drm/i915: skip redundant operations whilst enabling pipes and planes
[zen-stable.git] / drivers / block / loop.c
blobdbf31ec9114db6a23c270be8d49e3836cbc2684a
1 /*
2 * linux/drivers/block/loop.c
4 * Written by Theodore Ts'o, 3/29/93
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
21 * Loadable modules and other fixes by AK, 1998
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
36 * Al Viro too.
37 * Jens Axboe <axboe@suse.de>, Nov 2000
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
46 * Still To Fix:
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/loop.h>
67 #include <linux/compat.h>
68 #include <linux/suspend.h>
69 #include <linux/freezer.h>
70 #include <linux/mutex.h>
71 #include <linux/writeback.h>
72 #include <linux/buffer_head.h> /* for invalidate_bdev() */
73 #include <linux/completion.h>
74 #include <linux/highmem.h>
75 #include <linux/kthread.h>
76 #include <linux/splice.h>
77 #include <linux/sysfs.h>
79 #include <asm/uaccess.h>
81 static LIST_HEAD(loop_devices);
82 static DEFINE_MUTEX(loop_devices_mutex);
84 static int max_part;
85 static int part_shift;
88 * Transfer functions
90 static int transfer_none(struct loop_device *lo, int cmd,
91 struct page *raw_page, unsigned raw_off,
92 struct page *loop_page, unsigned loop_off,
93 int size, sector_t real_block)
95 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
96 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
98 if (cmd == READ)
99 memcpy(loop_buf, raw_buf, size);
100 else
101 memcpy(raw_buf, loop_buf, size);
103 kunmap_atomic(loop_buf, KM_USER1);
104 kunmap_atomic(raw_buf, KM_USER0);
105 cond_resched();
106 return 0;
109 static int transfer_xor(struct loop_device *lo, int cmd,
110 struct page *raw_page, unsigned raw_off,
111 struct page *loop_page, unsigned loop_off,
112 int size, sector_t real_block)
114 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
115 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
116 char *in, *out, *key;
117 int i, keysize;
119 if (cmd == READ) {
120 in = raw_buf;
121 out = loop_buf;
122 } else {
123 in = loop_buf;
124 out = raw_buf;
127 key = lo->lo_encrypt_key;
128 keysize = lo->lo_encrypt_key_size;
129 for (i = 0; i < size; i++)
130 *out++ = *in++ ^ key[(i & 511) % keysize];
132 kunmap_atomic(loop_buf, KM_USER1);
133 kunmap_atomic(raw_buf, KM_USER0);
134 cond_resched();
135 return 0;
138 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
140 if (unlikely(info->lo_encrypt_key_size <= 0))
141 return -EINVAL;
142 return 0;
145 static struct loop_func_table none_funcs = {
146 .number = LO_CRYPT_NONE,
147 .transfer = transfer_none,
150 static struct loop_func_table xor_funcs = {
151 .number = LO_CRYPT_XOR,
152 .transfer = transfer_xor,
153 .init = xor_init
156 /* xfer_funcs[0] is special - its release function is never called */
157 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
158 &none_funcs,
159 &xor_funcs
162 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
164 loff_t size, offset, loopsize;
166 /* Compute loopsize in bytes */
167 size = i_size_read(file->f_mapping->host);
168 offset = lo->lo_offset;
169 loopsize = size - offset;
170 if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
171 loopsize = lo->lo_sizelimit;
174 * Unfortunately, if we want to do I/O on the device,
175 * the number of 512-byte sectors has to fit into a sector_t.
177 return loopsize >> 9;
180 static int
181 figure_loop_size(struct loop_device *lo)
183 loff_t size = get_loop_size(lo, lo->lo_backing_file);
184 sector_t x = (sector_t)size;
186 if (unlikely((loff_t)x != size))
187 return -EFBIG;
189 set_capacity(lo->lo_disk, x);
190 return 0;
193 static inline int
194 lo_do_transfer(struct loop_device *lo, int cmd,
195 struct page *rpage, unsigned roffs,
196 struct page *lpage, unsigned loffs,
197 int size, sector_t rblock)
199 if (unlikely(!lo->transfer))
200 return 0;
202 return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
206 * do_lo_send_aops - helper for writing data to a loop device
208 * This is the fast version for backing filesystems which implement the address
209 * space operations write_begin and write_end.
211 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec,
212 loff_t pos, struct page *unused)
214 struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */
215 struct address_space *mapping = file->f_mapping;
216 pgoff_t index;
217 unsigned offset, bv_offs;
218 int len, ret;
220 mutex_lock(&mapping->host->i_mutex);
221 index = pos >> PAGE_CACHE_SHIFT;
222 offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1);
223 bv_offs = bvec->bv_offset;
224 len = bvec->bv_len;
225 while (len > 0) {
226 sector_t IV;
227 unsigned size, copied;
228 int transfer_result;
229 struct page *page;
230 void *fsdata;
232 IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
233 size = PAGE_CACHE_SIZE - offset;
234 if (size > len)
235 size = len;
237 ret = pagecache_write_begin(file, mapping, pos, size, 0,
238 &page, &fsdata);
239 if (ret)
240 goto fail;
242 file_update_time(file);
244 transfer_result = lo_do_transfer(lo, WRITE, page, offset,
245 bvec->bv_page, bv_offs, size, IV);
246 copied = size;
247 if (unlikely(transfer_result))
248 copied = 0;
250 ret = pagecache_write_end(file, mapping, pos, size, copied,
251 page, fsdata);
252 if (ret < 0 || ret != copied)
253 goto fail;
255 if (unlikely(transfer_result))
256 goto fail;
258 bv_offs += copied;
259 len -= copied;
260 offset = 0;
261 index++;
262 pos += copied;
264 ret = 0;
265 out:
266 mutex_unlock(&mapping->host->i_mutex);
267 return ret;
268 fail:
269 ret = -1;
270 goto out;
274 * __do_lo_send_write - helper for writing data to a loop device
276 * This helper just factors out common code between do_lo_send_direct_write()
277 * and do_lo_send_write().
