spi-topcliff-pch: Fix issue for transmitting over 4KByte
[zen-stable.git] / net / ipv4 / tcp_input.c
blob169f3a6824780386bf6d39256369dd5803e5a49b
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 #include <linux/mm.h>
65 #include <linux/slab.h>
66 #include <linux/module.h>
67 #include <linux/sysctl.h>
68 #include <linux/kernel.h>
69 #include <net/dst.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
76 int sysctl_tcp_timestamps __read_mostly = 1;
77 int sysctl_tcp_window_scaling __read_mostly = 1;
78 int sysctl_tcp_sack __read_mostly = 1;
79 int sysctl_tcp_fack __read_mostly = 1;
80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81 EXPORT_SYMBOL(sysctl_tcp_reordering);
82 int sysctl_tcp_ecn __read_mostly = 2;
83 EXPORT_SYMBOL(sysctl_tcp_ecn);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
89 int sysctl_tcp_stdurg __read_mostly;
90 int sysctl_tcp_rfc1337 __read_mostly;
91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
92 int sysctl_tcp_frto __read_mostly = 2;
93 int sysctl_tcp_frto_response __read_mostly;
94 int sysctl_tcp_nometrics_save __read_mostly;
96 int sysctl_tcp_thin_dupack __read_mostly;
98 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
99 int sysctl_tcp_abc __read_mostly;
101 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
102 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
103 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
104 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
105 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
106 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
107 #define FLAG_ECE 0x40 /* ECE in this ACK */
108 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
109 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
110 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
111 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
112 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
113 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
115 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
116 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
117 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
118 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
119 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
124 /* Adapt the MSS value used to make delayed ack decision to the
125 * real world.
127 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
129 struct inet_connection_sock *icsk = inet_csk(sk);
130 const unsigned int lss = icsk->icsk_ack.last_seg_size;
131 unsigned int len;
133 icsk->icsk_ack.last_seg_size = 0;
135 /* skb->len may jitter because of SACKs, even if peer
136 * sends good full-sized frames.
138 len = skb_shinfo(skb)->gso_size ? : skb->len;
139 if (len >= icsk->icsk_ack.rcv_mss) {
140 icsk->icsk_ack.rcv_mss = len;
141 } else {
142 /* Otherwise, we make more careful check taking into account,
143 * that SACKs block is variable.
145 * "len" is invariant segment length, including TCP header.
147 len += skb->data - skb_transport_header(skb);
148 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
149 /* If PSH is not set, packet should be
150 * full sized, provided peer TCP is not badly broken.
151 * This observation (if it is correct 8)) allows
152 * to handle super-low mtu links fairly.
154 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
155 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
156 /* Subtract also invariant (if peer is RFC compliant),
157 * tcp header plus fixed timestamp option length.
158 * Resulting "len" is MSS free of SACK jitter.
160 len -= tcp_sk(sk)->tcp_header_len;
161 icsk->icsk_ack.last_seg_size = len;
162 if (len == lss) {
163 icsk->icsk_ack.rcv_mss = len;
164 return;
167 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
168 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
173 static void tcp_incr_quickack(struct sock *sk)
175 struct inet_connection_sock *icsk = inet_csk(sk);
176 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
178 if (quickacks == 0)
179 quickacks = 2;
180 if (quickacks > icsk->icsk_ack.quick)
181 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
184 static void tcp_enter_quickack_mode(struct sock *sk)
186 struct inet_connection_sock *icsk = inet_csk(sk);
187 tcp_incr_quickack(sk);
188 icsk->icsk_ack.pingpong = 0;
189 icsk->icsk_ack.ato = TCP_ATO_MIN;
192 /* Send ACKs quickly, if "quick" count is not exhausted
193 * and the session is not interactive.
196 static inline int tcp_in_quickack_mode(const struct sock *sk)
198 const struct inet_connection_sock *icsk = inet_csk(sk);
199 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
202 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
204 if (tp->ecn_flags & TCP_ECN_OK)
205 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
208 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
210 if (tcp_hdr(skb)->cwr)
211 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
216 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
219 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
221 if (!(tp->ecn_flags & TCP_ECN_OK))
222 return;
224 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
225 case INET_ECN_NOT_ECT:
226 /* Funny extension: if ECT is not set on a segment,
227 * and we already seen ECT on a previous segment,
228 * it is probably a retransmit.
230 if (tp->ecn_flags & TCP_ECN_SEEN)
231 tcp_enter_quickack_mode((struct sock *)tp);
232 break;
233 case INET_ECN_CE:
234 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
235 /* fallinto */
236 default:
237 tp->ecn_flags |= TCP_ECN_SEEN;
241 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
243 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
244 tp->ecn_flags &= ~TCP_ECN_OK;
247 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
249 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
250 tp->ecn_flags &= ~TCP_ECN_OK;
253 static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
255 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
256 return 1;
257 return 0;
260 /* Buffer size and advertised window tuning.
262 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
265 static void tcp_fixup_sndbuf(struct sock *sk)
267 int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
269 sndmem *= TCP_INIT_CWND;
270 if (sk->sk_sndbuf < sndmem)
271 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
274 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
276 * All tcp_full_space() is split to two parts: "network" buffer, allocated
277 * forward and advertised in receiver window (tp->rcv_wnd) and
278 * "application buffer", required to isolate scheduling/application
279 * latencies from network.
280 * window_clamp is maximal advertised window. It can be less than
281 * tcp_full_space(), in this case tcp_full_space() - window_clamp
282 * is reserved for "application" buffer. The less window_clamp is
283 * the smoother our behaviour from viewpoint of network, but the lower
284 * throughput and the higher sensitivity of the connection to losses. 8)
286 * rcv_ssthresh is more strict window_clamp used at "slow start"
287 * phase to predict further behaviour of this connection.
288 * It is used for two goals:
289 * - to enforce header prediction at sender, even when application
290 * requires some significant "application buffer". It is check #1.
291 * - to prevent pruning of receive queue because of misprediction
292 * of receiver window. Check #2.
294 * The scheme does not work when sender sends good segments opening
295 * window and then starts to feed us spaghetti. But it should work
296 * in common situations. Otherwise, we have to rely on queue collapsing.
299 /* Slow part of check#2. */
300 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
302 struct tcp_sock *tp = tcp_sk(sk);
303 /* Optimize this! */
304 int truesize = tcp_win_from_space(skb->truesize) >> 1;
305 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
307 while (tp->rcv_ssthresh <= window) {
308 if (truesize <= skb->len)
309 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
311 truesize >>= 1;
312 window >>= 1;
314 return 0;
317 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
319 struct tcp_sock *tp = tcp_sk(sk);
321 /* Check #1 */
322 if (tp->rcv_ssthresh < tp->window_clamp &&
323 (int)tp->rcv_ssthresh < tcp_space(sk) &&
324 !sk_under_memory_pressure(sk)) {
325 int incr;
327 /* Check #2. Increase window, if skb with such overhead
328 * will fit to rcvbuf in future.
330 if (tcp_win_from_space(skb->truesize) <= skb->len)
331 incr = 2 * tp->advmss;
332 else
333 incr = __tcp_grow_window(sk, skb);
335 if (incr) {
336 incr = max_t(int, incr, 2 * skb->len);
337 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
338 tp->window_clamp);
339 inet_csk(sk)->icsk_ack.quick |= 1;
344 /* 3. Tuning rcvbuf, when connection enters established state. */
346 static void tcp_fixup_rcvbuf(struct sock *sk)
348 u32 mss = tcp_sk(sk)->advmss;
349 u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
350 int rcvmem;
352 /* Limit to 10 segments if mss <= 1460,
353 * or 14600/mss segments, with a minimum of two segments.
355 if (mss > 1460)
356 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
358 rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
359 while (tcp_win_from_space(rcvmem) < mss)
360 rcvmem += 128;
362 rcvmem *= icwnd;
364 if (sk->sk_rcvbuf < rcvmem)
365 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
368 /* 4. Try to fixup all. It is made immediately after connection enters
369 * established state.
371 static void tcp_init_buffer_space(struct sock *sk)
373 struct tcp_sock *tp = tcp_sk(sk);
374 int maxwin;
376 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
377 tcp_fixup_rcvbuf(sk);
378 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
379 tcp_fixup_sndbuf(sk);
381 tp->rcvq_space.space = tp->rcv_wnd;
383 maxwin = tcp_full_space(sk);
385 if (tp->window_clamp >= maxwin) {
386 tp->window_clamp = maxwin;
388 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
389 tp->window_clamp = max(maxwin -
390 (maxwin >> sysctl_tcp_app_win),
391 4 * tp->advmss);
394 /* Force reservation of one segment. */
395 if (sysctl_tcp_app_win &&
396 tp->window_clamp > 2 * tp->advmss &&
397 tp->window_clamp + tp->advmss > maxwin)
398 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
400 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
401 tp->snd_cwnd_stamp = tcp_time_stamp;
404 /* 5. Recalculate window clamp after socket hit its memory bounds. */
405 static void tcp_clamp_window(struct sock *sk)
407 struct tcp_sock *tp = tcp_sk(sk);
408 struct inet_connection_sock *icsk = inet_csk(sk);
410 icsk->icsk_ack.quick = 0;
412 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
413 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
414 !sk_under_memory_pressure(sk) &&
415 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
416 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
417 sysctl_tcp_rmem[2]);
419 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
420 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
423 /* Initialize RCV_MSS value.
424 * RCV_MSS is an our guess about MSS used by the peer.
425 * We haven't any direct information about the MSS.
426 * It's better to underestimate the RCV_MSS rather than overestimate.
427 * Overestimations make us ACKing less frequently than needed.
428 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
430 void tcp_initialize_rcv_mss(struct sock *sk)
432 const struct tcp_sock *tp = tcp_sk(sk);
433 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
435 hint = min(hint, tp->rcv_wnd / 2);
436 hint = min(hint, TCP_MSS_DEFAULT);
437 hint = max(hint, TCP_MIN_MSS);
439 inet_csk(sk)->icsk_ack.rcv_mss = hint;
441 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
443 /* Receiver "autotuning" code.
445 * The algorithm for RTT estimation w/o timestamps is based on
446 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
447 * <http://public.lanl.gov/radiant/pubs.html#DRS>
449 * More detail on this code can be found at
450 * <http://staff.psc.edu/jheffner/>,
451 * though this reference is out of date. A new paper
452 * is pending.
454 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
456 u32 new_sample = tp->rcv_rtt_est.rtt;
457 long m = sample;
459 if (m == 0)
460 m = 1;
462 if (new_sample != 0) {
463 /* If we sample in larger samples in the non-timestamp
464 * case, we could grossly overestimate the RTT especially
465 * with chatty applications or bulk transfer apps which
466 * are stalled on filesystem I/O.
468 * Also, since we are only going for a minimum in the
469 * non-timestamp case, we do not smooth things out
470 * else with timestamps disabled convergence takes too
471 * long.
473 if (!win_dep) {
474 m -= (new_sample >> 3);
475 new_sample += m;
476 } else {
477 m <<= 3;
478 if (m < new_sample)
479 new_sample = m;
481 } else {
482 /* No previous measure. */
483 new_sample = m << 3;
486 if (tp->rcv_rtt_est.rtt != new_sample)
487 tp->rcv_rtt_est.rtt = new_sample;
490 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
492 if (tp->rcv_rtt_est.time == 0)
493 goto new_measure;
494 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
495 return;
496 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
498 new_measure:
499 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
500 tp->rcv_rtt_est.time = tcp_time_stamp;
503 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
504 const struct sk_buff *skb)
506 struct tcp_sock *tp = tcp_sk(sk);
507 if (tp->rx_opt.rcv_tsecr &&
508 (TCP_SKB_CB(skb)->end_seq -
509 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
510 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
514 * This function should be called every time data is copied to user space.
515 * It calculates the appropriate TCP receive buffer space.
517 void tcp_rcv_space_adjust(struct sock *sk)
519 struct tcp_sock *tp = tcp_sk(sk);
520 int time;
521 int space;
523 if (tp->rcvq_space.time == 0)
524 goto new_measure;
526 time = tcp_time_stamp - tp->rcvq_space.time;
527 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
528 return;
530 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
532 space = max(tp->rcvq_space.space, space);
534 if (tp->rcvq_space.space != space) {
535 int rcvmem;
537 tp->rcvq_space.space = space;
539 if (sysctl_tcp_moderate_rcvbuf &&
540 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
541 int new_clamp = space;
543 /* Receive space grows, normalize in order to
544 * take into account packet headers and sk_buff
545 * structure overhead.
547 space /= tp->advmss;
548 if (!space)
549 space = 1;
550 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
551 while (tcp_win_from_space(rcvmem) < tp->advmss)
552 rcvmem += 128;
553 space *= rcvmem;
554 space = min(space, sysctl_tcp_rmem[2]);
555 if (space > sk->sk_rcvbuf) {
556 sk->sk_rcvbuf = space;
558 /* Make the window clamp follow along. */
559 tp->window_clamp = new_clamp;
564 new_measure:
565 tp->rcvq_space.seq = tp->copied_seq;
566 tp->rcvq_space.time = tcp_time_stamp;
569 /* There is something which you must keep in mind when you analyze the
570 * behavior of the tp->ato delayed ack timeout interval. When a
571 * connection starts up, we want to ack as quickly as possible. The
572 * problem is that "good" TCP's do slow start at the beginning of data
573 * transmission. The means that until we send the first few ACK's the
574 * sender will sit on his end and only queue most of his data, because
575 * he can only send snd_cwnd unacked packets at any given time. For
576 * each ACK we send, he increments snd_cwnd and transmits more of his
577 * queue. -DaveM
579 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
581 struct tcp_sock *tp = tcp_sk(sk);
582 struct inet_connection_sock *icsk = inet_csk(sk);
583 u32 now;
585 inet_csk_schedule_ack(sk);
587 tcp_measure_rcv_mss(sk, skb);
589 tcp_rcv_rtt_measure(tp);
591 now = tcp_time_stamp;
593 if (!icsk->icsk_ack.ato) {
594 /* The _first_ data packet received, initialize
595 * delayed ACK engine.
597 tcp_incr_quickack(sk);
598 icsk->icsk_ack.ato = TCP_ATO_MIN;
599 } else {
600 int m = now - icsk->icsk_ack.lrcvtime;
602 if (m <= TCP_ATO_MIN / 2) {
603 /* The fastest case is the first. */
604 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
605 } else if (m < icsk->icsk_ack.ato) {
606 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
607 if (icsk->icsk_ack.ato > icsk->icsk_rto)
608 icsk->icsk_ack.ato = icsk->icsk_rto;
609 } else if (m > icsk->icsk_rto) {
610 /* Too long gap. Apparently sender failed to
611 * restart window, so that we send ACKs quickly.
613 tcp_incr_quickack(sk);
614 sk_mem_reclaim(sk);
617 icsk->icsk_ack.lrcvtime = now;
619 TCP_ECN_check_ce(tp, skb);
621 if (skb->len >= 128)
622 tcp_grow_window(sk, skb);
625 /* Called to compute a smoothed rtt estimate. The data fed to this
626 * routine either comes from timestamps, or from segments that were
627 * known _not_ to have been retransmitted [see Karn/Partridge
628 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
629 * piece by Van Jacobson.
630 * NOTE: the next three routines used to be one big routine.
631 * To save cycles in the RFC 1323 implementation it was better to break
632 * it up into three procedures. -- erics
634 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
636 struct tcp_sock *tp = tcp_sk(sk);
637 long m = mrtt; /* RTT */
639 /* The following amusing code comes from Jacobson's
640 * article in SIGCOMM '88. Note that rtt and mdev
641 * are scaled versions of rtt and mean deviation.
642 * This is designed to be as fast as possible
643 * m stands for "measurement".
645 * On a 1990 paper the rto value is changed to:
646 * RTO = rtt + 4 * mdev
648 * Funny. This algorithm seems to be very broken.
649 * These formulae increase RTO, when it should be decreased, increase
650 * too slowly, when it should be increased quickly, decrease too quickly
651 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
652 * does not matter how to _calculate_ it. Seems, it was trap
653 * that VJ failed to avoid. 8)
655 if (m == 0)
656 m = 1;
657 if (tp->srtt != 0) {
658 m -= (tp->srtt >> 3); /* m is now error in rtt est */
659 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
660 if (m < 0) {
661 m = -m; /* m is now abs(error) */
662 m -= (tp->mdev >> 2); /* similar update on mdev */
663 /* This is similar to one of Eifel findings.
664 * Eifel blocks mdev updates when rtt decreases.
665 * This solution is a bit different: we use finer gain
666 * for mdev in this case (alpha*beta).
667 * Like Eifel it also prevents growth of rto,
668 * but also it limits too fast rto decreases,
669 * happening in pure Eifel.
671 if (m > 0)
672 m >>= 3;
673 } else {
674 m -= (tp->mdev >> 2); /* similar update on mdev */
676 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
677 if (tp->mdev > tp->mdev_max) {
678 tp->mdev_max = tp->mdev;
679 if (tp->mdev_max > tp->rttvar)
680 tp->rttvar = tp->mdev_max;
682 if (after(tp->snd_una, tp->rtt_seq)) {
683 if (tp->mdev_max < tp->rttvar)
684 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
685 tp->rtt_seq = tp->snd_nxt;
686 tp->mdev_max = tcp_rto_min(sk);
688 } else {
689 /* no previous measure. */
690 tp->srtt = m << 3; /* take the measured time to be rtt */
691 tp->mdev = m << 1; /* make sure rto = 3*rtt */
692 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
693 tp->rtt_seq = tp->snd_nxt;
697 /* Calculate rto without backoff. This is the second half of Van Jacobson's
698 * routine referred to above.
700 static inline void tcp_set_rto(struct sock *sk)
702 const struct tcp_sock *tp = tcp_sk(sk);
703 /* Old crap is replaced with new one. 8)
705 * More seriously:
706 * 1. If rtt variance happened to be less 50msec, it is hallucination.
707 * It cannot be less due to utterly erratic ACK generation made
708 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
709 * to do with delayed acks, because at cwnd>2 true delack timeout
710 * is invisible. Actually, Linux-2.4 also generates erratic
711 * ACKs in some circumstances.
713 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
715 /* 2. Fixups made earlier cannot be right.
716 * If we do not estimate RTO correctly without them,
717 * all the algo is pure shit and should be replaced
718 * with correct one. It is exactly, which we pretend to do.
721 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
722 * guarantees that rto is higher.
724 tcp_bound_rto(sk);
727 /* Save metrics learned by this TCP session.
728 This function is called only, when TCP finishes successfully
729 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
731 void tcp_update_metrics(struct sock *sk)
733 struct tcp_sock *tp = tcp_sk(sk);
734 struct dst_entry *dst = __sk_dst_get(sk);
736 if (sysctl_tcp_nometrics_save)
737 return;
739 dst_confirm(dst);
741 if (dst && (dst->flags & DST_HOST)) {
742 const struct inet_connection_sock *icsk = inet_csk(sk);
743 int m;
744 unsigned long rtt;
746 if (icsk->icsk_backoff || !tp->srtt) {
747 /* This session failed to estimate rtt. Why?
748 * Probably, no packets returned in time.
749 * Reset our results.
751 if (!(dst_metric_locked(dst, RTAX_RTT)))
752 dst_metric_set(dst, RTAX_RTT, 0);
753 return;
756 rtt = dst_metric_rtt(dst, RTAX_RTT);
757 m = rtt - tp->srtt;
759 /* If newly calculated rtt larger than stored one,
760 * store new one. Otherwise, use EWMA. Remember,
761 * rtt overestimation is always better than underestimation.
763 if (!(dst_metric_locked(dst, RTAX_RTT))) {
764 if (m <= 0)
765 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
766 else
767 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
770 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
771 unsigned long var;
772 if (m < 0)
773 m = -m;
775 /* Scale deviation to rttvar fixed point */
776 m >>= 1;
777 if (m < tp->mdev)
778 m = tp->mdev;
780 var = dst_metric_rtt(dst, RTAX_RTTVAR);
781 if (m >= var)
782 var = m;
783 else
784 var -= (var - m) >> 2;
786 set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
789 if (tcp_in_initial_slowstart(tp)) {
790 /* Slow start still did not finish. */
791 if (dst_metric(dst, RTAX_SSTHRESH) &&
792 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
793 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
794 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
795 if (!dst_metric_locked(dst, RTAX_CWND) &&
796 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
797 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
798 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
799 icsk->icsk_ca_state == TCP_CA_Open) {
800 /* Cong. avoidance phase, cwnd is reliable. */
801 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
802 dst_metric_set(dst, RTAX_SSTHRESH,
803 max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
804 if (!dst_metric_locked(dst, RTAX_CWND))
805 dst_metric_set(dst, RTAX_CWND,
806 (dst_metric(dst, RTAX_CWND) +
807 tp->snd_cwnd) >> 1);
808 } else {
809 /* Else slow start did not finish, cwnd is non-sense,
810 ssthresh may be also invalid.
