2 * drivers/cpufreq/cpufreq_conservative.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/cpufreq.h>
18 #include <linux/cpu.h>
19 #include <linux/jiffies.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/mutex.h>
22 #include <linux/hrtimer.h>
23 #include <linux/tick.h>
24 #include <linux/ktime.h>
25 #include <linux/sched.h>
28 * dbs is used in this file as a shortform for demandbased switching
29 * It helps to keep variable names smaller, simpler
32 #define DEF_FREQUENCY_UP_THRESHOLD (80)
33 #define DEF_FREQUENCY_DOWN_THRESHOLD (20)
36 * The polling frequency of this governor depends on the capability of
37 * the processor. Default polling frequency is 1000 times the transition
38 * latency of the processor. The governor will work on any processor with
39 * transition latency <= 10mS, using appropriate sampling
41 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
42 * this governor will not work.
43 * All times here are in uS.
45 #define MIN_SAMPLING_RATE_RATIO (2)
47 static unsigned int min_sampling_rate
;
49 #define LATENCY_MULTIPLIER (1000)
50 #define MIN_LATENCY_MULTIPLIER (100)
51 #define DEF_SAMPLING_DOWN_FACTOR (1)
52 #define MAX_SAMPLING_DOWN_FACTOR (10)
53 #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
55 static void do_dbs_timer(struct work_struct
*work
);
57 struct cpu_dbs_info_s
{
58 cputime64_t prev_cpu_idle
;
59 cputime64_t prev_cpu_wall
;
60 cputime64_t prev_cpu_nice
;
61 struct cpufreq_policy
*cur_policy
;
62 struct delayed_work work
;
63 unsigned int down_skip
;
64 unsigned int requested_freq
;
66 unsigned int enable
:1;
68 * percpu mutex that serializes governor limit change with
69 * do_dbs_timer invocation. We do not want do_dbs_timer to run
70 * when user is changing the governor or limits.
72 struct mutex timer_mutex
;
74 static DEFINE_PER_CPU(struct cpu_dbs_info_s
, cs_cpu_dbs_info
);
76 static unsigned int dbs_enable
; /* number of CPUs using this policy */
79 * dbs_mutex protects data in dbs_tuners_ins from concurrent changes on
80 * different CPUs. It protects dbs_enable in governor start/stop.
82 static DEFINE_MUTEX(dbs_mutex
);
84 static struct workqueue_struct
*kconservative_wq
;
86 static struct dbs_tuners
{
87 unsigned int sampling_rate
;
88 unsigned int sampling_down_factor
;
89 unsigned int up_threshold
;
90 unsigned int down_threshold
;
91 unsigned int ignore_nice
;
92 unsigned int freq_step
;
94 .up_threshold
= DEF_FREQUENCY_UP_THRESHOLD
,
95 .down_threshold
= DEF_FREQUENCY_DOWN_THRESHOLD
,
96 .sampling_down_factor
= DEF_SAMPLING_DOWN_FACTOR
,
101 static inline cputime64_t
get_cpu_idle_time_jiffy(unsigned int cpu
,
104 cputime64_t idle_time
;
105 cputime64_t cur_wall_time
;
106 cputime64_t busy_time
;
108 cur_wall_time
= jiffies64_to_cputime64(get_jiffies_64());
109 busy_time
= cputime64_add(kstat_cpu(cpu
).cpustat
.user
,
110 kstat_cpu(cpu
).cpustat
.system
);
112 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.irq
);
113 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.softirq
);
114 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.steal
);
115 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.nice
);
117 idle_time
= cputime64_sub(cur_wall_time
, busy_time
);
119 *wall
= (cputime64_t
)jiffies_to_usecs(cur_wall_time
);
121 return (cputime64_t
)jiffies_to_usecs(idle_time
);;
124 static inline cputime64_t
get_cpu_idle_time(unsigned int cpu
, cputime64_t
*wall
)
126 u64 idle_time