279 static int __do_lo_send_write(struct file *file,
280 u8 *buf, const int len, loff_t pos)
282 ssize_t bw;
283 mm_segment_t old_fs = get_fs();
285 set_fs(get_ds());
286 bw = file->f_op->write(file, buf, len, &pos);
287 set_fs(old_fs);
288 if (likely(bw == len))
289 return 0;
290 printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
291 (unsigned long long)pos, len);
292 if (bw >= 0)
293 bw = -EIO;
294 return bw;
298 * do_lo_send_direct_write - helper for writing data to a loop device
300 * This is the fast, non-transforming version for backing filesystems which do
301 * not implement the address space operations write_begin and write_end.
302 * It uses the write file operation which should be present on all writeable
303 * filesystems.
305 static int do_lo_send_direct_write(struct loop_device *lo,
306 struct bio_vec *bvec, loff_t pos, struct page *page)
308 ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
309 kmap(bvec->bv_page) + bvec->bv_offset,
310 bvec->bv_len, pos);
311 kunmap(bvec->bv_page);
312 cond_resched();
313 return bw;
317 * do_lo_send_write - helper for writing data to a loop device
319 * This is the slow, transforming version for filesystems which do not
320 * implement the address space operations write_begin and write_end. It
321 * uses the write file operation which should be present on all writeable
322 * filesystems.
324 * Using fops->write is slower than using aops->{prepare,commit}_write in the
325 * transforming case because we need to double buffer the data as we cannot do
326 * the transformations in place as we do not have direct access to the
327 * destination pages of the backing file.
329 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
330 loff_t pos, struct page *page)
332 int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
333 bvec->bv_offset, bvec->bv_len, pos >> 9);
334 if (likely(!ret))
335 return __do_lo_send_write(lo->lo_backing_file,
336 page_address(page), bvec->bv_len,
337 pos);
338 printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
339 "length %i.\n", (unsigned long long)pos, bvec->bv_len);
340 if (ret > 0)
341 ret = -EIO;
342 return ret;
345 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos)
347 int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
348 struct page *page);
349 struct bio_vec *bvec;
350 struct page *page = NULL;
351 int i, ret = 0;
353 do_lo_send = do_lo_send_aops;
354 if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) {
355 do_lo_send = do_lo_send_direct_write;
356 if (lo->transfer != transfer_none) {
357 page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
358 if (unlikely(!page))
359 goto fail;
360 kmap(page);
361 do_lo_send = do_lo_send_write;
364 bio_for_each_segment(bvec, bio, i) {
365 ret = do_lo_send(lo, bvec, pos, page);
366 if (ret < 0)
367 break;
368 pos += bvec->bv_len;
370 if (page) {
371 kunmap(page);
372 __free_page(page);
374 out:
375 return ret;
376 fail:
377 printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
378 ret = -ENOMEM;
379 goto out;
382 struct lo_read_data {
383 struct loop_device *lo;
384 struct page *page;
385 unsigned offset;
386 int bsize;
389 static int
390 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
391 struct splice_desc *sd)
393 struct lo_read_data *p = sd->u.data;
394 struct loop_device *lo = p->lo;
395 struct page *page = buf->page;
396 sector_t IV;
397 int size;
399 IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
400 (buf->offset >> 9);
401 size = sd->len;
402 if (size > p->bsize)
403 size = p->bsize;
405 if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
406 printk(KERN_ERR "loop: transfer error block %ld\n",
407 page->index);
408 size = -EINVAL;
411 flush_dcache_page(p->page);
413 if (size > 0)
414 p->offset += size;
416 return size;
419 static int
420 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
422 return __splice_from_pipe(pipe, sd, lo_splice_actor);
425 static int
426 do_lo_receive(struct loop_device *lo,
427 struct bio_vec *bvec, int bsize, loff_t pos)
429 struct lo_read_data cookie;
430 struct splice_desc sd;
431 struct file *file;
432 long retval;
434 cookie.lo = lo;
435 cookie.page = bvec->bv_page;
436 cookie.offset = bvec->bv_offset;
437 cookie.bsize = bsize;
439 sd.len = 0;
440 sd.total_len = bvec->bv_len;
441 sd.flags = 0;
442 sd.pos = pos;
443 sd.u.data = &cookie;
445 file = lo->lo_backing_file;
446 retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
448 if (retval < 0)
449 return retval;
451 return 0;
454 static int
455 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
457 struct bio_vec *bvec;
458 int i, ret = 0;
460 bio_for_each_segment(bvec, bio, i) {
461 ret = do_lo_receive(lo, bvec, bsize, pos);
462 if (ret < 0)
463 break;
464 pos += bvec->bv_len;
466 return ret;
469 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
471 loff_t pos;
472 int ret;
474 pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
476 if (bio_rw(bio) == WRITE) {
477 struct file *file = lo->lo_backing_file;
479 if (bio->bi_rw & REQ_FLUSH) {
480 ret = vfs_fsync(file, 0);
481 if (unlikely(ret && ret != -EINVAL)) {
482 ret = -EIO;
483 goto out;
487 ret = lo_send(lo, bio, pos);
489 if ((bio->bi_rw & REQ_FUA) && !ret) {
490 ret = vfs_fsync(file, 0);
491 if (unlikely(ret && ret != -EINVAL))
492 ret = -EIO;
494 } else
495 ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
497 out:
498 return ret;
502 * Add bio to back of pending list
504 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
506 bio_list_add(&lo->lo_bio_list, bio);
510 * Grab first pending buffer
512 static struct bio *loop_get_bio(struct loop_device *lo)
514 return bio_list_pop(&lo->lo_bio_list);
517 static int loop_make_request(struct request_queue *q, struct bio *old_bio)
519 struct loop_device *lo = q->queuedata;
520 int rw = bio_rw(old_bio);
522 if (rw == READA)
523 rw = READ;
525 BUG_ON(!lo || (rw != READ && rw != WRITE));
527 spin_lock_irq(&lo->lo_lock);
528 if (lo->lo_state != Lo_bound)
529 goto out;
530 if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
531 goto out;
532 loop_add_bio(lo, old_bio);
533 wake_up(&lo->lo_event);
534 spin_unlock_irq(&lo->lo_lock);
535 return 0;
537 out:
538 spin_unlock_irq(&lo->lo_lock);
539 bio_io_error(old_bio);
540 return 0;
544 * kick off io on the underlying address space
546 static void loop_unplug(struct request_queue *q)
548 struct loop_device *lo = q->queuedata;
550 queue_flag_clear_unlocked(QUEUE_FLAG_PLUGGED, q);
551 blk_run_address_space(lo->lo_backing_file->f_mapping);
554 struct switch_request {
555 struct file *file;
556 struct completion wait;
559 static void do_loop_switch(struct loop_device *, struct switch_request *);
561 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
563 if (unlikely(!bio->bi_bdev)) {
564 do_loop_switch(lo, bio->bi_private);
565 bio_put(bio);
566 } else {
567 int ret = do_bio_filebacked(lo, bio);
568 bio_endio(bio, ret);
573 * worker thread that handles reads/writes to file backed loop devices,
574 * to avoid blocking in our make_request_fn. it also does loop decrypting
575 * on reads for block backed loop, as that is too heavy to do from
576 * b_end_io context where irqs may be disabled.
