2 * net/sched/sch_tbf.c Token Bucket Filter queue.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
10 * Dmitry Torokhov <dtor@mail.ru> - allow attaching inner qdiscs -
11 * original idea by Martin Devera
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/kernel.h>
18 #include <linux/string.h>
19 #include <linux/errno.h>
20 #include <linux/skbuff.h>
21 #include <net/netlink.h>
22 #include <net/pkt_sched.h>
25 /* Simple Token Bucket Filter.
26 =======================================
36 A data flow obeys TBF with rate R and depth B, if for any
37 time interval t_i...t_f the number of transmitted bits
38 does not exceed B + R*(t_f-t_i).
40 Packetized version of this definition:
41 The sequence of packets of sizes s_i served at moments t_i
42 obeys TBF, if for any i<=k:
44 s_i+....+s_k <= B + R*(t_k - t_i)
49 Let N(t_i) be B/R initially and N(t) grow continuously with time as:
51 N(t+delta) = min{B/R, N(t) + delta}
53 If the first packet in queue has length S, it may be
54 transmitted only at the time t_* when S/R <= N(t_*),
55 and in this case N(t) jumps:
57 N(t_* + 0) = N(t_* - 0) - S/R.
61 Actually, QoS requires two TBF to be applied to a data stream.
62 One of them controls steady state burst size, another
63 one with rate P (peak rate) and depth M (equal to link MTU)
64 limits bursts at a smaller time scale.
66 It is easy to see that P>R, and B>M. If P is infinity, this double
67 TBF is equivalent to a single one.
69 When TBF works in reshaping mode, latency is estimated as:
71 lat = max ((L-B)/R, (L-M)/P)
77 If TBF throttles, it starts a watchdog timer, which will wake it up
78 when it is ready to transmit.
79 Note that the minimal timer resolution is 1/HZ.
80 If no new packets arrive during this period,
81 or if the device is not awaken by EOI for some previous packet,
82 TBF can stop its activity for 1/HZ.
85 This means, that with depth B, the maximal rate is
89 F.e. for 10Mbit ethernet and HZ=100 the minimal allowed B is ~10Kbytes.
91 Note that the peak rate TBF is much more tough: with MTU 1500
92 P_crit = 150Kbytes/sec. So, if you need greater peak
93 rates, use alpha with HZ=1000 :-)
95 With classful TBF, limit is just kept for backwards compatibility.
96 It is passed to the default bfifo qdisc - if the inner qdisc is
97 changed the limit is not effective anymore.
100 struct tbf_sched_data
{
102 u32 limit
; /* Maximal length of backlog: bytes */
103 u32 buffer
; /* Token bucket depth/rate: MUST BE >= MTU/B */
106 struct qdisc_rate_table
*R_tab
;
107 struct qdisc_rate_table
*P_tab
;
110 long tokens
; /* Current number of B tokens */
111 long ptokens
; /* Current number of P tokens */
112 psched_time_t t_c
; /* Time check-point */
113 struct Qdisc
*qdisc
; /* Inner qdisc, default - bfifo queue */
114 struct qdisc_watchdog watchdog
; /* Watchdog timer */
117 #define L2T(q, L) qdisc_l2t((q)->R_tab, L)
118 #define L2T_P(q, L) qdisc_l2t((q)->P_tab, L)
120 static int tbf_enqueue(struct sk_buff
*skb
, struct Qdisc
*sch
)
122 struct tbf_sched_data
*q
= qdisc_priv(sch
);
125 if (qdisc_pkt_len(skb
) > q
->max_size
)
126 return qdisc_reshape_fail(skb
, sch
);
128 ret
= qdisc_enqueue(skb
, q
->qdisc
);
129 if (ret
!= NET_XMIT_SUCCESS
) {
130 if (net_xmit_drop_count(ret
))
136 return NET_XMIT_SUCCESS
;
139 static unsigned int tbf_drop(struct Qdisc
*sch
)
141 struct tbf_sched_data
*q
= qdisc_priv(sch
);
142 unsigned int len
= 0;
144 if (q
->qdisc
->ops
->drop
&& (len
= q
->qdisc
->ops
->drop(q
->qdisc
)) != 0) {
151 static struct sk_buff
*tbf_dequeue(struct Qdisc
*sch
)
153 struct tbf_sched_data
*q
= qdisc_priv(sch
);
156 skb
= q
->qdisc
->ops
->peek(q
->qdisc
);
162 unsigned int len
= qdisc_pkt_len(skb
);
164 now
= psched_get_time();
165 toks
= psched_tdiff_bounded(now
, q
->t_c
, q
->buffer
);
168 ptoks
= toks
+ q
->ptokens
;
169 if (ptoks
> (long)q
->mtu
)
171 ptoks
-= L2T_P(q
, len
);
174 if (toks
> (long)q
->buffer
)
178 if ((toks
|ptoks
) >= 0) {
179 skb
= qdisc_dequeue_peeked(q
->qdisc
);
187 qdisc_unthrottled(sch
);
188 qdisc_bstats_update(sch
, skb
);
192 qdisc_watchdog_schedule(&q
->watchdog
,
193 now
+ max_t(long, -toks
, -ptoks
));
195 /* Maybe we have a shorter packet in the queue,
196 which can be sent now. It sounds cool,
197 but, however, this is wrong in principle.
