Staging: hv: mousevsc: Change the allocation flags to reflect interrupt context
[zen-stable.git] / arch / sparc / mm / srmmu.c
blobcbef74e793b8df9c9f3b7dc474f7a64feb082b3d
1 /*
2 * srmmu.c: SRMMU specific routines for memory management.
4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9 */
11 #include <linux/kernel.h>
12 #include <linux/mm.h>
13 #include <linux/vmalloc.h>
14 #include <linux/pagemap.h>
15 #include <linux/init.h>
16 #include <linux/spinlock.h>
17 #include <linux/bootmem.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kdebug.h>
21 #include <linux/log2.h>
22 #include <linux/gfp.h>
24 #include <asm/bitext.h>
25 #include <asm/page.h>
26 #include <asm/pgalloc.h>
27 #include <asm/pgtable.h>
28 #include <asm/io.h>
29 #include <asm/vaddrs.h>
30 #include <asm/traps.h>
31 #include <asm/smp.h>
32 #include <asm/mbus.h>
33 #include <asm/cache.h>
34 #include <asm/oplib.h>
35 #include <asm/asi.h>
36 #include <asm/msi.h>
37 #include <asm/mmu_context.h>
38 #include <asm/io-unit.h>
39 #include <asm/cacheflush.h>
40 #include <asm/tlbflush.h>
42 /* Now the cpu specific definitions. */
43 #include <asm/viking.h>
44 #include <asm/mxcc.h>
45 #include <asm/ross.h>
46 #include <asm/tsunami.h>
47 #include <asm/swift.h>
48 #include <asm/turbosparc.h>
49 #include <asm/leon.h>
51 #include <asm/btfixup.h>
53 enum mbus_module srmmu_modtype;
54 static unsigned int hwbug_bitmask;
55 int vac_cache_size;
56 int vac_line_size;
58 extern struct resource sparc_iomap;
60 extern unsigned long last_valid_pfn;
62 extern unsigned long page_kernel;
64 static pgd_t *srmmu_swapper_pg_dir;
66 #ifdef CONFIG_SMP
67 #define FLUSH_BEGIN(mm)
68 #define FLUSH_END
69 #else
70 #define FLUSH_BEGIN(mm) if((mm)->context != NO_CONTEXT) {
71 #define FLUSH_END }
72 #endif
74 BTFIXUPDEF_CALL(void, flush_page_for_dma, unsigned long)
75 #define flush_page_for_dma(page) BTFIXUP_CALL(flush_page_for_dma)(page)
77 int flush_page_for_dma_global = 1;
79 #ifdef CONFIG_SMP
80 BTFIXUPDEF_CALL(void, local_flush_page_for_dma, unsigned long)
81 #define local_flush_page_for_dma(page) BTFIXUP_CALL(local_flush_page_for_dma)(page)
82 #endif
84 char *srmmu_name;
86 ctxd_t *srmmu_ctx_table_phys;
87 static ctxd_t *srmmu_context_table;
89 int viking_mxcc_present;
90 static DEFINE_SPINLOCK(srmmu_context_spinlock);
92 static int is_hypersparc;
95 * In general all page table modifications should use the V8 atomic
96 * swap instruction. This insures the mmu and the cpu are in sync
97 * with respect to ref/mod bits in the page tables.
99 static inline unsigned long srmmu_swap(unsigned long *addr, unsigned long value)
101 __asm__ __volatile__("swap [%2], %0" : "=&r" (value) : "0" (value), "r" (addr));
102 return value;
105 static inline void srmmu_set_pte(pte_t *ptep, pte_t pteval)
107 srmmu_swap((unsigned long *)ptep, pte_val(pteval));
110 /* The very generic SRMMU page table operations. */
111 static inline int srmmu_device_memory(unsigned long x)
113 return ((x & 0xF0000000) != 0);
116 static int srmmu_cache_pagetables;
118 /* these will be initialized in srmmu_nocache_calcsize() */
119 static unsigned long srmmu_nocache_size;
120 static unsigned long srmmu_nocache_end;
122 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
123 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
125 /* The context table is a nocache user with the biggest alignment needs. */
126 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
128 void *srmmu_nocache_pool;
129 void *srmmu_nocache_bitmap;
130 static struct bit_map srmmu_nocache_map;
132 static unsigned long srmmu_pte_pfn(pte_t pte)
134 if (srmmu_device_memory(pte_val(pte))) {
135 /* Just return something that will cause
136 * pfn_valid() to return false. This makes
137 * copy_one_pte() to just directly copy to
138 * PTE over.
