spi-topcliff-pch: Fix issue for transmitting over 4KByte
[zen-stable.git] / tools / lguest / lguest.c
blobf759f4f097c7f5ea2693a0257b914e78fea113bb
1 /*P:100
2 * This is the Launcher code, a simple program which lays out the "physical"
3 * memory for the new Guest by mapping the kernel image and the virtual
4 * devices, then opens /dev/lguest to tell the kernel about the Guest and
5 * control it.
6 :*/
7 #define _LARGEFILE64_SOURCE
8 #define _GNU_SOURCE
9 #include <stdio.h>
10 #include <string.h>
11 #include <unistd.h>
12 #include <err.h>
13 #include <stdint.h>
14 #include <stdlib.h>
15 #include <elf.h>
16 #include <sys/mman.h>
17 #include <sys/param.h>
18 #include <sys/types.h>
19 #include <sys/stat.h>
20 #include <sys/wait.h>
21 #include <sys/eventfd.h>
22 #include <fcntl.h>
23 #include <stdbool.h>
24 #include <errno.h>
25 #include <ctype.h>
26 #include <sys/socket.h>
27 #include <sys/ioctl.h>
28 #include <sys/time.h>
29 #include <time.h>
30 #include <netinet/in.h>
31 #include <net/if.h>
32 #include <linux/sockios.h>
33 #include <linux/if_tun.h>
34 #include <sys/uio.h>
35 #include <termios.h>
36 #include <getopt.h>
37 #include <assert.h>
38 #include <sched.h>
39 #include <limits.h>
40 #include <stddef.h>
41 #include <signal.h>
42 #include <pwd.h>
43 #include <grp.h>
45 #include <linux/virtio_config.h>
46 #include <linux/virtio_net.h>
47 #include <linux/virtio_blk.h>
48 #include <linux/virtio_console.h>
49 #include <linux/virtio_rng.h>
50 #include <linux/virtio_ring.h>
51 #include <asm/bootparam.h>
52 #include "../../include/linux/lguest_launcher.h"
53 /*L:110
54 * We can ignore the 43 include files we need for this program, but I do want
55 * to draw attention to the use of kernel-style types.
57 * As Linus said, "C is a Spartan language, and so should your naming be." I
58 * like these abbreviations, so we define them here. Note that u64 is always
59 * unsigned long long, which works on all Linux systems: this means that we can
60 * use %llu in printf for any u64.
62 typedef unsigned long long u64;
63 typedef uint32_t u32;
64 typedef uint16_t u16;
65 typedef uint8_t u8;
66 /*:*/
68 #define BRIDGE_PFX "bridge:"
69 #ifndef SIOCBRADDIF
70 #define SIOCBRADDIF 0x89a2 /* add interface to bridge */
71 #endif
72 /* We can have up to 256 pages for devices. */
73 #define DEVICE_PAGES 256
74 /* This will occupy 3 pages: it must be a power of 2. */
75 #define VIRTQUEUE_NUM 256
77 /*L:120
78 * verbose is both a global flag and a macro. The C preprocessor allows
79 * this, and although I wouldn't recommend it, it works quite nicely here.
81 static bool verbose;
82 #define verbose(args...) \
83 do { if (verbose) printf(args); } while(0)
84 /*:*/
86 /* The pointer to the start of guest memory. */
87 static void *guest_base;
88 /* The maximum guest physical address allowed, and maximum possible. */
89 static unsigned long guest_limit, guest_max;
90 /* The /dev/lguest file descriptor. */
91 static int lguest_fd;
93 /* a per-cpu variable indicating whose vcpu is currently running */
94 static unsigned int __thread cpu_id;
96 /* This is our list of devices. */
97 struct device_list {
98 /* Counter to assign interrupt numbers. */
99 unsigned int next_irq;
101 /* Counter to print out convenient device numbers. */
102 unsigned int device_num;
104 /* The descriptor page for the devices. */
105 u8 *descpage;
107 /* A single linked list of devices. */
108 struct device *dev;
109 /* And a pointer to the last device for easy append. */
110 struct device *lastdev;
113 /* The list of Guest devices, based on command line arguments. */
114 static struct device_list devices;
116 /* The device structure describes a single device. */
117 struct device {
118 /* The linked-list pointer. */
119 struct device *next;
121 /* The device's descriptor, as mapped into the Guest. */
122 struct lguest_device_desc *desc;
124 /* We can't trust desc values once Guest has booted: we use these. */
125 unsigned int feature_len;
126 unsigned int num_vq;
128 /* The name of this device, for --verbose. */
129 const char *name;
131 /* Any queues attached to this device */
132 struct virtqueue *vq;
134 /* Is it operational */
135 bool running;
137 /* Device-specific data. */
138 void *priv;
141 /* The virtqueue structure describes a queue attached to a device. */
142 struct virtqueue {
143 struct virtqueue *next;
145 /* Which device owns me. */
146 struct device *dev;
148 /* The configuration for this queue. */
149 struct lguest_vqconfig config;
151 /* The actual ring of buffers. */
152 struct vring vring;
154 /* Last available index we saw. */
155 u16 last_avail_idx;
157 /* How many are used since we sent last irq? */
158 unsigned int pending_used;
160 /* Eventfd where Guest notifications arrive. */
161 int eventfd;
163 /* Function for the thread which is servicing this virtqueue. */
164 void (*service)(struct virtqueue *vq);
165 pid_t thread;
168 /* Remember the arguments to the program so we can "reboot" */
169 static char **main_args;
171 /* The original tty settings to restore on exit. */
172 static struct termios orig_term;
175 * We have to be careful with barriers: our devices are all run in separate
176 * threads and so we need to make sure that changes visible to the Guest happen
177 * in precise order.
179 #define wmb() __asm__ __volatile__("" : : : "memory")
180 #define mb() __asm__ __volatile__("" : : : "memory")
183 * Convert an iovec element to the given type.
185 * This is a fairly ugly trick: we need to know the size of the type and
186 * alignment requirement to check the pointer is kosher. It's also nice to
187 * have the name of the type in case we report failure.
189 * Typing those three things all the time is cumbersome and error prone, so we
190 * have a macro which sets them all up and passes to the real function.
192 #define convert(iov, type) \
193 ((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
195 static void *_convert(struct iovec *iov, size_t size, size_t align,
196 const char *name)
198 if (iov->iov_len != size)
199 errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
200 if ((unsigned long)iov->iov_base % align != 0)
201 errx(1, "Bad alignment %p for %s", iov->iov_base, name);
202 return iov->iov_base;
205 /* Wrapper for the last available index. Makes it easier to change. */
206 #define lg_last_avail(vq) ((vq)->last_avail_idx)
209 * The virtio configuration space is defined to be little-endian. x86 is
210 * little-endian too, but it's nice to be explicit so we have these helpers.
212 #define cpu_to_le16(v16) (v16)
213 #define cpu_to_le32(v32) (v32)
214 #define cpu_to_le64(v64) (v64)
215 #define le16_to_cpu(v16) (v16)
216 #define le32_to_cpu(v32) (v32)
217 #define le64_to_cpu(v64) (v64)
219 /* Is this iovec empty? */
220 static bool iov_empty(const struct iovec iov[], unsigned int num_iov)
222 unsigned int i;
224 for (i = 0; i < num_iov; i++)
225 if (iov[i].iov_len)
226 return false;
227 return true;
230 /* Take len bytes from the front of this iovec. */
231 static void iov_consume(struct iovec iov[], unsigned num_iov, unsigned len)
233 unsigned int i;
235 for (i = 0; i < num_iov; i++) {
236 unsigned int used;
238 used = iov[i].iov_len < len ? iov[i].iov_len : len;
239 iov[i].iov_base += used;
240 iov[i].iov_len -= used;
241 len -= used;
243 assert(len == 0);
246 /* The device virtqueue descriptors are followed by feature bitmasks. */
247 static u8 *get_feature_bits(struct device *dev)
249 return (u8 *)(dev->desc + 1)
250 + dev->num_vq * sizeof(struct lguest_vqconfig);
253 /*L:100
254 * The Launcher code itself takes us out into userspace, that scary place where
255 * pointers run wild and free! Unfortunately, like most userspace programs,
256 * it's quite boring (which is why everyone likes to hack on the kernel!).