578 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before
579 * calling kthread_stop(). Therefore once kthread_should_stop() is
580 * true, make_request will not place any more requests. Therefore
581 * once kthread_should_stop() is true and lo_bio is NULL, we are
582 * done with the loop.
584 static int loop_thread(void *data)
586 struct loop_device *lo = data;
587 struct bio *bio;
589 set_user_nice(current, -20);
591 while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) {
593 wait_event_interruptible(lo->lo_event,
594 !bio_list_empty(&lo->lo_bio_list) ||
595 kthread_should_stop());
597 if (bio_list_empty(&lo->lo_bio_list))
598 continue;
599 spin_lock_irq(&lo->lo_lock);
600 bio = loop_get_bio(lo);
601 spin_unlock_irq(&lo->lo_lock);
603 BUG_ON(!bio);
604 loop_handle_bio(lo, bio);
607 return 0;
611 * loop_switch performs the hard work of switching a backing store.
612 * First it needs to flush existing IO, it does this by sending a magic
613 * BIO down the pipe. The completion of this BIO does the actual switch.
615 static int loop_switch(struct loop_device *lo, struct file *file)
617 struct switch_request w;
618 struct bio *bio = bio_alloc(GFP_KERNEL, 0);
619 if (!bio)
620 return -ENOMEM;
621 init_completion(&w.wait);
622 w.file = file;
623 bio->bi_private = &w;
624 bio->bi_bdev = NULL;
625 loop_make_request(lo->lo_queue, bio);
626 wait_for_completion(&w.wait);
627 return 0;
631 * Helper to flush the IOs in loop, but keeping loop thread running
633 static int loop_flush(struct loop_device *lo)
635 /* loop not yet configured, no running thread, nothing to flush */
636 if (!lo->lo_thread)
637 return 0;
639 return loop_switch(lo, NULL);
643 * Do the actual switch; called from the BIO completion routine
645 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
647 struct file *file = p->file;
648 struct file *old_file = lo->lo_backing_file;
649 struct address_space *mapping;
651 /* if no new file, only flush of queued bios requested */
652 if (!file)
653 goto out;
655 mapping = file->f_mapping;
656 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
657 lo->lo_backing_file = file;
658 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
659 mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
660 lo->old_gfp_mask = mapping_gfp_mask(mapping);
661 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
662 out:
663 complete(&p->wait);
668 * loop_change_fd switched the backing store of a loopback device to
669 * a new file. This is useful for operating system installers to free up
670 * the original file and in High Availability environments to switch to
671 * an alternative location for the content in case of server meltdown.
672 * This can only work if the loop device is used read-only, and if the
673 * new backing store is the same size and type as the old backing store.