812 if (!dst_metric_locked(dst, RTAX_CWND))
813 dst_metric_set(dst, RTAX_CWND,
814 (dst_metric(dst, RTAX_CWND) +
815 tp->snd_ssthresh) >> 1);
816 if (dst_metric(dst, RTAX_SSTHRESH) &&
817 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
818 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
819 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
822 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
823 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
824 tp->reordering != sysctl_tcp_reordering)
825 dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
830 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
832 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
834 if (!cwnd)
835 cwnd = TCP_INIT_CWND;
836 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
839 /* Set slow start threshold and cwnd not falling to slow start */
840 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
842 struct tcp_sock *tp = tcp_sk(sk);
843 const struct inet_connection_sock *icsk = inet_csk(sk);
845 tp->prior_ssthresh = 0;
846 tp->bytes_acked = 0;
847 if (icsk->icsk_ca_state < TCP_CA_CWR) {
848 tp->undo_marker = 0;
849 if (set_ssthresh)
850 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
851 tp->snd_cwnd = min(tp->snd_cwnd,
852 tcp_packets_in_flight(tp) + 1U);
853 tp->snd_cwnd_cnt = 0;
854 tp->high_seq = tp->snd_nxt;
855 tp->snd_cwnd_stamp = tcp_time_stamp;
856 TCP_ECN_queue_cwr(tp);
858 tcp_set_ca_state(sk, TCP_CA_CWR);
863 * Packet counting of FACK is based on in-order assumptions, therefore TCP
864 * disables it when reordering is detected
866 static void tcp_disable_fack(struct tcp_sock *tp)
868 /* RFC3517 uses different metric in lost marker => reset on change */
869 if (tcp_is_fack(tp))
870 tp->lost_skb_hint = NULL;
871 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
874 /* Take a notice that peer is sending D-SACKs */
875 static void tcp_dsack_seen(struct tcp_sock *tp)
877 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
880 /* Initialize metrics on socket. */
882 static void tcp_init_metrics(struct sock *sk)
884 struct tcp_sock *tp = tcp_sk(sk);
885 struct dst_entry *dst = __sk_dst_get(sk);
887 if (dst == NULL)
888 goto reset;
890 dst_confirm(dst);
892 if (dst_metric_locked(dst, RTAX_CWND))
893 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
894 if (dst_metric(dst, RTAX_SSTHRESH)) {
895 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
896 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
897 tp->snd_ssthresh = tp->snd_cwnd_clamp;
898 } else {
899 /* ssthresh may have been reduced unnecessarily during.
900 * 3WHS. Restore it back to its initial default.
902 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
904 if (dst_metric(dst, RTAX_REORDERING) &&
905 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
906 tcp_disable_fack(tp);
907 tp->reordering = dst_metric(dst, RTAX_REORDERING);
910 if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
911 goto reset;
913 /* Initial rtt is determined from SYN,SYN-ACK.
914 * The segment is small and rtt may appear much
915 * less than real one. Use per-dst memory
916 * to make it more realistic.
918 * A bit of theory. RTT is time passed after "normal" sized packet
919 * is sent until it is ACKed. In normal circumstances sending small
920 * packets force peer to delay ACKs and calculation is correct too.
921 * The algorithm is adaptive and, provided we follow specs, it
922 * NEVER underestimate RTT. BUT! If peer tries to make some clever
923 * tricks sort of "quick acks" for time long enough to decrease RTT
924 * to low value, and then abruptly stops to do it and starts to delay
925 * ACKs, wait for troubles.
927 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
928 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
929 tp->rtt_seq = tp->snd_nxt;
931 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
932 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
933 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
935 tcp_set_rto(sk);
936 reset:
937 if (tp->srtt == 0) {
938 /* RFC2988bis: We've failed to get a valid RTT sample from
939 * 3WHS. This is most likely due to retransmission,
940 * including spurious one. Reset the RTO back to 3secs
941 * from the more aggressive 1sec to avoid more spurious
942 * retransmission.
944 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
945 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
947 /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
948 * retransmitted. In light of RFC2988bis' more aggressive 1sec
949 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
950 * retransmission has occurred.
952 if (tp->total_retrans > 1)
953 tp->snd_cwnd = 1;
954 else
955 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
956 tp->snd_cwnd_stamp = tcp_time_stamp;
959 static void tcp_update_reordering(struct sock *sk, const int metric,
960 const int ts)
962 struct tcp_sock *tp = tcp_sk(sk);
963 if (metric > tp->reordering) {
964 int mib_idx;
966 tp->reordering = min(TCP_MAX_REORDERING, metric);
968 /* This exciting event is worth to be remembered. 8) */
969 if (ts)
970 mib_idx = LINUX_MIB_TCPTSREORDER;
971 else if (tcp_is_reno(tp))
972 mib_idx = LINUX_MIB_TCPRENOREORDER;
973 else if (tcp_is_fack(tp))
974 mib_idx = LINUX_MIB_TCPFACKREORDER;
975 else
976 mib_idx = LINUX_MIB_TCPSACKREORDER;
978 NET_INC_STATS_BH(sock_net(sk), mib_idx);
979 #if FASTRETRANS_DEBUG > 1
980 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
981 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
982 tp->reordering,
983 tp->fackets_out,
984 tp->sacked_out,
985 tp->undo_marker ? tp->undo_retrans : 0);
986 #endif
987 tcp_disable_fack(tp);
991 /* This must be called before lost_out is incremented */
992 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
994 if ((tp->retransmit_skb_hint == NULL) ||
995 before(TCP_SKB_CB(skb)->seq,
996 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
997 tp->retransmit_skb_hint = skb;
999 if (!tp->lost_out ||
1000 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
1001 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1004 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
1006 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1007 tcp_verify_retransmit_hint(tp, skb);
1009 tp->lost_out += tcp_skb_pcount(skb);
1010 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1014 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1015 struct sk_buff *skb)
1017 tcp_verify_retransmit_hint(tp, skb);
1019 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1020 tp->lost_out += tcp_skb_pcount(skb);
1021 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1025 /* This procedure tags the retransmission queue when SACKs arrive.
1027 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1028 * Packets in queue with these bits set are counted in variables
1029 * sacked_out, retrans_out and lost_out, correspondingly.
1031 * Valid combinations are:
1032 * Tag InFlight Description
1033 * 0 1 - orig segment is in flight.
1034 * S 0 - nothing flies, orig reached receiver.
1035 * L 0 - nothing flies, orig lost by net.
1036 * R 2 - both orig and retransmit are in flight.
1037 * L|R 1 - orig is lost, retransmit is in flight.
1038 * S|R 1 - orig reached receiver, retrans is still in flight.
1039 * (L|S|R is logically valid, it could occur when L|R is sacked,
1040 * but it is equivalent to plain S and code short-curcuits it to S.
1041 * L|S is logically invalid, it would mean -1 packet in flight 8))
1043 * These 6 states form finite state machine, controlled by the following events:
1044 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1045 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1046 * 3. Loss detection event of two flavors:
1047 * A. Scoreboard estimator decided the packet is lost.
1048 * A'. Reno "three dupacks" marks head of queue lost.
1049 * A''. Its FACK modification, head until snd.fack is lost.
1050 * B. SACK arrives sacking SND.NXT at the moment, when the
1051 * segment was retransmitted.
1052 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1054 * It is pleasant to note, that state diagram turns out to be commutative,
1055 * so that we are allowed not to be bothered by order of our actions,
1056 * when multiple events arrive simultaneously. (see the function below).
1058 * Reordering detection.
1059 * --------------------
1060 * Reordering metric is maximal distance, which a packet can be displaced
1061 * in packet stream. With SACKs we can estimate it:
1063 * 1. SACK fills old hole and the corresponding segment was not
1064 * ever retransmitted -> reordering. Alas, we cannot use it
1065 * when segment was retransmitted.
1066 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1067 * for retransmitted and already SACKed segment -> reordering..
1068 * Both of these heuristics are not used in Loss state, when we cannot
1069 * account for retransmits accurately.
1071 * SACK block validation.
1072 * ----------------------
1074 * SACK block range validation checks that the received SACK block fits to
1075 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1076 * Note that SND.UNA is not included to the range though being valid because
1077 * it means that the receiver is rather inconsistent with itself reporting
1078 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1079 * perfectly valid, however, in light of RFC2018 which explicitly states
1080 * that "SACK block MUST reflect the newest segment. Even if the newest
1081 * segment is going to be discarded ...", not that it looks very clever
1082 * in case of head skb. Due to potentional receiver driven attacks, we
1083 * choose to avoid immediate execution of a walk in write queue due to
1084 * reneging and defer head skb's loss recovery to standard loss recovery
1085 * procedure that will eventually trigger (nothing forbids us doing this).
1087 * Implements also blockage to start_seq wrap-around. Problem lies in the
1088 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1089 * there's no guarantee that it will be before snd_nxt (n). The problem
1090 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1091 * wrap (s_w):
1093 * <- outs wnd -> <- wrapzone ->
1094 * u e n u_w e_w s n_w
1095 * | | | | | | |
1096 * |<------------+------+----- TCP seqno space --------------+---------->|
1097 * ...-- <2^31 ->| |<--------...
1098 * ...---- >2^31 ------>| |<--------...
1100 * Current code wouldn't be vulnerable but it's better still to discard such
1101 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1102 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1103 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1104 * equal to the ideal case (infinite seqno space without wrap caused issues).
1106 * With D-SACK the lower bound is extended to cover sequence space below
1107 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1108 * again, D-SACK block must not to go across snd_una (for the same reason as
1109 * for the normal SACK blocks, explained above). But there all simplicity
1110 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1111 * fully below undo_marker they do not affect behavior in anyway and can
1112 * therefore be safely ignored. In rare cases (which are more or less
1113 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1114 * fragmentation and packet reordering past skb's retransmission. To consider
1115 * them correctly, the acceptable range must be extended even more though
1116 * the exact amount is rather hard to quantify. However, tp->max_window can
1117 * be used as an exaggerated estimate.
1119 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1120 u32 start_seq, u32 end_seq)
1122 /* Too far in future, or reversed (interpretation is ambiguous) */
1123 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1124 return 0;
1126 /* Nasty start_seq wrap-around check (see comments above) */
1127 if (!before(start_seq, tp->snd_nxt))
1128 return 0;
1130 /* In outstanding window? ...This is valid exit for D-SACKs too.
1131 * start_seq == snd_una is non-sensical (see comments above)
1133 if (after(start_seq, tp->snd_una))
1134 return 1;
1136 if (!is_dsack || !tp->undo_marker)
1137 return 0;
1139 /* ...Then it's D-SACK, and must reside below snd_una completely */
1140 if (after(end_seq, tp->snd_una))
1141 return 0;
1143 if (!before(start_seq, tp->undo_marker))
1144 return 1;
1146 /* Too old */
1147 if (!after(end_seq, tp->undo_marker))
1148 return 0;
1150 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1151 * start_seq < undo_marker and end_seq >= undo_marker.
1153 return !before(start_seq, end_seq - tp->max_window);
1156 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1157 * Event "B". Later note: FACK people cheated me again 8), we have to account
1158 * for reordering! Ugly, but should help.
1160 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1161 * less than what is now known to be received by the other end (derived from
1162 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1163 * retransmitted skbs to avoid some costly processing per ACKs.
1165 static void tcp_mark_lost_retrans(struct sock *sk)
1167 const struct inet_connection_sock *icsk = inet_csk(sk);
1168 struct tcp_sock *tp = tcp_sk(sk);
1169 struct sk_buff *skb;
1170 int cnt = 0;
1171 u32 new_low_seq = tp->snd_nxt;
1172 u32 received_upto = tcp_highest_sack_seq(tp);
1174 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1175 !after(received_upto, tp->lost_retrans_low) ||
1176 icsk->icsk_ca_state != TCP_CA_Recovery)
1177 return;
1179 tcp_for_write_queue(skb, sk) {
1180 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1182 if (skb == tcp_send_head(sk))
1183 break;
1184 if (cnt == tp->retrans_out)
1185 break;
1186 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1187 continue;
1189 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1190 continue;
1192 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1193 * constraint here (see above) but figuring out that at
1194 * least tp->reordering SACK blocks reside between ack_seq
1195 * and received_upto is not easy task to do cheaply with
1196 * the available datastructures.
1198 * Whether FACK should check here for tp->reordering segs
1199 * in-between one could argue for either way (it would be
1200 * rather simple to implement as we could count fack_count
1201 * during the walk and do tp->fackets_out - fack_count).
1203 if (after(received_upto, ack_seq)) {
1204 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1205 tp->retrans_out -= tcp_skb_pcount(skb);
1207 tcp_skb_mark_lost_uncond_verify(tp, skb);
1208 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1209 } else {
1210 if (before(ack_seq, new_low_seq))
1211 new_low_seq = ack_seq;
1212 cnt += tcp_skb_pcount(skb);
1216 if (tp->retrans_out)
1217 tp->lost_retrans_low = new_low_seq;
1220 static int tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1221 struct tcp_sack_block_wire *sp, int num_sacks,
1222 u32 prior_snd_una)
1224 struct tcp_sock *tp = tcp_sk(sk);
1225 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1226 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1227 int dup_sack = 0;
1229 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1230 dup_sack = 1;
1231 tcp_dsack_seen(tp);
1232 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1233 } else if (num_sacks > 1) {
1234 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1235 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1237 if (!after(end_seq_0, end_seq_1) &&
1238 !before(start_seq_0, start_seq_1)) {
1239 dup_sack = 1;
1240 tcp_dsack_seen(tp);
1241 NET_INC_STATS_BH(sock_net(sk),
1242 LINUX_MIB_TCPDSACKOFORECV);
1246 /* D-SACK for already forgotten data... Do dumb counting. */
1247 if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1248 !after(end_seq_0, prior_snd_una) &&
1249 after(end_seq_0, tp->undo_marker))
1250 tp->undo_retrans--;
1252 return dup_sack;
1255 struct tcp_sacktag_state {
1256 int reord;
1257 int fack_count;
1258 int flag;
1261 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1262 * the incoming SACK may not exactly match but we can find smaller MSS
1263 * aligned portion of it that matches. Therefore we might need to fragment
1264 * which may fail and creates some hassle (caller must handle error case
1265 * returns).
1267 * FIXME: this could be merged to shift decision code
1269 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1270 u32 start_seq, u32 end_seq)
1272 int in_sack, err;
1273 unsigned int pkt_len;
1274 unsigned int mss;
1276 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1277 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1279 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1280 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1281 mss = tcp_skb_mss(skb);
1282 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1284 if (!in_sack) {
1285 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1286 if (pkt_len < mss)
1287 pkt_len = mss;
1288 } else {
1289 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1290 if (pkt_len < mss)
1291 return -EINVAL;
1294 /* Round if necessary so that SACKs cover only full MSSes
1295 * and/or the remaining small portion (if present)
1297 if (pkt_len > mss) {
1298 unsigned int new_len = (pkt_len / mss) * mss;
1299 if (!in_sack && new_len < pkt_len) {
1300 new_len += mss;
1301 if (new_len > skb->len)
1302 return 0;
1304 pkt_len = new_len;
1306 err = tcp_fragment(sk, skb, pkt_len, mss);
1307 if (err < 0)
1308 return err;
1311 return in_sack;
1314 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1315 static u8 tcp_sacktag_one(struct sock *sk,
1316 struct tcp_sacktag_state *state, u8 sacked,
1317 u32 start_seq, u32 end_seq,
1318 int dup_sack, int pcount)
1320 struct tcp_sock *tp = tcp_sk(sk);
1321 int fack_count = state->fack_count;
1323 /* Account D-SACK for retransmitted packet. */
1324 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1325 if (tp->undo_marker && tp->undo_retrans &&
1326 after(end_seq, tp->undo_marker))
1327 tp->undo_retrans--;
1328 if (sacked & TCPCB_SACKED_ACKED)
1329 state->reord = min(fack_count, state->reord);
1332 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1333 if (!after(end_seq, tp->snd_una))
1334 return sacked;
1336 if (!(sacked & TCPCB_SACKED_ACKED)) {
1337 if (sacked & TCPCB_SACKED_RETRANS) {
1338 /* If the segment is not tagged as lost,
1339 * we do not clear RETRANS, believing
1340 * that retransmission is still in flight.
1342 if (sacked & TCPCB_LOST) {
1343 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1344 tp->lost_out -= pcount;
1345 tp->retrans_out -= pcount;
1347 } else {
1348 if (!(sacked & TCPCB_RETRANS)) {
1349 /* New sack for not retransmitted frame,
1350 * which was in hole. It is reordering.
1352 if (before(start_seq,
1353 tcp_highest_sack_seq(tp)))
1354 state->reord = min(fack_count,
1355 state->reord);
1357 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1358 if (!after(end_seq, tp->frto_highmark))
1359 state->flag |= FLAG_ONLY_ORIG_SACKED;
1362 if (sacked & TCPCB_LOST) {
1363 sacked &= ~TCPCB_LOST;
1364 tp->lost_out -= pcount;
1368 sacked |= TCPCB_SACKED_ACKED;
1369 state->flag |= FLAG_DATA_SACKED;
1370 tp->sacked_out += pcount;
1372 fack_count += pcount;
1374 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1375 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1376 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1377 tp->lost_cnt_hint += pcount;
1379 if (fack_count > tp->fackets_out)
1380 tp->fackets_out = fack_count;
1383 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1384 * frames and clear it. undo_retrans is decreased above, L|R frames
1385 * are accounted above as well.
1387 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1388 sacked &= ~TCPCB_SACKED_RETRANS;
1389 tp->retrans_out -= pcount;
1392 return sacked;
1395 /* Shift newly-SACKed bytes from this skb to the immediately previous
1396 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1398 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1399 struct tcp_sacktag_state *state,
1400 unsigned int pcount, int shifted, int mss,
1401 int dup_sack)
1403 struct tcp_sock *tp = tcp_sk(sk);
1404 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1405 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1406 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1408 BUG_ON(!pcount);
1410 /* Adjust counters and hints for the newly sacked sequence
1411 * range but discard the return value since prev is already
1412 * marked. We must tag the range first because the seq
1413 * advancement below implicitly advances
1414 * tcp_highest_sack_seq() when skb is highest_sack.
1416 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1417 start_seq, end_seq, dup_sack, pcount);
1419 if (skb == tp->lost_skb_hint)
1420 tp->lost_cnt_hint += pcount;
1422 TCP_SKB_CB(prev)->end_seq += shifted;
1423 TCP_SKB_CB(skb)->seq += shifted;
1425 skb_shinfo(prev)->gso_segs += pcount;
1426 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1427 skb_shinfo(skb)->gso_segs -= pcount;
1429 /* When we're adding to gso_segs == 1, gso_size will be zero,
1430 * in theory this shouldn't be necessary but as long as DSACK
1431 * code can come after this skb later on it's better to keep
1432 * setting gso_size to something.
1434 if (!skb_shinfo(prev)->gso_size) {
1435 skb_shinfo(prev)->gso_size = mss;
1436 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1439 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1440 if (skb_shinfo(skb)->gso_segs <= 1) {
1441 skb_shinfo(skb)->gso_size = 0;
1442 skb_shinfo(skb)->gso_type = 0;
1445 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1446 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1448 if (skb->len > 0) {
1449 BUG_ON(!tcp_skb_pcount(skb));
1450 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1451 return 0;
1454 /* Whole SKB was eaten :-) */
1456 if (skb == tp->retransmit_skb_hint)
1457 tp->retransmit_skb_hint = prev;
1458 if (skb == tp->scoreboard_skb_hint)
1459 tp->scoreboard_skb_hint = prev;
1460 if (skb == tp->lost_skb_hint) {
1461 tp->lost_skb_hint = prev;
1462 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1465 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1466 if (skb == tcp_highest_sack(sk))
1467 tcp_advance_highest_sack(sk, skb);
1469 tcp_unlink_write_queue(skb, sk);
1470 sk_wmem_free_skb(sk, skb);
1472 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1474 return 1;
1477 /* I wish gso_size would have a bit more sane initialization than
1478 * something-or-zero which complicates things
1480 static int tcp_skb_seglen(const struct sk_buff *skb)
1482 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1485 /* Shifting pages past head area doesn't work */
1486 static int skb_can_shift(const struct sk_buff *skb)
1488 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1491 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1492 * skb.