257 * Perhaps if you make up an Lguest Drinking Game at this point, it will get
258 * you through this section. Or, maybe not.
260 * The Launcher sets up a big chunk of memory to be the Guest's "physical"
261 * memory and stores it in "guest_base". In other words, Guest physical ==
262 * Launcher virtual with an offset.
264 * This can be tough to get your head around, but usually it just means that we
265 * use these trivial conversion functions when the Guest gives us its
266 * "physical" addresses:
268 static void *from_guest_phys(unsigned long addr)
270 return guest_base + addr;
273 static unsigned long to_guest_phys(const void *addr)
275 return (addr - guest_base);
278 /*L:130
279 * Loading the Kernel.
281 * We start with couple of simple helper routines. open_or_die() avoids
282 * error-checking code cluttering the callers:
284 static int open_or_die(const char *name, int flags)
286 int fd = open(name, flags);
287 if (fd < 0)
288 err(1, "Failed to open %s", name);
289 return fd;
292 /* map_zeroed_pages() takes a number of pages. */
293 static void *map_zeroed_pages(unsigned int num)
295 int fd = open_or_die("/dev/zero", O_RDONLY);
296 void *addr;
299 * We use a private mapping (ie. if we write to the page, it will be
300 * copied). We allocate an extra two pages PROT_NONE to act as guard
301 * pages against read/write attempts that exceed allocated space.
303 addr = mmap(NULL, getpagesize() * (num+2),
304 PROT_NONE, MAP_PRIVATE, fd, 0);
306 if (addr == MAP_FAILED)
307 err(1, "Mmapping %u pages of /dev/zero", num);
309 if (mprotect(addr + getpagesize(), getpagesize() * num,
310 PROT_READ|PROT_WRITE) == -1)
311 err(1, "mprotect rw %u pages failed", num);
314 * One neat mmap feature is that you can close the fd, and it
315 * stays mapped.
317 close(fd);
319 /* Return address after PROT_NONE page */
320 return addr + getpagesize();
323 /* Get some more pages for a device. */
324 static void *get_pages(unsigned int num)
326 void *addr = from_guest_phys(guest_limit);
328 guest_limit += num * getpagesize();
329 if (guest_limit > guest_max)
330 errx(1, "Not enough memory for devices");
331 return addr;
335 * This routine is used to load the kernel or initrd. It tries mmap, but if
336 * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
337 * it falls back to reading the memory in.
339 static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
341 ssize_t r;
344 * We map writable even though for some segments are marked read-only.
345 * The kernel really wants to be writable: it patches its own
346 * instructions.
348 * MAP_PRIVATE means that the page won't be copied until a write is
349 * done to it. This allows us to share untouched memory between
350 * Guests.
352 if (mmap(addr, len, PROT_READ|PROT_WRITE,
353 MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
354 return;
356 /* pread does a seek and a read in one shot: saves a few lines. */
357 r = pread(fd, addr, len, offset);
358 if (r != len)
359 err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
363 * This routine takes an open vmlinux image, which is in ELF, and maps it into
364 * the Guest memory. ELF = Embedded Linking Format, which is the format used
365 * by all modern binaries on Linux including the kernel.
367 * The ELF headers give *two* addresses: a physical address, and a virtual
368 * address. We use the physical address; the Guest will map itself to the
369 * virtual address.
371 * We return the starting address.
373 static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
375 Elf32_Phdr phdr[ehdr->e_phnum];
376 unsigned int i;
379 * Sanity checks on the main ELF header: an x86 executable with a
380 * reasonable number of correctly-sized program headers.
382 if (ehdr->e_type != ET_EXEC
383 || ehdr->e_machine != EM_386
384 || ehdr->e_phentsize != sizeof(Elf32_Phdr)
385 || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
386 errx(1, "Malformed elf header");
389 * An ELF executable contains an ELF header and a number of "program"
390 * headers which indicate which parts ("segments") of the program to
391 * load where.
394 /* We read in all the program headers at once: */
395 if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
396 err(1, "Seeking to program headers");
397 if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
398 err(1, "Reading program headers");
401 * Try all the headers: there are usually only three. A read-only one,
402 * a read-write one, and a "note" section which we don't load.
404 for (i = 0; i < ehdr->e_phnum; i++) {
405 /* If this isn't a loadable segment, we ignore it */
406 if (phdr[i].p_type != PT_LOAD)
407 continue;
409 verbose("Section %i: size %i addr %p\n",
410 i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
412 /* We map this section of the file at its physical address. */
413 map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
414 phdr[i].p_offset, phdr[i].p_filesz);
417 /* The entry point is given in the ELF header. */
418 return ehdr->e_entry;
421 /*L:150
422 * A bzImage, unlike an ELF file, is not meant to be loaded. You're supposed
423 * to jump into it and it will unpack itself. We used to have to perform some
424 * hairy magic because the unpacking code scared me.
426 * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
427 * a small patch to jump over the tricky bits in the Guest, so now we just read
428 * the funky header so we know where in the file to load, and away we go!
430 static unsigned long load_bzimage(int fd)
432 struct boot_params boot;
433 int r;
434 /* Modern bzImages get loaded at 1M. */
435 void *p = from_guest_phys(0x100000);
438 * Go back to the start of the file and read the header. It should be
439 * a Linux boot header (see Documentation/x86/boot.txt)
441 lseek(fd, 0, SEEK_SET);
442 read(fd, &boot, sizeof(boot));
444 /* Inside the setup_hdr, we expect the magic "HdrS" */
445 if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
446 errx(1, "This doesn't look like a bzImage to me");
448 /* Skip over the extra sectors of the header. */
449 lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
451 /* Now read everything into memory. in nice big chunks. */
452 while ((r = read(fd, p, 65536)) > 0)
453 p += r;
455 /* Finally, code32_start tells us where to enter the kernel. */
456 return boot.hdr.code32_start;
459 /*L:140
460 * Loading the kernel is easy when it's a "vmlinux", but most kernels
461 * come wrapped up in the self-decompressing "bzImage" format. With a little
462 * work, we can load those, too.
464 static unsigned long load_kernel(int fd)
466 Elf32_Ehdr hdr;
468 /* Read in the first few bytes. */
469 if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
470 err(1, "Reading kernel");
472 /* If it's an ELF file, it starts with "\177ELF" */
473 if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
474 return map_elf(fd, &hdr);
476 /* Otherwise we assume it's a bzImage, and try to load it. */
477 return load_bzimage(fd);
481 * This is a trivial little helper to align pages. Andi Kleen hated it because
482 * it calls getpagesize() twice: "it's dumb code."
484 * Kernel guys get really het up about optimization, even when it's not
485 * necessary. I leave this code as a reaction against that.
487 static inline unsigned long page_align(unsigned long addr)
489 /* Add upwards and truncate downwards. */
490 return ((addr + getpagesize()-1) & ~(getpagesize()-1));
493 /*L:180
494 * An "initial ram disk" is a disk image loaded into memory along with the
495 * kernel which the kernel can use to boot from without needing any drivers.
496 * Most distributions now use this as standard: the initrd contains the code to
497 * load the appropriate driver modules for the current machine.
499 * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
500 * kernels. He sent me this (and tells me when I break it).
502 static unsigned long load_initrd(const char *name, unsigned long mem)
504 int ifd;
505 struct stat st;
506 unsigned long len;
508 ifd = open_or_die(name, O_RDONLY);
509 /* fstat() is needed to get the file size. */
510 if (fstat(ifd, &st) < 0)
511 err(1, "fstat() on initrd '%s'", name);
514 * We map the initrd at the top of memory, but mmap wants it to be
515 * page-aligned, so we round the size up for that.
517 len = page_align(st.st_size);
518 map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
520 * Once a file is mapped, you can close the file descriptor. It's a
521 * little odd, but quite useful.
523 close(ifd);
524 verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
526 /* We return the initrd size. */
527 return len;
529 /*:*/
532 * Simple routine to roll all the commandline arguments together with spaces
533 * between them.