675 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
676 unsigned int arg)
678 struct file *file, *old_file;
679 struct inode *inode;
680 int error;
682 error = -ENXIO;
683 if (lo->lo_state != Lo_bound)
684 goto out;
686 /* the loop device has to be read-only */
687 error = -EINVAL;
688 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
689 goto out;
691 error = -EBADF;
692 file = fget(arg);
693 if (!file)
694 goto out;
696 inode = file->f_mapping->host;
697 old_file = lo->lo_backing_file;
699 error = -EINVAL;
701 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
702 goto out_putf;
704 /* size of the new backing store needs to be the same */
705 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
706 goto out_putf;
708 /* and ... switch */
709 error = loop_switch(lo, file);
710 if (error)
711 goto out_putf;
713 fput(old_file);
714 if (max_part > 0)
715 ioctl_by_bdev(bdev, BLKRRPART, 0);
716 return 0;
718 out_putf:
719 fput(file);
720 out:
721 return error;
724 static inline int is_loop_device(struct file *file)
726 struct inode *i = file->f_mapping->host;
728 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
731 /* loop sysfs attributes */
733 static ssize_t loop_attr_show(struct device *dev, char *page,
734 ssize_t (*callback)(struct loop_device *, char *))
736 struct loop_device *l, *lo = NULL;
738 mutex_lock(&loop_devices_mutex);
739 list_for_each_entry(l, &loop_devices, lo_list)
740 if (disk_to_dev(l->lo_disk) == dev) {
741 lo = l;
742 break;
744 mutex_unlock(&loop_devices_mutex);
746 return lo ? callback(lo, page) : -EIO;
749 #define LOOP_ATTR_RO(_name) \
750 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
751 static ssize_t loop_attr_do_show_##_name(struct device *d, \
752 struct device_attribute *attr, char *b) \
754 return loop_attr_show(d, b, loop_attr_##_name##_show); \
756 static struct device_attribute loop_attr_##_name = \
757 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
759 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
761 ssize_t ret;
762 char *p = NULL;
764 mutex_lock(&lo->lo_ctl_mutex);
765 if (lo->lo_backing_file)
766 p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1);
767 mutex_unlock(&lo->lo_ctl_mutex);
769 if (IS_ERR_OR_NULL(p))
770 ret = PTR_ERR(p);
771 else {
772 ret = strlen(p);
773 memmove(buf, p, ret);
774 buf[ret++] = '\n';
775 buf[ret] = 0;
778 return ret;
781 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
783 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
786 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
788 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
791 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
793 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
795 return sprintf(buf, "%s\n", autoclear ? "1" : "0");
798 LOOP_ATTR_RO(backing_file);
799 LOOP_ATTR_RO(offset);
800 LOOP_ATTR_RO(sizelimit);
801 LOOP_ATTR_RO(autoclear);
803 static struct attribute *loop_attrs[] = {
804 &loop_attr_backing_file.attr,
805 &loop_attr_offset.attr,
806 &loop_attr_sizelimit.attr,
807 &loop_attr_autoclear.attr,
808 NULL,
811 static struct attribute_group loop_attribute_group = {
812 .name = "loop",
813 .attrs= loop_attrs,
816 static int loop_sysfs_init(struct loop_device *lo)
818 return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
819 &loop_attribute_group);
822 static void loop_sysfs_exit(struct loop_device *lo)
824 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
825 &loop_attribute_group);
828 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
829 struct block_device *bdev, unsigned int arg)
831 struct file *file, *f;
832 struct inode *inode;
833 struct address_space *mapping;
834 unsigned lo_blocksize;
835 int lo_flags = 0;
836 int error;
837 loff_t size;
839 /* This is safe, since we have a reference from open(). */
840 __module_get(THIS_MODULE);
842 error = -EBADF;
843 file = fget(arg);
844 if (!file)
845 goto out;
847 error = -EBUSY;
848 if (lo->lo_state != Lo_unbound)
849 goto out_putf;
851 /* Avoid recursion */
852 f = file;
853 while (is_loop_device(f)) {
854 struct loop_device *l;
856 if (f->f_mapping->host->i_bdev == bdev)
857 goto out_putf;
859 l = f->f_mapping->host->i_bdev->bd_disk->private_data;
860 if (l->lo_state == Lo_unbound) {
861 error = -EINVAL;
862 goto out_putf;
864 f = l->lo_backing_file;
867 mapping = file->f_mapping;
868 inode = mapping->host;
870 if (!(file->f_mode & FMODE_WRITE))
871 lo_flags |= LO_FLAGS_READ_ONLY;
873 error = -EINVAL;
874 if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) {
875 const struct address_space_operations *aops = mapping->a_ops;
877 if (aops->write_begin)
878 lo_flags |= LO_FLAGS_USE_AOPS;
879 if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write)
880 lo_flags |= LO_FLAGS_READ_ONLY;
882 lo_blocksize = S_ISBLK(inode->i_mode) ?
883 inode->i_bdev->bd_block_size : PAGE_SIZE;
885 error = 0;
886 } else {
887 goto out_putf;
890 size = get_loop_size(lo, file);
892 if ((loff_t)(sector_t)size != size) {
893 error = -EFBIG;
894 goto out_putf;
897 if (!(mode & FMODE_WRITE))
898 lo_flags |= LO_FLAGS_READ_ONLY;
900 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
902 lo->lo_blocksize = lo_blocksize;
903 lo->lo_device = bdev;
904 lo->lo_flags = lo_flags;
905 lo->lo_backing_file = file;
906 lo->transfer = transfer_none;
907 lo->ioctl = NULL;
908 lo->lo_sizelimit = 0;
909 lo->old_gfp_mask = mapping_gfp_mask(mapping);
910 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
912 bio_list_init(&lo->lo_bio_list);
915 * set queue make_request_fn, and add limits based on lower level
916 * device
918 blk_queue_make_request(lo->lo_queue, loop_make_request);
919 lo->lo_queue->queuedata = lo;
920 lo->lo_queue->unplug_fn = loop_unplug;
922 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
923 blk_queue_flush(lo->lo_queue, REQ_FLUSH);