198 We MUST NOT reorder packets under these circumstances.
200 Really, if we split the flow into independent
201 subflows, it would be a very good solution.
202 This is the main idea of all FQ algorithms
203 (cf. CSZ, HPFQ, HFSC)
206 sch
->qstats
.overlimits
++;
211 static void tbf_reset(struct Qdisc
*sch
)
213 struct tbf_sched_data
*q
= qdisc_priv(sch
);
215 qdisc_reset(q
->qdisc
);
217 q
->t_c
= psched_get_time();
218 q
->tokens
= q
->buffer
;
220 qdisc_watchdog_cancel(&q
->watchdog
);
223 static const struct nla_policy tbf_policy
[TCA_TBF_MAX
+ 1] = {
224 [TCA_TBF_PARMS
] = { .len
= sizeof(struct tc_tbf_qopt
) },
225 [TCA_TBF_RTAB
] = { .type
= NLA_BINARY
, .len
= TC_RTAB_SIZE
},
226 [TCA_TBF_PTAB
] = { .type
= NLA_BINARY
, .len
= TC_RTAB_SIZE
},
229 static int tbf_change(struct Qdisc
*sch
, struct nlattr
*opt
)
232 struct tbf_sched_data
*q
= qdisc_priv(sch
);
233 struct nlattr
*tb
[TCA_TBF_PTAB
+ 1];
234 struct tc_tbf_qopt
*qopt
;
235 struct qdisc_rate_table
*rtab
= NULL
;
236 struct qdisc_rate_table
*ptab
= NULL
;
237 struct Qdisc
*child
= NULL
;
240 err
= nla_parse_nested(tb
, TCA_TBF_PTAB
, opt
, tbf_policy
);
245 if (tb
[TCA_TBF_PARMS
] == NULL
)
248 qopt
= nla_data(tb
[TCA_TBF_PARMS
]);
249 rtab
= qdisc_get_rtab(&qopt
->rate
, tb
[TCA_TBF_RTAB
]);
253 if (qopt
->peakrate
.rate
) {
254 if (qopt
->peakrate
.rate
> qopt
->rate
.rate
)
255 ptab
= qdisc_get_rtab(&qopt
->peakrate
, tb
[TCA_TBF_PTAB
]);
260 for (n
= 0; n
< 256; n
++)
261 if (rtab
->data
[n
] > qopt
->buffer
)
263 max_size
= (n
<< qopt
->rate
.cell_log
) - 1;
267 for (n
= 0; n
< 256; n
++)
268 if (ptab
->data
[n
] > qopt
->mtu
)
270 size
= (n
<< qopt
->peakrate
.cell_log
) - 1;
277 if (q
->qdisc
!= &noop_qdisc
) {
278 err
= fifo_set_limit(q
->qdisc
, qopt
->limit
);
281 } else if (qopt
->limit
> 0) {
282 child
= fifo_create_dflt(sch
, &bfifo_qdisc_ops
, qopt
->limit
);
284 err
= PTR_ERR(child
);
291 qdisc_tree_decrease_qlen(q
->qdisc
, q
->qdisc
->q
.qlen
);
292 qdisc_destroy(q
->qdisc
);
295 q
->limit
= qopt
->limit
;
297 q
->max_size
= max_size
;
298 q
->buffer
= qopt
->buffer
;
299 q
->tokens
= q
->buffer
;
302 swap(q
->R_tab
, rtab
);
303 swap(q
->P_tab
, ptab
);
305 sch_tree_unlock(sch
);
309 qdisc_put_rtab(rtab
);
311 qdisc_put_rtab(ptab
);
315 static int tbf_init(struct Qdisc
*sch
, struct nlattr
*opt
)
317 struct tbf_sched_data
*q
= qdisc_priv(sch
);
322 q
->t_c
= psched_get_time();
323 qdisc_watchdog_init(&q
->watchdog