535 static void concat(char *dst, char *args[])
537 unsigned int i, len = 0;
539 for (i = 0; args[i]; i++) {
540 if (i) {
541 strcat(dst+len, " ");
542 len++;
544 strcpy(dst+len, args[i]);
545 len += strlen(args[i]);
547 /* In case it's empty. */
548 dst[len] = '\0';
551 /*L:185
552 * This is where we actually tell the kernel to initialize the Guest. We
553 * saw the arguments it expects when we looked at initialize() in lguest_user.c:
554 * the base of Guest "physical" memory, the top physical page to allow and the
555 * entry point for the Guest.
557 static void tell_kernel(unsigned long start)
559 unsigned long args[] = { LHREQ_INITIALIZE,
560 (unsigned long)guest_base,
561 guest_limit / getpagesize(), start };
562 verbose("Guest: %p - %p (%#lx)\n",
563 guest_base, guest_base + guest_limit, guest_limit);
564 lguest_fd = open_or_die("/dev/lguest", O_RDWR);
565 if (write(lguest_fd, args, sizeof(args)) < 0)
566 err(1, "Writing to /dev/lguest");
568 /*:*/
570 /*L:200
571 * Device Handling.
573 * When the Guest gives us a buffer, it sends an array of addresses and sizes.
574 * We need to make sure it's not trying to reach into the Launcher itself, so
575 * we have a convenient routine which checks it and exits with an error message
576 * if something funny is going on:
578 static void *_check_pointer(unsigned long addr, unsigned int size,
579 unsigned int line)
582 * Check if the requested address and size exceeds the allocated memory,
583 * or addr + size wraps around.
585 if ((addr + size) > guest_limit || (addr + size) < addr)
586 errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
588 * We return a pointer for the caller's convenience, now we know it's
589 * safe to use.
591 return from_guest_phys(addr);
593 /* A macro which transparently hands the line number to the real function. */
594 #define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
597 * Each buffer in the virtqueues is actually a chain of descriptors. This
598 * function returns the next descriptor in the chain, or vq->vring.num if we're
599 * at the end.
601 static unsigned next_desc(struct vring_desc *desc,
602 unsigned int i, unsigned int max)
604 unsigned int next;
606 /* If this descriptor says it doesn't chain, we're done. */
607 if (!(desc[i].flags & VRING_DESC_F_NEXT))
608 return max;
610 /* Check they're not leading us off end of descriptors. */
611 next = desc[i].next;
612 /* Make sure compiler knows to grab that: we don't want it changing! */
613 wmb();
615 if (next >= max)
616 errx(1, "Desc next is %u", next);
618 return next;
622 * This actually sends the interrupt for this virtqueue, if we've used a
623 * buffer.
625 static void trigger_irq(struct virtqueue *vq)
627 unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
629 /* Don't inform them if nothing used. */
630 if (!vq->pending_used)
631 return;
632 vq->pending_used = 0;
634 /* If they don't want an interrupt, don't send one... */
635 if (vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT) {
636 return;
639 /* Send the Guest an interrupt tell them we used something up. */
640 if (write(lguest_fd, buf, sizeof(buf)) != 0)
641 err(1, "Triggering irq %i", vq->config.irq);
645 * This looks in the virtqueue for the first available buffer, and converts
646 * it to an iovec for convenient access. Since descriptors consist of some
647 * number of output then some number of input descriptors, it's actually two
648 * iovecs, but we pack them into one and note how many of each there were.
650 * This function waits if necessary, and returns the descriptor number found.
652 static unsigned wait_for_vq_desc(struct virtqueue *vq,
653 struct iovec iov[],
654 unsigned int *out_num, unsigned int *in_num)
656 unsigned int i, head, max;
657 struct vring_desc *desc;
658 u16 last_avail = lg_last_avail(vq);
660 /* There's nothing available? */
661 while (last_avail == vq->vring.avail->idx) {
662 u64 event;
665 * Since we're about to sleep, now is a good time to tell the
666 * Guest about what we've used up to now.
668 trigger_irq(vq);
670 /* OK, now we need to know about added descriptors. */
671 vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
674 * They could have slipped one in as we were doing that: make
675 * sure it's written, then check again.
677 mb();
678 if (last_avail != vq->vring.avail->idx) {
679 vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
680 break;
683 /* Nothing new? Wait for eventfd to tell us they refilled. */
684 if (read(vq->eventfd, &event, sizeof(event)) != sizeof(event))
685 errx(1, "Event read failed?");
687 /* We don't need to be notified again. */
688 vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
691 /* Check it isn't doing very strange things with descriptor numbers. */
692 if ((u16)(vq->vring.avail->idx - last_avail) > vq->vring.num)
693 errx(1, "Guest moved used index from %u to %u",
694 last_avail, vq->vring.avail->idx);
697 * Grab the next descriptor number they're advertising, and increment
698 * the index we've seen.
700 head = vq->vring.avail->ring[last_avail % vq->vring.num];
701 lg_last_avail(vq)++;
703 /* If their number is silly, that's a fatal mistake. */
704 if (head >= vq->vring.num)
705 errx(1, "Guest says index %u is available", head);
707 /* When we start there are none of either input nor output. */
708 *out_num = *in_num = 0;
710 max = vq->vring.num;
711 desc = vq->vring.desc;
712 i = head;
715 * If this is an indirect entry, then this buffer contains a descriptor
716 * table which we handle as if it's any normal descriptor chain.
718 if (desc[i].flags & VRING_DESC_F_INDIRECT) {
719 if (desc[i].len % sizeof(struct vring_desc))
720 errx(1, "Invalid size for indirect buffer table");
722 max = desc[i].len / sizeof(struct vring_desc);
723 desc = check_pointer(desc[i].addr, desc[i].len);
724 i = 0;
727 do {
728 /* Grab the first descriptor, and check it's OK. */
729 iov[*out_num + *in_num].iov_len = desc[i].len;
730 iov[*out_num + *in_num].iov_base
731 = check_pointer(desc[i].addr, desc[i].len);
732 /* If this is an input descriptor, increment that count. */
733 if (desc[i].flags & VRING_DESC_F_WRITE)
734 (*in_num)++;
735 else {
737 * If it's an output descriptor, they're all supposed
738 * to come before any input descriptors.
740 if (*in_num)
741 errx(1, "Descriptor has out after in");
742 (*out_num)++;
745 /* If we've got too many, that implies a descriptor loop. */
746 if (*out_num + *in_num > max)
747 errx(1, "Looped descriptor");
748 } while ((i = next_desc(desc, i, max)) != max);
750 return head;
754 * After we've used one of their buffers, we tell the Guest about it. Sometime
755 * later we'll want to send them an interrupt using trigger_irq(); note that
756 * wait_for_vq_desc() does that for us if it has to wait.
758 static void add_used(struct virtqueue *vq, unsigned int head, int len)
760 struct vring_used_elem *used;
763 * The virtqueue contains a ring of used buffers. Get a pointer to the
764 * next entry in that used ring.
766 used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
767 used->id = head;
768 used->len = len;
769 /* Make sure buffer is written before we update index. */
770 wmb();
771 vq->vring.used->idx++;
772 vq->pending_used++;
775 /* And here's the combo meal deal. Supersize me! */
776 static void add_used_and_trigger(struct virtqueue *vq, unsigned head, int len)
778 add_used(vq, head, len);
779 trigger_irq(vq);
783 * The Console
785 * We associate some data with the console for our exit hack.
787 struct console_abort {
788 /* How many times have they hit ^C? */
789 int count;
790 /* When did they start? */
791 struct timeval start;
794 /* This is the routine which handles console input (ie. stdin). */
795 static void console_input(struct virtqueue *vq)
797 int len;
798 unsigned int head, in_num, out_num;
799 struct console_abort *abort = vq->dev->priv;
800 struct iovec iov[vq->vring.num];
802 /* Make sure there's a descriptor available. */
803 head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
804 if (out_num)
805 errx(1, "Output buffers in console in queue?");
807 /* Read into it. This is where we usually wait. */
808 len = readv(STDIN_FILENO, iov, in_num);
809 if (len <= 0) {
810 /* Ran out of input? */
811 warnx("Failed to get console input, ignoring console.");
813 * For simplicity, dying threads kill the whole Launcher. So
814 * just nap here.