925 set_capacity(lo->lo_disk, size);
926 bd_set_size(bdev, size << 9);
927 loop_sysfs_init(lo);
928 /* let user-space know about the new size */
929 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
931 set_blocksize(bdev, lo_blocksize);
933 lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
934 lo->lo_number);
935 if (IS_ERR(lo->lo_thread)) {
936 error = PTR_ERR(lo->lo_thread);
937 goto out_clr;
939 lo->lo_state = Lo_bound;
940 wake_up_process(lo->lo_thread);
941 if (max_part > 0)
942 ioctl_by_bdev(bdev, BLKRRPART, 0);
943 return 0;
945 out_clr:
946 loop_sysfs_exit(lo);
947 lo->lo_thread = NULL;
948 lo->lo_device = NULL;
949 lo->lo_backing_file = NULL;
950 lo->lo_flags = 0;
951 set_capacity(lo->lo_disk, 0);
952 invalidate_bdev(bdev);
953 bd_set_size(bdev, 0);
954 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
955 mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
956 lo->lo_state = Lo_unbound;
957 out_putf:
958 fput(file);
959 out:
960 /* This is safe: open() is still holding a reference. */
961 module_put(THIS_MODULE);
962 return error;
965 static int
966 loop_release_xfer(struct loop_device *lo)
968 int err = 0;
969 struct loop_func_table *xfer = lo->lo_encryption;
971 if (xfer) {
972 if (xfer->release)
973 err = xfer->release(lo);
974 lo->transfer = NULL;
975 lo->lo_encryption = NULL;
976 module_put(xfer->owner);
978 return err;
981 static int
982 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
983 const struct loop_info64 *i)
985 int err = 0;
987 if (xfer) {
988 struct module *owner = xfer->owner;
990 if (!try_module_get(owner))
991 return -EINVAL;
992 if (xfer->init)
993 err = xfer->init(lo, i);
994 if (err)
995 module_put(owner);
996 else
997 lo->lo_encryption = xfer;
999 return err;
1002 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev)
1004 struct file *filp = lo->lo_backing_file;
1005 gfp_t gfp = lo->old_gfp_mask;
1007 if (lo->lo_state != Lo_bound)
1008 return -ENXIO;
1010 if (lo->lo_refcnt > 1) /* we needed one fd for the ioctl */
1011 return -EBUSY;
1013 if (filp == NULL)
1014 return -EINVAL;
1016 spin_lock_irq(&lo->lo_lock);
1017 lo->lo_state = Lo_rundown;
1018 spin_unlock_irq(&lo->lo_lock);
1020 kthread_stop(lo->lo_thread);
1022 lo->lo_queue->unplug_fn = NULL;
1023 lo->lo_backing_file = NULL;
1025 loop_release_xfer(lo);
1026 lo->transfer = NULL;
1027 lo->ioctl = NULL;
1028 lo->lo_device = NULL;
1029 lo->lo_encryption = NULL;
1030 lo->lo_offset = 0;
1031 lo->lo_sizelimit = 0;
1032 lo->lo_encrypt_key_size = 0;
1033 lo->lo_flags = 0;
1034 lo->lo_thread = NULL;
1035 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1036 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1037 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1038 if (bdev)
1039 invalidate_bdev(bdev);
1040 set_capacity(lo->lo_disk, 0);
1041 loop_sysfs_exit(lo);
1042 if (bdev) {
1043 bd_set_size(bdev, 0);
1044 /* let user-space know about this change */
1045 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1047 mapping_set_gfp_mask(filp->f_mapping, gfp);
1048 lo->lo_state = Lo_unbound;
1049 /* This is safe: open() is still holding a reference. */
1050 module_put(THIS_MODULE);
1051 if (max_part > 0 && bdev)
1052 ioctl_by_bdev(bdev, BLKRRPART, 0);
1053 mutex_unlock(&lo->lo_ctl_mutex);
1055 * Need not hold lo_ctl_mutex to fput backing file.
1056 * Calling fput holding lo_ctl_mutex triggers a circular
1057 * lock dependency possibility warning as fput can take
1058 * bd_mutex which is usually taken before lo_ctl_mutex.
1060 fput(filp);
1061 return 0;
1064 static int
1065 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1067 int err;
1068 struct loop_func_table *xfer;
1069 uid_t uid = current_uid();
1071 if (lo->lo_encrypt_key_size &&
1072 lo->lo_key_owner != uid &&
1073 !capable(CAP_SYS_ADMIN))
1074 return -EPERM;
1075 if (lo->lo_state != Lo_bound)
1076 return -ENXIO;
1077 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1078 return -EINVAL;
1080 err = loop_release_xfer(lo);
1081 if (err)
1082 return err;
1084 if (info->lo_encrypt_type) {
1085 unsigned int type = info->lo_encrypt_type;
1087 if (type >= MAX_LO_CRYPT)
1088 return -EINVAL;
1089 xfer = xfer_funcs[type];
1090 if (xfer == NULL)
1091 return -EINVAL;
1092 } else
1093 xfer = NULL;
1095 err = loop_init_xfer(lo, xfer, info);
1096 if (err)
1097 return err;
1099 if (lo->lo_offset != info->lo_offset ||
1100 lo->lo_sizelimit != info->lo_sizelimit) {
1101 lo->lo_offset = info->lo_offset;
1102 lo->lo_sizelimit = info->lo_sizelimit;
1103 if (figure_loop_size(lo))
1104 return -EFBIG;
1107 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1108 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1109 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1110 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1112 if (!xfer)
1113 xfer = &none_funcs;
1114 lo->transfer = xfer->transfer;
1115 lo->ioctl = xfer->ioctl;
1117 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1118 (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1119 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1121 lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1122 lo->lo_init[0] = info->lo_init[0];
1123 lo->lo_init[1] = info->lo_init[1];
1124 if (info->lo_encrypt_key_size) {
1125 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1126 info->lo_encrypt_key_size);
1127 lo->lo_key_owner = uid;
1130 return 0;
1133 static int
1134 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1136 struct file *file = lo->lo_backing_file;
1137 struct kstat stat;
1138 int error;
1140 if (lo->lo_state != Lo_bound)
1141 return -ENXIO;
1142 error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
1143 if (error)
1144 return error;
1145 memset(info, 0, sizeof(*info));
1146 info->lo_number = lo->lo_number;