140 return ~0UL;
142 return (pte_val(pte) & SRMMU_PTE_PMASK) >> (PAGE_SHIFT-4);
145 static struct page *srmmu_pmd_page(pmd_t pmd)
148 if (srmmu_device_memory(pmd_val(pmd)))
149 BUG();
150 return pfn_to_page((pmd_val(pmd) & SRMMU_PTD_PMASK) >> (PAGE_SHIFT-4));
153 static inline unsigned long srmmu_pgd_page(pgd_t pgd)
154 { return srmmu_device_memory(pgd_val(pgd))?~0:(unsigned long)__nocache_va((pgd_val(pgd) & SRMMU_PTD_PMASK) << 4); }
157 static inline int srmmu_pte_none(pte_t pte)
158 { return !(pte_val(pte) & 0xFFFFFFF); }
160 static inline int srmmu_pte_present(pte_t pte)
161 { return ((pte_val(pte) & SRMMU_ET_MASK) == SRMMU_ET_PTE); }
163 static inline void srmmu_pte_clear(pte_t *ptep)
164 { srmmu_set_pte(ptep, __pte(0)); }
166 static inline int srmmu_pmd_none(pmd_t pmd)
167 { return !(pmd_val(pmd) & 0xFFFFFFF); }
169 static inline int srmmu_pmd_bad(pmd_t pmd)
170 { return (pmd_val(pmd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
172 static inline int srmmu_pmd_present(pmd_t pmd)
173 { return ((pmd_val(pmd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
175 static inline void srmmu_pmd_clear(pmd_t *pmdp) {
176 int i;
177 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++)
178 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], __pte(0));
181 static inline int srmmu_pgd_none(pgd_t pgd)
182 { return !(pgd_val(pgd) & 0xFFFFFFF); }
184 static inline int srmmu_pgd_bad(pgd_t pgd)
185 { return (pgd_val(pgd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
187 static inline int srmmu_pgd_present(pgd_t pgd)
188 { return ((pgd_val(pgd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
190 static inline void srmmu_pgd_clear(pgd_t * pgdp)
191 { srmmu_set_pte((pte_t *)pgdp, __pte(0)); }
193 static inline pte_t srmmu_pte_wrprotect(pte_t pte)
194 { return __pte(pte_val(pte) & ~SRMMU_WRITE);}
196 static inline pte_t srmmu_pte_mkclean(pte_t pte)
197 { return __pte(pte_val(pte) & ~SRMMU_DIRTY);}
199 static inline pte_t srmmu_pte_mkold(pte_t pte)
200 { return __pte(pte_val(pte) & ~SRMMU_REF);}
202 static inline pte_t srmmu_pte_mkwrite(pte_t pte)
203 { return __pte(pte_val(pte) | SRMMU_WRITE);}
205 static inline pte_t srmmu_pte_mkdirty(pte_t pte)
206 { return __pte(pte_val(pte) | SRMMU_DIRTY);}
208 static inline pte_t srmmu_pte_mkyoung(pte_t pte)
209 { return __pte(pte_val(pte) | SRMMU_REF);}
212 * Conversion functions: convert a page and protection to a page entry,
213 * and a page entry and page directory to the page they refer to.
215 static pte_t srmmu_mk_pte(struct page *page, pgprot_t pgprot)
216 { return __pte((page_to_pfn(page) << (PAGE_SHIFT-4)) | pgprot_val(pgprot)); }
218 static pte_t srmmu_mk_pte_phys(unsigned long page, pgprot_t pgprot)
219 { return __pte(((page) >> 4) | pgprot_val(pgprot)); }
221 static pte_t srmmu_mk_pte_io(unsigned long page, pgprot_t pgprot, int space)
222 { return __pte(((page) >> 4) | (space << 28) | pgprot_val(pgprot)); }
224 /* XXX should we hyper_flush_whole_icache here - Anton */
225 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
226 { srmmu_set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
228 static inline void srmmu_pgd_set(pgd_t * pgdp, pmd_t * pmdp)
229 { srmmu_set_pte((pte_t *)pgdp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pmdp) >> 4))); }
231 static void srmmu_pmd_set(pmd_t *pmdp, pte_t *ptep)
233 unsigned long ptp; /* Physical address, shifted right by 4 */
234 int i;
236 ptp = __nocache_pa((unsigned long) ptep) >> 4;
237 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
238 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
239 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
243 static void srmmu_pmd_populate(pmd_t *pmdp, struct page *ptep)
245 unsigned long ptp; /* Physical address, shifted right by 4 */
246 int i;
248 ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */
249 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
250 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
251 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
255 static inline pte_t srmmu_pte_modify(pte_t pte, pgprot_t newprot)
256 { return __pte((pte_val(pte) & SRMMU_CHG_MASK) | pgprot_val(newprot)); }
258 /* to find an entry in a top-level page table... */
259 static inline pgd_t *srmmu_pgd_offset(struct mm_struct * mm, unsigned long address)
260 { return mm->pgd + (address >> SRMMU_PGDIR_SHIFT); }
262 /* Find an entry in the second-level page table.. */
263 static inline pmd_t *srmmu_pmd_offset(pgd_t * dir, unsigned long address)
265 return (pmd_t *) srmmu_pgd_page(*dir) +
266 ((address >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
269 /* Find an entry in the third-level page table.. */
270 static inline pte_t *srmmu_pte_offset(pmd_t * dir, unsigned long address)
272 void *pte;
274 pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
275 return (pte_t *) pte +
276 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
279 static unsigned long srmmu_swp_type(swp_entry_t entry)
281 return (entry.val >> SRMMU_SWP_TYPE_SHIFT) & SRMMU_SWP_TYPE_MASK;
284 static unsigned long srmmu_swp_offset(swp_entry_t entry)
286 return (entry.val >> SRMMU_SWP_OFF_SHIFT) & SRMMU_SWP_OFF_MASK;
289 static swp_entry_t srmmu_swp_entry(unsigned long type, unsigned long offset)
291 return (swp_entry_t) {
292 (type & SRMMU_SWP_TYPE_MASK) << SRMMU_SWP_TYPE_SHIFT
293 | (offset & SRMMU_SWP_OFF_MASK) << SRMMU_SWP_OFF_SHIFT };
297 * size: bytes to allocate in the nocache area.