816 for (;;)
817 pause();
820 /* Tell the Guest we used a buffer. */
821 add_used_and_trigger(vq, head, len);
824 * Three ^C within one second? Exit.
826 * This is such a hack, but works surprisingly well. Each ^C has to
827 * be in a buffer by itself, so they can't be too fast. But we check
828 * that we get three within about a second, so they can't be too
829 * slow.
831 if (len != 1 || ((char *)iov[0].iov_base)[0] != 3) {
832 abort->count = 0;
833 return;
836 abort->count++;
837 if (abort->count == 1)
838 gettimeofday(&abort->start, NULL);
839 else if (abort->count == 3) {
840 struct timeval now;
841 gettimeofday(&now, NULL);
842 /* Kill all Launcher processes with SIGINT, like normal ^C */
843 if (now.tv_sec <= abort->start.tv_sec+1)
844 kill(0, SIGINT);
845 abort->count = 0;
849 /* This is the routine which handles console output (ie. stdout). */
850 static void console_output(struct virtqueue *vq)
852 unsigned int head, out, in;
853 struct iovec iov[vq->vring.num];
855 /* We usually wait in here, for the Guest to give us something. */
856 head = wait_for_vq_desc(vq, iov, &out, &in);
857 if (in)
858 errx(1, "Input buffers in console output queue?");
860 /* writev can return a partial write, so we loop here. */
861 while (!iov_empty(iov, out)) {
862 int len = writev(STDOUT_FILENO, iov, out);
863 if (len <= 0) {
864 warn("Write to stdout gave %i (%d)", len, errno);
865 break;
867 iov_consume(iov, out, len);
871 * We're finished with that buffer: if we're going to sleep,
872 * wait_for_vq_desc() will prod the Guest with an interrupt.
874 add_used(vq, head, 0);
878 * The Network
880 * Handling output for network is also simple: we get all the output buffers
881 * and write them to /dev/net/tun.
883 struct net_info {
884 int tunfd;
887 static void net_output(struct virtqueue *vq)
889 struct net_info *net_info = vq->dev->priv;
890 unsigned int head, out, in;
891 struct iovec iov[vq->vring.num];
893 /* We usually wait in here for the Guest to give us a packet. */
894 head = wait_for_vq_desc(vq, iov, &out, &in);
895 if (in)
896 errx(1, "Input buffers in net output queue?");
898 * Send the whole thing through to /dev/net/tun. It expects the exact
899 * same format: what a coincidence!
901 if (writev(net_info->tunfd, iov, out) < 0)
902 warnx("Write to tun failed (%d)?", errno);
905 * Done with that one; wait_for_vq_desc() will send the interrupt if
906 * all packets are processed.
908 add_used(vq, head, 0);
912 * Handling network input is a bit trickier, because I've tried to optimize it.
914 * First we have a helper routine which tells is if from this file descriptor
915 * (ie. the /dev/net/tun device) will block:
917 static bool will_block(int fd)
919 fd_set fdset;
920 struct timeval zero = { 0, 0 };
921 FD_ZERO(&fdset);
922 FD_SET(fd, &fdset);
923 return select(fd+1, &fdset, NULL, NULL, &zero) != 1;
927 * This handles packets coming in from the tun device to our Guest. Like all
928 * service routines, it gets called again as soon as it returns, so you don't
929 * see a while(1) loop here.
931 static void net_input(struct virtqueue *vq)
933 int len;
934 unsigned int head, out, in;
935 struct iovec iov[vq->vring.num];
936 struct net_info *net_info = vq->dev->priv;
939 * Get a descriptor to write an incoming packet into. This will also
940 * send an interrupt if they're out of descriptors.
942 head = wait_for_vq_desc(vq, iov, &out, &in);
943 if (out)
944 errx(1, "Output buffers in net input queue?");
947 * If it looks like we'll block reading from the tun device, send them
948 * an interrupt.
950 if (vq->pending_used && will_block(net_info->tunfd))
951 trigger_irq(vq);
954 * Read in the packet. This is where we normally wait (when there's no
955 * incoming network traffic).
957 len = readv(net_info->tunfd, iov, in);
958 if (len <= 0)
959 warn("Failed to read from tun (%d).", errno);
962 * Mark that packet buffer as used, but don't interrupt here. We want
963 * to wait until we've done as much work as we can.
965 add_used(vq, head, len);
967 /*:*/
969 /* This is the helper to create threads: run the service routine in a loop. */
970 static int do_thread(void *_vq)
972 struct virtqueue *vq = _vq;
974 for (;;)
975 vq->service(vq);
976 return 0;
980 * When a child dies, we kill our entire process group with SIGTERM. This
981 * also has the side effect that the shell restores the console for us!
983 static void kill_launcher(int signal)
985 kill(0, SIGTERM);
988 static void reset_device(struct device *dev)
990 struct virtqueue *vq;
992 verbose("Resetting device %s\n", dev->name);
994 /* Clear any features they've acked. */
995 memset(get_feature_bits(dev) + dev->feature_len, 0, dev->feature_len);
997 /* We're going to be explicitly killing threads, so ignore them. */
998 signal(SIGCHLD, SIG_IGN);
1000 /* Zero out the virtqueues, get rid of their threads */
1001 for (vq = dev->vq; vq; vq = vq->next) {
1002 if (vq->thread != (pid_t)-1) {
1003 kill(vq->thread, SIGTERM);
1004 waitpid(vq->thread, NULL, 0);
1005 vq->thread = (pid_t)-1;
1007 memset(vq->vring.desc, 0,
1008 vring_size(vq->config.num, LGUEST_VRING_ALIGN));
1009 lg_last_avail(vq) = 0;
1011 dev->running = false;
1013 /* Now we care if threads die. */
1014 signal(SIGCHLD, (void *)kill_launcher);
1017 /*L:216
1018 * This actually creates the thread which services the virtqueue for a device.
1020 static void create_thread(struct virtqueue *vq)
1023 * Create stack for thread. Since the stack grows upwards, we point
1024 * the stack pointer to the end of this region.
1026 char *stack = malloc(32768);
1027 unsigned long args[] = { LHREQ_EVENTFD,
1028 vq->config.pfn*getpagesize(), 0 };
1030 /* Create a zero-initialized eventfd. */
1031 vq->eventfd = eventfd(0, 0);
1032 if (vq->eventfd < 0)
1033 err(1, "Creating eventfd");
1034 args[2] = vq->eventfd;
1037 * Attach an eventfd to this virtqueue: it will go off when the Guest
1038 * does an LHCALL_NOTIFY for this vq.
1040 if (write(lguest_fd, &args, sizeof(args)) != 0)
1041 err(1, "Attaching eventfd");
1044 * CLONE_VM: because it has to access the Guest memory, and SIGCHLD so
1045 * we get a signal if it dies.
1047 vq->thread = clone(do_thread, stack + 32768, CLONE_VM | SIGCHLD, vq);
1048 if (vq->thread == (pid_t)-1)
1049 err(1, "Creating clone");
1051 /* We close our local copy now the child has it. */
1052 close(vq->eventfd);
1055 static void start_device(struct device *dev)
1057 unsigned int i;
1058 struct virtqueue *vq;
1060 verbose("Device %s OK: offered", dev->name);
1061 for (i = 0; i < dev->feature_len; i++)
1062 verbose(" %02x", get_feature_bits(dev)[i]);
1063 verbose(", accepted");
1064 for (i = 0; i < dev->feature_len; i++)
1065 verbose(" %02x", get_feature_bits(dev)
1066 [dev->feature_len+i]);
1068 for (vq = dev->vq; vq; vq = vq->next) {
1069 if (vq->service)
1070 create_thread(vq);
1072 dev->running = true;
1075 static void cleanup_devices(void)
1077 struct device *dev;
1079 for (dev = devices.dev; dev; dev = dev->next)
1080 reset_device(dev);
1082 /* If we saved off the original terminal settings, restore them now. */
1083 if (orig_term.c_lflag & (ISIG|ICANON|ECHO))
1084 tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
1087 /* When the Guest tells us they updated the status field, we handle it. */
1088 static void update_device_status(struct device *dev)
1090 /* A zero status is a reset, otherwise it's a set of flags. */
1091 if (dev->desc->status == 0)
1092 reset_device(dev);
1093 else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) {
1094 warnx("Device %s configuration FAILED", dev->name);
1095 if (dev->running)
1096 reset_device(dev);
1097 } else {
1098 if (dev->running)
1099 err(1, "Device %s features finalized twice", dev->name);
1100 start_device(dev);
1104 /*L:215
1105 * This is the generic routine we call when the Guest uses LHCALL_NOTIFY. In
1106 * particular, it's used to notify us of device status changes during boot.