, sch
);
324 q
->qdisc
= &noop_qdisc
;
326 return tbf_change(sch
, opt
);
329 static void tbf_destroy(struct Qdisc
*sch
)
331 struct tbf_sched_data
*q
= qdisc_priv(sch
);
333 qdisc_watchdog_cancel(&q
->watchdog
);
336 qdisc_put_rtab(q
->P_tab
);
338 qdisc_put_rtab(q
->R_tab
);
340 qdisc_destroy(q
->qdisc
);
343 static int tbf_dump(struct Qdisc
*sch
, struct sk_buff
*skb
)
345 struct tbf_sched_data
*q
= qdisc_priv(sch
);
347 struct tc_tbf_qopt opt
;
349 sch
->qstats
.backlog
= q
->qdisc
->qstats
.backlog
;
350 nest
= nla_nest_start(skb
, TCA_OPTIONS
);
352 goto nla_put_failure
;
354 opt
.limit
= q
->limit
;
355 opt
.rate
= q
->R_tab
->rate
;
357 opt
.peakrate
= q
->P_tab
->rate
;
359 memset(&opt
.peakrate
, 0, sizeof(opt
.peakrate
));
361 opt
.buffer
= q
->buffer
;
362 NLA_PUT(skb
, TCA_TBF_PARMS
, sizeof(opt
), &opt
);
364 nla_nest_end(skb
, nest
);
368 nla_nest_cancel(skb
, nest
);
372 static int tbf_dump_class(struct Qdisc
*sch
, unsigned long cl
,
373 struct sk_buff
*skb
, struct tcmsg
*tcm
)
375 struct tbf_sched_data
*q
= qdisc_priv(sch
);
377 tcm
->tcm_handle
|= TC_H_MIN(1);
378 tcm
->tcm_info
= q
->qdisc
->handle
;
383 static int tbf_graft(struct Qdisc
*sch
, unsigned long arg
, struct Qdisc
*new,
386 struct tbf_sched_data
*q
= qdisc_priv(sch
);
394 qdisc_tree_decrease_qlen(*old
, (*old
)->q
.qlen
);
396 sch_tree_unlock(sch
);
401 static struct Qdisc
*tbf_leaf(struct Qdisc
*sch
, unsigned long arg
)
403 struct tbf_sched_data
*q
= qdisc_priv(sch
);
407 static unsigned long tbf_get(struct Qdisc
*sch
, u32 classid
)
412 static void tbf_put(struct Qdisc
*sch
, unsigned long arg
)
416 static void tbf_walk(struct Qdisc
*sch
, struct qdisc_walker
*walker
)
419 if (walker
->count
>= walker
->skip
)
420 if (walker
->fn(sch
, 1, walker
) < 0) {
428 static const struct Qdisc_class_ops tbf_class_ops
= {
434 .dump
= tbf_dump_class
,
437 static struct Qdisc_ops tbf_qdisc_ops __read_mostly
= {
439 .cl_ops
= &tbf_class_ops
,
441 .priv_size
= sizeof(struct tbf_sched_data
),
442 .enqueue
= tbf_enqueue
,
443 .dequeue
= tbf_dequeue
,
444 .peek
= qdisc_peek_dequeued
,
448 .destroy
= tbf_destroy
,
449 .change
= tbf_change
,
451 .owner
= THIS_MODULE
,
454 static int __init
tbf_module_init(void)
456 return register_qdisc(&tbf_qdisc_ops
);
459 static void __exit
tbf_module_exit(void)
461 unregister_qdisc(&tbf_qdisc_ops
);
463 module_init(tbf_module_init
)
464 module_exit(tbf_module_exit
)
465 MODULE_LICENSE("GPL");