= get_cpu_idle_time_us(cpu
, wall
);
128 if (idle_time
== -1ULL)
129 return get_cpu_idle_time_jiffy(cpu
, wall
);
134 /* keep track of frequency transitions */
136 dbs_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
139 struct cpufreq_freqs
*freq
= data
;
140 struct cpu_dbs_info_s
*this_dbs_info
= &per_cpu(cs_cpu_dbs_info
,
143 struct cpufreq_policy
*policy
;
145 if (!this_dbs_info
->enable
)
148 policy
= this_dbs_info
->cur_policy
;
151 * we only care if our internally tracked freq moves outside
152 * the 'valid' ranges of freqency available to us otherwise
153 * we do not change it
155 if (this_dbs_info
->requested_freq
> policy
->max
156 || this_dbs_info
->requested_freq
< policy
->min
)
157 this_dbs_info
->requested_freq
= freq
->new;
162 static struct notifier_block dbs_cpufreq_notifier_block
= {
163 .notifier_call
= dbs_cpufreq_notifier
166 /************************** sysfs interface ************************/
167 static ssize_t
show_sampling_rate_max(struct kobject
*kobj
,
168 struct attribute
*attr
, char *buf
)
170 printk_once(KERN_INFO
"CPUFREQ: conservative sampling_rate_max "
171 "sysfs file is deprecated - used by: %s\n", current
->comm
);
172 return sprintf(buf
, "%u\n", -1U);
175 static ssize_t
show_sampling_rate_min(struct kobject
*kobj
,
176 struct attribute
*attr
, char *buf
)
178 return sprintf(buf
, "%u\n", min_sampling_rate
);
181 define_one_global_ro(sampling_rate_max
);
182 define_one_global_ro(sampling_rate_min
);
184 /* cpufreq_conservative Governor Tunables */
185 #define show_one(file_name, object) \
186 static ssize_t show_##file_name \
187 (struct kobject *kobj, struct attribute *attr, char *buf) \
189 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
191 show_one(sampling_rate
, sampling_rate
);
192 show_one(sampling_down_factor
, sampling_down_factor
);
193 show_one(up_threshold
, up_threshold
);
194 show_one(down_threshold
, down_threshold
);
195 show_one(ignore_nice_load
, ignore_nice
);
196 show_one(freq_step
, freq_step
);
198 /*** delete after deprecation time ***/
199 #define DEPRECATION_MSG(file_name) \
200 printk_once(KERN_INFO "CPUFREQ: Per core conservative sysfs " \
201 "interface is deprecated - " #file_name "\n");
203 #define show_one_old(file_name) \
204 static ssize_t show_##file_name##_old \
205 (struct cpufreq_policy *unused, char *buf) \
207 printk_once(KERN_INFO "CPUFREQ: Per core conservative sysfs " \
208 "interface is deprecated - " #file_name "\n"); \
209 return show_##file_name(NULL, NULL, buf); \
211 show_one_old(sampling_rate
);
212 show_one_old(sampling_down_factor
);
213 show_one_old(up_threshold
);
214 show_one_old(down_threshold
);
215 show_one_old(ignore_nice_load
);
216 show_one_old(freq_step
);
217 show_one_old(sampling_rate_min
);
218 show_one_old(sampling_rate_max
);
220 cpufreq_freq_attr_ro_old(sampling_rate_min
);
221 cpufreq_freq_attr_ro_old(sampling_rate_max
);
223 /*** delete after deprecation time ***/
225 static ssize_t
store_sampling_down_factor(struct kobject
*a
,
227 const char *buf
, size_t count
)
231 ret
= sscanf(buf
, "%u", &input
);
233 if (ret
!= 1 || input
> MAX_SAMPLING_DOWN_FACTOR
|| input
< 1)
236 mutex_lock(&dbs_mutex
);
237 dbs_tuners_ins
.sampling_down_factor
= input
;
238 mutex_unlock(&dbs_mutex
);
243 static ssize_t
store_sampling_rate(struct kobject
*a
, struct attribute
*b
,
244 const char *buf
, size_t count
)
248 ret
= sscanf(buf
, "%u", &input
);