1494 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1495 struct tcp_sacktag_state *state,
1496 u32 start_seq, u32 end_seq,
1497 int dup_sack)
1499 struct tcp_sock *tp = tcp_sk(sk);
1500 struct sk_buff *prev;
1501 int mss;
1502 int pcount = 0;
1503 int len;
1504 int in_sack;
1506 if (!sk_can_gso(sk))
1507 goto fallback;
1509 /* Normally R but no L won't result in plain S */
1510 if (!dup_sack &&
1511 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1512 goto fallback;
1513 if (!skb_can_shift(skb))
1514 goto fallback;
1515 /* This frame is about to be dropped (was ACKed). */
1516 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1517 goto fallback;
1519 /* Can only happen with delayed DSACK + discard craziness */
1520 if (unlikely(skb == tcp_write_queue_head(sk)))
1521 goto fallback;
1522 prev = tcp_write_queue_prev(sk, skb);
1524 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1525 goto fallback;
1527 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1528 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1530 if (in_sack) {
1531 len = skb->len;
1532 pcount = tcp_skb_pcount(skb);
1533 mss = tcp_skb_seglen(skb);
1535 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1536 * drop this restriction as unnecessary
1538 if (mss != tcp_skb_seglen(prev))
1539 goto fallback;
1540 } else {
1541 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1542 goto noop;
1543 /* CHECKME: This is non-MSS split case only?, this will
1544 * cause skipped skbs due to advancing loop btw, original
1545 * has that feature too
1547 if (tcp_skb_pcount(skb) <= 1)
1548 goto noop;
1550 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1551 if (!in_sack) {
1552 /* TODO: head merge to next could be attempted here
1553 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1554 * though it might not be worth of the additional hassle
1556 * ...we can probably just fallback to what was done
1557 * previously. We could try merging non-SACKed ones
1558 * as well but it probably isn't going to buy off
1559 * because later SACKs might again split them, and
1560 * it would make skb timestamp tracking considerably
1561 * harder problem.
1563 goto fallback;
1566 len = end_seq - TCP_SKB_CB(skb)->seq;
1567 BUG_ON(len < 0);
1568 BUG_ON(len > skb->len);
1570 /* MSS boundaries should be honoured or else pcount will
1571 * severely break even though it makes things bit trickier.
1572 * Optimize common case to avoid most of the divides
1574 mss = tcp_skb_mss(skb);
1576 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1577 * drop this restriction as unnecessary
1579 if (mss != tcp_skb_seglen(prev))
1580 goto fallback;
1582 if (len == mss) {
1583 pcount = 1;
1584 } else if (len < mss) {
1585 goto noop;
1586 } else {
1587 pcount = len / mss;
1588 len = pcount * mss;
1592 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1593 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1594 goto fallback;
1596 if (!skb_shift(prev, skb, len))
1597 goto fallback;
1598 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1599 goto out;
1601 /* Hole filled allows collapsing with the next as well, this is very
1602 * useful when hole on every nth skb pattern happens
1604 if (prev == tcp_write_queue_tail(sk))
1605 goto out;
1606 skb = tcp_write_queue_next(sk, prev);
1608 if (!skb_can_shift(skb) ||
1609 (skb == tcp_send_head(sk)) ||
1610 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1611 (mss != tcp_skb_seglen(skb)))
1612 goto out;
1614 len = skb->len;
1615 if (skb_shift(prev, skb, len)) {
1616 pcount += tcp_skb_pcount(skb);
1617 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1620 out:
1621 state->fack_count += pcount;
1622 return prev;
1624 noop:
1625 return skb;
1627 fallback:
1628 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1629 return NULL;
1632 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1633 struct tcp_sack_block *next_dup,
1634 struct tcp_sacktag_state *state,
1635 u32 start_seq, u32 end_seq,
1636 int dup_sack_in)
1638 struct tcp_sock *tp = tcp_sk(sk);
1639 struct sk_buff *tmp;
1641 tcp_for_write_queue_from(skb, sk) {
1642 int in_sack = 0;
1643 int dup_sack = dup_sack_in;
1645 if (skb == tcp_send_head(sk))
1646 break;
1648 /* queue is in-order => we can short-circuit the walk early */
1649 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1650 break;
1652 if ((next_dup != NULL) &&
1653 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1654 in_sack = tcp_match_skb_to_sack(sk, skb,
1655 next_dup->start_seq,
1656 next_dup->end_seq);
1657 if (in_sack > 0)
1658 dup_sack = 1;
1661 /* skb reference here is a bit tricky to get right, since
1662 * shifting can eat and free both this skb and the next,
1663 * so not even _safe variant of the loop is enough.
1665 if (in_sack <= 0) {
1666 tmp = tcp_shift_skb_data(sk, skb, state,
1667 start_seq, end_seq, dup_sack);
1668 if (tmp != NULL) {
1669 if (tmp != skb) {
1670 skb = tmp;
1671 continue;
1674 in_sack = 0;
1675 } else {
1676 in_sack = tcp_match_skb_to_sack(sk, skb,
1677 start_seq,
1678 end_seq);
1682 if (unlikely(in_sack < 0))
1683 break;
1685 if (in_sack) {
1686 TCP_SKB_CB(skb)->sacked =
1687 tcp_sacktag_one(sk,
1688 state,
1689 TCP_SKB_CB(skb)->sacked,
1690 TCP_SKB_CB(skb)->seq,
1691 TCP_SKB_CB(skb)->end_seq,
1692 dup_sack,
1693 tcp_skb_pcount(skb));
1695 if (!before(TCP_SKB_CB(skb)->seq,
1696 tcp_highest_sack_seq(tp)))
1697 tcp_advance_highest_sack(sk, skb);
1700 state->fack_count += tcp_skb_pcount(skb);
1702 return skb;
1705 /* Avoid all extra work that is being done by sacktag while walking in
1706 * a normal way
1708 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1709 struct tcp_sacktag_state *state,
1710 u32 skip_to_seq)
1712 tcp_for_write_queue_from(skb, sk) {
1713 if (skb == tcp_send_head(sk))
1714 break;
1716 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1717 break;
1719 state->fack_count += tcp_skb_pcount(skb);
1721 return skb;
1724 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1725 struct sock *sk,
1726 struct tcp_sack_block *next_dup,
1727 struct tcp_sacktag_state *state,
1728 u32 skip_to_seq)
1730 if (next_dup == NULL)
1731 return skb;
1733 if (before(next_dup->start_seq, skip_to_seq)) {
1734 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1735 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1736 next_dup->start_seq, next_dup->end_seq,
1740 return skb;
1743 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1745 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1748 static int
1749 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1750 u32 prior_snd_una)
1752 const struct inet_connection_sock *icsk = inet_csk(sk);
1753 struct tcp_sock *tp = tcp_sk(sk);
1754 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1755 TCP_SKB_CB(ack_skb)->sacked);
1756 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1757 struct tcp_sack_block sp[TCP_NUM_SACKS];
1758 struct tcp_sack_block *cache;
1759 struct tcp_sacktag_state state;
1760 struct sk_buff *skb;
1761 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1762 int used_sacks;
1763 int found_dup_sack = 0;
1764 int i, j;
1765 int first_sack_index;
1767 state.flag = 0;
1768 state.reord = tp->packets_out;
1770 if (!tp->sacked_out) {
1771 if (WARN_ON(tp->fackets_out))
1772 tp->fackets_out = 0;
1773 tcp_highest_sack_reset(sk);
1776 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1777 num_sacks, prior_snd_una);
1778 if (found_dup_sack)
1779 state.flag |= FLAG_DSACKING_ACK;
1781 /* Eliminate too old ACKs, but take into
1782 * account more or less fresh ones, they can
1783 * contain valid SACK info.
1785 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1786 return 0;
1788 if (!tp->packets_out)
1789 goto out;
1791 used_sacks = 0;
1792 first_sack_index = 0;
1793 for (i = 0; i < num_sacks; i++) {
1794 int dup_sack = !i && found_dup_sack;
1796 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1797 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1799 if (!tcp_is_sackblock_valid(tp, dup_sack,
1800 sp[used_sacks].start_seq,
1801 sp[used_sacks].end_seq)) {
1802 int mib_idx;
1804 if (dup_sack) {
1805 if (!tp->undo_marker)
1806 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1807 else
1808 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1809 } else {
1810 /* Don't count olds caused by ACK reordering */
1811 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1812 !after(sp[used_sacks].end_seq, tp->snd_una))
1813 continue;
1814 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1817 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1818 if (i == 0)
1819 first_sack_index = -1;
1820 continue;
1823 /* Ignore very old stuff early */
1824 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1825 continue;
1827 used_sacks++;
1830 /* order SACK blocks to allow in order walk of the retrans queue */
1831 for (i = used_sacks - 1; i > 0; i--) {
1832 for (j = 0; j < i; j++) {
1833 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1834 swap(sp[j], sp[j + 1]);
1836 /* Track where the first SACK block goes to */
1837 if (j == first_sack_index)
1838 first_sack_index = j + 1;
1843 skb = tcp_write_queue_head(sk);
1844 state.fack_count = 0;
1845 i = 0;
1847 if (!tp->sacked_out) {
1848 /* It's already past, so skip checking against it */
1849 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1850 } else {
1851 cache = tp->recv_sack_cache;
1852 /* Skip empty blocks in at head of the cache */
1853 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1854 !cache->end_seq)
1855 cache++;
1858 while (i < used_sacks) {
1859 u32 start_seq = sp[i].start_seq;
1860 u32 end_seq = sp[i].end_seq;
1861 int dup_sack = (found_dup_sack && (i == first_sack_index));
1862 struct tcp_sack_block *next_dup = NULL;
1864 if (found_dup_sack && ((i + 1) == first_sack_index))
1865 next_dup = &sp[i + 1];
1867 /* Skip too early cached blocks */
1868 while (tcp_sack_cache_ok(tp, cache) &&
1869 !before(start_seq, cache->end_seq))
1870 cache++;
1872 /* Can skip some work by looking recv_sack_cache? */
1873 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1874 after(end_seq, cache->start_seq)) {
1876 /* Head todo? */
1877 if (before(start_seq, cache->start_seq)) {
1878 skb = tcp_sacktag_skip(skb, sk, &state,
1879 start_seq);
1880 skb = tcp_sacktag_walk(skb, sk, next_dup,
1881 &state,
1882 start_seq,
1883 cache->start_seq,
1884 dup_sack);
1887 /* Rest of the block already fully processed? */
1888 if (!after(end_seq, cache->end_seq))
1889 goto advance_sp;
1891 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1892 &state,
1893 cache->end_seq);
1895 /* ...tail remains todo... */
1896 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1897 /* ...but better entrypoint exists! */
1898 skb = tcp_highest_sack(sk);
1899 if (skb == NULL)
1900 break;
1901 state.fack_count = tp->fackets_out;
1902 cache++;
1903 goto walk;
1906 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1907 /* Check overlap against next cached too (past this one already) */
1908 cache++;
1909 continue;
1912 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1913 skb = tcp_highest_sack(sk);
1914 if (skb == NULL)
1915 break;
1916 state.fack_count = tp->fackets_out;
1918 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1920 walk:
1921 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1922 start_seq, end_seq, dup_sack);
1924 advance_sp:
1925 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1926 * due to in-order walk
1928 if (after(end_seq, tp->frto_highmark))
1929 state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1931 i++;
1934 /* Clear the head of the cache sack blocks so we can skip it next time */
1935 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1936 tp->recv_sack_cache[i].start_seq = 0;
1937 tp->recv_sack_cache[i].end_seq = 0;
1939 for (j = 0; j < used_sacks; j++)
1940 tp->recv_sack_cache[i++] = sp[j];
1942 tcp_mark_lost_retrans(sk);
1944 tcp_verify_left_out(tp);
1946 if ((state.reord < tp->fackets_out) &&
1947 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1948 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1949 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1951 out:
1953 #if FASTRETRANS_DEBUG > 0
1954 WARN_ON((int)tp->sacked_out < 0);
1955 WARN_ON((int)tp->lost_out < 0);
1956 WARN_ON((int)tp->retrans_out < 0);
1957 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1958 #endif
1959 return state.flag;
1962 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1963 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1965 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1967 u32 holes;
1969 holes = max(tp->lost_out, 1U);
1970 holes = min(holes, tp->packets_out);
1972 if ((tp->sacked_out + holes) > tp->packets_out) {
1973 tp->sacked_out = tp->packets_out - holes;
1974 return 1;
1976 return 0;
1979 /* If we receive more dupacks than we expected counting segments
1980 * in assumption of absent reordering, interpret this as reordering.
1981 * The only another reason could be bug in receiver TCP.
1983 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1985 struct tcp_sock *tp = tcp_sk(sk);
1986 if (tcp_limit_reno_sacked(tp))
1987 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1990 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1992 static void tcp_add_reno_sack(struct sock *sk)
1994 struct tcp_sock *tp = tcp_sk(sk);
1995 tp->sacked_out++;
1996 tcp_check_reno_reordering(sk, 0);
1997 tcp_verify_left_out(tp);
2000 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2002 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
2004 struct tcp_sock *tp = tcp_sk(sk);
2006 if (acked > 0) {
2007 /* One ACK acked hole. The rest eat duplicate ACKs. */
2008 if (acked - 1 >= tp->sacked_out)
2009 tp->sacked_out = 0;
2010 else
2011 tp->sacked_out -= acked - 1;
2013 tcp_check_reno_reordering(sk, acked);
2014 tcp_verify_left_out(tp);
2017 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2019 tp->sacked_out = 0;
2022 static int tcp_is_sackfrto(const struct tcp_sock *tp)
2024 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2027 /* F-RTO can only be used if TCP has never retransmitted anything other than
2028 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2030 int tcp_use_frto(struct sock *sk)
2032 const struct tcp_sock *tp = tcp_sk(sk);
2033 const struct inet_connection_sock *icsk = inet_csk(sk);
2034 struct sk_buff *skb;
2036 if (!sysctl_tcp_frto)
2037 return 0;
2039 /* MTU probe and F-RTO won't really play nicely along currently */
2040 if (icsk->icsk_mtup.probe_size)
2041 return 0;
2043 if (tcp_is_sackfrto(tp))
2044 return 1;
2046 /* Avoid expensive walking of rexmit queue if possible */
2047 if (tp->retrans_out > 1)
2048 return 0;
2050 skb = tcp_write_queue_head(sk);
2051 if (tcp_skb_is_last(sk, skb))
2052 return 1;
2053 skb = tcp_write_queue_next(sk, skb); /* Skips head */
2054 tcp_for_write_queue_from(skb, sk) {
2055 if (skb == tcp_send_head(sk))
2056 break;
2057 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2058 return 0;
2059 /* Short-circuit when first non-SACKed skb has been checked */
2060 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2061 break;
2063 return 1;
2066 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2067 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2068 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2069 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2070 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2071 * bits are handled if the Loss state is really to be entered (in
2072 * tcp_enter_frto_loss).
2074 * Do like tcp_enter_loss() would; when RTO expires the second time it
2075 * does:
2076 * "Reduce ssthresh if it has not yet been made inside this window."
2078 void tcp_enter_frto(struct sock *sk)
2080 const struct inet_connection_sock *icsk = inet_csk(sk);
2081 struct tcp_sock *tp = tcp_sk(sk);
2082 struct sk_buff *skb;
2084 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2085 tp->snd_una == tp->high_seq ||
2086 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2087 !icsk->icsk_retransmits)) {
2088 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2089 /* Our state is too optimistic in ssthresh() call because cwnd
2090 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2091 * recovery has not yet completed. Pattern would be this: RTO,
2092 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2093 * up here twice).
2094 * RFC4138 should be more specific on what to do, even though
2095 * RTO is quite unlikely to occur after the first Cumulative ACK
2096 * due to back-off and complexity of triggering events ...
2098 if (tp->frto_counter) {
2099 u32 stored_cwnd;
2100 stored_cwnd = tp->snd_cwnd;
2101 tp->snd_cwnd = 2;
2102 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2103 tp->snd_cwnd = stored_cwnd;
2104 } else {
2105 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2107 /* ... in theory, cong.control module could do "any tricks" in
2108 * ssthresh(), which means that ca_state, lost bits and lost_out
2109 * counter would have to be faked before the call occurs. We
2110 * consider that too expensive, unlikely and hacky, so modules
2111 * using these in ssthresh() must deal these incompatibility
2112 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2114 tcp_ca_event(sk, CA_EVENT_FRTO);
2117 tp->undo_marker = tp->snd_una;
2118 tp->undo_retrans = 0;
2120 skb = tcp_write_queue_head(sk);
2121 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2122 tp->undo_marker = 0;
2123 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2124 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2125 tp->retrans_out -= tcp_skb_pcount(skb);
2127 tcp_verify_left_out(tp);
2129 /* Too bad if TCP was application limited */
2130 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2132 /* Earlier loss recovery underway (see RFC4138; Appendix B).
2133 * The last condition is necessary at least in tp->frto_counter case.
2135 if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2136 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2137 after(tp->high_seq, tp->snd_una)) {
2138 tp->frto_highmark = tp->high_seq;
2139 } else {
2140 tp->frto_highmark = tp->snd_nxt;
2142 tcp_set_ca_state(sk, TCP_CA_Disorder);
2143 tp->high_seq = tp->snd_nxt;
2144 tp->frto_counter = 1;
2147 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2148 * which indicates that we should follow the traditional RTO recovery,
2149 * i.e. mark everything lost and do go-back-N retransmission.
2151 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2153 struct tcp_sock *tp = tcp_sk(sk);
2154 struct sk_buff *skb;
2156 tp->lost_out = 0;
2157 tp->retrans_out = 0;
2158 if (tcp_is_reno(tp))
2159 tcp_reset_reno_sack(tp);
2161 tcp_for_write_queue(skb, sk) {
2162 if (skb == tcp_send_head(sk))
2163 break;
2165 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2167 * Count the retransmission made on RTO correctly (only when
2168 * waiting for the first ACK and did not get it)...
2170 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2171 /* For some reason this R-bit might get cleared? */
2172 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2173 tp->retrans_out += tcp_skb_pcount(skb);
2174 /* ...enter this if branch just for the first segment */
2175 flag |= FLAG_DATA_ACKED;
2176 } else {
2177 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2178 tp->undo_marker = 0;
2179 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2182 /* Marking forward transmissions that were made after RTO lost
2183 * can cause unnecessary retransmissions in some scenarios,
2184 * SACK blocks will mitigate that in some but not in all cases.
2185 * We used to not mark them but it was causing break-ups with
2186 * receivers that do only in-order receival.
2188 * TODO: we could detect presence of such receiver and select
2189 * different behavior per flow.
2191 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2192 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2193 tp->lost_out += tcp_skb_pcount(skb);
2194 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2197 tcp_verify_left_out(tp);
2199 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2200 tp->snd_cwnd_cnt = 0;
2201 tp->snd_cwnd_stamp = tcp_time_stamp;
2202 tp->frto_counter = 0;
2203 tp->bytes_acked = 0;
2205 tp->reordering = min_t(unsigned int, tp->reordering,
2206 sysctl_tcp_reordering);
2207 tcp_set_ca_state(sk, TCP_CA_Loss);
2208 tp->high_seq = tp->snd_nxt;
2209 TCP_ECN_queue_cwr(tp);
2211 tcp_clear_all_retrans_hints(tp);
2214 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2216 tp->retrans_out = 0;
2217 tp->lost_out = 0;
2219 tp->undo_marker = 0;
2220 tp->undo_retrans = 0;
2223 void tcp_clear_retrans(struct tcp_sock *tp)
2225 tcp_clear_retrans_partial(tp);
2227 tp->fackets_out = 0;
2228 tp->sacked_out = 0;
2231 /* Enter Loss state. If "how" is not zero, forget all SACK information
2232 * and reset tags completely, otherwise preserve SACKs. If receiver
2233 * dropped its ofo queue, we will know this due to reneging detection.
2235 void tcp_enter_loss(struct sock *sk, int how)
2237 const struct inet_connection_sock *icsk = inet_csk(sk);
2238 struct tcp_sock *tp = tcp_sk(sk);
2239 struct sk_buff *skb;
2241 /* Reduce ssthresh if it has not yet been made inside this window. */
2242 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2243 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2244 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2245 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2246 tcp_ca_event(sk, CA_EVENT_LOSS);
2248 tp->snd_cwnd = 1;
2249 tp->snd_cwnd_cnt = 0;
2250 tp->snd_cwnd_stamp = tcp_time_stamp;
2252 tp->bytes_acked = 0;
2253 tcp_clear_retrans_partial(tp);
2255 if (tcp_is_reno(tp))
2256 tcp_reset_reno_sack(tp);
2258 if (!how) {
2259 /* Push undo marker, if it was plain RTO and nothing
2260 * was retransmitted. */
2261 tp->undo_marker = tp->snd_una;
2262 } else {
2263 tp->sacked_out = 0;
2264 tp->fackets_out = 0;
2266 tcp_clear_all_retrans_hints(tp);
2268 tcp_for_write_queue(skb, sk) {
2269 if (skb == tcp_send_head(sk))
2270 break;
2272 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2273 tp->undo_marker = 0;
2274 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2275 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2276 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2277 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2278 tp->lost_out += tcp_skb_pcount(skb);
2279 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2282 tcp_verify_left_out(tp);
2284 tp->reordering = min_t(unsigned int, tp->reordering,
2285 sysctl_tcp_reordering);
2286 tcp_set_ca_state(sk, TCP_CA_Loss);
2287 tp->high_seq = tp->snd_nxt;
2288 TCP_ECN_queue_cwr(tp);
2289 /* Abort F-RTO algorithm if one is in progress */
2290 tp->frto_counter = 0;
2293 /* If ACK arrived pointing to a remembered SACK, it means that our
2294 * remembered SACKs do not reflect real state of receiver i.e.
2295 * receiver _host_ is heavily congested (or buggy).
2297 * Do processing similar to RTO timeout.