298 * align: bytes, number to align at.
299 * Returns the virtual address of the allocated area.
301 static unsigned long __srmmu_get_nocache(int size, int align)
303 int offset;
305 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
306 printk("Size 0x%x too small for nocache request\n", size);
307 size = SRMMU_NOCACHE_BITMAP_SHIFT;
309 if (size & (SRMMU_NOCACHE_BITMAP_SHIFT-1)) {
310 printk("Size 0x%x unaligned int nocache request\n", size);
311 size += SRMMU_NOCACHE_BITMAP_SHIFT-1;
313 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
315 offset = bit_map_string_get(&srmmu_nocache_map,
316 size >> SRMMU_NOCACHE_BITMAP_SHIFT,
317 align >> SRMMU_NOCACHE_BITMAP_SHIFT);
318 if (offset == -1) {
319 printk("srmmu: out of nocache %d: %d/%d\n",
320 size, (int) srmmu_nocache_size,
321 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
322 return 0;
325 return (SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT));
328 static unsigned long srmmu_get_nocache(int size, int align)
330 unsigned long tmp;
332 tmp = __srmmu_get_nocache(size, align);
334 if (tmp)
335 memset((void *)tmp, 0, size);
337 return tmp;
340 static void srmmu_free_nocache(unsigned long vaddr, int size)
342 int offset;
344 if (vaddr < SRMMU_NOCACHE_VADDR) {
345 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
346 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
347 BUG();
349 if (vaddr+size > srmmu_nocache_end) {
350 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
351 vaddr, srmmu_nocache_end);
352 BUG();
354 if (!is_power_of_2(size)) {
355 printk("Size 0x%x is not a power of 2\n", size);
356 BUG();
358 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
359 printk("Size 0x%x is too small\n", size);
360 BUG();
362 if (vaddr & (size-1)) {
363 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
364 BUG();
367 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
368 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
370 bit_map_clear(&srmmu_nocache_map, offset, size);
373 static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
374 unsigned long end);
376 extern unsigned long probe_memory(void); /* in fault.c */
379 * Reserve nocache dynamically proportionally to the amount of
380 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
382 static void srmmu_nocache_calcsize(void)
384 unsigned long sysmemavail = probe_memory() / 1024;
385 int srmmu_nocache_npages;
387 srmmu_nocache_npages =
388 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
390 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
391 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
392 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
393 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
395 /* anything above 1280 blows up */
396 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
397 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
399 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
400 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
403 static void __init srmmu_nocache_init(void)
405 unsigned int bitmap_bits;
406 pgd_t *pgd;
407 pmd_t *pmd;
408 pte_t *pte;
409 unsigned long paddr, vaddr;
410 unsigned long pteval;
412 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
414 srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
415 SRMMU_NOCACHE_ALIGN_MAX, 0UL);
416 memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
418 srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL);
419 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
421 srmmu_swapper_pg_dir = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
422 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
423 init_mm.pgd = srmmu_swapper_pg_dir;
425 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
427 paddr = __pa((unsigned long)srmmu_nocache_pool);
428 vaddr = SRMMU_NOCACHE_VADDR;
430 while (vaddr < srmmu_nocache_end) {
431 pgd = pgd_offset_k(vaddr);
432 pmd = srmmu_pmd_offset(__nocache_fix(pgd), vaddr);
433 pte = srmmu_pte_offset(__nocache_fix(pmd), vaddr);
435 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
437 if (srmmu_cache_pagetables)
438 pteval |= SRMMU_CACHE;
440 srmmu_set_pte(__nocache_fix(pte), __pte(pteval));
442 vaddr += PAGE_SIZE;
443 paddr += PAGE_SIZE;
446 flush_cache_all();
447 flush_tlb_all();
450 static inline pgd_t *srmmu_get_pgd_fast(void)
452 pgd_t *pgd = NULL;
454 pgd = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
455 if (pgd) {
456 pgd_t *init = pgd_offset_k(0);
457 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
458 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
459 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
462 return pgd;
465 static void srmmu_free_pgd_fast(pgd_t *pgd)
467 srmmu_free_nocache((unsigned long)pgd, SRMMU_PGD_TABLE_SIZE);
470 static pmd_t *srmmu_pmd_alloc_one(struct mm_struct *mm, unsigned long address)
472 return (pmd_t *)srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
475 static void srmmu_pmd_free(pmd_t * pmd)
477 srmmu_free_nocache((unsigned long)pmd, SRMMU_PMD_TABLE_SIZE);
481 * Hardware needs alignment to 256 only, but we align to whole page size
482 * to reduce fragmentation problems due to the buddy principle.
483 * XXX Provide actual fragmentation statistics in /proc.
485 * Alignments up to the page size are the same for physical and virtual
486 * addresses of the nocache area.