1108 static void handle_output(unsigned long addr)
1110 struct device *i;
1112 /* Check each device. */
1113 for (i = devices.dev; i; i = i->next) {
1114 struct virtqueue *vq;
1117 * Notifications to device descriptors mean they updated the
1118 * device status.
1120 if (from_guest_phys(addr) == i->desc) {
1121 update_device_status(i);
1122 return;
1125 /* Devices should not be used before features are finalized. */
1126 for (vq = i->vq; vq; vq = vq->next) {
1127 if (addr != vq->config.pfn*getpagesize())
1128 continue;
1129 errx(1, "Notification on %s before setup!", i->name);
1134 * Early console write is done using notify on a nul-terminated string
1135 * in Guest memory. It's also great for hacking debugging messages
1136 * into a Guest.
1138 if (addr >= guest_limit)
1139 errx(1, "Bad NOTIFY %#lx", addr);
1141 write(STDOUT_FILENO, from_guest_phys(addr),
1142 strnlen(from_guest_phys(addr), guest_limit - addr));
1145 /*L:190
1146 * Device Setup
1148 * All devices need a descriptor so the Guest knows it exists, and a "struct
1149 * device" so the Launcher can keep track of it. We have common helper
1150 * routines to allocate and manage them.
1154 * The layout of the device page is a "struct lguest_device_desc" followed by a
1155 * number of virtqueue descriptors, then two sets of feature bits, then an
1156 * array of configuration bytes. This routine returns the configuration
1157 * pointer.
1159 static u8 *device_config(const struct device *dev)
1161 return (void *)(dev->desc + 1)
1162 + dev->num_vq * sizeof(struct lguest_vqconfig)
1163 + dev->feature_len * 2;
1167 * This routine allocates a new "struct lguest_device_desc" from descriptor
1168 * table page just above the Guest's normal memory. It returns a pointer to
1169 * that descriptor.
1171 static struct lguest_device_desc *new_dev_desc(u16 type)
1173 struct lguest_device_desc d = { .type = type };
1174 void *p;
1176 /* Figure out where the next device config is, based on the last one. */
1177 if (devices.lastdev)
1178 p = device_config(devices.lastdev)
1179 + devices.lastdev->desc->config_len;
1180 else
1181 p = devices.descpage;
1183 /* We only have one page for all the descriptors. */
1184 if (p + sizeof(d) > (void *)devices.descpage + getpagesize())
1185 errx(1, "Too many devices");
1187 /* p might not be aligned, so we memcpy in. */
1188 return memcpy(p, &d, sizeof(d));
1192 * Each device descriptor is followed by the description of its virtqueues. We
1193 * specify how many descriptors the virtqueue is to have.
1195 static void add_virtqueue(struct device *dev, unsigned int num_descs,
1196 void (*service)(struct virtqueue *))
1198 unsigned int pages;
1199 struct virtqueue **i, *vq = malloc(sizeof(*vq));
1200 void *p;
1202 /* First we need some memory for this virtqueue. */
1203 pages = (vring_size(num_descs, LGUEST_VRING_ALIGN) + getpagesize() - 1)
1204 / getpagesize();
1205 p = get_pages(pages);
1207 /* Initialize the virtqueue */
1208 vq->next = NULL;
1209 vq->last_avail_idx = 0;
1210 vq->dev = dev;
1213 * This is the routine the service thread will run, and its Process ID
1214 * once it's running.
1216 vq->service = service;
1217 vq->thread = (pid_t)-1;
1219 /* Initialize the configuration. */
1220 vq->config.num = num_descs;
1221 vq->config.irq = devices.next_irq++;
1222 vq->config.pfn = to_guest_phys(p) / getpagesize();
1224 /* Initialize the vring. */
1225 vring_init(&vq->vring, num_descs, p, LGUEST_VRING_ALIGN);
1228 * Append virtqueue to this device's descriptor. We use
1229 * device_config() to get the end of the device's current virtqueues;
1230 * we check that we haven't added any config or feature information
1231 * yet, otherwise we'd be overwriting them.
1233 assert(dev->desc->config_len == 0 && dev->desc->feature_len == 0);
1234 memcpy(device_config(dev), &vq->config, sizeof(vq->config));
1235 dev->num_vq++;
1236 dev->desc->num_vq++;
1238 verbose("Virtqueue page %#lx\n", to_guest_phys(p));
1241 * Add to tail of list, so dev->vq is first vq, dev->vq->next is
1242 * second.
1244 for (i = &dev->vq; *i; i = &(*i)->next);
1245 *i = vq;
1249 * The first half of the feature bitmask is for us to advertise features. The
1250 * second half is for the Guest to accept features.
1252 static void add_feature(struct device *dev, unsigned bit)
1254 u8 *features = get_feature_bits(dev);
1256 /* We can't extend the feature bits once we've added config bytes */
1257 if (dev->desc->feature_len <= bit / CHAR_BIT) {
1258 assert(dev->desc->config_len == 0);
1259 dev->feature_len = dev->desc->feature_len = (bit/CHAR_BIT) + 1;
1262 features[bit / CHAR_BIT] |= (1 << (bit % CHAR_BIT));
1266 * This routine sets the configuration fields for an existing device's
1267 * descriptor. It only works for the last device, but that's OK because that's
1268 * how we use it.
1270 static void set_config(struct device *dev, unsigned len, const void *conf)
1272 /* Check we haven't overflowed our single page. */
1273 if (device_config(dev) + len > devices.descpage + getpagesize())
1274 errx(1, "Too many devices");
1276 /* Copy in the config information, and store the length. */
1277 memcpy(device_config(dev), conf, len);
1278 dev->desc->config_len = len;
1280 /* Size must fit in config_len field (8 bits)! */
1281 assert(dev->desc->config_len == len);
1285 * This routine does all the creation and setup of a new device, including
1286 * calling new_dev_desc() to allocate the descriptor and device memory. We
1287 * don't actually start the service threads until later.
1289 * See what I mean about userspace being boring?
1291 static struct device *new_device(const char *name, u16 type)
1293 struct device *dev = malloc(sizeof(*dev));
1295 /* Now we populate the fields one at a time. */
1296 dev->desc = new_dev_desc(type);
1297 dev->name = name;
1298 dev->vq = NULL;
1299 dev->feature_len = 0;
1300 dev->num_vq = 0;
1301 dev->running = false;
1304 * Append to device list. Prepending to a single-linked list is
1305 * easier, but the user expects the devices to be arranged on the bus
1306 * in command-line order. The first network device on the command line
1307 * is eth0, the first block device /dev/vda, etc.
1309 if (devices.lastdev)
1310 devices.lastdev->next = dev;
1311 else
1312 devices.dev = dev;
1313 devices.lastdev = dev;
1315 return dev;
1319 * Our first setup routine is the console. It's a fairly simple device, but
1320 * UNIX tty handling makes it uglier than it could be.
1322 static void setup_console(void)
1324 struct device *dev;
1326 /* If we can save the initial standard input settings... */
1327 if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
1328 struct termios term = orig_term;
1330 * Then we turn off echo, line buffering and ^C etc: We want a
1331 * raw input stream to the Guest.