2299 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2301 if (flag & FLAG_SACK_RENEGING) {
2302 struct inet_connection_sock *icsk = inet_csk(sk);
2303 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2305 tcp_enter_loss(sk, 1);
2306 icsk->icsk_retransmits++;
2307 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2308 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2309 icsk->icsk_rto, TCP_RTO_MAX);
2310 return 1;
2312 return 0;
2315 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2317 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2320 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2321 * counter when SACK is enabled (without SACK, sacked_out is used for
2322 * that purpose).
2324 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2325 * segments up to the highest received SACK block so far and holes in
2326 * between them.
2328 * With reordering, holes may still be in flight, so RFC3517 recovery
2329 * uses pure sacked_out (total number of SACKed segments) even though
2330 * it violates the RFC that uses duplicate ACKs, often these are equal
2331 * but when e.g. out-of-window ACKs or packet duplication occurs,
2332 * they differ. Since neither occurs due to loss, TCP should really
2333 * ignore them.
2335 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2337 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2340 static inline int tcp_skb_timedout(const struct sock *sk,
2341 const struct sk_buff *skb)
2343 return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2346 static inline int tcp_head_timedout(const struct sock *sk)
2348 const struct tcp_sock *tp = tcp_sk(sk);
2350 return tp->packets_out &&
2351 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2354 /* Linux NewReno/SACK/FACK/ECN state machine.
2355 * --------------------------------------
2357 * "Open" Normal state, no dubious events, fast path.
2358 * "Disorder" In all the respects it is "Open",
2359 * but requires a bit more attention. It is entered when
2360 * we see some SACKs or dupacks. It is split of "Open"
2361 * mainly to move some processing from fast path to slow one.
2362 * "CWR" CWND was reduced due to some Congestion Notification event.
2363 * It can be ECN, ICMP source quench, local device congestion.
2364 * "Recovery" CWND was reduced, we are fast-retransmitting.
2365 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2367 * tcp_fastretrans_alert() is entered:
2368 * - each incoming ACK, if state is not "Open"
2369 * - when arrived ACK is unusual, namely:
2370 * * SACK
2371 * * Duplicate ACK.
2372 * * ECN ECE.
2374 * Counting packets in flight is pretty simple.
2376 * in_flight = packets_out - left_out + retrans_out
2378 * packets_out is SND.NXT-SND.UNA counted in packets.
2380 * retrans_out is number of retransmitted segments.
2382 * left_out is number of segments left network, but not ACKed yet.
2384 * left_out = sacked_out + lost_out
2386 * sacked_out: Packets, which arrived to receiver out of order
2387 * and hence not ACKed. With SACKs this number is simply
2388 * amount of SACKed data. Even without SACKs
2389 * it is easy to give pretty reliable estimate of this number,
2390 * counting duplicate ACKs.
2392 * lost_out: Packets lost by network. TCP has no explicit
2393 * "loss notification" feedback from network (for now).
2394 * It means that this number can be only _guessed_.
2395 * Actually, it is the heuristics to predict lossage that
2396 * distinguishes different algorithms.
2398 * F.e. after RTO, when all the queue is considered as lost,
2399 * lost_out = packets_out and in_flight = retrans_out.
2401 * Essentially, we have now two algorithms counting
2402 * lost packets.
2404 * FACK: It is the simplest heuristics. As soon as we decided
2405 * that something is lost, we decide that _all_ not SACKed
2406 * packets until the most forward SACK are lost. I.e.
2407 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2408 * It is absolutely correct estimate, if network does not reorder
2409 * packets. And it loses any connection to reality when reordering
2410 * takes place. We use FACK by default until reordering
2411 * is suspected on the path to this destination.
2413 * NewReno: when Recovery is entered, we assume that one segment
2414 * is lost (classic Reno). While we are in Recovery and
2415 * a partial ACK arrives, we assume that one more packet
2416 * is lost (NewReno). This heuristics are the same in NewReno
2417 * and SACK.
2419 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2420 * deflation etc. CWND is real congestion window, never inflated, changes
2421 * only according to classic VJ rules.
2423 * Really tricky (and requiring careful tuning) part of algorithm
2424 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2425 * The first determines the moment _when_ we should reduce CWND and,
2426 * hence, slow down forward transmission. In fact, it determines the moment
2427 * when we decide that hole is caused by loss, rather than by a reorder.
2429 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2430 * holes, caused by lost packets.
2432 * And the most logically complicated part of algorithm is undo
2433 * heuristics. We detect false retransmits due to both too early
2434 * fast retransmit (reordering) and underestimated RTO, analyzing
2435 * timestamps and D-SACKs. When we detect that some segments were
2436 * retransmitted by mistake and CWND reduction was wrong, we undo
2437 * window reduction and abort recovery phase. This logic is hidden
2438 * inside several functions named tcp_try_undo_<something>.
2441 /* This function decides, when we should leave Disordered state
2442 * and enter Recovery phase, reducing congestion window.
2444 * Main question: may we further continue forward transmission
2445 * with the same cwnd?
2447 static int tcp_time_to_recover(struct sock *sk)
2449 struct tcp_sock *tp = tcp_sk(sk);
2450 __u32 packets_out;
2452 /* Do not perform any recovery during F-RTO algorithm */
2453 if (tp->frto_counter)
2454 return 0;
2456 /* Trick#1: The loss is proven. */
2457 if (tp->lost_out)
2458 return 1;
2460 /* Not-A-Trick#2 : Classic rule... */
2461 if (tcp_dupack_heuristics(tp) > tp->reordering)
2462 return 1;
2464 /* Trick#3 : when we use RFC2988 timer restart, fast
2465 * retransmit can be triggered by timeout of queue head.
2467 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2468 return 1;
2470 /* Trick#4: It is still not OK... But will it be useful to delay
2471 * recovery more?
2473 packets_out = tp->packets_out;
2474 if (packets_out <= tp->reordering &&
2475 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2476 !tcp_may_send_now(sk)) {
2477 /* We have nothing to send. This connection is limited
2478 * either by receiver window or by application.
2480 return 1;
2483 /* If a thin stream is detected, retransmit after first
2484 * received dupack. Employ only if SACK is supported in order
2485 * to avoid possible corner-case series of spurious retransmissions
2486 * Use only if there are no unsent data.
2488 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2489 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2490 tcp_is_sack(tp) && !tcp_send_head(sk))
2491 return 1;
2493 return 0;
2496 /* New heuristics: it is possible only after we switched to restart timer
2497 * each time when something is ACKed. Hence, we can detect timed out packets
2498 * during fast retransmit without falling to slow start.
2500 * Usefulness of this as is very questionable, since we should know which of
2501 * the segments is the next to timeout which is relatively expensive to find
2502 * in general case unless we add some data structure just for that. The
2503 * current approach certainly won't find the right one too often and when it
2504 * finally does find _something_ it usually marks large part of the window
2505 * right away (because a retransmission with a larger timestamp blocks the
2506 * loop from advancing). -ij
2508 static void tcp_timeout_skbs(struct sock *sk)
2510 struct tcp_sock *tp = tcp_sk(sk);
2511 struct sk_buff *skb;
2513 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2514 return;
2516 skb = tp->scoreboard_skb_hint;
2517 if (tp->scoreboard_skb_hint == NULL)
2518 skb = tcp_write_queue_head(sk);
2520 tcp_for_write_queue_from(skb, sk) {
2521 if (skb == tcp_send_head(sk))
2522 break;
2523 if (!tcp_skb_timedout(sk, skb))
2524 break;
2526 tcp_skb_mark_lost(tp, skb);
2529 tp->scoreboard_skb_hint = skb;
2531 tcp_verify_left_out(tp);
2534 /* Detect loss in event "A" above by marking head of queue up as lost.
2535 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2536 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2537 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2538 * the maximum SACKed segments to pass before reaching this limit.
2540 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2542 struct tcp_sock *tp = tcp_sk(sk);
2543 struct sk_buff *skb;
2544 int cnt, oldcnt;
2545 int err;
2546 unsigned int mss;
2547 /* Use SACK to deduce losses of new sequences sent during recovery */
2548 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2550 WARN_ON(packets > tp->packets_out);
2551 if (tp->lost_skb_hint) {
2552 skb = tp->lost_skb_hint;
2553 cnt = tp->lost_cnt_hint;
2554 /* Head already handled? */
2555 if (mark_head && skb != tcp_write_queue_head(sk))
2556 return;
2557 } else {
2558 skb = tcp_write_queue_head(sk);
2559 cnt = 0;
2562 tcp_for_write_queue_from(skb, sk) {
2563 if (skb == tcp_send_head(sk))
2564 break;
2565 /* TODO: do this better */
2566 /* this is not the most efficient way to do this... */
2567 tp->lost_skb_hint = skb;
2568 tp->lost_cnt_hint = cnt;
2570 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2571 break;
2573 oldcnt = cnt;
2574 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2575 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2576 cnt += tcp_skb_pcount(skb);
2578 if (cnt > packets) {
2579 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2580 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2581 (oldcnt >= packets))
2582 break;
2584 mss = skb_shinfo(skb)->gso_size;
2585 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2586 if (err < 0)
2587 break;
2588 cnt = packets;
2591 tcp_skb_mark_lost(tp, skb);
2593 if (mark_head)
2594 break;
2596 tcp_verify_left_out(tp);
2599 /* Account newly detected lost packet(s) */
2601 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2603 struct tcp_sock *tp = tcp_sk(sk);
2605 if (tcp_is_reno(tp)) {
2606 tcp_mark_head_lost(sk, 1, 1);
2607 } else if (tcp_is_fack(tp)) {
2608 int lost = tp->fackets_out - tp->reordering;
2609 if (lost <= 0)
2610 lost = 1;
2611 tcp_mark_head_lost(sk, lost, 0);
2612 } else {
2613 int sacked_upto = tp->sacked_out - tp->reordering;
2614 if (sacked_upto >= 0)
2615 tcp_mark_head_lost(sk, sacked_upto, 0);
2616 else if (fast_rexmit)
2617 tcp_mark_head_lost(sk, 1, 1);
2620 tcp_timeout_skbs(sk);
2623 /* CWND moderation, preventing bursts due to too big ACKs
2624 * in dubious situations.
2626 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2628 tp->snd_cwnd = min(tp->snd_cwnd,
2629 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2630 tp->snd_cwnd_stamp = tcp_time_stamp;
2633 /* Lower bound on congestion window is slow start threshold
2634 * unless congestion avoidance choice decides to overide it.
2636 static inline u32 tcp_cwnd_min(const struct sock *sk)
2638 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2640 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2643 /* Decrease cwnd each second ack. */
2644 static void tcp_cwnd_down(struct sock *sk, int flag)
2646 struct tcp_sock *tp = tcp_sk(sk);
2647 int decr = tp->snd_cwnd_cnt + 1;
2649 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2650 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2651 tp->snd_cwnd_cnt = decr & 1;
2652 decr >>= 1;
2654 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2655 tp->snd_cwnd -= decr;
2657 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2658 tp->snd_cwnd_stamp = tcp_time_stamp;
2662 /* Nothing was retransmitted or returned timestamp is less
2663 * than timestamp of the first retransmission.
2665 static inline int tcp_packet_delayed(const struct tcp_sock *tp)
2667 return !tp->retrans_stamp ||
2668 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2669 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2672 /* Undo procedures. */
2674 #if FASTRETRANS_DEBUG > 1
2675 static void DBGUNDO(struct sock *sk, const char *msg)
2677 struct tcp_sock *tp = tcp_sk(sk);
2678 struct inet_sock *inet = inet_sk(sk);
2680 if (sk->sk_family == AF_INET) {
2681 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2682 msg,
2683 &inet->inet_daddr, ntohs(inet->inet_dport),
2684 tp->snd_cwnd, tcp_left_out(tp),
2685 tp->snd_ssthresh, tp->prior_ssthresh,
2686 tp->packets_out);
2688 #if IS_ENABLED(CONFIG_IPV6)
2689 else if (sk->sk_family == AF_INET6) {
2690 struct ipv6_pinfo *np = inet6_sk(sk);
2691 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2692 msg,
2693 &np->daddr, ntohs(inet->inet_dport),
2694 tp->snd_cwnd, tcp_left_out(tp),
2695 tp->snd_ssthresh, tp->prior_ssthresh,
2696 tp->packets_out);
2698 #endif
2700 #else
2701 #define DBGUNDO(x...) do { } while (0)
2702 #endif
2704 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2706 struct tcp_sock *tp = tcp_sk(sk);
2708 if (tp->prior_ssthresh) {
2709 const struct inet_connection_sock *icsk = inet_csk(sk);
2711 if (icsk->icsk_ca_ops->undo_cwnd)
2712 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2713 else
2714 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2716 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2717 tp->snd_ssthresh = tp->prior_ssthresh;
2718 TCP_ECN_withdraw_cwr(tp);
2720 } else {
2721 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2723 tp->snd_cwnd_stamp = tcp_time_stamp;
2726 static inline int tcp_may_undo(const struct tcp_sock *tp)
2728 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2731 /* People celebrate: "We love our President!" */
2732 static int tcp_try_undo_recovery(struct sock *sk)
2734 struct tcp_sock *tp = tcp_sk(sk);
2736 if (tcp_may_undo(tp)) {
2737 int mib_idx;
2739 /* Happy end! We did not retransmit anything
2740 * or our original transmission succeeded.
2742 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2743 tcp_undo_cwr(sk, true);
2744 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2745 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2746 else
2747 mib_idx = LINUX_MIB_TCPFULLUNDO;
2749 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2750 tp->undo_marker = 0;
2752 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2753 /* Hold old state until something *above* high_seq
2754 * is ACKed. For Reno it is MUST to prevent false
2755 * fast retransmits (RFC2582). SACK TCP is safe. */
2756 tcp_moderate_cwnd(tp);
2757 return 1;
2759 tcp_set_ca_state(sk, TCP_CA_Open);
2760 return 0;
2763 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2764 static void tcp_try_undo_dsack(struct sock *sk)
2766 struct tcp_sock *tp = tcp_sk(sk);
2768 if (tp->undo_marker && !tp->undo_retrans) {
2769 DBGUNDO(sk, "D-SACK");
2770 tcp_undo_cwr(sk, true);
2771 tp->undo_marker = 0;
2772 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2776 /* We can clear retrans_stamp when there are no retransmissions in the
2777 * window. It would seem that it is trivially available for us in
2778 * tp->retrans_out, however, that kind of assumptions doesn't consider
2779 * what will happen if errors occur when sending retransmission for the
2780 * second time. ...It could the that such segment has only
2781 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2782 * the head skb is enough except for some reneging corner cases that
2783 * are not worth the effort.
2785 * Main reason for all this complexity is the fact that connection dying
2786 * time now depends on the validity of the retrans_stamp, in particular,
2787 * that successive retransmissions of a segment must not advance
2788 * retrans_stamp under any conditions.
2790 static int tcp_any_retrans_done(const struct sock *sk)
2792 const struct tcp_sock *tp = tcp_sk(sk);
2793 struct sk_buff *skb;
2795 if (tp->retrans_out)
2796 return 1;
2798 skb = tcp_write_queue_head(sk);
2799 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2800 return 1;
2802 return 0;
2805 /* Undo during fast recovery after partial ACK. */
2807 static int tcp_try_undo_partial(struct sock *sk, int acked)
2809 struct tcp_sock *tp = tcp_sk(sk);
2810 /* Partial ACK arrived. Force Hoe's retransmit. */
2811 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2813 if (tcp_may_undo(tp)) {
2814 /* Plain luck! Hole if filled with delayed
2815 * packet, rather than with a retransmit.
2817 if (!tcp_any_retrans_done(sk))
2818 tp->retrans_stamp = 0;
2820 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2822 DBGUNDO(sk, "Hoe");
2823 tcp_undo_cwr(sk, false);
2824 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2826 /* So... Do not make Hoe's retransmit yet.
2827 * If the first packet was delayed, the rest
2828 * ones are most probably delayed as well.
2830 failed = 0;
2832 return failed;
2835 /* Undo during loss recovery after partial ACK. */
2836 static int tcp_try_undo_loss(struct sock *sk)
2838 struct tcp_sock *tp = tcp_sk(sk);
2840 if (tcp_may_undo(tp)) {
2841 struct sk_buff *skb;
2842 tcp_for_write_queue(skb, sk) {
2843 if (skb == tcp_send_head(sk))
2844 break;
2845 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2848 tcp_clear_all_retrans_hints(tp);
2850 DBGUNDO(sk, "partial loss");
2851 tp->lost_out = 0;
2852 tcp_undo_cwr(sk, true);
2853 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2854 inet_csk(sk)->icsk_retransmits = 0;
2855 tp->undo_marker = 0;
2856 if (tcp_is_sack(tp))
2857 tcp_set_ca_state(sk, TCP_CA_Open);
2858 return 1;
2860 return 0;
2863 static inline void tcp_complete_cwr(struct sock *sk)
2865 struct tcp_sock *tp = tcp_sk(sk);
2867 /* Do not moderate cwnd if it's already undone in cwr or recovery. */
2868 if (tp->undo_marker) {
2869 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR) {
2870 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2871 tp->snd_cwnd_stamp = tcp_time_stamp;
2872 } else if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH) {
2873 /* PRR algorithm. */
2874 tp->snd_cwnd = tp->snd_ssthresh;
2875 tp->snd_cwnd_stamp = tcp_time_stamp;
2878 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2881 static void tcp_try_keep_open(struct sock *sk)
2883 struct tcp_sock *tp = tcp_sk(sk);
2884 int state = TCP_CA_Open;
2886 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2887 state = TCP_CA_Disorder;
2889 if (inet_csk(sk)->icsk_ca_state != state) {
2890 tcp_set_ca_state(sk, state);
2891 tp->high_seq = tp->snd_nxt;
2895 static void tcp_try_to_open(struct sock *sk, int flag)
2897 struct tcp_sock *tp = tcp_sk(sk);
2899 tcp_verify_left_out(tp);
2901 if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2902 tp->retrans_stamp = 0;
2904 if (flag & FLAG_ECE)
2905 tcp_enter_cwr(sk, 1);
2907 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2908 tcp_try_keep_open(sk);
2909 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2910 tcp_moderate_cwnd(tp);
2911 } else {
2912 tcp_cwnd_down(sk, flag);
2916 static void tcp_mtup_probe_failed(struct sock *sk)
2918 struct inet_connection_sock *icsk = inet_csk(sk);
2920 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2921 icsk->icsk_mtup.probe_size = 0;
2924 static void tcp_mtup_probe_success(struct sock *sk)
2926 struct tcp_sock *tp = tcp_sk(sk);
2927 struct inet_connection_sock *icsk = inet_csk(sk);
2929 /* FIXME: breaks with very large cwnd */
2930 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2931 tp->snd_cwnd = tp->snd_cwnd *
2932 tcp_mss_to_mtu(sk, tp->mss_cache) /
2933 icsk->icsk_mtup.probe_size;
2934 tp->snd_cwnd_cnt = 0;
2935 tp->snd_cwnd_stamp = tcp_time_stamp;
2936 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2938 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2939 icsk->icsk_mtup.probe_size = 0;
2940 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2943 /* Do a simple retransmit without using the backoff mechanisms in
2944 * tcp_timer. This is used for path mtu discovery.
2945 * The socket is already locked here.
2947 void tcp_simple_retransmit(struct sock *sk)
2949 const struct inet_connection_sock *icsk = inet_csk(sk);
2950 struct tcp_sock *tp = tcp_sk(sk);
2951 struct sk_buff *skb;
2952 unsigned int mss = tcp_current_mss(sk);
2953 u32 prior_lost = tp->lost_out;
2955 tcp_for_write_queue(skb, sk) {
2956 if (skb == tcp_send_head(sk))
2957 break;
2958 if (tcp_skb_seglen(skb) > mss &&
2959 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2960 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2961 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2962 tp->retrans_out -= tcp_skb_pcount(skb);
2964 tcp_skb_mark_lost_uncond_verify(tp, skb);
2968 tcp_clear_retrans_hints_partial(tp);
2970 if (prior_lost == tp->lost_out)
2971 return;
2973 if (tcp_is_reno(tp))
2974 tcp_limit_reno_sacked(tp);
2976 tcp_verify_left_out(tp);
2978 /* Don't muck with the congestion window here.
2979 * Reason is that we do not increase amount of _data_
2980 * in network, but units changed and effective
2981 * cwnd/ssthresh really reduced now.
2983 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2984 tp->high_seq = tp->snd_nxt;
2985 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2986 tp->prior_ssthresh = 0;
2987 tp->undo_marker = 0;
2988 tcp_set_ca_state(sk, TCP_CA_Loss);
2990 tcp_xmit_retransmit_queue(sk);
2992 EXPORT_SYMBOL(tcp_simple_retransmit);
2994 /* This function implements the PRR algorithm, specifcally the PRR-SSRB
2995 * (proportional rate reduction with slow start reduction bound) as described in
2996 * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
2997 * It computes the number of packets to send (sndcnt) based on packets newly
2998 * delivered:
2999 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
3000 * cwnd reductions across a full RTT.