488 static pte_t *
489 srmmu_pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
491 return (pte_t *)srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
494 static pgtable_t
495 srmmu_pte_alloc_one(struct mm_struct *mm, unsigned long address)
497 unsigned long pte;
498 struct page *page;
500 if ((pte = (unsigned long)srmmu_pte_alloc_one_kernel(mm, address)) == 0)
501 return NULL;
502 page = pfn_to_page( __nocache_pa(pte) >> PAGE_SHIFT );
503 pgtable_page_ctor(page);
504 return page;
507 static void srmmu_free_pte_fast(pte_t *pte)
509 srmmu_free_nocache((unsigned long)pte, PTE_SIZE);
512 static void srmmu_pte_free(pgtable_t pte)
514 unsigned long p;
516 pgtable_page_dtor(pte);
517 p = (unsigned long)page_address(pte); /* Cached address (for test) */
518 if (p == 0)
519 BUG();
520 p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */
521 p = (unsigned long) __nocache_va(p); /* Nocached virtual */
522 srmmu_free_nocache(p, PTE_SIZE);
527 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
529 struct ctx_list *ctxp;
531 ctxp = ctx_free.next;
532 if(ctxp != &ctx_free) {
533 remove_from_ctx_list(ctxp);
534 add_to_used_ctxlist(ctxp);
535 mm->context = ctxp->ctx_number;
536 ctxp->ctx_mm = mm;
537 return;
539 ctxp = ctx_used.next;
540 if(ctxp->ctx_mm == old_mm)
541 ctxp = ctxp->next;
542 if(ctxp == &ctx_used)
543 panic("out of mmu contexts");
544 flush_cache_mm(ctxp->ctx_mm);
545 flush_tlb_mm(ctxp->ctx_mm);
546 remove_from_ctx_list(ctxp);
547 add_to_used_ctxlist(ctxp);
548 ctxp->ctx_mm->context = NO_CONTEXT;
549 ctxp->ctx_mm = mm;
550 mm->context = ctxp->ctx_number;
553 static inline void free_context(int context)
555 struct ctx_list *ctx_old;
557 ctx_old = ctx_list_pool + context;
558 remove_from_ctx_list(ctx_old);
559 add_to_free_ctxlist(ctx_old);
563 static void srmmu_switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
564 struct task_struct *tsk, int cpu)
566 if(mm->context == NO_CONTEXT) {
567 spin_lock(&srmmu_context_spinlock);
568 alloc_context(old_mm, mm);
569 spin_unlock(&srmmu_context_spinlock);
570 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
573 if (sparc_cpu_model == sparc_leon)
574 leon_switch_mm();
576 if (is_hypersparc)
577 hyper_flush_whole_icache();
579 srmmu_set_context(mm->context);
582 /* Low level IO area allocation on the SRMMU. */
583 static inline void srmmu_mapioaddr(unsigned long physaddr,
584 unsigned long virt_addr, int bus_type)
586 pgd_t *pgdp;
587 pmd_t *pmdp;
588 pte_t *ptep;
589 unsigned long tmp;
591 physaddr &= PAGE_MASK;
592 pgdp = pgd_offset_k(virt_addr);
593 pmdp = srmmu_pmd_offset(pgdp, virt_addr);
594 ptep = srmmu_pte_offset(pmdp, virt_addr);
595 tmp = (physaddr >> 4) | SRMMU_ET_PTE;
598 * I need to test whether this is consistent over all
599 * sun4m's. The bus_type represents the upper 4 bits of
600 * 36-bit physical address on the I/O space lines...
602 tmp |= (bus_type << 28);
603 tmp |= SRMMU_PRIV;
604 __flush_page_to_ram(virt_addr);
605 srmmu_set_pte(ptep, __pte(tmp));
608 static void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
609 unsigned long xva, unsigned int len)
611 while (len != 0) {
612 len -= PAGE_SIZE;
613 srmmu_mapioaddr(xpa, xva, bus);
614 xva += PAGE_SIZE;
615 xpa += PAGE_SIZE;
617 flush_tlb_all();
620 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
622 pgd_t *pgdp;
623 pmd_t *pmdp;
624 pte_t *ptep;
626 pgdp = pgd_offset_k(virt_addr);
627 pmdp = srmmu_pmd_offset(pgdp, virt_addr);
628 ptep = srmmu_pte_offset(pmdp, virt_addr);
630 /* No need to flush uncacheable page. */
631 srmmu_pte_clear(ptep);
634 static void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
636 while (len != 0) {
637 len -= PAGE_SIZE;
638 srmmu_unmapioaddr(virt_addr);
639 virt_addr += PAGE_SIZE;
641 flush_tlb_all();
645 * On the SRMMU we do not have the problems with limited tlb entries
646 * for mapping kernel pages, so we just take things from the free page
647 * pool. As a side effect we are putting a little too much pressure
648 * on the gfp() subsystem. This setup also makes the logic of the
649 * iommu mapping code a lot easier as we can transparently handle
650 * mappings on the kernel stack without any special code as we did
651 * need on the sun4c.
653 static struct thread_info *srmmu_alloc_thread_info_node(int node)
655 struct thread_info *ret;
657 ret = (struct thread_info *)__get_free_pages(GFP_KERNEL,
658 THREAD_INFO_ORDER);
659 #ifdef CONFIG_DEBUG_STACK_USAGE
660 if (ret)
661 memset(ret, 0, PAGE_SIZE << THREAD_INFO_ORDER);
662 #endif /* DEBUG_STACK_USAGE */
664 return ret;
667 static void srmmu_free_thread_info(struct thread_info *ti)
669 free_pages((unsigned long)ti, THREAD_INFO_ORDER);
672 /* tsunami.S */
673 extern void tsunami_flush_cache_all(void);
674 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
675 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
676 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
677 extern void tsunami_flush_page_to_ram(unsigned long page);
678 extern void tsunami_flush_page_for_dma(unsigned long page);
679 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
680 extern void tsunami_flush_tlb_all(void);
681 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
682 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
683 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
684 extern void tsunami_setup_blockops(void);
687 * Workaround, until we find what's going on with Swift. When low on memory,
688 * it sometimes loops in fault/handle_mm_fault incl. flush_tlb_page to find
689 * out it is already in page tables/ fault again on the same instruction.