1333 term.c_lflag &= ~(ISIG|ICANON|ECHO);
1334 tcsetattr(STDIN_FILENO, TCSANOW, &term);
1337 dev = new_device("console", VIRTIO_ID_CONSOLE);
1339 /* We store the console state in dev->priv, and initialize it. */
1340 dev->priv = malloc(sizeof(struct console_abort));
1341 ((struct console_abort *)dev->priv)->count = 0;
1344 * The console needs two virtqueues: the input then the output. When
1345 * they put something the input queue, we make sure we're listening to
1346 * stdin. When they put something in the output queue, we write it to
1347 * stdout.
1349 add_virtqueue(dev, VIRTQUEUE_NUM, console_input);
1350 add_virtqueue(dev, VIRTQUEUE_NUM, console_output);
1352 verbose("device %u: console\n", ++devices.device_num);
1354 /*:*/
1356 /*M:010
1357 * Inter-guest networking is an interesting area. Simplest is to have a
1358 * --sharenet=<name> option which opens or creates a named pipe. This can be
1359 * used to send packets to another guest in a 1:1 manner.
1361 * More sophisticated is to use one of the tools developed for project like UML
1362 * to do networking.
1364 * Faster is to do virtio bonding in kernel. Doing this 1:1 would be
1365 * completely generic ("here's my vring, attach to your vring") and would work
1366 * for any traffic. Of course, namespace and permissions issues need to be
1367 * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide
1368 * multiple inter-guest channels behind one interface, although it would
1369 * require some manner of hotplugging new virtio channels.
1371 * Finally, we could use a virtio network switch in the kernel, ie. vhost.
1374 static u32 str2ip(const char *ipaddr)
1376 unsigned int b[4];
1378 if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4)
1379 errx(1, "Failed to parse IP address '%s'", ipaddr);
1380 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
1383 static void str2mac(const char *macaddr, unsigned char mac[6])
1385 unsigned int m[6];
1386 if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x",
1387 &m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6)
1388 errx(1, "Failed to parse mac address '%s'", macaddr);
1389 mac[0] = m[0];
1390 mac[1] = m[1];
1391 mac[2] = m[2];
1392 mac[3] = m[3];
1393 mac[4] = m[4];
1394 mac[5] = m[5];
1398 * This code is "adapted" from libbridge: it attaches the Host end of the
1399 * network device to the bridge device specified by the command line.
1401 * This is yet another James Morris contribution (I'm an IP-level guy, so I
1402 * dislike bridging), and I just try not to break it.
1404 static void add_to_bridge(int fd, const char *if_name, const char *br_name)
1406 int ifidx;
1407 struct ifreq ifr;
1409 if (!*br_name)
1410 errx(1, "must specify bridge name");
1412 ifidx = if_nametoindex(if_name);
1413 if (!ifidx)
1414 errx(1, "interface %s does not exist!", if_name);
1416 strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
1417 ifr.ifr_name[IFNAMSIZ-1] = '\0';
1418 ifr.ifr_ifindex = ifidx;
1419 if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
1420 err(1, "can't add %s to bridge %s", if_name, br_name);
1424 * This sets up the Host end of the network device with an IP address, brings
1425 * it up so packets will flow, the copies the MAC address into the hwaddr
1426 * pointer.
1428 static void configure_device(int fd, const char *tapif, u32 ipaddr)
1430 struct ifreq ifr;
1431 struct sockaddr_in sin;
1433 memset(&ifr, 0, sizeof(ifr));
1434 strcpy(ifr.ifr_name, tapif);
1436 /* Don't read these incantations. Just cut & paste them like I did! */
1437 sin.sin_family = AF_INET;
1438 sin.sin_addr.s_addr = htonl(ipaddr);
1439 memcpy(&ifr.ifr_addr, &sin, sizeof(sin));
1440 if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
1441 err(1, "Setting %s interface address", tapif);
1442 ifr.ifr_flags = IFF_UP;
1443 if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
1444 err(1, "Bringing interface %s up", tapif);
1447 static int get_tun_device(char tapif[IFNAMSIZ])
1449 struct ifreq ifr;
1450 int netfd;
1452 /* Start with this zeroed. Messy but sure. */
1453 memset(&ifr, 0, sizeof(ifr));
1456 * We open the /dev/net/tun device and tell it we want a tap device. A
1457 * tap device is like a tun device, only somehow different. To tell
1458 * the truth, I completely blundered my way through this code, but it
1459 * works now!
1461 netfd = open_or_die("/dev/net/tun", O_RDWR);
1462 ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_VNET_HDR;
1463 strcpy(ifr.ifr_name, "tap%d");
1464 if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
1465 err(1, "configuring /dev/net/tun");
1467 if (ioctl(netfd, TUNSETOFFLOAD,
1468 TUN_F_CSUM|TUN_F_TSO4|TUN_F_TSO6|TUN_F_TSO_ECN) != 0)
1469 err(1, "Could not set features for tun device");
1472 * We don't need checksums calculated for packets coming in this
1473 * device: trust us!
1475 ioctl(netfd, TUNSETNOCSUM, 1);
1477 memcpy(tapif, ifr.ifr_name, IFNAMSIZ);
1478 return netfd;
1481 /*L:195
1482 * Our network is a Host<->Guest network. This can either use bridging or
1483 * routing, but the principle is the same: it uses the "tun" device to inject
1484 * packets into the Host as if they came in from a normal network card. We
1485 * just shunt packets between the Guest and the tun device.
1487 static void setup_tun_net(char *arg)
1489 struct device *dev;
1490 struct net_info *net_info = malloc(sizeof(*net_info));
1491 int ipfd;
1492 u32 ip = INADDR_ANY;
1493 bool bridging = false;
1494 char tapif[IFNAMSIZ], *p;
1495 struct virtio_net_config conf;
1497 net_info->tunfd = get_tun_device(tapif);
1499 /* First we create a new network device. */
1500 dev = new_device("net", VIRTIO_ID_NET);
1501 dev->priv = net_info;
1503 /* Network devices need a recv and a send queue, just like console. */
1504 add_virtqueue(dev, VIRTQUEUE_NUM, net_input);
1505 add_virtqueue(dev, VIRTQUEUE_NUM, net_output);
1508 * We need a socket to perform the magic network ioctls to bring up the
1509 * tap interface, connect to the bridge etc. Any socket will do!
1511 ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
1512 if (ipfd < 0)
1513 err(1, "opening IP socket");
1515 /* If the command line was --tunnet=bridge:<name> do bridging. */
1516 if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
1517 arg += strlen(BRIDGE_PFX);
1518 bridging = true;
1521 /* A mac address may follow the bridge name or IP address */
1522 p = strchr(arg, ':');
1523 if (p) {
1524 str2mac(p+1, conf.mac);
1525 add_feature(dev, VIRTIO_NET_F_MAC);
1526 *p = '\0';
1529 /* arg is now either an IP address or a bridge name */
1530 if (bridging)
1531 add_to_bridge(ipfd, tapif, arg);
1532 else
1533 ip = str2ip(arg);
1535 /* Set up the tun device. */
1536 configure_device(ipfd, tapif, ip);
1538 /* Expect Guest to handle everything except UFO */
1539 add_feature(dev, VIRTIO_NET_F_CSUM);
1540 add_feature(dev, VIRTIO_NET_F_GUEST_CSUM);
1541 add_feature(dev, VIRTIO_NET_F_GUEST_TSO4);
1542 add_feature(dev, VIRTIO_NET_F_GUEST_TSO6);
1543 add_feature(dev, VIRTIO_NET_F_GUEST_ECN);
1544 add_feature(dev, VIRTIO_NET_F_HOST_TSO4);
1545 add_feature(dev, VIRTIO_NET_F_HOST_TSO6);
1546 add_feature(dev, VIRTIO_NET_F_HOST_ECN);
1547 /* We handle indirect ring entries */
1548 add_feature(dev, VIRTIO_RING_F_INDIRECT_DESC);
1549 set_config(dev, sizeof(conf), &conf);
1551 /* We don't need the socket any more; setup is done. */
1552 close(ipfd);
1554 devices.device_num++;
1556 if (bridging)
1557 verbose("device %u: tun %s attached to bridge: %s\n",
1558 devices.device_num, tapif, arg);
1559 else
1560 verbose("device %u: tun %s: %s\n",
1561 devices.device_num, tapif, arg);
1563 /*:*/
1565 /* This hangs off device->priv. */
1566 struct vblk_info {
1567 /* The size of the file. */
1568 off64_t len;
1570 /* The file descriptor for the file. */
1571 int fd;
1575 /*L:210
1576 * The Disk
1578 * The disk only has one virtqueue, so it only has one thread. It is really
1579 * simple: the Guest asks for a block number and we read or write that position
1580 * in the file.