3001 * 2) If packets in flight is lower than ssthresh (such as due to excess
3002 * losses and/or application stalls), do not perform any further cwnd
3003 * reductions, but instead slow start up to ssthresh.
3005 static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
3006 int fast_rexmit, int flag)
3008 struct tcp_sock *tp = tcp_sk(sk);
3009 int sndcnt = 0;
3010 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
3012 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
3013 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
3014 tp->prior_cwnd - 1;
3015 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
3016 } else {
3017 sndcnt = min_t(int, delta,
3018 max_t(int, tp->prr_delivered - tp->prr_out,
3019 newly_acked_sacked) + 1);
3022 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
3023 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
3026 /* Process an event, which can update packets-in-flight not trivially.
3027 * Main goal of this function is to calculate new estimate for left_out,
3028 * taking into account both packets sitting in receiver's buffer and
3029 * packets lost by network.
3031 * Besides that it does CWND reduction, when packet loss is detected
3032 * and changes state of machine.
3034 * It does _not_ decide what to send, it is made in function
3035 * tcp_xmit_retransmit_queue().
3037 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
3038 int newly_acked_sacked, bool is_dupack,
3039 int flag)
3041 struct inet_connection_sock *icsk = inet_csk(sk);
3042 struct tcp_sock *tp = tcp_sk(sk);
3043 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
3044 (tcp_fackets_out(tp) > tp->reordering));
3045 int fast_rexmit = 0, mib_idx;
3047 if (WARN_ON(!tp->packets_out && tp->sacked_out))
3048 tp->sacked_out = 0;
3049 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
3050 tp->fackets_out = 0;
3052 /* Now state machine starts.
3053 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3054 if (flag & FLAG_ECE)
3055 tp->prior_ssthresh = 0;
3057 /* B. In all the states check for reneging SACKs. */
3058 if (tcp_check_sack_reneging(sk, flag))
3059 return;
3061 /* C. Check consistency of the current state. */
3062 tcp_verify_left_out(tp);
3064 /* D. Check state exit conditions. State can be terminated
3065 * when high_seq is ACKed. */
3066 if (icsk->icsk_ca_state == TCP_CA_Open) {
3067 WARN_ON(tp->retrans_out != 0);
3068 tp->retrans_stamp = 0;
3069 } else if (!before(tp->snd_una, tp->high_seq)) {
3070 switch (icsk->icsk_ca_state) {
3071 case TCP_CA_Loss:
3072 icsk->icsk_retransmits = 0;
3073 if (tcp_try_undo_recovery(sk))
3074 return;
3075 break;
3077 case TCP_CA_CWR:
3078 /* CWR is to be held something *above* high_seq
3079 * is ACKed for CWR bit to reach receiver. */
3080 if (tp->snd_una != tp->high_seq) {
3081 tcp_complete_cwr(sk);
3082 tcp_set_ca_state(sk, TCP_CA_Open);
3084 break;
3086 case TCP_CA_Recovery:
3087 if (tcp_is_reno(tp))
3088 tcp_reset_reno_sack(tp);
3089 if (tcp_try_undo_recovery(sk))
3090 return;
3091 tcp_complete_cwr(sk);
3092 break;
3096 /* E. Process state. */
3097 switch (icsk->icsk_ca_state) {
3098 case TCP_CA_Recovery:
3099 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3100 if (tcp_is_reno(tp) && is_dupack)
3101 tcp_add_reno_sack(sk);
3102 } else
3103 do_lost = tcp_try_undo_partial(sk, pkts_acked);
3104 break;
3105 case TCP_CA_Loss:
3106 if (flag & FLAG_DATA_ACKED)
3107 icsk->icsk_retransmits = 0;
3108 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3109 tcp_reset_reno_sack(tp);
3110 if (!tcp_try_undo_loss(sk)) {
3111 tcp_moderate_cwnd(tp);
3112 tcp_xmit_retransmit_queue(sk);
3113 return;
3115 if (icsk->icsk_ca_state != TCP_CA_Open)
3116 return;
3117 /* Loss is undone; fall through to processing in Open state. */
3118 default:
3119 if (tcp_is_reno(tp)) {
3120 if (flag & FLAG_SND_UNA_ADVANCED)
3121 tcp_reset_reno_sack(tp);
3122 if (is_dupack)
3123 tcp_add_reno_sack(sk);
3126 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3127 tcp_try_undo_dsack(sk);
3129 if (!tcp_time_to_recover(sk)) {
3130 tcp_try_to_open(sk, flag);
3131 return;
3134 /* MTU probe failure: don't reduce cwnd */
3135 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3136 icsk->icsk_mtup.probe_size &&
3137 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3138 tcp_mtup_probe_failed(sk);
3139 /* Restores the reduction we did in tcp_mtup_probe() */
3140 tp->snd_cwnd++;
3141 tcp_simple_retransmit(sk);
3142 return;
3145 /* Otherwise enter Recovery state */
3147 if (tcp_is_reno(tp))
3148 mib_idx = LINUX_MIB_TCPRENORECOVERY;
3149 else
3150 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3152 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3154 tp->high_seq = tp->snd_nxt;
3155 tp->prior_ssthresh = 0;
3156 tp->undo_marker = tp->snd_una;
3157 tp->undo_retrans = tp->retrans_out;
3159 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3160 if (!(flag & FLAG_ECE))
3161 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3162 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3163 TCP_ECN_queue_cwr(tp);
3166 tp->bytes_acked = 0;
3167 tp->snd_cwnd_cnt = 0;
3168 tp->prior_cwnd = tp->snd_cwnd;
3169 tp->prr_delivered = 0;
3170 tp->prr_out = 0;
3171 tcp_set_ca_state(sk, TCP_CA_Recovery);
3172 fast_rexmit = 1;
3175 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3176 tcp_update_scoreboard(sk, fast_rexmit);
3177 tp->prr_delivered += newly_acked_sacked;
3178 tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
3179 tcp_xmit_retransmit_queue(sk);
3182 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3184 tcp_rtt_estimator(sk, seq_rtt);
3185 tcp_set_rto(sk);
3186 inet_csk(sk)->icsk_backoff = 0;
3188 EXPORT_SYMBOL(tcp_valid_rtt_meas);
3190 /* Read draft-ietf-tcplw-high-performance before mucking
3191 * with this code. (Supersedes RFC1323)
3193 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3195 /* RTTM Rule: A TSecr value received in a segment is used to
3196 * update the averaged RTT measurement only if the segment
3197 * acknowledges some new data, i.e., only if it advances the
3198 * left edge of the send window.
3200 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3201 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3203 * Changed: reset backoff as soon as we see the first valid sample.
3204 * If we do not, we get strongly overestimated rto. With timestamps
3205 * samples are accepted even from very old segments: f.e., when rtt=1
3206 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3207 * answer arrives rto becomes 120 seconds! If at least one of segments
3208 * in window is lost... Voila. --ANK (010210)
3210 struct tcp_sock *tp = tcp_sk(sk);
3212 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3215 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3217 /* We don't have a timestamp. Can only use
3218 * packets that are not retransmitted to determine
3219 * rtt estimates. Also, we must not reset the
3220 * backoff for rto until we get a non-retransmitted
3221 * packet. This allows us to deal with a situation
3222 * where the network delay has increased suddenly.
3223 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3226 if (flag & FLAG_RETRANS_DATA_ACKED)
3227 return;
3229 tcp_valid_rtt_meas(sk, seq_rtt);
3232 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3233 const s32 seq_rtt)
3235 const struct tcp_sock *tp = tcp_sk(sk);
3236 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3237 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3238 tcp_ack_saw_tstamp(sk, flag);
3239 else if (seq_rtt >= 0)
3240 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3243 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3245 const struct inet_connection_sock *icsk = inet_csk(sk);
3246 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3247 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3250 /* Restart timer after forward progress on connection.
3251 * RFC2988 recommends to restart timer to now+rto.
3253 static void tcp_rearm_rto(struct sock *sk)
3255 const struct tcp_sock *tp = tcp_sk(sk);
3257 if (!tp->packets_out) {
3258 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3259 } else {
3260 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3261 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3265 /* If we get here, the whole TSO packet has not been acked. */
3266 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3268 struct tcp_sock *tp = tcp_sk(sk);
3269 u32 packets_acked;
3271 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3273 packets_acked = tcp_skb_pcount(skb);
3274 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3275 return 0;
3276 packets_acked -= tcp_skb_pcount(skb);
3278 if (packets_acked) {
3279 BUG_ON(tcp_skb_pcount(skb) == 0);
3280 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3283 return packets_acked;
3286 /* Remove acknowledged frames from the retransmission queue. If our packet
3287 * is before the ack sequence we can discard it as it's confirmed to have
3288 * arrived at the other end.
3290 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3291 u32 prior_snd_una)
3293 struct tcp_sock *tp = tcp_sk(sk);
3294 const struct inet_connection_sock *icsk = inet_csk(sk);
3295 struct sk_buff *skb;
3296 u32 now = tcp_time_stamp;
3297 int fully_acked = 1;
3298 int flag = 0;
3299 u32 pkts_acked = 0;
3300 u32 reord = tp->packets_out;
3301 u32 prior_sacked = tp->sacked_out;
3302 s32 seq_rtt = -1;
3303 s32 ca_seq_rtt = -1;
3304 ktime_t last_ackt = net_invalid_timestamp();
3306 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3307 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3308 u32 acked_pcount;
3309 u8 sacked = scb->sacked;
3311 /* Determine how many packets and what bytes were acked, tso and else */
3312 if (after(scb->end_seq, tp->snd_una)) {
3313 if (tcp_skb_pcount(skb) == 1 ||
3314 !after(tp->snd_una, scb->seq))
3315 break;
3317 acked_pcount = tcp_tso_acked(sk, skb);
3318 if (!acked_pcount)
3319 break;
3321 fully_acked = 0;
3322 } else {
3323 acked_pcount = tcp_skb_pcount(skb);
3326 if (sacked & TCPCB_RETRANS) {
3327 if (sacked & TCPCB_SACKED_RETRANS)
3328 tp->retrans_out -= acked_pcount;
3329 flag |= FLAG_RETRANS_DATA_ACKED;
3330 ca_seq_rtt = -1;
3331 seq_rtt = -1;
3332 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3333 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3334 } else {
3335 ca_seq_rtt = now - scb->when;
3336 last_ackt = skb->tstamp;
3337 if (seq_rtt < 0) {
3338 seq_rtt = ca_seq_rtt;
3340 if (!(sacked & TCPCB_SACKED_ACKED))
3341 reord = min(pkts_acked, reord);
3344 if (sacked & TCPCB_SACKED_ACKED)
3345 tp->sacked_out -= acked_pcount;
3346 if (sacked & TCPCB_LOST)
3347 tp->lost_out -= acked_pcount;
3349 tp->packets_out -= acked_pcount;
3350 pkts_acked += acked_pcount;
3352 /* Initial outgoing SYN's get put onto the write_queue
3353 * just like anything else we transmit. It is not
3354 * true data, and if we misinform our callers that
3355 * this ACK acks real data, we will erroneously exit
3356 * connection startup slow start one packet too
3357 * quickly. This is severely frowned upon behavior.
3359 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3360 flag |= FLAG_DATA_ACKED;
3361 } else {
3362 flag |= FLAG_SYN_ACKED;
3363 tp->retrans_stamp = 0;
3366 if (!fully_acked)
3367 break;
3369 tcp_unlink_write_queue(skb, sk);
3370 sk_wmem_free_skb(sk, skb);
3371 tp->scoreboard_skb_hint = NULL;
3372 if (skb == tp->retransmit_skb_hint)
3373 tp->retransmit_skb_hint = NULL;
3374 if (skb == tp->lost_skb_hint)
3375 tp->lost_skb_hint = NULL;
3378 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3379 tp->snd_up = tp->snd_una;
3381 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3382 flag |= FLAG_SACK_RENEGING;
3384 if (flag & FLAG_ACKED) {
3385 const struct tcp_congestion_ops *ca_ops
3386 = inet_csk(sk)->icsk_ca_ops;
3388 if (unlikely(icsk->icsk_mtup.probe_size &&
3389 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3390 tcp_mtup_probe_success(sk);
3393 tcp_ack_update_rtt(sk, flag, seq_rtt);
3394 tcp_rearm_rto(sk);
3396 if (tcp_is_reno(tp)) {
3397 tcp_remove_reno_sacks(sk, pkts_acked);
3398 } else {
3399 int delta;
3401 /* Non-retransmitted hole got filled? That's reordering */
3402 if (reord < prior_fackets)
3403 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3405 delta = tcp_is_fack(tp) ? pkts_acked :
3406 prior_sacked - tp->sacked_out;
3407 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3410 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3412 if (ca_ops->pkts_acked) {
3413 s32 rtt_us = -1;
3415 /* Is the ACK triggering packet unambiguous? */
3416 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3417 /* High resolution needed and available? */
3418 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3419 !ktime_equal(last_ackt,
3420 net_invalid_timestamp()))
3421 rtt_us = ktime_us_delta(ktime_get_real(),
3422 last_ackt);
3423 else if (ca_seq_rtt >= 0)
3424 rtt_us = jiffies_to_usecs(ca_seq_rtt);
3427 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3431 #if FASTRETRANS_DEBUG > 0
3432 WARN_ON((int)tp->sacked_out < 0);
3433 WARN_ON((int)tp->lost_out < 0);
3434 WARN_ON((int)tp->retrans_out < 0);
3435 if (!tp->packets_out && tcp_is_sack(tp)) {
3436 icsk = inet_csk(sk);
3437 if (tp->lost_out) {
3438 printk(KERN_DEBUG "Leak l=%u %d\n",
3439 tp->lost_out, icsk->icsk_ca_state);
3440 tp->lost_out = 0;
3442 if (tp->sacked_out) {
3443 printk(KERN_DEBUG "Leak s=%u %d\n",
3444 tp->sacked_out, icsk->icsk_ca_state);
3445 tp->sacked_out = 0;
3447 if (tp->retrans_out) {
3448 printk(KERN_DEBUG "Leak r=%u %d\n",
3449 tp->retrans_out, icsk->icsk_ca_state);
3450 tp->retrans_out = 0;
3453 #endif
3454 return flag;
3457 static void tcp_ack_probe(struct sock *sk)
3459 const struct tcp_sock *tp = tcp_sk(sk);
3460 struct inet_connection_sock *icsk = inet_csk(sk);
3462 /* Was it a usable window open? */
3464 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3465 icsk->icsk_backoff = 0;
3466 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3467 /* Socket must be waked up by subsequent tcp_data_snd_check().
3468 * This function is not for random using!
3470 } else {
3471 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3472 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3473 TCP_RTO_MAX);
3477 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3479 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3480 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3483 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3485 const struct tcp_sock *tp = tcp_sk(sk);
3486 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3487 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3490 /* Check that window update is acceptable.
3491 * The function assumes that snd_una<=ack<=snd_next.
3493 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3494 const u32 ack, const u32 ack_seq,
3495 const u32 nwin)
3497 return after(ack, tp->snd_una) ||
3498 after(ack_seq, tp->snd_wl1) ||
3499 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3502 /* Update our send window.
3504 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3505 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3507 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3508 u32 ack_seq)
3510 struct tcp_sock *tp = tcp_sk(sk);
3511 int flag = 0;
3512 u32 nwin = ntohs(tcp_hdr(skb)->window);
3514 if (likely(!tcp_hdr(skb)->syn))
3515 nwin <<= tp->rx_opt.snd_wscale;
3517 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3518 flag |= FLAG_WIN_UPDATE;
3519 tcp_update_wl(tp, ack_seq);
3521 if (tp->snd_wnd != nwin) {
3522 tp->snd_wnd = nwin;
3524 /* Note, it is the only place, where
3525 * fast path is recovered for sending TCP.
3527 tp->pred_flags = 0;
3528 tcp_fast_path_check(sk);
3530 if (nwin > tp->max_window) {
3531 tp->max_window = nwin;
3532 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3537 tp->snd_una = ack;
3539 return flag;
3542 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3543 * continue in congestion avoidance.
3545 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3547 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3548 tp->snd_cwnd_cnt = 0;
3549 tp->bytes_acked = 0;
3550 TCP_ECN_queue_cwr(tp);
3551 tcp_moderate_cwnd(tp);
3554 /* A conservative spurious RTO response algorithm: reduce cwnd using
3555 * rate halving and continue in congestion avoidance.
3557 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3559 tcp_enter_cwr(sk, 0);
3562 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3564 if (flag & FLAG_ECE)
3565 tcp_ratehalving_spur_to_response(sk);
3566 else
3567 tcp_undo_cwr(sk, true);
3570 /* F-RTO spurious RTO detection algorithm (RFC4138)
3572 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3573 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3574 * window (but not to or beyond highest sequence sent before RTO):
3575 * On First ACK, send two new segments out.
3576 * On Second ACK, RTO was likely spurious. Do spurious response (response
3577 * algorithm is not part of the F-RTO detection algorithm
3578 * given in RFC4138 but can be selected separately).
3579 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3580 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3581 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3582 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3584 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3585 * original window even after we transmit two new data segments.
3587 * SACK version:
3588 * on first step, wait until first cumulative ACK arrives, then move to
3589 * the second step. In second step, the next ACK decides.
3591 * F-RTO is implemented (mainly) in four functions:
3592 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3593 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3594 * called when tcp_use_frto() showed green light
3595 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3596 * - tcp_enter_frto_loss() is called if there is not enough evidence
3597 * to prove that the RTO is indeed spurious. It transfers the control
3598 * from F-RTO to the conventional RTO recovery
3600 static int tcp_process_frto(struct sock *sk, int flag)
3602 struct tcp_sock *tp = tcp_sk(sk);
3604 tcp_verify_left_out(tp);
3606 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3607 if (flag & FLAG_DATA_ACKED)
3608 inet_csk(sk)->icsk_retransmits = 0;
3610 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3611 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3612 tp->undo_marker = 0;
3614 if (!before(tp->snd_una, tp->frto_highmark)) {
3615 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3616 return 1;
3619 if (!tcp_is_sackfrto(tp)) {
3620 /* RFC4138 shortcoming in step 2; should also have case c):
3621 * ACK isn't duplicate nor advances window, e.g., opposite dir
3622 * data, winupdate
3624 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3625 return 1;
3627 if (!(flag & FLAG_DATA_ACKED)) {
3628 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3629 flag);
3630 return 1;
3632 } else {
3633 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3634 /* Prevent sending of new data. */
3635 tp->snd_cwnd = min(tp->snd_cwnd,
3636 tcp_packets_in_flight(tp));
3637 return 1;
3640 if ((tp->frto_counter >= 2) &&
3641 (!(flag & FLAG_FORWARD_PROGRESS) ||
3642 ((flag & FLAG_DATA_SACKED) &&
3643 !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3644 /* RFC4138 shortcoming (see comment above) */
3645 if (!(flag & FLAG_FORWARD_PROGRESS) &&
3646 (flag & FLAG_NOT_DUP))
3647 return 1;
3649 tcp_enter_frto_loss(sk, 3, flag);
3650 return 1;
3654 if (tp->frto_counter == 1) {
3655 /* tcp_may_send_now needs to see updated state */
3656 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3657 tp->frto_counter = 2;
3659 if (!tcp_may_send_now(sk))
3660 tcp_enter_frto_loss(sk, 2, flag);
3662 return 1;
3663 } else {
3664 switch (sysctl_tcp_frto_response) {
3665 case 2:
3666 tcp_undo_spur_to_response(sk, flag);
3667 break;
3668 case 1:
3669 tcp_conservative_spur_to_response(tp);
3670 break;
3671 default:
3672 tcp_ratehalving_spur_to_response(sk);
3673 break;
3675 tp->frto_counter = 0;
3676 tp->undo_marker = 0;
3677 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3679 return 0;
3682 /* This routine deals with incoming acks, but not outgoing ones. */
3683 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3685 struct inet_connection_sock *icsk = inet_csk(sk);
3686 struct tcp_sock *tp = tcp_sk(sk);
3687 u32 prior_snd_una = tp->snd_una;
3688 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3689 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3690 bool is_dupack = false;
3691 u32 prior_in_flight;
3692 u32 prior_fackets;
3693 int prior_packets;
3694 int prior_sacked = tp->sacked_out;
3695 int pkts_acked = 0;
3696 int newly_acked_sacked = 0;
3697 int frto_cwnd = 0;
3699 /* If the ack is older than previous acks
3700 * then we can probably ignore it.
3702 if (before(ack, prior_snd_una))
3703 goto old_ack;
3705 /* If the ack includes data we haven't sent yet, discard
3706 * this segment (RFC793 Section 3.9).
3708 if (after(ack, tp->snd_nxt))
3709 goto invalid_ack;
3711 if (after(ack, prior_snd_una))
3712 flag |= FLAG_SND_UNA_ADVANCED;
3714 if (sysctl_tcp_abc) {
3715 if (icsk->icsk_ca_state < TCP_CA_CWR)
3716 tp->bytes_acked += ack - prior_snd_una;
3717 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3718 /* we assume just one segment left network */
3719 tp->bytes_acked += min(ack - prior_snd_una,
3720 tp->mss_cache);
3723 prior_fackets = tp->fackets_out;
3724 prior_in_flight = tcp_packets_in_flight(tp);
3726 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3727 /* Window is constant, pure forward advance.