1147 info->lo_device = huge_encode_dev(stat.dev);
1148 info->lo_inode = stat.ino;
1149 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1150 info->lo_offset = lo->lo_offset;
1151 info->lo_sizelimit = lo->lo_sizelimit;
1152 info->lo_flags = lo->lo_flags;
1153 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1154 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1155 info->lo_encrypt_type =
1156 lo->lo_encryption ? lo->lo_encryption->number : 0;
1157 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1158 info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1159 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1160 lo->lo_encrypt_key_size);
1162 return 0;
1165 static void
1166 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1168 memset(info64, 0, sizeof(*info64));
1169 info64->lo_number = info->lo_number;
1170 info64->lo_device = info->lo_device;
1171 info64->lo_inode = info->lo_inode;
1172 info64->lo_rdevice = info->lo_rdevice;
1173 info64->lo_offset = info->lo_offset;
1174 info64->lo_sizelimit = 0;
1175 info64->lo_encrypt_type = info->lo_encrypt_type;
1176 info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1177 info64->lo_flags = info->lo_flags;
1178 info64->lo_init[0] = info->lo_init[0];
1179 info64->lo_init[1] = info->lo_init[1];
1180 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1181 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1182 else
1183 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1184 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1187 static int
1188 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1190 memset(info, 0, sizeof(*info));
1191 info->lo_number = info64->lo_number;
1192 info->lo_device = info64->lo_device;
1193 info->lo_inode = info64->lo_inode;
1194 info->lo_rdevice = info64->lo_rdevice;
1195 info->lo_offset = info64->lo_offset;
1196 info->lo_encrypt_type = info64->lo_encrypt_type;
1197 info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1198 info->lo_flags = info64->lo_flags;
1199 info->lo_init[0] = info64->lo_init[0];
1200 info->lo_init[1] = info64->lo_init[1];
1201 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1202 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1203 else
1204 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1205 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1207 /* error in case values were truncated */
1208 if (info->lo_device != info64->lo_device ||
1209 info->lo_rdevice != info64->lo_rdevice ||
1210 info->lo_inode != info64->lo_inode ||
1211 info->lo_offset != info64->lo_offset)
1212 return -EOVERFLOW;
1214 return 0;
1217 static int
1218 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1220 struct loop_info info;
1221 struct loop_info64 info64;
1223 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1224 return -EFAULT;
1225 loop_info64_from_old(&info, &info64);
1226 return loop_set_status(lo, &info64);
1229 static int
1230 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1232 struct loop_info64 info64;
1234 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1235 return -EFAULT;
1236 return loop_set_status(lo, &info64);
1239 static int
1240 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1241 struct loop_info info;
1242 struct loop_info64 info64;
1243 int err = 0;
1245 if (!arg)
1246 err = -EINVAL;
1247 if (!err)
1248 err = loop_get_status(lo, &info64);
1249 if (!err)
1250 err = loop_info64_to_old(&info64, &info);
1251 if (!err && copy_to_user(arg, &info, sizeof(info)))
1252 err = -EFAULT;
1254 return err;
1257 static int
1258 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1259 struct loop_info64 info64;
1260 int err = 0;
1262 if (!arg)
1263 err = -EINVAL;
1264 if (!err)
1265 err = loop_get_status(lo, &info64);
1266 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1267 err = -EFAULT;
1269 return err;
1272 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1274 int err;
1275 sector_t sec;
1276 loff_t sz;
1278 err = -ENXIO;
1279 if (unlikely(lo->lo_state != Lo_bound))
1280 goto out;
1281 err = figure_loop_size(lo);
1282 if (unlikely(err))
1283 goto out;
1284 sec = get_capacity(lo->lo_disk);
1285 /* the width of sector_t may be narrow for bit-shift */
1286 sz = sec;
1287 sz <<= 9;
1288 mutex_lock(&bdev->bd_mutex);
1289 bd_set_size(bdev, sz);
1290 /* let user-space know about the new size */
1291 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1292 mutex_unlock(&bdev->bd_mutex);
1294 out:
1295 return err;
1298 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1299 unsigned int cmd, unsigned long arg)
1301 struct loop_device *lo = bdev->bd_disk->private_data;
1302 int err;
1304 mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1305 switch (cmd) {
1306 case LOOP_SET_FD:
1307 err = loop_set_fd(lo, mode, bdev, arg);
1308 break;
1309 case LOOP_CHANGE_FD:
1310 err = loop_change_fd(lo, bdev, arg);
1311 break;
1312 case LOOP_CLR_FD:
1313 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1314 err = loop_clr_fd(lo, bdev);
1315 if (!err)
1316 goto out_unlocked;
1317 break;
1318 case LOOP_SET_STATUS:
1319 err = loop_set_status_old(lo, (struct loop_info __user *) arg);
1320 break;
1321 case LOOP_GET_STATUS:
1322 err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1323 break;
1324 case LOOP_SET_STATUS64:
1325 err = loop_set_status64(lo, (struct loop_info64 __user *) arg);
1326 break;
1327 case LOOP_GET_STATUS64:
1328 err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1329 break;
1330 case LOOP_SET_CAPACITY:
1331 err = -EPERM;
1332 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1333 err = loop_set_capacity(lo, bdev);
1334 break;
1335 default:
1336 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1338 mutex_unlock(&lo->lo_ctl_mutex);
1340 out_unlocked:
1341 return err;
1344 #ifdef CONFIG_COMPAT
1345 struct compat_loop_info {