253 mutex_lock(&dbs_mutex
);
254 dbs_tuners_ins
.sampling_rate
= max(input
, min_sampling_rate
);
255 mutex_unlock(&dbs_mutex
);
260 static ssize_t
store_up_threshold(struct kobject
*a
, struct attribute
*b
,
261 const char *buf
, size_t count
)
265 ret
= sscanf(buf
, "%u", &input
);
267 mutex_lock(&dbs_mutex
);
268 if (ret
!= 1 || input
> 100 ||
269 input
<= dbs_tuners_ins
.down_threshold
) {
270 mutex_unlock(&dbs_mutex
);
274 dbs_tuners_ins
.up_threshold
= input
;
275 mutex_unlock(&dbs_mutex
);
280 static ssize_t
store_down_threshold(struct kobject
*a
, struct attribute
*b
,
281 const char *buf
, size_t count
)
285 ret
= sscanf(buf
, "%u", &input
);
287 mutex_lock(&dbs_mutex
);
288 /* cannot be lower than 11 otherwise freq will not fall */
289 if (ret
!= 1 || input
< 11 || input
> 100 ||
290 input
>= dbs_tuners_ins
.up_threshold
) {
291 mutex_unlock(&dbs_mutex
);
295 dbs_tuners_ins
.down_threshold
= input
;
296 mutex_unlock(&dbs_mutex
);
301 static ssize_t
store_ignore_nice_load(struct kobject
*a
, struct attribute
*b
,
302 const char *buf
, size_t count
)
309 ret
= sscanf(buf
, "%u", &input
);
316 mutex_lock(&dbs_mutex
);
317 if (input
== dbs_tuners_ins
.ignore_nice
) { /* nothing to do */
318 mutex_unlock(&dbs_mutex
);
321 dbs_tuners_ins
.ignore_nice
= input
;
323 /* we need to re-evaluate prev_cpu_idle */
324 for_each_online_cpu(j
) {
325 struct cpu_dbs_info_s
*dbs_info
;
326 dbs_info
= &per_cpu(cs_cpu_dbs_info
, j
);
327 dbs_info
->prev_cpu_idle
= get_cpu_idle_time(j
,
328 &dbs_info
->prev_cpu_wall
);
329 if (dbs_tuners_ins
.ignore_nice
)
330 dbs_info
->prev_cpu_nice
= kstat_cpu(j
).cpustat
.nice
;
332 mutex_unlock(&dbs_mutex
);
337 static ssize_t
store_freq_step(struct kobject
*a
, struct attribute
*b
,
338 const char *buf
, size_t count
)
342 ret
= sscanf(buf
, "%u", &input
);
350 /* no need to test here if freq_step is zero as the user might actually
351 * want this, they would be crazy though :) */
352 mutex_lock(&dbs_mutex
);
353 dbs_tuners_ins
.freq_step
= input
;
354 mutex_unlock(&dbs_mutex
);
359 define_one_global_rw(sampling_rate
);
360 define_one_global_rw(sampling_down_factor
);
361 define_one_global_rw(up_threshold
);
362 define_one_global_rw(down_threshold
);
363 define_one_global_rw(ignore_nice_load
);
364 define_one_global_rw(freq_step
);
366 static struct attribute
*dbs_attributes
[] = {
367 &sampling_rate_max
.attr
,
368 &sampling_rate_min
.attr
,
370 &sampling_down_factor
.attr
,
372 &down_threshold
.attr
,
373 &ignore_nice_load
.attr
,
378 static struct attribute_group dbs_attr_group
= {
379 .attrs
= dbs_attributes
,
380 .name
= "conservative",
383 /*** delete after deprecation time ***/
385 #define write_one_old(file_name) \
386 static ssize_t store_##file_name##_old \
387 (struct cpufreq_policy *unused, const char *buf, size_t count) \
389 printk_once(KERN_INFO "CPUFREQ: Per core conservative sysfs " \
390 "interface is deprecated - " #file_name "\n"); \
391 return store_##file_name(NULL, NULL, buf, count); \
393 write_one_old(sampling_rate
);
394 write_one_old(sampling_down_factor
);
395 write_one_old(up_threshold
);
396 write_one_old(down_threshold
);
397 write_one_old(ignore_nice_load
);
398 write_one_old(freq_step
);
400 cpufreq_freq_attr_rw_old(sampling_rate
);
401 cpufreq_freq_attr_rw_old(sampling_down_factor
);
402 cpufreq_freq_attr_rw_old(up_threshold
);
403 cpufreq_freq_attr_rw_old(down_threshold
);
404 cpufreq_freq_attr_rw_old(ignore_nice_load