3728 * No more checks are required.
3729 * Note, we use the fact that SND.UNA>=SND.WL2.
3731 tcp_update_wl(tp, ack_seq);
3732 tp->snd_una = ack;
3733 flag |= FLAG_WIN_UPDATE;
3735 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3737 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3738 } else {
3739 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3740 flag |= FLAG_DATA;
3741 else
3742 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3744 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3746 if (TCP_SKB_CB(skb)->sacked)
3747 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3749 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3750 flag |= FLAG_ECE;
3752 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3755 /* We passed data and got it acked, remove any soft error
3756 * log. Something worked...
3758 sk->sk_err_soft = 0;
3759 icsk->icsk_probes_out = 0;
3760 tp->rcv_tstamp = tcp_time_stamp;
3761 prior_packets = tp->packets_out;
3762 if (!prior_packets)
3763 goto no_queue;
3765 /* See if we can take anything off of the retransmit queue. */
3766 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3768 pkts_acked = prior_packets - tp->packets_out;
3769 newly_acked_sacked = (prior_packets - prior_sacked) -
3770 (tp->packets_out - tp->sacked_out);
3772 if (tp->frto_counter)
3773 frto_cwnd = tcp_process_frto(sk, flag);
3774 /* Guarantee sacktag reordering detection against wrap-arounds */
3775 if (before(tp->frto_highmark, tp->snd_una))
3776 tp->frto_highmark = 0;
3778 if (tcp_ack_is_dubious(sk, flag)) {
3779 /* Advance CWND, if state allows this. */
3780 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3781 tcp_may_raise_cwnd(sk, flag))
3782 tcp_cong_avoid(sk, ack, prior_in_flight);
3783 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3784 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3785 is_dupack, flag);
3786 } else {
3787 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3788 tcp_cong_avoid(sk, ack, prior_in_flight);
3791 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3792 dst_confirm(__sk_dst_get(sk));
3794 return 1;
3796 no_queue:
3797 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3798 if (flag & FLAG_DSACKING_ACK)
3799 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3800 is_dupack, flag);
3801 /* If this ack opens up a zero window, clear backoff. It was
3802 * being used to time the probes, and is probably far higher than
3803 * it needs to be for normal retransmission.
3805 if (tcp_send_head(sk))
3806 tcp_ack_probe(sk);
3807 return 1;
3809 invalid_ack:
3810 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3811 return -1;
3813 old_ack:
3814 /* If data was SACKed, tag it and see if we should send more data.
3815 * If data was DSACKed, see if we can undo a cwnd reduction.
3817 if (TCP_SKB_CB(skb)->sacked) {
3818 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3819 newly_acked_sacked = tp->sacked_out - prior_sacked;
3820 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3821 is_dupack, flag);
3824 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3825 return 0;
3828 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3829 * But, this can also be called on packets in the established flow when
3830 * the fast version below fails.
3832 void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3833 const u8 **hvpp, int estab)
3835 const unsigned char *ptr;
3836 const struct tcphdr *th = tcp_hdr(skb);
3837 int length = (th->doff * 4) - sizeof(struct tcphdr);
3839 ptr = (const unsigned char *)(th + 1);
3840 opt_rx->saw_tstamp = 0;
3842 while (length > 0) {
3843 int opcode = *ptr++;
3844 int opsize;
3846 switch (opcode) {
3847 case TCPOPT_EOL:
3848 return;
3849 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3850 length--;
3851 continue;
3852 default:
3853 opsize = *ptr++;
3854 if (opsize < 2) /* "silly options" */
3855 return;
3856 if (opsize > length)
3857 return; /* don't parse partial options */
3858 switch (opcode) {
3859 case TCPOPT_MSS:
3860 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3861 u16 in_mss = get_unaligned_be16(ptr);
3862 if (in_mss) {
3863 if (opt_rx->user_mss &&
3864 opt_rx->user_mss < in_mss)
3865 in_mss = opt_rx->user_mss;
3866 opt_rx->mss_clamp = in_mss;
3869 break;
3870 case TCPOPT_WINDOW:
3871 if (opsize == TCPOLEN_WINDOW && th->syn &&
3872 !estab && sysctl_tcp_window_scaling) {
3873 __u8 snd_wscale = *(__u8 *)ptr;
3874 opt_rx->wscale_ok = 1;
3875 if (snd_wscale > 14) {
3876 if (net_ratelimit())
3877 printk(KERN_INFO "tcp_parse_options: Illegal window "
3878 "scaling value %d >14 received.\n",
3879 snd_wscale);
3880 snd_wscale = 14;
3882 opt_rx->snd_wscale = snd_wscale;
3884 break;
3885 case TCPOPT_TIMESTAMP:
3886 if ((opsize == TCPOLEN_TIMESTAMP) &&
3887 ((estab && opt_rx->tstamp_ok) ||
3888 (!estab && sysctl_tcp_timestamps))) {
3889 opt_rx->saw_tstamp = 1;
3890 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3891 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3893 break;
3894 case TCPOPT_SACK_PERM:
3895 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3896 !estab && sysctl_tcp_sack) {
3897 opt_rx->sack_ok = TCP_SACK_SEEN;
3898 tcp_sack_reset(opt_rx);
3900 break;
3902 case TCPOPT_SACK:
3903 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3904 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3905 opt_rx->sack_ok) {
3906 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3908 break;
3909 #ifdef CONFIG_TCP_MD5SIG
3910 case TCPOPT_MD5SIG:
3912 * The MD5 Hash has already been
3913 * checked (see tcp_v{4,6}_do_rcv()).
3915 break;
3916 #endif
3917 case TCPOPT_COOKIE:
3918 /* This option is variable length.
3920 switch (opsize) {
3921 case TCPOLEN_COOKIE_BASE:
3922 /* not yet implemented */
3923 break;
3924 case TCPOLEN_COOKIE_PAIR:
3925 /* not yet implemented */
3926 break;
3927 case TCPOLEN_COOKIE_MIN+0:
3928 case TCPOLEN_COOKIE_MIN+2:
3929 case TCPOLEN_COOKIE_MIN+4:
3930 case TCPOLEN_COOKIE_MIN+6:
3931 case TCPOLEN_COOKIE_MAX:
3932 /* 16-bit multiple */
3933 opt_rx->cookie_plus = opsize;
3934 *hvpp = ptr;
3935 break;
3936 default:
3937 /* ignore option */
3938 break;
3940 break;
3943 ptr += opsize-2;
3944 length -= opsize;
3948 EXPORT_SYMBOL(tcp_parse_options);
3950 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3952 const __be32 *ptr = (const __be32 *)(th + 1);
3954 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3955 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3956 tp->rx_opt.saw_tstamp = 1;
3957 ++ptr;
3958 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3959 ++ptr;
3960 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3961 return 1;
3963 return 0;
3966 /* Fast parse options. This hopes to only see timestamps.
3967 * If it is wrong it falls back on tcp_parse_options().
3969 static int tcp_fast_parse_options(const struct sk_buff *skb,
3970 const struct tcphdr *th,
3971 struct tcp_sock *tp, const u8 **hvpp)
3973 /* In the spirit of fast parsing, compare doff directly to constant
3974 * values. Because equality is used, short doff can be ignored here.
3976 if (th->doff == (sizeof(*th) / 4)) {
3977 tp->rx_opt.saw_tstamp = 0;
3978 return 0;
3979 } else if (tp->rx_opt.tstamp_ok &&
3980 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3981 if (tcp_parse_aligned_timestamp(tp, th))
3982 return 1;
3984 tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3985 return 1;
3988 #ifdef CONFIG_TCP_MD5SIG
3990 * Parse MD5 Signature option
3992 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3994 int length = (th->doff << 2) - sizeof(*th);
3995 const u8 *ptr = (const u8 *)(th + 1);
3997 /* If the TCP option is too short, we can short cut */
3998 if (length < TCPOLEN_MD5SIG)
3999 return NULL;
4001 while (length > 0) {
4002 int opcode = *ptr++;
4003 int opsize;
4005 switch(opcode) {
4006 case TCPOPT_EOL:
4007 return NULL;
4008 case TCPOPT_NOP:
4009 length--;
4010 continue;
4011 default:
4012 opsize = *ptr++;
4013 if (opsize < 2 || opsize > length)
4014 return NULL;
4015 if (opcode == TCPOPT_MD5SIG)
4016 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4018 ptr += opsize - 2;
4019 length -= opsize;
4021 return NULL;
4023 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4024 #endif
4026 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
4028 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
4029 tp->rx_opt.ts_recent_stamp = get_seconds();
4032 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
4034 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
4035 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
4036 * extra check below makes sure this can only happen
4037 * for pure ACK frames. -DaveM
4039 * Not only, also it occurs for expired timestamps.
4042 if (tcp_paws_check(&tp->rx_opt, 0))
4043 tcp_store_ts_recent(tp);
4047 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4049 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4050 * it can pass through stack. So, the following predicate verifies that
4051 * this segment is not used for anything but congestion avoidance or
4052 * fast retransmit. Moreover, we even are able to eliminate most of such
4053 * second order effects, if we apply some small "replay" window (~RTO)
4054 * to timestamp space.
4056 * All these measures still do not guarantee that we reject wrapped ACKs
4057 * on networks with high bandwidth, when sequence space is recycled fastly,
4058 * but it guarantees that such events will be very rare and do not affect
4059 * connection seriously. This doesn't look nice, but alas, PAWS is really
4060 * buggy extension.
4062 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4063 * states that events when retransmit arrives after original data are rare.
4064 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4065 * the biggest problem on large power networks even with minor reordering.
4066 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4067 * up to bandwidth of 18Gigabit/sec. 8) ]
4070 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4072 const struct tcp_sock *tp = tcp_sk(sk);
4073 const struct tcphdr *th = tcp_hdr(skb);
4074 u32 seq = TCP_SKB_CB(skb)->seq;
4075 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4077 return (/* 1. Pure ACK with correct sequence number. */
4078 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4080 /* 2. ... and duplicate ACK. */
4081 ack == tp->snd_una &&
4083 /* 3. ... and does not update window. */
4084 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4086 /* 4. ... and sits in replay window. */
4087 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4090 static inline int tcp_paws_discard(const struct sock *sk,
4091 const struct sk_buff *skb)
4093 const struct tcp_sock *tp = tcp_sk(sk);
4095 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4096 !tcp_disordered_ack(sk, skb);
4099 /* Check segment sequence number for validity.
4101 * Segment controls are considered valid, if the segment
4102 * fits to the window after truncation to the window. Acceptability
4103 * of data (and SYN, FIN, of course) is checked separately.
4104 * See tcp_data_queue(), for example.
4106 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4107 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4108 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4109 * (borrowed from freebsd)
4112 static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4114 return !before(end_seq, tp->rcv_wup) &&
4115 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4118 /* When we get a reset we do this. */
4119 static void tcp_reset(struct sock *sk)
4121 /* We want the right error as BSD sees it (and indeed as we do). */
4122 switch (sk->sk_state) {
4123 case TCP_SYN_SENT:
4124 sk->sk_err = ECONNREFUSED;
4125 break;
4126 case TCP_CLOSE_WAIT:
4127 sk->sk_err = EPIPE;
4128 break;
4129 case TCP_CLOSE:
4130 return;
4131 default:
4132 sk->sk_err = ECONNRESET;
4134 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4135 smp_wmb();
4137 if (!sock_flag(sk, SOCK_DEAD))
4138 sk->sk_error_report(sk);
4140 tcp_done(sk);
4144 * Process the FIN bit. This now behaves as it is supposed to work
4145 * and the FIN takes effect when it is validly part of sequence
4146 * space. Not before when we get holes.
4148 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4149 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4150 * TIME-WAIT)
4152 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4153 * close and we go into CLOSING (and later onto TIME-WAIT)
4155 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4157 static void tcp_fin(struct sock *sk)
4159 struct tcp_sock *tp = tcp_sk(sk);
4161 inet_csk_schedule_ack(sk);
4163 sk->sk_shutdown |= RCV_SHUTDOWN;
4164 sock_set_flag(sk, SOCK_DONE);
4166 switch (sk->sk_state) {
4167 case TCP_SYN_RECV:
4168 case TCP_ESTABLISHED:
4169 /* Move to CLOSE_WAIT */
4170 tcp_set_state(sk, TCP_CLOSE_WAIT);
4171 inet_csk(sk)->icsk_ack.pingpong = 1;
4172 break;
4174 case TCP_CLOSE_WAIT:
4175 case TCP_CLOSING:
4176 /* Received a retransmission of the FIN, do
4177 * nothing.
4179 break;
4180 case TCP_LAST_ACK:
4181 /* RFC793: Remain in the LAST-ACK state. */
4182 break;
4184 case TCP_FIN_WAIT1:
4185 /* This case occurs when a simultaneous close
4186 * happens, we must ack the received FIN and
4187 * enter the CLOSING state.
4189 tcp_send_ack(sk);
4190 tcp_set_state(sk, TCP_CLOSING);
4191 break;
4192 case TCP_FIN_WAIT2:
4193 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4194 tcp_send_ack(sk);
4195 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4196 break;
4197 default:
4198 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4199 * cases we should never reach this piece of code.
4201 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4202 __func__, sk->sk_state);
4203 break;
4206 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4207 * Probably, we should reset in this case. For now drop them.
4209 __skb_queue_purge(&tp->out_of_order_queue);
4210 if (tcp_is_sack(tp))
4211 tcp_sack_reset(&tp->rx_opt);
4212 sk_mem_reclaim(sk);
4214 if (!sock_flag(sk, SOCK_DEAD)) {
4215 sk->sk_state_change(sk);
4217 /* Do not send POLL_HUP for half duplex close. */
4218 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4219 sk->sk_state == TCP_CLOSE)
4220 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4221 else
4222 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4226 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4227 u32 end_seq)
4229 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4230 if (before(seq, sp->start_seq))
4231 sp->start_seq = seq;
4232 if (after(end_seq, sp->end_seq))
4233 sp->end_seq = end_seq;
4234 return 1;
4236 return 0;
4239 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4241 struct tcp_sock *tp = tcp_sk(sk);
4243 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4244 int mib_idx;
4246 if (before(seq, tp->rcv_nxt))
4247 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4248 else
4249 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4251 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4253 tp->rx_opt.dsack = 1;
4254 tp->duplicate_sack[0].start_seq = seq;
4255 tp->duplicate_sack[0].end_seq = end_seq;
4259 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4261 struct tcp_sock *tp = tcp_sk(sk);
4263 if (!tp->rx_opt.dsack)
4264 tcp_dsack_set(sk, seq, end_seq);
4265 else
4266 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4269 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4271 struct tcp_sock *tp = tcp_sk(sk);
4273 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4274 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4275 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4276 tcp_enter_quickack_mode(sk);
4278 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4279 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4281 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4282 end_seq = tp->rcv_nxt;
4283 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4287 tcp_send_ack(sk);
4290 /* These routines update the SACK block as out-of-order packets arrive or
4291 * in-order packets close up the sequence space.
4293 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4295 int this_sack;
4296 struct tcp_sack_block *sp = &tp->selective_acks[0];
4297 struct tcp_sack_block *swalk = sp + 1;
4299 /* See if the recent change to the first SACK eats into
4300 * or hits the sequence space of other SACK blocks, if so coalesce.
4302 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4303 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4304 int i;
4306 /* Zap SWALK, by moving every further SACK up by one slot.
4307 * Decrease num_sacks.
4309 tp->rx_opt.num_sacks--;
4310 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4311 sp[i] = sp[i + 1];
4312 continue;
4314 this_sack++, swalk++;
4318 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4320 struct tcp_sock *tp = tcp_sk(sk);
4321 struct tcp_sack_block *sp = &tp->selective_acks[0];
4322 int cur_sacks = tp->rx_opt.num_sacks;
4323 int this_sack;
4325 if (!cur_sacks)
4326 goto new_sack;
4328 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4329 if (tcp_sack_extend(sp, seq, end_seq)) {
4330 /* Rotate this_sack to the first one. */
4331 for (; this_sack > 0; this_sack--, sp--)
4332 swap(*sp, *(sp - 1));
4333 if (cur_sacks > 1)
4334 tcp_sack_maybe_coalesce(tp);
4335 return;
4339 /* Could not find an adjacent existing SACK, build a new one,
4340 * put it at the front, and shift everyone else down. We
4341 * always know there is at least one SACK present already here.
4343 * If the sack array is full, forget about the last one.
4345 if (this_sack >= TCP_NUM_SACKS) {
4346 this_sack--;
4347 tp->rx_opt.num_sacks--;
4348 sp--;
4350 for (; this_sack > 0; this_sack--, sp--)
4351 *sp = *(sp - 1);
4353 new_sack:
4354 /* Build the new head SACK, and we're done. */
4355 sp->start_seq = seq;
4356 sp->end_seq = end_seq;
4357 tp->rx_opt.num_sacks++;
4360 /* RCV.NXT advances, some SACKs should be eaten. */
4362 static void tcp_sack_remove(struct tcp_sock *tp)
4364 struct tcp_sack_block *sp = &tp->selective_acks[0];
4365 int num_sacks = tp->rx_opt.num_sacks;
4366 int this_sack;
4368 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4369 if (skb_queue_empty(&tp->out_of_order_queue)) {
4370 tp->rx_opt.num_sacks = 0;
4371 return;
4374 for (this_sack = 0; this_sack < num_sacks;) {
4375 /* Check if the start of the sack is covered by RCV.NXT. */
4376 if (!before(tp->rcv_nxt, sp->start_seq)) {
4377 int i;
4379 /* RCV.NXT must cover all the block! */
4380 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4382 /* Zap this SACK, by moving forward any other SACKS. */
4383 for (i=this_sack+1; i < num_sacks; i++)
4384 tp->selective_acks[i-1] = tp->selective_acks[i];
4385 num_sacks--;
4386 continue;
4388 this_sack++;
4389 sp++;
4391 tp->rx_opt.num_sacks = num_sacks;
4394 /* This one checks to see if we can put data from the
4395 * out_of_order queue into the receive_queue.
4397 static void tcp_ofo_queue(struct sock *sk)
4399 struct tcp_sock *tp = tcp_sk(sk);
4400 __u32 dsack_high = tp->rcv_nxt;
4401 struct sk_buff *skb;
4403 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4404 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4405 break;
4407 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4408 __u32 dsack = dsack_high;
4409 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4410 dsack_high = TCP_SKB_CB(skb)->end_seq;
4411 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4414 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4415 SOCK_DEBUG(sk, "ofo packet was already received\n");
4416 __skb_unlink(skb, &tp->out_of_order_queue);
4417 __kfree_skb(skb);
4418 continue;
4420 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4421 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4422 TCP_SKB_CB(skb)->end_seq);
4424 __skb_unlink(skb, &tp->out_of_order_queue);
4425 __skb_queue_tail(&sk->sk_receive_queue, skb);
4426 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4427 if (tcp_hdr(skb)->fin)
4428 tcp_fin(sk);
4432 static int tcp_prune_ofo_queue(struct sock *sk);
4433 static int tcp_prune_queue(struct sock *sk);
4435 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4437 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4438 !sk_rmem_schedule(sk, size)) {
4440 if (tcp_prune_queue(sk) < 0)
4441 return -1;
4443 if (!sk_rmem_schedule(sk, size)) {
4444 if (!tcp_prune_ofo_queue(sk))
4445 return -1;
4447 if (!sk_rmem_schedule(sk, size))
4448 return -1;
4451 return 0;
4454 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4456 const struct tcphdr *th = tcp_hdr(skb);
4457 struct tcp_sock *tp = tcp_sk(sk);
4458 int eaten = -1;
4460 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4461 goto drop;
4463 skb_dst_drop(skb);
4464 __skb_pull(skb, th->doff * 4);
4466 TCP_ECN_accept_cwr(tp, skb);
4468 tp->rx_opt.dsack = 0;
4470 /* Queue data for delivery to the user.
4471 * Packets in sequence go to the receive queue.
4472 * Out of sequence packets to the out_of_order_queue.
4474 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4475 if (tcp_receive_window(tp) == 0)
4476 goto out_of_window;
4478 /* Ok. In sequence. In window. */
4479 if (tp->ucopy.task == current &&
4480 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4481 sock_owned_by_user(sk) && !tp->urg_data) {
4482 int chunk = min_t(unsigned int, skb->len,
4483 tp->ucopy.len);
4485 __set_current_state(TASK_RUNNING);
4487 local_bh_enable();
4488 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4489 tp->ucopy.len -= chunk;
4490 tp->copied_seq += chunk;
4491 eaten = (chunk == skb->len);
4492 tcp_rcv_space_adjust(sk);
4494 local_bh_disable();
4497 if (eaten <= 0) {
4498 queue_and_out:
4499 if (eaten < 0 &&
4500 tcp_try_rmem_schedule(sk, skb->truesize))
4501 goto drop;
4503 skb_set_owner_r(skb, sk);
4504 __skb_queue_tail(&sk->sk_receive_queue, skb);
4506 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4507 if (skb->len)
4508 tcp_event_data_recv(sk, skb);
4509 if (th->fin)
4510 tcp_fin(sk);
4512 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4513 tcp_ofo_queue(sk);
4515 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4516 * gap in queue is filled.