1582 * Before we serviced each virtqueue in a separate thread, that was unacceptably
1583 * slow: the Guest waits until the read is finished before running anything
1584 * else, even if it could have been doing useful work.
1586 * We could have used async I/O, except it's reputed to suck so hard that
1587 * characters actually go missing from your code when you try to use it.
1589 static void blk_request(struct virtqueue *vq)
1591 struct vblk_info *vblk = vq->dev->priv;
1592 unsigned int head, out_num, in_num, wlen;
1593 int ret;
1594 u8 *in;
1595 struct virtio_blk_outhdr *out;
1596 struct iovec iov[vq->vring.num];
1597 off64_t off;
1600 * Get the next request, where we normally wait. It triggers the
1601 * interrupt to acknowledge previously serviced requests (if any).
1603 head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
1606 * Every block request should contain at least one output buffer
1607 * (detailing the location on disk and the type of request) and one
1608 * input buffer (to hold the result).
1610 if (out_num == 0 || in_num == 0)
1611 errx(1, "Bad virtblk cmd %u out=%u in=%u",
1612 head, out_num, in_num);
1614 out = convert(&iov[0], struct virtio_blk_outhdr);
1615 in = convert(&iov[out_num+in_num-1], u8);
1617 * For historical reasons, block operations are expressed in 512 byte
1618 * "sectors".
1620 off = out->sector * 512;
1623 * In general the virtio block driver is allowed to try SCSI commands.
1624 * It'd be nice if we supported eject, for example, but we don't.
1626 if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
1627 fprintf(stderr, "Scsi commands unsupported\n");
1628 *in = VIRTIO_BLK_S_UNSUPP;
1629 wlen = sizeof(*in);
1630 } else if (out->type & VIRTIO_BLK_T_OUT) {
1632 * Write
1634 * Move to the right location in the block file. This can fail
1635 * if they try to write past end.
1637 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1638 err(1, "Bad seek to sector %llu", out->sector);
1640 ret = writev(vblk->fd, iov+1, out_num-1);
1641 verbose("WRITE to sector %llu: %i\n", out->sector, ret);
1644 * Grr... Now we know how long the descriptor they sent was, we
1645 * make sure they didn't try to write over the end of the block
1646 * file (possibly extending it).
1648 if (ret > 0 && off + ret > vblk->len) {
1649 /* Trim it back to the correct length */
1650 ftruncate64(vblk->fd, vblk->len);
1651 /* Die, bad Guest, die. */
1652 errx(1, "Write past end %llu+%u", off, ret);
1655 wlen = sizeof(*in);
1656 *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
1657 } else if (out->type & VIRTIO_BLK_T_FLUSH) {
1658 /* Flush */
1659 ret = fdatasync(vblk->fd);
1660 verbose("FLUSH fdatasync: %i\n", ret);
1661 wlen = sizeof(*in);
1662 *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
1663 } else {
1665 * Read
1667 * Move to the right location in the block file. This can fail
1668 * if they try to read past end.
1670 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1671 err(1, "Bad seek to sector %llu", out->sector);
1673 ret = readv(vblk->fd, iov+1, in_num-1);
1674 verbose("READ from sector %llu: %i\n", out->sector, ret);
1675 if (ret >= 0) {
1676 wlen = sizeof(*in) + ret;
1677 *in = VIRTIO_BLK_S_OK;
1678 } else {
1679 wlen = sizeof(*in);
1680 *in = VIRTIO_BLK_S_IOERR;
1684 /* Finished that request. */
1685 add_used(vq, head, wlen);
1688 /*L:198 This actually sets up a virtual block device. */
1689 static void setup_block_file(const char *filename)
1691 struct device *dev;
1692 struct vblk_info *vblk;
1693 struct virtio_blk_config conf;
1695 /* Creat the device. */
1696 dev = new_device("block", VIRTIO_ID_BLOCK);
1698 /* The device has one virtqueue, where the Guest places requests. */
1699 add_virtqueue(dev, VIRTQUEUE_NUM, blk_request);
1701 /* Allocate the room for our own bookkeeping */
1702 vblk = dev->priv = malloc(sizeof(*vblk));
1704 /* First we open the file and store the length. */
1705 vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
1706 vblk->len = lseek64(vblk->fd, 0, SEEK_END);
1708 /* We support FLUSH. */
1709 add_feature(dev, VIRTIO_BLK_F_FLUSH);
1711 /* Tell Guest how many sectors this device has. */
1712 conf.capacity = cpu_to_le64(vblk->len / 512);
1715 * Tell Guest not to put in too many descriptors at once: two are used
1716 * for the in and out elements.
1718 add_feature(dev, VIRTIO_BLK_F_SEG_MAX);
1719 conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
1721 /* Don't try to put whole struct: we have 8 bit limit. */
1722 set_config(dev, offsetof(struct virtio_blk_config, geometry), &conf);
1724 verbose("device %u: virtblock %llu sectors\n",
1725 ++devices.device_num, le64_to_cpu(conf.capacity));
1728 /*L:211
1729 * Our random number generator device reads from /dev/random into the Guest's
1730 * input buffers. The usual case is that the Guest doesn't want random numbers
1731 * and so has no buffers although /dev/random is still readable, whereas
1732 * console is the reverse.
1734 * The same logic applies, however.
1736 struct rng_info {
1737 int rfd;
1740 static void rng_input(struct virtqueue *vq)
1742 int len;
1743 unsigned int head, in_num, out_num, totlen = 0;
1744 struct rng_info *rng_info = vq->dev->priv;
1745 struct iovec iov[vq->vring.num];
1747 /* First we need a buffer from the Guests's virtqueue. */
1748 head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
1749 if (out_num)
1750 errx(1, "Output buffers in rng?");
1753 * Just like the console write, we loop to cover the whole iovec.
1754 * In this case, short reads actually happen quite a bit.
1756 while (!iov_empty(iov, in_num)) {
1757 len = readv(rng_info->rfd, iov, in_num);
1758 if (len <= 0)
1759 err(1, "Read from /dev/random gave %i", len);
1760 iov_consume(iov, in_num, len);
1761 totlen += len;
1764 /* Tell the Guest about the new input. */
1765 add_used(vq, head, totlen);
1768 /*L:199
1769 * This creates a "hardware" random number device for the Guest.
1771 static void setup_rng(void)
1773 struct device *dev;
1774 struct rng_info *rng_info = malloc(sizeof(*rng_info));
1776 /* Our device's privat info simply contains the /dev/random fd. */
1777 rng_info->rfd = open_or_die("/dev/random", O_RDONLY);
1779 /* Create the new device. */
1780 dev = new_device("rng", VIRTIO_ID_RNG);
1781 dev->priv = rng_info;
1783 /* The device has one virtqueue, where the Guest places inbufs. */
1784 add_virtqueue(dev, VIRTQUEUE_NUM, rng_input);
1786 verbose("device %u: rng\n", devices.device_num++);
1788 /* That's the end of device setup. */
1790 /*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
1791 static void __attribute__((noreturn)) restart_guest(void)
1793 unsigned int i;
1796 * Since we don't track all open fds, we simply close everything beyond
1797 * stderr.
1799 for (i = 3; i < FD_SETSIZE; i++)
1800 close(i);
1802 /* Reset all the devices (kills all threads). */
1803 cleanup_devices();
1805 execv(main_args[0], main_args);
1806 err(1, "Could not exec %s", main_args[0]);
1809 /*L:220
1810 * Finally we reach the core of the Launcher which runs the Guest, serves
1811 * its input and output, and finally, lays it to rest.