);
405 cpufreq_freq_attr_rw_old(freq_step
);
407 static struct attribute
*dbs_attributes_old
[] = {
408 &sampling_rate_max_old
.attr
,
409 &sampling_rate_min_old
.attr
,
410 &sampling_rate_old
.attr
,
411 &sampling_down_factor_old
.attr
,
412 &up_threshold_old
.attr
,
413 &down_threshold_old
.attr
,
414 &ignore_nice_load_old
.attr
,
419 static struct attribute_group dbs_attr_group_old
= {
420 .attrs
= dbs_attributes_old
,
421 .name
= "conservative",
424 /*** delete after deprecation time ***/
426 /************************** sysfs end ************************/
428 static void dbs_check_cpu(struct cpu_dbs_info_s
*this_dbs_info
)
430 unsigned int load
= 0;
431 unsigned int max_load
= 0;
432 unsigned int freq_target
;
434 struct cpufreq_policy
*policy
;
437 policy
= this_dbs_info
->cur_policy
;
440 * Every sampling_rate, we check, if current idle time is less
441 * than 20% (default), then we try to increase frequency
442 * Every sampling_rate*sampling_down_factor, we check, if current
443 * idle time is more than 80%, then we try to decrease frequency
445 * Any frequency increase takes it to the maximum frequency.
446 * Frequency reduction happens at minimum steps of
447 * 5% (default) of maximum frequency
450 /* Get Absolute Load */
451 for_each_cpu(j
, policy
->cpus
) {
452 struct cpu_dbs_info_s
*j_dbs_info
;
453 cputime64_t cur_wall_time
, cur_idle_time
;
454 unsigned int idle_time
, wall_time
;
456 j_dbs_info
= &per_cpu(cs_cpu_dbs_info
, j
);
458 cur_idle_time
= get_cpu_idle_time(j
, &cur_wall_time
);
460 wall_time
= (unsigned int) cputime64_sub(cur_wall_time
,
461 j_dbs_info
->prev_cpu_wall
);
462 j_dbs_info
->prev_cpu_wall
= cur_wall_time
;
464 idle_time
= (unsigned int) cputime64_sub(cur_idle_time
,
465 j_dbs_info
->prev_cpu_idle
);
466 j_dbs_info
->prev_cpu_idle
= cur_idle_time
;
468 if (dbs_tuners_ins
.ignore_nice
) {
469 cputime64_t cur_nice
;
470 unsigned long cur_nice_jiffies
;
472 cur_nice
= cputime64_sub(kstat_cpu(j
).cpustat
.nice
,
473 j_dbs_info
->prev_cpu_nice
);
475 * Assumption: nice time between sampling periods will
476 * be less than 2^32 jiffies for 32 bit sys
478 cur_nice_jiffies
= (unsigned long)
479 cputime64_to_jiffies64(cur_nice
);
481 j_dbs_info
->prev_cpu_nice
= kstat_cpu(j
).cpustat
.nice
;
482 idle_time
+= jiffies_to_usecs(cur_nice_jiffies
);
485 if (unlikely(!wall_time
|| wall_time
< idle_time
))
488 load
= 100 * (wall_time
- idle_time
) / wall_time
;
495 * break out if we 'cannot' reduce the speed as the user might
496 * want freq_step to be zero
498 if (dbs_tuners_ins
.freq_step
== 0)
501 /* Check for frequency increase */
502 if (max_load
> dbs_tuners_ins
.up_threshold
) {
503 this_dbs_info
->down_skip
= 0;
505 /* if we are already at full speed then break out early */
506 if (this_dbs_info
->requested_freq
== policy
->max
)
509 freq_target
= (dbs_tuners_ins
.freq_step
* policy
->max
) / 100;
511 /* max freq cannot be less than 100. But who knows.... */
512 if (unlikely(freq_target
== 0))
515 this_dbs_info
->requested_freq
+= freq_target
;
516 if (this_dbs_info
->requested_freq
> policy
->max
)
517 this_dbs_info
->requested_freq
= policy
->max
;
519 __cpufreq_driver_target(policy
, this_dbs_info
->requested_freq
,
525 * The optimal frequency is the frequency that is the lowest that
526 * can support the current CPU usage without triggering the up
527 * policy. To be safe, we focus 10 points under the threshold.