4518 if (skb_queue_empty(&tp->out_of_order_queue))
4519 inet_csk(sk)->icsk_ack.pingpong = 0;
4522 if (tp->rx_opt.num_sacks)
4523 tcp_sack_remove(tp);
4525 tcp_fast_path_check(sk);
4527 if (eaten > 0)
4528 __kfree_skb(skb);
4529 else if (!sock_flag(sk, SOCK_DEAD))
4530 sk->sk_data_ready(sk, 0);
4531 return;
4534 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4535 /* A retransmit, 2nd most common case. Force an immediate ack. */
4536 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4537 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4539 out_of_window:
4540 tcp_enter_quickack_mode(sk);
4541 inet_csk_schedule_ack(sk);
4542 drop:
4543 __kfree_skb(skb);
4544 return;
4547 /* Out of window. F.e. zero window probe. */
4548 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4549 goto out_of_window;
4551 tcp_enter_quickack_mode(sk);
4553 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4554 /* Partial packet, seq < rcv_next < end_seq */
4555 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4556 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4557 TCP_SKB_CB(skb)->end_seq);
4559 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4561 /* If window is closed, drop tail of packet. But after
4562 * remembering D-SACK for its head made in previous line.
4564 if (!tcp_receive_window(tp))
4565 goto out_of_window;
4566 goto queue_and_out;
4569 TCP_ECN_check_ce(tp, skb);
4571 if (tcp_try_rmem_schedule(sk, skb->truesize))
4572 goto drop;
4574 /* Disable header prediction. */
4575 tp->pred_flags = 0;
4576 inet_csk_schedule_ack(sk);
4578 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4579 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4581 skb_set_owner_r(skb, sk);
4583 if (!skb_peek(&tp->out_of_order_queue)) {
4584 /* Initial out of order segment, build 1 SACK. */
4585 if (tcp_is_sack(tp)) {
4586 tp->rx_opt.num_sacks = 1;
4587 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4588 tp->selective_acks[0].end_seq =
4589 TCP_SKB_CB(skb)->end_seq;
4591 __skb_queue_head(&tp->out_of_order_queue, skb);
4592 } else {
4593 struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4594 u32 seq = TCP_SKB_CB(skb)->seq;
4595 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4597 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4598 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4600 if (!tp->rx_opt.num_sacks ||
4601 tp->selective_acks[0].end_seq != seq)
4602 goto add_sack;
4604 /* Common case: data arrive in order after hole. */
4605 tp->selective_acks[0].end_seq = end_seq;
4606 return;
4609 /* Find place to insert this segment. */
4610 while (1) {
4611 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4612 break;
4613 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4614 skb1 = NULL;
4615 break;
4617 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4620 /* Do skb overlap to previous one? */
4621 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4622 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4623 /* All the bits are present. Drop. */
4624 __kfree_skb(skb);
4625 tcp_dsack_set(sk, seq, end_seq);
4626 goto add_sack;
4628 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4629 /* Partial overlap. */
4630 tcp_dsack_set(sk, seq,
4631 TCP_SKB_CB(skb1)->end_seq);
4632 } else {
4633 if (skb_queue_is_first(&tp->out_of_order_queue,
4634 skb1))
4635 skb1 = NULL;
4636 else
4637 skb1 = skb_queue_prev(
4638 &tp->out_of_order_queue,
4639 skb1);
4642 if (!skb1)
4643 __skb_queue_head(&tp->out_of_order_queue, skb);
4644 else
4645 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4647 /* And clean segments covered by new one as whole. */
4648 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4649 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4651 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4652 break;
4653 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4654 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4655 end_seq);
4656 break;
4658 __skb_unlink(skb1, &tp->out_of_order_queue);
4659 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4660 TCP_SKB_CB(skb1)->end_seq);
4661 __kfree_skb(skb1);
4664 add_sack:
4665 if (tcp_is_sack(tp))
4666 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4670 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4671 struct sk_buff_head *list)
4673 struct sk_buff *next = NULL;
4675 if (!skb_queue_is_last(list, skb))
4676 next = skb_queue_next(list, skb);
4678 __skb_unlink(skb, list);
4679 __kfree_skb(skb);
4680 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4682 return next;
4685 /* Collapse contiguous sequence of skbs head..tail with
4686 * sequence numbers start..end.
4688 * If tail is NULL, this means until the end of the list.
4690 * Segments with FIN/SYN are not collapsed (only because this
4691 * simplifies code)
4693 static void
4694 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4695 struct sk_buff *head, struct sk_buff *tail,
4696 u32 start, u32 end)
4698 struct sk_buff *skb, *n;
4699 bool end_of_skbs;
4701 /* First, check that queue is collapsible and find
4702 * the point where collapsing can be useful. */
4703 skb = head;
4704 restart:
4705 end_of_skbs = true;
4706 skb_queue_walk_from_safe(list, skb, n) {
4707 if (skb == tail)
4708 break;
4709 /* No new bits? It is possible on ofo queue. */
4710 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4711 skb = tcp_collapse_one(sk, skb, list);
4712 if (!skb)
4713 break;
4714 goto restart;
4717 /* The first skb to collapse is:
4718 * - not SYN/FIN and
4719 * - bloated or contains data before "start" or
4720 * overlaps to the next one.
4722 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4723 (tcp_win_from_space(skb->truesize) > skb->len ||
4724 before(TCP_SKB_CB(skb)->seq, start))) {
4725 end_of_skbs = false;
4726 break;
4729 if (!skb_queue_is_last(list, skb)) {
4730 struct sk_buff *next = skb_queue_next(list, skb);
4731 if (next != tail &&
4732 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4733 end_of_skbs = false;
4734 break;
4738 /* Decided to skip this, advance start seq. */
4739 start = TCP_SKB_CB(skb)->end_seq;
4741 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4742 return;
4744 while (before(start, end)) {
4745 struct sk_buff *nskb;
4746 unsigned int header = skb_headroom(skb);
4747 int copy = SKB_MAX_ORDER(header, 0);
4749 /* Too big header? This can happen with IPv6. */
4750 if (copy < 0)
4751 return;
4752 if (end - start < copy)
4753 copy = end - start;
4754 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4755 if (!nskb)
4756 return;
4758 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4759 skb_set_network_header(nskb, (skb_network_header(skb) -
4760 skb->head));
4761 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4762 skb->head));
4763 skb_reserve(nskb, header);
4764 memcpy(nskb->head, skb->head, header);
4765 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4766 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4767 __skb_queue_before(list, skb, nskb);
4768 skb_set_owner_r(nskb, sk);
4770 /* Copy data, releasing collapsed skbs. */
4771 while (copy > 0) {
4772 int offset = start - TCP_SKB_CB(skb)->seq;
4773 int size = TCP_SKB_CB(skb)->end_seq - start;
4775 BUG_ON(offset < 0);
4776 if (size > 0) {
4777 size = min(copy, size);
4778 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4779 BUG();
4780 TCP_SKB_CB(nskb)->end_seq += size;
4781 copy -= size;
4782 start += size;
4784 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4785 skb = tcp_collapse_one(sk, skb, list);
4786 if (!skb ||
4787 skb == tail ||
4788 tcp_hdr(skb)->syn ||
4789 tcp_hdr(skb)->fin)
4790 return;
4796 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4797 * and tcp_collapse() them until all the queue is collapsed.
4799 static void tcp_collapse_ofo_queue(struct sock *sk)
4801 struct tcp_sock *tp = tcp_sk(sk);
4802 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4803 struct sk_buff *head;
4804 u32 start, end;
4806 if (skb == NULL)
4807 return;
4809 start = TCP_SKB_CB(skb)->seq;
4810 end = TCP_SKB_CB(skb)->end_seq;
4811 head = skb;
4813 for (;;) {
4814 struct sk_buff *next = NULL;
4816 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4817 next = skb_queue_next(&tp->out_of_order_queue, skb);
4818 skb = next;
4820 /* Segment is terminated when we see gap or when
4821 * we are at the end of all the queue. */
4822 if (!skb ||
4823 after(TCP_SKB_CB(skb)->seq, end) ||
4824 before(TCP_SKB_CB(skb)->end_seq, start)) {
4825 tcp_collapse(sk, &tp->out_of_order_queue,
4826 head, skb, start, end);
4827 head = skb;
4828 if (!skb)
4829 break;
4830 /* Start new segment */
4831 start = TCP_SKB_CB(skb)->seq;
4832 end = TCP_SKB_CB(skb)->end_seq;
4833 } else {
4834 if (before(TCP_SKB_CB(skb)->seq, start))
4835 start = TCP_SKB_CB(skb)->seq;
4836 if (after(TCP_SKB_CB(skb)->end_seq, end))
4837 end = TCP_SKB_CB(skb)->end_seq;
4843 * Purge the out-of-order queue.
4844 * Return true if queue was pruned.
4846 static int tcp_prune_ofo_queue(struct sock *sk)
4848 struct tcp_sock *tp = tcp_sk(sk);
4849 int res = 0;
4851 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4852 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4853 __skb_queue_purge(&tp->out_of_order_queue);
4855 /* Reset SACK state. A conforming SACK implementation will
4856 * do the same at a timeout based retransmit. When a connection
4857 * is in a sad state like this, we care only about integrity
4858 * of the connection not performance.
4860 if (tp->rx_opt.sack_ok)
4861 tcp_sack_reset(&tp->rx_opt);
4862 sk_mem_reclaim(sk);
4863 res = 1;
4865 return res;
4868 /* Reduce allocated memory if we can, trying to get
4869 * the socket within its memory limits again.
4871 * Return less than zero if we should start dropping frames
4872 * until the socket owning process reads some of the data
4873 * to stabilize the situation.
4875 static int tcp_prune_queue(struct sock *sk)
4877 struct tcp_sock *tp = tcp_sk(sk);
4879 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4881 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4883 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4884 tcp_clamp_window(sk);
4885 else if (sk_under_memory_pressure(sk))
4886 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4888 tcp_collapse_ofo_queue(sk);
4889 if (!skb_queue_empty(&sk->sk_receive_queue))
4890 tcp_collapse(sk, &sk->sk_receive_queue,
4891 skb_peek(&sk->sk_receive_queue),
4892 NULL,
4893 tp->copied_seq, tp->rcv_nxt);
4894 sk_mem_reclaim(sk);
4896 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4897 return 0;
4899 /* Collapsing did not help, destructive actions follow.
4900 * This must not ever occur. */
4902 tcp_prune_ofo_queue(sk);
4904 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4905 return 0;
4907 /* If we are really being abused, tell the caller to silently
4908 * drop receive data on the floor. It will get retransmitted
4909 * and hopefully then we'll have sufficient space.
4911 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4913 /* Massive buffer overcommit. */
4914 tp->pred_flags = 0;
4915 return -1;
4918 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4919 * As additional protections, we do not touch cwnd in retransmission phases,
4920 * and if application hit its sndbuf limit recently.
4922 void tcp_cwnd_application_limited(struct sock *sk)
4924 struct tcp_sock *tp = tcp_sk(sk);
4926 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4927 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4928 /* Limited by application or receiver window. */
4929 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4930 u32 win_used = max(tp->snd_cwnd_used, init_win);
4931 if (win_used < tp->snd_cwnd) {
4932 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4933 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4935 tp->snd_cwnd_used = 0;
4937 tp->snd_cwnd_stamp = tcp_time_stamp;
4940 static int tcp_should_expand_sndbuf(const struct sock *sk)
4942 const struct tcp_sock *tp = tcp_sk(sk);
4944 /* If the user specified a specific send buffer setting, do
4945 * not modify it.
4947 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4948 return 0;
4950 /* If we are under global TCP memory pressure, do not expand. */
4951 if (sk_under_memory_pressure(sk))
4952 return 0;
4954 /* If we are under soft global TCP memory pressure, do not expand. */
4955 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4956 return 0;
4958 /* If we filled the congestion window, do not expand. */
4959 if (tp->packets_out >= tp->snd_cwnd)
4960 return 0;
4962 return 1;
4965 /* When incoming ACK allowed to free some skb from write_queue,
4966 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4967 * on the exit from tcp input handler.
4969 * PROBLEM: sndbuf expansion does not work well with largesend.
4971 static void tcp_new_space(struct sock *sk)
4973 struct tcp_sock *tp = tcp_sk(sk);
4975 if (tcp_should_expand_sndbuf(sk)) {
4976 int sndmem = SKB_TRUESIZE(max_t(u32,
4977 tp->rx_opt.mss_clamp,
4978 tp->mss_cache) +
4979 MAX_TCP_HEADER);
4980 int demanded = max_t(unsigned int, tp->snd_cwnd,
4981 tp->reordering + 1);
4982 sndmem *= 2 * demanded;
4983 if (sndmem > sk->sk_sndbuf)
4984 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4985 tp->snd_cwnd_stamp = tcp_time_stamp;
4988 sk->sk_write_space(sk);
4991 static void tcp_check_space(struct sock *sk)
4993 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4994 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4995 if (sk->sk_socket &&
4996 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4997 tcp_new_space(sk);
5001 static inline void tcp_data_snd_check(struct sock *sk)
5003 tcp_push_pending_frames(sk);
5004 tcp_check_space(sk);
5008 * Check if sending an ack is needed.
5010 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5012 struct tcp_sock *tp = tcp_sk(sk);
5014 /* More than one full frame received... */
5015 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5016 /* ... and right edge of window advances far enough.
5017 * (tcp_recvmsg() will send ACK otherwise). Or...
5019 __tcp_select_window(sk) >= tp->rcv_wnd) ||
5020 /* We ACK each frame or... */
5021 tcp_in_quickack_mode(sk) ||
5022 /* We have out of order data. */
5023 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5024 /* Then ack it now */
5025 tcp_send_ack(sk);
5026 } else {
5027 /* Else, send delayed ack. */
5028 tcp_send_delayed_ack(sk);
5032 static inline void tcp_ack_snd_check(struct sock *sk)
5034 if (!inet_csk_ack_scheduled(sk)) {
5035 /* We sent a data segment already. */
5036 return;
5038 __tcp_ack_snd_check(sk, 1);
5042 * This routine is only called when we have urgent data
5043 * signaled. Its the 'slow' part of tcp_urg. It could be
5044 * moved inline now as tcp_urg is only called from one
5045 * place. We handle URGent data wrong. We have to - as
5046 * BSD still doesn't use the correction from RFC961.
5047 * For 1003.1g we should support a new option TCP_STDURG to permit
5048 * either form (or just set the sysctl tcp_stdurg).
5051 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5053 struct tcp_sock *tp = tcp_sk(sk);
5054 u32 ptr = ntohs(th->urg_ptr);
5056 if (ptr && !sysctl_tcp_stdurg)
5057 ptr--;
5058 ptr += ntohl(th->seq);
5060 /* Ignore urgent data that we've already seen and read. */
5061 if (after(tp->copied_seq, ptr))
5062 return;
5064 /* Do not replay urg ptr.
5066 * NOTE: interesting situation not covered by specs.
5067 * Misbehaving sender may send urg ptr, pointing to segment,
5068 * which we already have in ofo queue. We are not able to fetch
5069 * such data and will stay in TCP_URG_NOTYET until will be eaten
5070 * by recvmsg(). Seems, we are not obliged to handle such wicked
5071 * situations. But it is worth to think about possibility of some
5072 * DoSes using some hypothetical application level deadlock.
5074 if (before(ptr, tp->rcv_nxt))
5075 return;
5077 /* Do we already have a newer (or duplicate) urgent pointer? */
5078 if (tp->urg_data && !after(ptr, tp->urg_seq))
5079 return;
5081 /* Tell the world about our new urgent pointer. */
5082 sk_send_sigurg(sk);
5084 /* We may be adding urgent data when the last byte read was
5085 * urgent. To do this requires some care. We cannot just ignore
5086 * tp->copied_seq since we would read the last urgent byte again
5087 * as data, nor can we alter copied_seq until this data arrives
5088 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5090 * NOTE. Double Dutch. Rendering to plain English: author of comment
5091 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5092 * and expect that both A and B disappear from stream. This is _wrong_.
5093 * Though this happens in BSD with high probability, this is occasional.
5094 * Any application relying on this is buggy. Note also, that fix "works"
5095 * only in this artificial test. Insert some normal data between A and B and we will
5096 * decline of BSD again. Verdict: it is better to remove to trap
5097 * buggy users.
5099 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5100 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5101 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5102 tp->copied_seq++;
5103 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5104 __skb_unlink(skb, &sk->sk_receive_queue);
5105 __kfree_skb(skb);
5109 tp->urg_data = TCP_URG_NOTYET;
5110 tp->urg_seq = ptr;
5112 /* Disable header prediction. */
5113 tp->pred_flags = 0;
5116 /* This is the 'fast' part of urgent handling. */
5117 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5119 struct tcp_sock *tp = tcp_sk(sk);
5121 /* Check if we get a new urgent pointer - normally not. */
5122 if (th->urg)
5123 tcp_check_urg(sk, th);
5125 /* Do we wait for any urgent data? - normally not... */
5126 if (tp->urg_data == TCP_URG_NOTYET) {
5127 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5128 th->syn;
5130 /* Is the urgent pointer pointing into this packet? */
5131 if (ptr < skb->len) {
5132 u8 tmp;
5133 if (skb_copy_bits(skb, ptr, &tmp, 1))
5134 BUG();
5135 tp->urg_data = TCP_URG_VALID | tmp;
5136 if (!sock_flag(sk, SOCK_DEAD))
5137 sk->sk_data_ready(sk, 0);
5142 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5144 struct tcp_sock *tp = tcp_sk(sk);
5145 int chunk = skb->len - hlen;
5146 int err;
5148 local_bh_enable();
5149 if (skb_csum_unnecessary(skb))
5150 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5151 else
5152 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5153 tp->ucopy.iov);
5155 if (!err) {
5156 tp->ucopy.len -= chunk;
5157 tp->copied_seq += chunk;
5158 tcp_rcv_space_adjust(sk);
5161 local_bh_disable();
5162 return err;
5165 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5166 struct sk_buff *skb)
5168 __sum16 result;
5170 if (sock_owned_by_user(sk)) {
5171 local_bh_enable();
5172 result = __tcp_checksum_complete(skb);
5173 local_bh_disable();
5174 } else {
5175 result = __tcp_checksum_complete(skb);
5177 return result;
5180 static inline int tcp_checksum_complete_user(struct sock *sk,
5181 struct sk_buff *skb)
5183 return !skb_csum_unnecessary(skb) &&
5184 __tcp_checksum_complete_user(sk, skb);
5187 #ifdef CONFIG_NET_DMA
5188 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5189 int hlen)
5191 struct tcp_sock *tp = tcp_sk(sk);
5192 int chunk = skb->len - hlen;
5193 int dma_cookie;
5194 int copied_early = 0;
5196 if (tp->ucopy.wakeup)
5197 return 0;
5199 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5200 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5202 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5204 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5205 skb, hlen,
5206 tp->ucopy.iov, chunk,
5207 tp->ucopy.pinned_list);
5209 if (dma_cookie < 0)
5210 goto out;
5212 tp->ucopy.dma_cookie = dma_cookie;
5213 copied_early = 1;
5215 tp->ucopy.len -= chunk;
5216 tp->copied_seq += chunk;
5217 tcp_rcv_space_adjust(sk);
5219 if ((tp->ucopy.len == 0) ||
5220 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5221 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5222 tp->ucopy.wakeup = 1;
5223 sk->sk_data_ready(sk, 0);
5225 } else if (chunk > 0) {
5226 tp->ucopy.wakeup = 1;
5227 sk->sk_data_ready(sk, 0);
5229 out:
5230 return copied_early;
5232 #endif /* CONFIG_NET_DMA */
5234 /* Does PAWS and seqno based validation of an incoming segment, flags will
5235 * play significant role here.
5237 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5238 const struct tcphdr *th, int syn_inerr)
5240 const u8 *hash_location;
5241 struct tcp_sock *tp = tcp_sk(sk);
5243 /* RFC1323: H1. Apply PAWS check first. */
5244 if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5245 tp->rx_opt.saw_tstamp &&
5246 tcp_paws_discard(sk, skb)) {
5247 if (!th->rst) {
5248 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5249 tcp_send_dupack(sk, skb);
5250 goto discard;
5252 /* Reset is accepted even if it did not pass PAWS. */
5255 /* Step 1: check sequence number */
5256 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5257 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5258 * (RST) segments are validated by checking their SEQ-fields."
5259 * And page 69: "If an incoming segment is not acceptable,
5260 * an acknowledgment should be sent in reply (unless the RST
5261 * bit is set, if so drop the segment and return)".