1346 compat_int_t lo_number; /* ioctl r/o */
1347 compat_dev_t lo_device; /* ioctl r/o */
1348 compat_ulong_t lo_inode; /* ioctl r/o */
1349 compat_dev_t lo_rdevice; /* ioctl r/o */
1350 compat_int_t lo_offset;
1351 compat_int_t lo_encrypt_type;
1352 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1353 compat_int_t lo_flags; /* ioctl r/o */
1354 char lo_name[LO_NAME_SIZE];
1355 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1356 compat_ulong_t lo_init[2];
1357 char reserved[4];
1361 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1362 * - noinlined to reduce stack space usage in main part of driver
1364 static noinline int
1365 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1366 struct loop_info64 *info64)
1368 struct compat_loop_info info;
1370 if (copy_from_user(&info, arg, sizeof(info)))
1371 return -EFAULT;
1373 memset(info64, 0, sizeof(*info64));
1374 info64->lo_number = info.lo_number;
1375 info64->lo_device = info.lo_device;
1376 info64->lo_inode = info.lo_inode;
1377 info64->lo_rdevice = info.lo_rdevice;
1378 info64->lo_offset = info.lo_offset;
1379 info64->lo_sizelimit = 0;
1380 info64->lo_encrypt_type = info.lo_encrypt_type;
1381 info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1382 info64->lo_flags = info.lo_flags;
1383 info64->lo_init[0] = info.lo_init[0];
1384 info64->lo_init[1] = info.lo_init[1];
1385 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1386 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1387 else
1388 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1389 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1390 return 0;
1394 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1395 * - noinlined to reduce stack space usage in main part of driver
1397 static noinline int
1398 loop_info64_to_compat(const struct loop_info64 *info64,
1399 struct compat_loop_info __user *arg)
1401 struct compat_loop_info info;
1403 memset(&info, 0, sizeof(info));
1404 info.lo_number = info64->lo_number;
1405 info.lo_device = info64->lo_device;
1406 info.lo_inode = info64->lo_inode;
1407 info.lo_rdevice = info64->lo_rdevice;
1408 info.lo_offset = info64->lo_offset;
1409 info.lo_encrypt_type = info64->lo_encrypt_type;
1410 info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1411 info.lo_flags = info64->lo_flags;
1412 info.lo_init[0] = info64->lo_init[0];
1413 info.lo_init[1] = info64->lo_init[1];
1414 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1415 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1416 else
1417 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1418 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1420 /* error in case values were truncated */
1421 if (info.lo_device != info64->lo_device ||
1422 info.lo_rdevice != info64->lo_rdevice ||
1423 info.lo_inode != info64->lo_inode ||
1424 info.lo_offset != info64->lo_offset ||
1425 info.lo_init[0] != info64->lo_init[0] ||
1426 info.lo_init[1] != info64->lo_init[1])
1427 return -EOVERFLOW;
1429 if (copy_to_user(arg, &info, sizeof(info)))
1430 return -EFAULT;
1431 return 0;
1434 static int
1435 loop_set_status_compat(struct loop_device *lo,
1436 const struct compat_loop_info __user *arg)
1438 struct loop_info64 info64;
1439 int ret;
1441 ret = loop_info64_from_compat(arg, &info64);
1442 if (ret < 0)
1443 return ret;
1444 return loop_set_status(lo, &info64);
1447 static int
1448 loop_get_status_compat(struct loop_device *lo,
1449 struct compat_loop_info __user *arg)
1451 struct loop_info64 info64;
1452 int err = 0;
1454 if (!arg)
1455 err = -EINVAL;
1456 if (!err)
1457 err = loop_get_status(lo, &info64);
1458 if (!err)
1459 err = loop_info64_to_compat(&info64, arg);
1460 return err;
1463 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1464 unsigned int cmd, unsigned long arg)
1466 struct loop_device *lo = bdev->bd_disk->private_data;
1467 int err;
1469 switch(cmd) {
1470 case LOOP_SET_STATUS:
1471 mutex_lock(&lo->lo_ctl_mutex);
1472 err = loop_set_status_compat(
1473 lo, (const struct compat_loop_info __user *) arg);
1474 mutex_unlock(&lo->lo_ctl_mutex);
1475 break;
1476 case LOOP_GET_STATUS:
1477 mutex_lock(&lo->lo_ctl_mutex);
1478 err = loop_get_status_compat(
1479 lo, (struct compat_loop_info __user *) arg);
1480 mutex_unlock(&lo->lo_ctl_mutex);
1481 break;
1482 case LOOP_SET_CAPACITY:
1483 case LOOP_CLR_FD:
1484 case LOOP_GET_STATUS64:
1485 case LOOP_SET_STATUS64:
1486 arg = (unsigned long) compat_ptr(arg);
1487 case LOOP_SET_FD:
1488 case LOOP_CHANGE_FD:
1489 err = lo_ioctl(bdev, mode, cmd, arg);
1490 break;
1491 default:
1492 err = -ENOIOCTLCMD;
1493 break;
1495 return err;
1497 #endif
1499 static int lo_open(struct block_device *bdev, fmode_t mode)
1501 struct loop_device *lo = bdev->bd_disk->private_data;
1503 mutex_lock(&lo->lo_ctl_mutex);
1504 lo->lo_refcnt++;
1505 mutex_unlock(&lo->lo_ctl_mutex);
1507 return 0;
1510 static int lo_release(struct gendisk *disk, fmode_t mode)
1512 struct loop_device *lo = disk->private_data;
1513 int err;
1515 mutex_lock(&lo->lo_ctl_mutex);
1517 if (--lo->lo_refcnt)
1518 goto out;
1520 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1522 * In autoclear mode, stop the loop thread
1523 * and remove configuration after last close.
1525 err = loop_clr_fd(lo, NULL);
1526 if (!err)
1527 goto out_unlocked;
1528 } else {
1530 * Otherwise keep thread (if running) and config,
1531 * but flush possible ongoing bios in thread.
1533 loop_flush(lo);
1536 out:
1537 mutex_unlock(&lo->lo_ctl_mutex);
1538 out_unlocked:
1539 return 0;
1542 static const struct block_device_operations lo_fops = {
1543 .owner = THIS_MODULE,
1544 .open = lo_open,
1545 .release = lo_release,
1546 .ioctl = lo_ioctl,
1547 #ifdef CONFIG_COMPAT
1548 .compat_ioctl = lo_compat_ioctl,
1549 #endif
1553 * And now the modules code and kernel interface.