529 if (max_load
< (dbs_tuners_ins
.down_threshold
- 10)) {
530 freq_target
= (dbs_tuners_ins
.freq_step
* policy
->max
) / 100;
532 this_dbs_info
->requested_freq
-= freq_target
;
533 if (this_dbs_info
->requested_freq
< policy
->min
)
534 this_dbs_info
->requested_freq
= policy
->min
;
537 * if we cannot reduce the frequency anymore, break out early
539 if (policy
->cur
== policy
->min
)
542 __cpufreq_driver_target(policy
, this_dbs_info
->requested_freq
,
548 static void do_dbs_timer(struct work_struct
*work
)
550 struct cpu_dbs_info_s
*dbs_info
=
551 container_of(work
, struct cpu_dbs_info_s
, work
.work
);
552 unsigned int cpu
= dbs_info
->cpu
;
554 /* We want all CPUs to do sampling nearly on same jiffy */
555 int delay
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
);
557 delay
-= jiffies
% delay
;
559 mutex_lock(&dbs_info
->timer_mutex
);
561 dbs_check_cpu(dbs_info
);
563 queue_delayed_work_on(cpu
, kconservative_wq
, &dbs_info
->work
, delay
);
564 mutex_unlock(&dbs_info
->timer_mutex
);
567 static inline void dbs_timer_init(struct cpu_dbs_info_s
*dbs_info
)
569 /* We want all CPUs to do sampling nearly on same jiffy */
570 int delay
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
);
571 delay
-= jiffies
% delay
;
573 dbs_info
->enable
= 1;
574 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info
->work
, do_dbs_timer
);
575 queue_delayed_work_on(dbs_info
->cpu
, kconservative_wq
, &dbs_info
->work
,
579 static inline void dbs_timer_exit(struct cpu_dbs_info_s
*dbs_info
)
581 dbs_info
->enable
= 0;
582 cancel_delayed_work_sync(&dbs_info
->work
);
585 static int cpufreq_governor_dbs(struct cpufreq_policy
*policy
,
588 unsigned int cpu
= policy
->cpu
;
589 struct cpu_dbs_info_s
*this_dbs_info
;
593 this_dbs_info
= &per_cpu(cs_cpu_dbs_info
, cpu
);
596 case CPUFREQ_GOV_START
:
597 if ((!cpu_online(cpu
)) || (!policy
->cur
))
600 mutex_lock(&dbs_mutex
);
602 rc
= sysfs_create_group(&policy
->kobj
, &dbs_attr_group_old
);
604 mutex_unlock(&dbs_mutex
);
608 for_each_cpu(j
, policy
->cpus
) {
609 struct cpu_dbs_info_s
*j_dbs_info
;
610 j_dbs_info
= &per_cpu(cs_cpu_dbs_info
, j
);
611 j_dbs_info
->cur_policy
= policy
;
613 j_dbs_info
->prev_cpu_idle
= get_cpu_idle_time(j
,
614 &j_dbs_info
->prev_cpu_wall
);
615 if (dbs_tuners_ins
.ignore_nice
) {
616 j_dbs_info
->prev_cpu_nice
=
617 kstat_cpu(j
).cpustat
.nice
;
620 this_dbs_info
->down_skip
= 0;
621 this_dbs_info
->requested_freq
= policy
->cur
;
623 mutex_init(&this_dbs_info
->timer_mutex
);
626 * Start the timerschedule work, when this governor
627 * is used for first time
629 if (dbs_enable
== 1) {
630 unsigned int latency
;
631 /* policy latency is in nS. Convert it to uS first */
632 latency
= policy
->cpuinfo