690 * I really don't understand it, have checked it and contexts
691 * are right, flush_tlb_all is done as well, and it faults again...
692 * Strange. -jj
694 * The following code is a deadwood that may be necessary when
695 * we start to make precise page flushes again. --zaitcev
697 static void swift_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t *ptep)
699 #if 0
700 static unsigned long last;
701 unsigned int val;
702 /* unsigned int n; */
704 if (address == last) {
705 val = srmmu_hwprobe(address);
706 if (val != 0 && pte_val(*ptep) != val) {
707 printk("swift_update_mmu_cache: "
708 "addr %lx put %08x probed %08x from %p\n",
709 address, pte_val(*ptep), val,
710 __builtin_return_address(0));
711 srmmu_flush_whole_tlb();
714 last = address;
715 #endif
718 /* swift.S */
719 extern void swift_flush_cache_all(void);
720 extern void swift_flush_cache_mm(struct mm_struct *mm);
721 extern void swift_flush_cache_range(struct vm_area_struct *vma,
722 unsigned long start, unsigned long end);
723 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
724 extern void swift_flush_page_to_ram(unsigned long page);
725 extern void swift_flush_page_for_dma(unsigned long page);
726 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
727 extern void swift_flush_tlb_all(void);
728 extern void swift_flush_tlb_mm(struct mm_struct *mm);
729 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
730 unsigned long start, unsigned long end);
731 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
733 #if 0 /* P3: deadwood to debug precise flushes on Swift. */
734 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
736 int cctx, ctx1;
738 page &= PAGE_MASK;
739 if ((ctx1 = vma->vm_mm->context) != -1) {
740 cctx = srmmu_get_context();
741 /* Is context # ever different from current context? P3 */
742 if (cctx != ctx1) {
743 printk("flush ctx %02x curr %02x\n", ctx1, cctx);
744 srmmu_set_context(ctx1);
745 swift_flush_page(page);
746 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
747 "r" (page), "i" (ASI_M_FLUSH_PROBE));
748 srmmu_set_context(cctx);
749 } else {
750 /* Rm. prot. bits from virt. c. */
751 /* swift_flush_cache_all(); */
752 /* swift_flush_cache_page(vma, page); */
753 swift_flush_page(page);
755 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
756 "r" (page), "i" (ASI_M_FLUSH_PROBE));
757 /* same as above: srmmu_flush_tlb_page() */
761 #endif
764 * The following are all MBUS based SRMMU modules, and therefore could
765 * be found in a multiprocessor configuration. On the whole, these
766 * chips seems to be much more touchy about DVMA and page tables
767 * with respect to cache coherency.
770 /* Cypress flushes. */
771 static void cypress_flush_cache_all(void)
773 volatile unsigned long cypress_sucks;
774 unsigned long faddr, tagval;
776 flush_user_windows();
777 for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
778 __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
779 "=r" (tagval) :
780 "r" (faddr), "r" (0x40000),
781 "i" (ASI_M_DATAC_TAG));
783 /* If modified and valid, kick it. */
784 if((tagval & 0x60) == 0x60)
785 cypress_sucks = *(unsigned long *)(0xf0020000 + faddr);
789 static void cypress_flush_cache_mm(struct mm_struct *mm)
791 register unsigned long a, b, c, d, e, f, g;
792 unsigned long flags, faddr;
793 int octx;
795 FLUSH_BEGIN(mm)
796 flush_user_windows();
797 local_irq_save(flags);
798 octx = srmmu_get_context();
799 srmmu_set_context(mm->context);
800 a = 0x20; b = 0x40; c = 0x60;
801 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
803 faddr = (0x10000 - 0x100);
804 goto inside;
805 do {
806 faddr -= 0x100;
807 inside:
808 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
809 "sta %%g0, [%0 + %2] %1\n\t"
810 "sta %%g0, [%0 + %3] %1\n\t"
811 "sta %%g0, [%0 + %4] %1\n\t"
812 "sta %%g0, [%0 + %5] %1\n\t"
813 "sta %%g0, [%0 + %6] %1\n\t"
814 "sta %%g0, [%0 + %7] %1\n\t"
815 "sta %%g0, [%0 + %8] %1\n\t" : :
816 "r" (faddr), "i" (ASI_M_FLUSH_CTX),
817 "r" (a), "r" (b), "r" (c), "r" (d),
818 "r" (e), "r" (f), "r" (g));
819 } while(faddr);
820 srmmu_set_context(octx);
821 local_irq_restore(flags);
822 FLUSH_END
825 static void cypress_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
827 struct mm_struct *mm = vma->vm_mm;
828 register unsigned long a, b, c, d, e, f, g;
829 unsigned long flags, faddr;
830 int octx;
832 FLUSH_BEGIN(mm)
833 flush_user_windows();
834 local_irq_save(flags);
835 octx = srmmu_get_context();
836 srmmu_set_context(mm->context);
837 a = 0x20; b = 0x40; c = 0x60;
838 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
840 start &= SRMMU_REAL_PMD_MASK;
841 while(start < end) {
842 faddr = (start + (0x10000 - 0x100));
843 goto inside;
844 do {
845 faddr -= 0x100;
846 inside:
847 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
848 "sta %%g0, [%0 + %2] %1\n\t"
849 "sta %%g0, [%0 + %3] %1\n\t"
850 "sta %%g0, [%0 + %4] %1\n\t"
851 "sta %%g0, [%0 + %5] %1\n\t"
852 "sta %%g0, [%0 + %6] %1\n\t"
853 "sta %%g0, [%0 + %7] %1\n\t"
854 "sta %%g0, [%0 + %8] %1\n\t" : :
855 "r" (faddr),
856 "i" (ASI_M_FLUSH_SEG),