5263 if (!th->rst)
5264 tcp_send_dupack(sk, skb);
5265 goto discard;
5268 /* Step 2: check RST bit */
5269 if (th->rst) {
5270 tcp_reset(sk);
5271 goto discard;
5274 /* ts_recent update must be made after we are sure that the packet
5275 * is in window.
5277 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5279 /* step 3: check security and precedence [ignored] */
5281 /* step 4: Check for a SYN in window. */
5282 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5283 if (syn_inerr)
5284 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5285 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5286 tcp_reset(sk);
5287 return -1;
5290 return 1;
5292 discard:
5293 __kfree_skb(skb);
5294 return 0;
5298 * TCP receive function for the ESTABLISHED state.
5300 * It is split into a fast path and a slow path. The fast path is
5301 * disabled when:
5302 * - A zero window was announced from us - zero window probing
5303 * is only handled properly in the slow path.
5304 * - Out of order segments arrived.
5305 * - Urgent data is expected.
5306 * - There is no buffer space left
5307 * - Unexpected TCP flags/window values/header lengths are received
5308 * (detected by checking the TCP header against pred_flags)
5309 * - Data is sent in both directions. Fast path only supports pure senders
5310 * or pure receivers (this means either the sequence number or the ack
5311 * value must stay constant)
5312 * - Unexpected TCP option.
5314 * When these conditions are not satisfied it drops into a standard
5315 * receive procedure patterned after RFC793 to handle all cases.
5316 * The first three cases are guaranteed by proper pred_flags setting,
5317 * the rest is checked inline. Fast processing is turned on in
5318 * tcp_data_queue when everything is OK.
5320 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5321 const struct tcphdr *th, unsigned int len)
5323 struct tcp_sock *tp = tcp_sk(sk);
5324 int res;
5327 * Header prediction.
5328 * The code loosely follows the one in the famous
5329 * "30 instruction TCP receive" Van Jacobson mail.
5331 * Van's trick is to deposit buffers into socket queue
5332 * on a device interrupt, to call tcp_recv function
5333 * on the receive process context and checksum and copy
5334 * the buffer to user space. smart...
5336 * Our current scheme is not silly either but we take the
5337 * extra cost of the net_bh soft interrupt processing...
5338 * We do checksum and copy also but from device to kernel.
5341 tp->rx_opt.saw_tstamp = 0;
5343 /* pred_flags is 0xS?10 << 16 + snd_wnd
5344 * if header_prediction is to be made
5345 * 'S' will always be tp->tcp_header_len >> 2
5346 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5347 * turn it off (when there are holes in the receive
5348 * space for instance)
5349 * PSH flag is ignored.
5352 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5353 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5354 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5355 int tcp_header_len = tp->tcp_header_len;
5357 /* Timestamp header prediction: tcp_header_len
5358 * is automatically equal to th->doff*4 due to pred_flags
5359 * match.
5362 /* Check timestamp */
5363 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5364 /* No? Slow path! */
5365 if (!tcp_parse_aligned_timestamp(tp, th))
5366 goto slow_path;
5368 /* If PAWS failed, check it more carefully in slow path */
5369 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5370 goto slow_path;
5372 /* DO NOT update ts_recent here, if checksum fails
5373 * and timestamp was corrupted part, it will result
5374 * in a hung connection since we will drop all
5375 * future packets due to the PAWS test.
5379 if (len <= tcp_header_len) {
5380 /* Bulk data transfer: sender */
5381 if (len == tcp_header_len) {
5382 /* Predicted packet is in window by definition.
5383 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5384 * Hence, check seq<=rcv_wup reduces to:
5386 if (tcp_header_len ==
5387 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5388 tp->rcv_nxt == tp->rcv_wup)
5389 tcp_store_ts_recent(tp);
5391 /* We know that such packets are checksummed
5392 * on entry.
5394 tcp_ack(sk, skb, 0);
5395 __kfree_skb(skb);
5396 tcp_data_snd_check(sk);
5397 return 0;
5398 } else { /* Header too small */
5399 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5400 goto discard;
5402 } else {
5403 int eaten = 0;
5404 int copied_early = 0;
5406 if (tp->copied_seq == tp->rcv_nxt &&
5407 len - tcp_header_len <= tp->ucopy.len) {
5408 #ifdef CONFIG_NET_DMA
5409 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5410 copied_early = 1;
5411 eaten = 1;
5413 #endif
5414 if (tp->ucopy.task == current &&
5415 sock_owned_by_user(sk) && !copied_early) {
5416 __set_current_state(TASK_RUNNING);
5418 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5419 eaten = 1;
5421 if (eaten) {
5422 /* Predicted packet is in window by definition.
5423 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5424 * Hence, check seq<=rcv_wup reduces to:
5426 if (tcp_header_len ==
5427 (sizeof(struct tcphdr) +
5428 TCPOLEN_TSTAMP_ALIGNED) &&
5429 tp->rcv_nxt == tp->rcv_wup)
5430 tcp_store_ts_recent(tp);
5432 tcp_rcv_rtt_measure_ts(sk, skb);
5434 __skb_pull(skb, tcp_header_len);
5435 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5436 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5438 if (copied_early)
5439 tcp_cleanup_rbuf(sk, skb->len);
5441 if (!eaten) {
5442 if (tcp_checksum_complete_user(sk, skb))
5443 goto csum_error;
5445 /* Predicted packet is in window by definition.
5446 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5447 * Hence, check seq<=rcv_wup reduces to:
5449 if (tcp_header_len ==
5450 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5451 tp->rcv_nxt == tp->rcv_wup)
5452 tcp_store_ts_recent(tp);
5454 tcp_rcv_rtt_measure_ts(sk, skb);
5456 if ((int)skb->truesize > sk->sk_forward_alloc)
5457 goto step5;
5459 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5461 /* Bulk data transfer: receiver */
5462 __skb_pull(skb, tcp_header_len);
5463 __skb_queue_tail(&sk->sk_receive_queue, skb);
5464 skb_set_owner_r(skb, sk);
5465 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5468 tcp_event_data_recv(sk, skb);
5470 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5471 /* Well, only one small jumplet in fast path... */
5472 tcp_ack(sk, skb, FLAG_DATA);
5473 tcp_data_snd_check(sk);
5474 if (!inet_csk_ack_scheduled(sk))
5475 goto no_ack;
5478 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5479 __tcp_ack_snd_check(sk, 0);
5480 no_ack:
5481 #ifdef CONFIG_NET_DMA
5482 if (copied_early)
5483 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5484 else
5485 #endif
5486 if (eaten)
5487 __kfree_skb(skb);
5488 else
5489 sk->sk_data_ready(sk, 0);
5490 return 0;
5494 slow_path:
5495 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5496 goto csum_error;
5499 * Standard slow path.
5502 res = tcp_validate_incoming(sk, skb, th, 1);
5503 if (res <= 0)
5504 return -res;
5506 step5:
5507 if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5508 goto discard;
5510 tcp_rcv_rtt_measure_ts(sk, skb);
5512 /* Process urgent data. */
5513 tcp_urg(sk, skb, th);
5515 /* step 7: process the segment text */
5516 tcp_data_queue(sk, skb);
5518 tcp_data_snd_check(sk);
5519 tcp_ack_snd_check(sk);
5520 return 0;
5522 csum_error:
5523 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5525 discard:
5526 __kfree_skb(skb);
5527 return 0;
5529 EXPORT_SYMBOL(tcp_rcv_established);
5531 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5532 const struct tcphdr *th, unsigned int len)
5534 const u8 *hash_location;
5535 struct inet_connection_sock *icsk = inet_csk(sk);
5536 struct tcp_sock *tp = tcp_sk(sk);
5537 struct tcp_cookie_values *cvp = tp->cookie_values;
5538 int saved_clamp = tp->rx_opt.mss_clamp;
5540 tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5542 if (th->ack) {
5543 /* rfc793:
5544 * "If the state is SYN-SENT then
5545 * first check the ACK bit
5546 * If the ACK bit is set
5547 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5548 * a reset (unless the RST bit is set, if so drop
5549 * the segment and return)"
5551 * We do not send data with SYN, so that RFC-correct
5552 * test reduces to:
5554 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5555 goto reset_and_undo;
5557 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5558 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5559 tcp_time_stamp)) {
5560 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5561 goto reset_and_undo;
5564 /* Now ACK is acceptable.
5566 * "If the RST bit is set
5567 * If the ACK was acceptable then signal the user "error:
5568 * connection reset", drop the segment, enter CLOSED state,
5569 * delete TCB, and return."
5572 if (th->rst) {
5573 tcp_reset(sk);
5574 goto discard;
5577 /* rfc793:
5578 * "fifth, if neither of the SYN or RST bits is set then
5579 * drop the segment and return."
5581 * See note below!
5582 * --ANK(990513)
5584 if (!th->syn)
5585 goto discard_and_undo;
5587 /* rfc793:
5588 * "If the SYN bit is on ...
5589 * are acceptable then ...
5590 * (our SYN has been ACKed), change the connection
5591 * state to ESTABLISHED..."
5594 TCP_ECN_rcv_synack(tp, th);
5596 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5597 tcp_ack(sk, skb, FLAG_SLOWPATH);
5599 /* Ok.. it's good. Set up sequence numbers and
5600 * move to established.
5602 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5603 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5605 /* RFC1323: The window in SYN & SYN/ACK segments is
5606 * never scaled.
5608 tp->snd_wnd = ntohs(th->window);
5609 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5611 if (!tp->rx_opt.wscale_ok) {
5612 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5613 tp->window_clamp = min(tp->window_clamp, 65535U);
5616 if (tp->rx_opt.saw_tstamp) {
5617 tp->rx_opt.tstamp_ok = 1;
5618 tp->tcp_header_len =
5619 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5620 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5621 tcp_store_ts_recent(tp);
5622 } else {
5623 tp->tcp_header_len = sizeof(struct tcphdr);
5626 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5627 tcp_enable_fack(tp);
5629 tcp_mtup_init(sk);
5630 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5631 tcp_initialize_rcv_mss(sk);
5633 /* Remember, tcp_poll() does not lock socket!
5634 * Change state from SYN-SENT only after copied_seq
5635 * is initialized. */
5636 tp->copied_seq = tp->rcv_nxt;
5638 if (cvp != NULL &&
5639 cvp->cookie_pair_size > 0 &&
5640 tp->rx_opt.cookie_plus > 0) {
5641 int cookie_size = tp->rx_opt.cookie_plus
5642 - TCPOLEN_COOKIE_BASE;
5643 int cookie_pair_size = cookie_size
5644 + cvp->cookie_desired;
5646 /* A cookie extension option was sent and returned.
5647 * Note that each incoming SYNACK replaces the
5648 * Responder cookie. The initial exchange is most
5649 * fragile, as protection against spoofing relies
5650 * entirely upon the sequence and timestamp (above).
5651 * This replacement strategy allows the correct pair to
5652 * pass through, while any others will be filtered via
5653 * Responder verification later.
5655 if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5656 memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5657 hash_location, cookie_size);
5658 cvp->cookie_pair_size = cookie_pair_size;
5662 smp_mb();
5663 tcp_set_state(sk, TCP_ESTABLISHED);
5665 security_inet_conn_established(sk, skb);
5667 /* Make sure socket is routed, for correct metrics. */
5668 icsk->icsk_af_ops->rebuild_header(sk);
5670 tcp_init_metrics(sk);
5672 tcp_init_congestion_control(sk);
5674 /* Prevent spurious tcp_cwnd_restart() on first data
5675 * packet.
5677 tp->lsndtime = tcp_time_stamp;
5679 tcp_init_buffer_space(sk);
5681 if (sock_flag(sk, SOCK_KEEPOPEN))
5682 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5684 if (!tp->rx_opt.snd_wscale)
5685 __tcp_fast_path_on(tp, tp->snd_wnd);
5686 else
5687 tp->pred_flags = 0;
5689 if (!sock_flag(sk, SOCK_DEAD)) {
5690 sk->sk_state_change(sk);
5691 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5694 if (sk->sk_write_pending ||
5695 icsk->icsk_accept_queue.rskq_defer_accept ||
5696 icsk->icsk_ack.pingpong) {
5697 /* Save one ACK. Data will be ready after
5698 * several ticks, if write_pending is set.
5700 * It may be deleted, but with this feature tcpdumps
5701 * look so _wonderfully_ clever, that I was not able
5702 * to stand against the temptation 8) --ANK
5704 inet_csk_schedule_ack(sk);
5705 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5706 icsk->icsk_ack.ato = TCP_ATO_MIN;
5707 tcp_incr_quickack(sk);
5708 tcp_enter_quickack_mode(sk);
5709 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5710 TCP_DELACK_MAX, TCP_RTO_MAX);
5712 discard:
5713 __kfree_skb(skb);
5714 return 0;
5715 } else {
5716 tcp_send_ack(sk);
5718 return -1;
5721 /* No ACK in the segment */
5723 if (th->rst) {
5724 /* rfc793:
5725 * "If the RST bit is set
5727 * Otherwise (no ACK) drop the segment and return."
5730 goto discard_and_undo;
5733 /* PAWS check. */
5734 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5735 tcp_paws_reject(&tp->rx_opt, 0))
5736 goto discard_and_undo;
5738 if (th->syn) {
5739 /* We see SYN without ACK. It is attempt of
5740 * simultaneous connect with crossed SYNs.
5741 * Particularly, it can be connect to self.
5743 tcp_set_state(sk, TCP_SYN_RECV);
5745 if (tp->rx_opt.saw_tstamp) {
5746 tp->rx_opt.tstamp_ok = 1;
5747 tcp_store_ts_recent(tp);
5748 tp->tcp_header_len =
5749 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5750 } else {
5751 tp->tcp_header_len = sizeof(struct tcphdr);
5754 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5755 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5757 /* RFC1323: The window in SYN & SYN/ACK segments is
5758 * never scaled.
5760 tp->snd_wnd = ntohs(th->window);
5761 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5762 tp->max_window = tp->snd_wnd;
5764 TCP_ECN_rcv_syn(tp, th);
5766 tcp_mtup_init(sk);
5767 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5768 tcp_initialize_rcv_mss(sk);
5770 tcp_send_synack(sk);
5771 #if 0
5772 /* Note, we could accept data and URG from this segment.
5773 * There are no obstacles to make this.
5775 * However, if we ignore data in ACKless segments sometimes,
5776 * we have no reasons to accept it sometimes.
5777 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5778 * is not flawless. So, discard packet for sanity.
5779 * Uncomment this return to process the data.
5781 return -1;
5782 #else
5783 goto discard;
5784 #endif
5786 /* "fifth, if neither of the SYN or RST bits is set then
5787 * drop the segment and return."
5790 discard_and_undo:
5791 tcp_clear_options(&tp->rx_opt);
5792 tp->rx_opt.mss_clamp = saved_clamp;
5793 goto discard;
5795 reset_and_undo:
5796 tcp_clear_options(&tp->rx_opt);
5797 tp->rx_opt.mss_clamp = saved_clamp;
5798 return 1;
5802 * This function implements the receiving procedure of RFC 793 for
5803 * all states except ESTABLISHED and TIME_WAIT.
5804 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5805 * address independent.
5808 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5809 const struct tcphdr *th, unsigned int len)
5811 struct tcp_sock *tp = tcp_sk(sk);
5812 struct inet_connection_sock *icsk = inet_csk(sk);
5813 int queued = 0;
5814 int res;
5816 tp->rx_opt.saw_tstamp = 0;
5818 switch (sk->sk_state) {
5819 case TCP_CLOSE:
5820 goto discard;
5822 case TCP_LISTEN:
5823 if (th->ack)
5824 return 1;
5826 if (th->rst)
5827 goto discard;
5829 if (th->syn) {
5830 if (th->fin)
5831 goto discard;
5832 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5833 return 1;
5835 /* Now we have several options: In theory there is
5836 * nothing else in the frame. KA9Q has an option to
5837 * send data with the syn, BSD accepts data with the
5838 * syn up to the [to be] advertised window and
5839 * Solaris 2.1 gives you a protocol error. For now
5840 * we just ignore it, that fits the spec precisely
5841 * and avoids incompatibilities. It would be nice in
5842 * future to drop through and process the data.
5844 * Now that TTCP is starting to be used we ought to
5845 * queue this data.
5846 * But, this leaves one open to an easy denial of
5847 * service attack, and SYN cookies can't defend
5848 * against this problem. So, we drop the data
5849 * in the interest of security over speed unless
5850 * it's still in use.
5852 kfree_skb(skb);
5853 return 0;
5855 goto discard;
5857 case TCP_SYN_SENT:
5858 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5859 if (queued >= 0)
5860 return queued;
5862 /* Do step6 onward by hand. */
5863 tcp_urg(sk, skb, th);
5864 __kfree_skb(skb);
5865 tcp_data_snd_check(sk);
5866 return 0;
5869 res = tcp_validate_incoming(sk, skb, th, 0);
5870 if (res <= 0)
5871 return -res;
5873 /* step 5: check the ACK field */
5874 if (th->ack) {
5875 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5877 switch (sk->sk_state) {
5878 case TCP_SYN_RECV:
5879 if (acceptable) {
5880 tp->copied_seq = tp->rcv_nxt;
5881 smp_mb();
5882 tcp_set_state(sk, TCP_ESTABLISHED);
5883 sk->sk_state_change(sk);
5885 /* Note, that this wakeup is only for marginal
5886 * crossed SYN case. Passively open sockets
5887 * are not waked up, because sk->sk_sleep ==
5888 * NULL and sk->sk_socket == NULL.
5890 if (sk->sk_socket)
5891 sk_wake_async(sk,
5892 SOCK_WAKE_IO, POLL_OUT);
5894 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5895 tp->snd_wnd = ntohs(th->window) <<
5896 tp->rx_opt.snd_wscale;
5897 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5899 if (tp->rx_opt.tstamp_ok)
5900 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5902 /* Make sure socket is routed, for
5903 * correct metrics.
5905 icsk->icsk_af_ops->rebuild_header(sk);
5907 tcp_init_metrics(sk);
5909 tcp_init_congestion_control(sk);
5911 /* Prevent spurious tcp_cwnd_restart() on
5912 * first data packet.
5914 tp->lsndtime = tcp_time_stamp;
5916 tcp_mtup_init(sk);
5917 tcp_initialize_rcv_mss(sk);
5918 tcp_init_buffer_space(sk);
5919 tcp_fast_path_on(tp);
5920 } else {
5921 return 1;
5923 break;
5925 case TCP_FIN_WAIT1:
5926 if (tp->snd_una == tp->write_seq) {
5927 tcp_set_state(sk, TCP_FIN_WAIT2);
5928 sk->sk_shutdown |= SEND_SHUTDOWN;
5929 dst_confirm(__sk_dst_get(sk));
5931 if (!sock_flag(sk, SOCK_DEAD))
5932 /* Wake up lingering close() */
5933 sk->sk_state_change(sk);
5934 else {
5935 int tmo;
5937 if (tp->linger2 < 0 ||
5938 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5939 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5940 tcp_done(sk);
5941 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5942 return 1;
5945 tmo = tcp_fin_time(sk);
5946 if (tmo > TCP_TIMEWAIT_LEN) {
5947 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5948 } else if (th->fin || sock_owned_by_user(sk)) {
5949 /* Bad case. We could lose such FIN otherwise.
5950 * It is not a big problem, but it looks confusing
5951 * and not so rare event. We still can lose it now,
5952 * if it spins in bh_lock_sock(), but it is really
5953 * marginal case.
5955 inet_csk_reset_keepalive_timer(sk, tmo);
5956 } else {
5957 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5958 goto discard;
5962 break;
5964 case TCP_CLOSING:
5965 if (tp->snd_una == tp->write_seq) {
5966 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5967 goto discard;
5969 break;
5971 case TCP_LAST_ACK:
5972 if (tp->snd_una == tp->write_seq) {
5973 tcp_update_metrics(sk);
5974 tcp_done(sk);
5975 goto discard;
5977 break;
5979 } else
5980 goto discard;
5982 /* step 6: check the URG bit */
5983 tcp_urg(sk, skb, th);
5985 /* step 7: process the segment text */
5986 switch (sk->sk_state) {
5987 case TCP_CLOSE_WAIT:
5988 case TCP_CLOSING:
5989 case TCP_LAST_ACK:
5990 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5991 break;
5992 case TCP_FIN_WAIT1:
5993 case TCP_FIN_WAIT2:
5994 /* RFC 793 says to queue data in these states,
5995 * RFC 1122 says we MUST send a reset.
5996 * BSD 4.4 also does reset.
5998 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5999 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6000 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6001 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6002 tcp_reset(sk);
6003 return 1;
6006 /* Fall through */
6007 case TCP_ESTABLISHED:
6008 tcp_data_queue(sk, skb);
6009 queued = 1;
6010 break;
6013 /* tcp_data could move socket to TIME-WAIT */
6014 if (sk->sk_state != TCP_CLOSE) {
6015 tcp_data_snd_check(sk);
6016 tcp_ack_snd_check(sk);
6019 if (!queued) {
6020 discard:
6021 __kfree_skb(skb);
6023 return 0;
6025 EXPORT_SYMBOL(tcp_rcv_state_process);