.transition_latency
/ 1000;
636 rc
= sysfs_create_group(cpufreq_global_kobject
,
639 mutex_unlock(&dbs_mutex
);
644 * conservative does not implement micro like ondemand
645 * governor, thus we are bound to jiffes/HZ
648 MIN_SAMPLING_RATE_RATIO
* jiffies_to_usecs(10);
649 /* Bring kernel and HW constraints together */
650 min_sampling_rate
= max(min_sampling_rate
,
651 MIN_LATENCY_MULTIPLIER
* latency
);
652 dbs_tuners_ins
.sampling_rate
=
653 max(min_sampling_rate
,
654 latency
* LATENCY_MULTIPLIER
);
656 cpufreq_register_notifier(
657 &dbs_cpufreq_notifier_block
,
658 CPUFREQ_TRANSITION_NOTIFIER
);
660 mutex_unlock(&dbs_mutex
);
662 dbs_timer_init(this_dbs_info
);
666 case CPUFREQ_GOV_STOP
:
667 dbs_timer_exit(this_dbs_info
);
669 mutex_lock(&dbs_mutex
);
670 sysfs_remove_group(&policy
->kobj
, &dbs_attr_group_old
);
672 mutex_destroy(&this_dbs_info
->timer_mutex
);
675 * Stop the timerschedule work, when this governor
676 * is used for first time
679 cpufreq_unregister_notifier(
680 &dbs_cpufreq_notifier_block
,
681 CPUFREQ_TRANSITION_NOTIFIER
);
683 mutex_unlock(&dbs_mutex
);
685 sysfs_remove_group(cpufreq_global_kobject
,
690 case CPUFREQ_GOV_LIMITS
:
691 mutex_lock(&this_dbs_info
->timer_mutex
);
692 if (policy
->max
< this_dbs_info
->cur_policy
->cur
)
693 __cpufreq_driver_target(
694 this_dbs_info
->cur_policy
,
695 policy
->max
, CPUFREQ_RELATION_H
);
696 else if (policy
->min
> this_dbs_info
->cur_policy
->cur
)
697 __cpufreq_driver_target(
698 this_dbs_info
->cur_policy
,
699 policy
->min
, CPUFREQ_RELATION_L
);
700 mutex_unlock(&this_dbs_info
->timer_mutex
);
707 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
710 struct cpufreq_governor cpufreq_gov_conservative
= {
711 .name
= "conservative",
712 .governor
= cpufreq_governor_dbs
,
713 .max_transition_latency
= TRANSITION_LATENCY_LIMIT
,
714 .owner
= THIS_MODULE
,
717 static int __init
cpufreq_gov_dbs_init(void)
721 kconservative_wq
= create_workqueue("kconservative");
722 if (!kconservative_wq
) {
723 printk(KERN_ERR
"Creation of kconservative failed\n");
727 err
= cpufreq_register_governor(&cpufreq_gov_conservative
);
729 destroy_workqueue(kconservative_wq
);
734 static void __exit
cpufreq_gov_dbs_exit(void)
736 cpufreq_unregister_governor(&cpufreq_gov_conservative
);
737 destroy_workqueue(kconservative_wq
);
741 MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
742 MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
743 "Low Latency Frequency Transition capable processors "
744 "optimised for use in a battery environment");
745 MODULE_LICENSE("GPL");
747 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
748 fs_initcall(cpufreq_gov_dbs_init
);
750 module_init(cpufreq_gov_dbs_init
);
752 module_exit(cpufreq_gov_dbs_exit
);