857 "r" (a), "r" (b), "r" (c), "r" (d),
858 "r" (e), "r" (f), "r" (g));
859 } while (faddr != start);
860 start += SRMMU_REAL_PMD_SIZE;
862 srmmu_set_context(octx);
863 local_irq_restore(flags);
864 FLUSH_END
867 static void cypress_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
869 register unsigned long a, b, c, d, e, f, g;
870 struct mm_struct *mm = vma->vm_mm;
871 unsigned long flags, line;
872 int octx;
874 FLUSH_BEGIN(mm)
875 flush_user_windows();
876 local_irq_save(flags);
877 octx = srmmu_get_context();
878 srmmu_set_context(mm->context);
879 a = 0x20; b = 0x40; c = 0x60;
880 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
882 page &= PAGE_MASK;
883 line = (page + PAGE_SIZE) - 0x100;
884 goto inside;
885 do {
886 line -= 0x100;
887 inside:
888 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
889 "sta %%g0, [%0 + %2] %1\n\t"
890 "sta %%g0, [%0 + %3] %1\n\t"
891 "sta %%g0, [%0 + %4] %1\n\t"
892 "sta %%g0, [%0 + %5] %1\n\t"
893 "sta %%g0, [%0 + %6] %1\n\t"
894 "sta %%g0, [%0 + %7] %1\n\t"
895 "sta %%g0, [%0 + %8] %1\n\t" : :
896 "r" (line),
897 "i" (ASI_M_FLUSH_PAGE),
898 "r" (a), "r" (b), "r" (c), "r" (d),
899 "r" (e), "r" (f), "r" (g));
900 } while(line != page);
901 srmmu_set_context(octx);
902 local_irq_restore(flags);
903 FLUSH_END
906 /* Cypress is copy-back, at least that is how we configure it. */
907 static void cypress_flush_page_to_ram(unsigned long page)
909 register unsigned long a, b, c, d, e, f, g;
910 unsigned long line;
912 a = 0x20; b = 0x40; c = 0x60; d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
913 page &= PAGE_MASK;
914 line = (page + PAGE_SIZE) - 0x100;
915 goto inside;
916 do {
917 line -= 0x100;
918 inside:
919 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
920 "sta %%g0, [%0 + %2] %1\n\t"
921 "sta %%g0, [%0 + %3] %1\n\t"
922 "sta %%g0, [%0 + %4] %1\n\t"
923 "sta %%g0, [%0 + %5] %1\n\t"
924 "sta %%g0, [%0 + %6] %1\n\t"
925 "sta %%g0, [%0 + %7] %1\n\t"
926 "sta %%g0, [%0 + %8] %1\n\t" : :
927 "r" (line),
928 "i" (ASI_M_FLUSH_PAGE),
929 "r" (a), "r" (b), "r" (c), "r" (d),
930 "r" (e), "r" (f), "r" (g));
931 } while(line != page);
934 /* Cypress is also IO cache coherent. */
935 static void cypress_flush_page_for_dma(unsigned long page)
939 /* Cypress has unified L2 VIPT, from which both instructions and data
940 * are stored. It does not have an onboard icache of any sort, therefore
941 * no flush is necessary.
943 static void cypress_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
947 static void cypress_flush_tlb_all(void)
949 srmmu_flush_whole_tlb();
952 static void cypress_flush_tlb_mm(struct mm_struct *mm)
954 FLUSH_BEGIN(mm)
955 __asm__ __volatile__(
956 "lda [%0] %3, %%g5\n\t"
957 "sta %2, [%0] %3\n\t"
958 "sta %%g0, [%1] %4\n\t"
959 "sta %%g5, [%0] %3\n"
960 : /* no outputs */
961 : "r" (SRMMU_CTX_REG), "r" (0x300), "r" (mm->context),
962 "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
963 : "g5");
964 FLUSH_END
967 static void cypress_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
969 struct mm_struct *mm = vma->vm_mm;
970 unsigned long size;
972 FLUSH_BEGIN(mm)
973 start &= SRMMU_PGDIR_MASK;
974 size = SRMMU_PGDIR_ALIGN(end) - start;
975 __asm__ __volatile__(
976 "lda [%0] %5, %%g5\n\t"
977 "sta %1, [%0] %5\n"
978 "1:\n\t"
979 "subcc %3, %4, %3\n\t"
980 "bne 1b\n\t"
981 " sta %%g0, [%2 + %3] %6\n\t"
982 "sta %%g5, [%0] %5\n"
983 : /* no outputs */
984 : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (start | 0x200),
985 "r" (size), "r" (SRMMU_PGDIR_SIZE), "i" (ASI_M_MMUREGS),
986 "i" (ASI_M_FLUSH_PROBE)
987 : "g5", "cc");
988 FLUSH_END
991 static void cypress_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
993 struct mm_struct *mm = vma->vm_mm;
995 FLUSH_BEGIN(mm)
996 __asm__ __volatile__(
997 "lda [%0] %3, %%g5\n\t"
998 "sta %1, [%0] %3\n\t"
999 "sta %%g0, [%2] %4\n\t"
1000 "sta %%g5, [%0] %3\n"
1001 : /* no outputs */
1002 : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (page & PAGE_MASK),
1003 "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
1004 : "g5");
1005 FLUSH_END
1008 /* viking.S */
1009 extern void viking_flush_cache_all(void);
1010 extern void viking_flush_cache_mm(struct mm_struct *mm);
1011 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
1012 unsigned long end);
1013 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
1014 extern void viking_flush_page_to_ram(unsigned long page);
1015 extern void viking_flush_page_for_dma(unsigned long page);
1016 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
1017 extern void viking_flush_page(unsigned long page);
1018 extern void viking_mxcc_flush_page(unsigned long page);
1019 extern void viking_flush_tlb_all(void);
1020 extern void viking_flush_tlb_mm(struct mm_struct *mm);
1021 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1022 unsigned long end);
1023 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
1024 unsigned long page);
1025 extern void sun4dsmp_flush_tlb_all(void);
1026 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
1027 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1028 unsigned long end);
