BUG_ON(address >= end);
2923 flush_cache_range(vma, address, end);
2925 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2926 spin_lock(&mm->page_table_lock);
2927 for (; address < end; address += huge_page_size(h)) {
2928 ptep = huge_pte_offset(mm, address);
2929 if (!ptep)
2930 continue;
2931 if (huge_pmd_unshare(mm, &address, ptep))
2932 continue;
2933 if (!huge_pte_none(huge_ptep_get(ptep))) {
2934 pte = huge_ptep_get_and_clear(mm, address, ptep);
2935 pte = pte_mkhuge(pte_modify(pte, newprot));
2936 set_huge_pte_at(mm, address, ptep, pte);
2939 spin_unlock(&mm->page_table_lock);
2940 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2942 flush_tlb_range(vma, start, end);
2945 int hugetlb_reserve_pages(struct inode *inode,
2946 long from, long to,
2947 struct vm_area_struct *vma,
2948 vm_flags_t vm_flags)
2950 long ret, chg;
2951 struct hstate *h = hstate_inode(inode);
2952 struct hugepage_subpool *spool = subpool_inode(inode);
2955 * Only apply hugepage reservation if asked. At fault time, an
2956 * attempt will be made for VM_NORESERVE to allocate a page
2957 * without using reserves
2959 if (vm_flags & VM_NORESERVE)
2960 return 0;
2963 * Shared mappings base their reservation on the number of pages that
2964 * are already allocated on behalf of the file. Private mappings need
2965 * to reserve the full area even if read-only as mprotect() may be
2966 * called to make the mapping read-write. Assume !vma is a shm mapping
2968 if (!vma || vma->vm_flags & VM_MAYSHARE)
2969 chg = region_chg(&inode->i_mapping->private_list, from, to);
2970 else {
2971 struct resv_map *resv_map = resv_map_alloc();
2972 if (!resv_map)
2973 return -ENOMEM;
2975 chg = to - from;
2977 set_vma_resv_map(vma, resv_map);
2978 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2981 if (chg < 0)
2982 return chg;
2984 /* There must be enough pages in the subpool for the mapping */
2985 if (hugepage_subpool_get_pages(spool, chg))
2986 return -ENOSPC;
2989 * Check enough hugepages are available for the reservation.
2990 * Hand the pages back to the subpool if there are not
2992 ret = hugetlb_acct_memory(h, chg);
2993 if (ret < 0) {
2994 hugepage_subpool_put_pages(spool, chg);
2995 return ret;
2999 * Account for the reservations made. Shared mappings record regions
3000 * that have reservations as they are shared by multiple VMAs.
3001 * When the last VMA disappears, the region map says how much
3002 * the reservation was and the page cache tells how much of
3003 * the reservation was consumed. Private mappings are per-VMA and
3004 * only the consumed reservations are tracked. When the VMA
3005 * disappears, the original reservation is the VMA size and the
3006 * consumed reservations are stored in the map. Hence, nothing
3007 * else has to be done for private mappings here
3009 if (!vma || vma->vm_flags & VM_MAYSHARE)
3010 region_add(&inode->i_mapping->private_list, from, to);
3011 return 0;
3014 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3016 struct hstate *h = hstate_inode(inode);
3017 long chg = region_truncate(&inode->i_mapping->private_list, offset);
3018 struct hugepage_subpool *spool = subpool_inode(inode);
3020 spin_lock(&inode->i_lock);
3021 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3022 spin_unlock(&inode->i_lock);
3024 hugepage_subpool_put_pages(spool, (chg - freed));
3025 hugetlb_acct_memory(h, -(chg - freed));
3028 #ifdef CONFIG_MEMORY_FAILURE
3030 /* Should be called in hugetlb_lock */
3031 static int is_hugepage_on_freelist(struct page *hpage)
3033 struct page *page;
3034 struct page *tmp;
3035 struct hstate *h = page_hstate(hpage);
3036 int nid = page_to_nid(hpage);
3038 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3039 if (page == hpage)
3040 return 1;
3041 return 0;
3045 * This function is called from memory failure code.
3046 * Assume the caller holds page lock of the head page.
3048 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3050 struct hstate *h = page_hstate(hpage);
3051 int nid = page_to_nid(hpage);
3052 int ret = -EBUSY;
3054 spin_lock(&hugetlb_lock);
3055 if (is_hugepage_on_freelist(hpage)) {
3056 list_del(&hpage->lru);
3057 set_page_refcounted(hpage);
3058 h->free_huge_pages--;
3059 h->free_huge_pages_node[nid]--;
3060 ret = 0;
3062 spin_unlock(&hugetlb_lock);
3063 return ret;
3065 #endif