1813 static void __attribute__((noreturn)) run_guest(void)
1815 for (;;) {
1816 unsigned long notify_addr;
1817 int readval;
1819 /* We read from the /dev/lguest device to run the Guest. */
1820 readval = pread(lguest_fd, &notify_addr,
1821 sizeof(notify_addr), cpu_id);
1823 /* One unsigned long means the Guest did HCALL_NOTIFY */
1824 if (readval == sizeof(notify_addr)) {
1825 verbose("Notify on address %#lx\n", notify_addr);
1826 handle_output(notify_addr);
1827 /* ENOENT means the Guest died. Reading tells us why. */
1828 } else if (errno == ENOENT) {
1829 char reason[1024] = { 0 };
1830 pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
1831 errx(1, "%s", reason);
1832 /* ERESTART means that we need to reboot the guest */
1833 } else if (errno == ERESTART) {
1834 restart_guest();
1835 /* Anything else means a bug or incompatible change. */
1836 } else
1837 err(1, "Running guest failed");
1840 /*L:240
1841 * This is the end of the Launcher. The good news: we are over halfway
1842 * through! The bad news: the most fiendish part of the code still lies ahead
1843 * of us.
1845 * Are you ready? Take a deep breath and join me in the core of the Host, in
1846 * "make Host".
1849 static struct option opts[] = {
1850 { "verbose", 0, NULL, 'v' },
1851 { "tunnet", 1, NULL, 't' },
1852 { "block", 1, NULL, 'b' },
1853 { "rng", 0, NULL, 'r' },
1854 { "initrd", 1, NULL, 'i' },
1855 { "username", 1, NULL, 'u' },
1856 { "chroot", 1, NULL, 'c' },
1857 { NULL },
1859 static void usage(void)
1861 errx(1, "Usage: lguest [--verbose] "
1862 "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n"
1863 "|--block=<filename>|--initrd=<filename>]...\n"
1864 "<mem-in-mb> vmlinux [args...]");
1867 /*L:105 The main routine is where the real work begins: */
1868 int main(int argc, char *argv[])
1870 /* Memory, code startpoint and size of the (optional) initrd. */
1871 unsigned long mem = 0, start, initrd_size = 0;
1872 /* Two temporaries. */
1873 int i, c;
1874 /* The boot information for the Guest. */
1875 struct boot_params *boot;
1876 /* If they specify an initrd file to load. */
1877 const char *initrd_name = NULL;
1879 /* Password structure for initgroups/setres[gu]id */
1880 struct passwd *user_details = NULL;
1882 /* Directory to chroot to */
1883 char *chroot_path = NULL;
1885 /* Save the args: we "reboot" by execing ourselves again. */
1886 main_args = argv;
1889 * First we initialize the device list. We keep a pointer to the last
1890 * device, and the next interrupt number to use for devices (1:
1891 * remember that 0 is used by the timer).
1893 devices.lastdev = NULL;
1894 devices.next_irq = 1;
1896 /* We're CPU 0. In fact, that's the only CPU possible right now. */
1897 cpu_id = 0;
1900 * We need to know how much memory so we can set up the device
1901 * descriptor and memory pages for the devices as we parse the command
1902 * line. So we quickly look through the arguments to find the amount
1903 * of memory now.
1905 for (i = 1; i < argc; i++) {
1906 if (argv[i][0] != '-') {
1907 mem = atoi(argv[i]) * 1024 * 1024;
1909 * We start by mapping anonymous pages over all of
1910 * guest-physical memory range. This fills it with 0,
1911 * and ensures that the Guest won't be killed when it
1912 * tries to access it.
1914 guest_base = map_zeroed_pages(mem / getpagesize()
1915 + DEVICE_PAGES);
1916 guest_limit = mem;
1917 guest_max = mem + DEVICE_PAGES*getpagesize();
1918 devices.descpage = get_pages(1);
1919 break;
1923 /* The options are fairly straight-forward */
1924 while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
1925 switch (c) {
1926 case 'v':
1927 verbose = true;
1928 break;
1929 case 't':
1930 setup_tun_net(optarg);
1931 break;
1932 case 'b':
1933 setup_block_file(optarg);
1934 break;
1935 case 'r':
1936 setup_rng();
1937 break;
1938 case 'i':
1939 initrd_name = optarg;
1940 break;
1941 case 'u':
1942 user_details = getpwnam(optarg);
1943 if (!user_details)
1944 err(1, "getpwnam failed, incorrect username?");
1945 break;
1946 case 'c':
1947 chroot_path = optarg;
1948 break;
1949 default:
1950 warnx("Unknown argument %s", argv[optind]);
1951 usage();
1955 * After the other arguments we expect memory and kernel image name,
1956 * followed by command line arguments for the kernel.
1958 if (optind + 2 > argc)
1959 usage();
1961 verbose("Guest base is at %p\n", guest_base);
1963 /* We always have a console device */
1964 setup_console();
1966 /* Now we load the kernel */
1967 start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
1969 /* Boot information is stashed at physical address 0 */
1970 boot = from_guest_phys(0);
1972 /* Map the initrd image if requested (at top of physical memory) */
1973 if (initrd_name) {
1974 initrd_size = load_initrd(initrd_name, mem);
1976 * These are the location in the Linux boot header where the
1977 * start and size of the initrd are expected to be found.
1979 boot->hdr.ramdisk_image = mem - initrd_size;
1980 boot->hdr.ramdisk_size = initrd_size;
1981 /* The bootloader type 0xFF means "unknown"; that's OK. */
1982 boot->hdr.type_of_loader = 0xFF;
1986 * The Linux boot header contains an "E820" memory map: ours is a
1987 * simple, single region.
1989 boot->e820_entries = 1;
1990 boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
1992 * The boot header contains a command line pointer: we put the command
1993 * line after the boot header.
1995 boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
1996 /* We use a simple helper to copy the arguments separated by spaces. */
1997 concat((char *)(boot + 1), argv+optind+2);
1999 /* Set kernel alignment to 16M (CONFIG_PHYSICAL_ALIGN) */
2000 boot->hdr.kernel_alignment = 0x1000000;
2002 /* Boot protocol version: 2.07 supports the fields for lguest. */
2003 boot->hdr.version = 0x207;
2005 /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
2006 boot->hdr.hardware_subarch = 1;
2008 /* Tell the entry path not to try to reload segment registers. */
2009 boot->hdr.loadflags |= KEEP_SEGMENTS;
2011 /* We tell the kernel to initialize the Guest. */
2012 tell_kernel(start);
2014 /* Ensure that we terminate if a device-servicing child dies. */
2015 signal(SIGCHLD, kill_launcher);
2017 /* If we exit via err(), this kills all the threads, restores tty. */
2018 atexit(cleanup_devices);
2020 /* If requested, chroot to a directory */
2021 if (chroot_path) {
2022 if (chroot(chroot_path) != 0)
2023 err(1, "chroot(\"%s\") failed", chroot_path);
2025 if (chdir("/") != 0)
2026 err(1, "chdir(\"/\") failed");
2028 verbose("chroot done\n");
2031 /* If requested, drop privileges */
2032 if (user_details) {
2033 uid_t u;
2034 gid_t g;
2036 u = user_details->pw_uid;
2037 g = user_details->pw_gid;
2039 if (initgroups(user_details->pw_name, g) != 0)
2040 err(1, "initgroups failed");
2042 if (setresgid(g, g, g) != 0)
2043 err(1, "setresgid failed");
2045 if (setresuid(u, u, u) != 0)
2046 err(1, "setresuid failed");
2048 verbose("Dropping privileges completed\n");
2051 /* Finally, run the Guest. This doesn't return. */
2052 run_guest();
2054 /*:*/
2056 /*M:999
2057 * Mastery is done: you now know everything I do.
2059 * But surely you have seen code, features and bugs in your wanderings which
2060 * you now yearn to attack? That is the real game, and I look forward to you
2061 * patching and forking lguest into the Your-Name-Here-visor.
2063 * Farewell, and good coding!
2064 * Rusty Russell.