1029 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
1030 unsigned long page);
1032 /* hypersparc.S */
1033 extern void hypersparc_flush_cache_all(void);
1034 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
1035 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1036 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
1037 extern void hypersparc_flush_page_to_ram(unsigned long page);
1038 extern void hypersparc_flush_page_for_dma(unsigned long page);
1039 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
1040 extern void hypersparc_flush_tlb_all(void);
1041 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
1042 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1043 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
1044 extern void hypersparc_setup_blockops(void);
1047 * NOTE: All of this startup code assumes the low 16mb (approx.) of
1048 * kernel mappings are done with one single contiguous chunk of
1049 * ram. On small ram machines (classics mainly) we only get
1050 * around 8mb mapped for us.
1053 static void __init early_pgtable_allocfail(char *type)
1055 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
1056 prom_halt();
1059 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
1060 unsigned long end)
1062 pgd_t *pgdp;
1063 pmd_t *pmdp;
1064 pte_t *ptep;
1066 while(start < end) {
1067 pgdp = pgd_offset_k(start);
1068 if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1069 pmdp = (pmd_t *) __srmmu_get_nocache(
1070 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1071 if (pmdp == NULL)
1072 early_pgtable_allocfail("pmd");
1073 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1074 srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1076 pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1077 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1078 ptep = (pte_t *)__srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
1079 if (ptep == NULL)
1080 early_pgtable_allocfail("pte");
1081 memset(__nocache_fix(ptep), 0, PTE_SIZE);
1082 srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1084 if (start > (0xffffffffUL - PMD_SIZE))
1085 break;
1086 start = (start + PMD_SIZE) & PMD_MASK;
1090 static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
1091 unsigned long end)
1093 pgd_t *pgdp;
1094 pmd_t *pmdp;
1095 pte_t *ptep;
1097 while(start < end) {
1098 pgdp = pgd_offset_k(start);
1099 if(srmmu_pgd_none(*pgdp)) {
1100 pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1101 if (pmdp == NULL)
1102 early_pgtable_allocfail("pmd");
1103 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
1104 srmmu_pgd_set(pgdp, pmdp);
1106 pmdp = srmmu_pmd_offset(pgdp, start);
1107 if(srmmu_pmd_none(*pmdp)) {
1108 ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1109 PTE_SIZE);
1110 if (ptep == NULL)
1111 early_pgtable_allocfail("pte");
1112 memset(ptep, 0, PTE_SIZE);
1113 srmmu_pmd_set(pmdp, ptep);
1115 if (start > (0xffffffffUL - PMD_SIZE))
1116 break;
1117 start = (start + PMD_SIZE) & PMD_MASK;
1122 * This is much cleaner than poking around physical address space
1123 * looking at the prom's page table directly which is what most
1124 * other OS's do. Yuck... this is much better.
1126 static void __init srmmu_inherit_prom_mappings(unsigned long start,
1127 unsigned long end)
1129 pgd_t *pgdp;
1130 pmd_t *pmdp;
1131 pte_t *ptep;
1132 int what = 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
1133 unsigned long prompte;
1135 while(start <= end) {
1136 if (start == 0)
1137 break; /* probably wrap around */
1138 if(start == 0xfef00000)
1139 start = KADB_DEBUGGER_BEGVM;
1140 if(!(prompte = srmmu_hwprobe(start))) {
1141 start += PAGE_SIZE;
1142 continue;
1145 /* A red snapper, see what it really is. */
1146 what = 0;
1148 if(!(start & ~(SRMMU_REAL_PMD_MASK))) {
1149 if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_REAL_PMD_SIZE) == prompte)
1150 what = 1;
1153 if(!(start & ~(SRMMU_PGDIR_MASK))) {
1154 if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_PGDIR_SIZE) ==
1155 prompte)
1156 what = 2;
1159 pgdp = pgd_offset_k(start);
1160 if(what == 2) {
1161 *(pgd_t *)__nocache_fix(pgdp) = __pgd(prompte);
1162 start += SRMMU_PGDIR_SIZE;
1163 continue;
1165 if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1166 pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1167 if (pmdp == NULL)
1168 early_pgtable_allocfail("pmd");
1169 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1170 srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1172 pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1173 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1174 ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1175 PTE_SIZE);
1176 if (ptep == NULL)
1177 early_pgtable_allocfail("pte");
1178 memset(__nocache_fix(ptep), 0, PTE_SIZE);
1179 srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1181 if(what == 1) {
1183 * We bend the rule where all 16 PTPs in a pmd_t point
1184 * inside the same PTE page, and we leak a perfectly
1185 * good hardware PTE piece. Alternatives seem worse.