1555 static int max_loop;
1556 module_param(max_loop, int, 0);
1557 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1558 module_param(max_part, int, 0);
1559 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1560 MODULE_LICENSE("GPL");
1561 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1563 int loop_register_transfer(struct loop_func_table *funcs)
1565 unsigned int n = funcs->number;
1567 if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1568 return -EINVAL;
1569 xfer_funcs[n] = funcs;
1570 return 0;
1573 int loop_unregister_transfer(int number)
1575 unsigned int n = number;
1576 struct loop_device *lo;
1577 struct loop_func_table *xfer;
1579 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1580 return -EINVAL;
1582 xfer_funcs[n] = NULL;
1584 list_for_each_entry(lo, &loop_devices, lo_list) {
1585 mutex_lock(&lo->lo_ctl_mutex);
1587 if (lo->lo_encryption == xfer)
1588 loop_release_xfer(lo);
1590 mutex_unlock(&lo->lo_ctl_mutex);
1593 return 0;
1596 EXPORT_SYMBOL(loop_register_transfer);
1597 EXPORT_SYMBOL(loop_unregister_transfer);
1599 static struct loop_device *loop_alloc(int i)
1601 struct loop_device *lo;
1602 struct gendisk *disk;
1604 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1605 if (!lo)
1606 goto out;
1608 lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1609 if (!lo->lo_queue)
1610 goto out_free_dev;
1612 disk = lo->lo_disk = alloc_disk(1 << part_shift);
1613 if (!disk)
1614 goto out_free_queue;
1616 mutex_init(&lo->lo_ctl_mutex);
1617 lo->lo_number = i;
1618 lo->lo_thread = NULL;
1619 init_waitqueue_head(&lo->lo_event);
1620 spin_lock_init(&lo->lo_lock);
1621 disk->major = LOOP_MAJOR;
1622 disk->first_minor = i << part_shift;
1623 disk->fops = &lo_fops;
1624 disk->private_data = lo;
1625 disk->queue = lo->lo_queue;
1626 sprintf(disk->disk_name, "loop%d", i);
1627 return lo;
1629 out_free_queue:
1630 blk_cleanup_queue(lo->lo_queue);
1631 out_free_dev:
1632 kfree(lo);
1633 out:
1634 return NULL;
1637 static void loop_free(struct loop_device *lo)
1639 if (!lo->lo_queue->queue_lock)
1640 lo->lo_queue->queue_lock = &lo->lo_queue->__queue_lock;
1642 blk_cleanup_queue(lo->lo_queue);
1643 put_disk(lo->lo_disk);
1644 list_del(&lo->lo_list);
1645 kfree(lo);
1648 static struct loop_device *loop_init_one(int i)
1650 struct loop_device *lo;
1652 list_for_each_entry(lo, &loop_devices, lo_list) {
1653 if (lo->lo_number == i)
1654 return lo;
1657 lo = loop_alloc(i);
1658 if (lo) {
1659 add_disk(lo->lo_disk);
1660 list_add_tail(&lo->lo_list, &loop_devices);
1662 return lo;
1665 static void loop_del_one(struct loop_device *lo)
1667 del_gendisk(lo->lo_disk);
1668 loop_free(lo);
1671 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1673 struct loop_device *lo;
1674 struct kobject *kobj;
1676 mutex_lock(&loop_devices_mutex);
1677 lo = loop_init_one(dev & MINORMASK);
1678 kobj = lo ? get_disk(lo->lo_disk) : ERR_PTR(-ENOMEM);
1679 mutex_unlock(&loop_devices_mutex);
1681 *part = 0;
1682 return kobj;
1685 static int __init loop_init(void)
1687 int i, nr;
1688 unsigned long range;
1689 struct loop_device *lo, *next;
1692 * loop module now has a feature to instantiate underlying device
1693 * structure on-demand, provided that there is an access dev node.
1694 * However, this will not work well with user space tool that doesn't
1695 * know about such "feature". In order to not break any existing
1696 * tool, we do the following:
1698 * (1) if max_loop is specified, create that many upfront, and this
1699 * also becomes a hard limit.
1700 * (2) if max_loop is not specified, create 8 loop device on module
1701 * load, user can further extend loop device by create dev node
1702 * themselves and have kernel automatically instantiate actual
1703 * device on-demand.
1706 part_shift = 0;
1707 if (max_part > 0)
1708 part_shift = fls(max_part);
1710 if (max_loop > 1UL << (MINORBITS - part_shift))
1711 return -EINVAL;
1713 if (max_loop) {
1714 nr = max_loop;
1715 range = max_loop;
1716 } else {
1717 nr = 8;
1718 range = 1UL << (MINORBITS - part_shift);
1721 if (register_blkdev(LOOP_MAJOR, "loop"))
1722 return -EIO;
1724 for (i = 0; i < nr; i++) {
1725 lo = loop_alloc(i);
1726 if (!lo)
1727 goto Enomem;
1728 list_add_tail(&lo->lo_list, &loop_devices);
1731 /* point of no return */
1733 list_for_each_entry(lo, &loop_devices, lo_list)
1734 add_disk(lo->lo_disk);
1736 blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1737 THIS_MODULE, loop_probe, NULL, NULL);
1739 printk(KERN_INFO "loop: module loaded\n");
1740 return 0;
1742 Enomem:
1743 printk(KERN_INFO "loop: out of memory\n");
1745 list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1746 loop_free(lo);
1748 unregister_blkdev(LOOP_MAJOR, "loop");
1749 return -ENOMEM;
1752 static void __exit loop_exit(void)
1754 unsigned long range;
1755 struct loop_device *lo, *next;
1757 range = max_loop ? max_loop : 1UL << (MINORBITS - part_shift);
1759 list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1760 loop_del_one(lo);
1762 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1763 unregister_blkdev(LOOP_MAJOR, "loop");
1766 module_init(loop_init);
1767 module_exit(loop_exit);
1769 #ifndef MODULE
1770 static int __init max_loop_setup(char *str)
1772 max_loop = simple_strtol(str, NULL, 0);
1773 return 1;
1776 __setup("max_loop=", max_loop_setup);
1777 #endif