1187 unsigned int x; /* Index of HW PMD in soft cluster */
1188 x = (start >> PMD_SHIFT) & 15;
1189 *(unsigned long *)__nocache_fix(&pmdp->pmdv[x]) = prompte;
1190 start += SRMMU_REAL_PMD_SIZE;
1191 continue;
1193 ptep = srmmu_pte_offset(__nocache_fix(pmdp), start);
1194 *(pte_t *)__nocache_fix(ptep) = __pte(prompte);
1195 start += PAGE_SIZE;
1199 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
1201 /* Create a third-level SRMMU 16MB page mapping. */
1202 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
1204 pgd_t *pgdp = pgd_offset_k(vaddr);
1205 unsigned long big_pte;
1207 big_pte = KERNEL_PTE(phys_base >> 4);
1208 *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
1211 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
1212 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
1214 unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
1215 unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
1216 unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
1217 /* Map "low" memory only */
1218 const unsigned long min_vaddr = PAGE_OFFSET;
1219 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
1221 if (vstart < min_vaddr || vstart >= max_vaddr)
1222 return vstart;
1224 if (vend > max_vaddr || vend < min_vaddr)
1225 vend = max_vaddr;
1227 while(vstart < vend) {
1228 do_large_mapping(vstart, pstart);
1229 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
1231 return vstart;
1234 static inline void memprobe_error(char *msg)
1236 prom_printf(msg);
1237 prom_printf("Halting now...\n");
1238 prom_halt();
1241 static inline void map_kernel(void)
1243 int i;
1245 if (phys_base > 0) {
1246 do_large_mapping(PAGE_OFFSET, phys_base);
1249 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
1250 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
1253 BTFIXUPSET_SIMM13(user_ptrs_per_pgd, PAGE_OFFSET / SRMMU_PGDIR_SIZE);
1256 /* Paging initialization on the Sparc Reference MMU. */
1257 extern void sparc_context_init(int);
1259 void (*poke_srmmu)(void) __cpuinitdata = NULL;
1261 extern unsigned long bootmem_init(unsigned long *pages_avail);
1263 void __init srmmu_paging_init(void)
1265 int i;
1266 phandle cpunode;
1267 char node_str[128];
1268 pgd_t *pgd;
1269 pmd_t *pmd;
1270 pte_t *pte;
1271 unsigned long pages_avail;
1273 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
1275 if (sparc_cpu_model == sun4d)
1276 num_contexts = 65536; /* We know it is Viking */
1277 else {
1278 /* Find the number of contexts on the srmmu. */
1279 cpunode = prom_getchild(prom_root_node);
1280 num_contexts = 0;
1281 while(cpunode != 0) {
1282 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1283 if(!strcmp(node_str, "cpu")) {
1284 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
1285 break;
1287 cpunode = prom_getsibling(cpunode);
1291 if(!num_contexts) {
1292 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
1293 prom_halt();
1296 pages_avail = 0;
1297 last_valid_pfn = bootmem_init(&pages_avail);
1299 srmmu_nocache_calcsize();
1300 srmmu_nocache_init();
1301 srmmu_inherit_prom_mappings(0xfe400000,(LINUX_OPPROM_ENDVM-PAGE_SIZE));
1302 map_kernel();
1304 /* ctx table has to be physically aligned to its size */
1305 srmmu_context_table = (ctxd_t *)__srmmu_get_nocache(num_contexts*sizeof(ctxd_t), num_contexts*sizeof(ctxd_t));
1306 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
1308 for(i = 0; i < num_contexts; i++)
1309 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
1311 flush_cache_all();
1312 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
1313 #ifdef CONFIG_SMP
1314 /* Stop from hanging here... */
1315 local_flush_tlb_all();
1316 #else
1317 flush_tlb_all();
1318 #endif
1319 poke_srmmu();
1321 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
1322 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
1324 srmmu_allocate_ptable_skeleton(
1325 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
1326 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
1328 pgd = pgd_offset_k(PKMAP_BASE);
1329 pmd = srmmu_pmd_offset(pgd, PKMAP_BASE);
1330 pte = srmmu_pte_offset(pmd, PKMAP_BASE);
1331 pkmap_page_table = pte;
1333 flush_cache_all();
1334 flush_tlb_all();
1336 sparc_context_init(num_contexts);
1338 kmap_init();
1341 unsigned long zones_size[MAX_NR_ZONES];
1342 unsigned long zholes_size[MAX_NR_ZONES];
1343 unsigned long npages;
1344 int znum;
1346 for (znum = 0; znum < MAX_NR_ZONES; znum++)
1347 zones_size[znum] = zholes_size[znum] = 0;
1349 npages = max_low_pfn - pfn_base;
1351 zones_size[ZONE_DMA] = npages;
1352 zholes_size[ZONE_DMA] = npages - pages_avail;
1354 npages = highend_pfn - max_low_pfn;
1355 zones_size[ZONE_HIGHMEM] = npages;
1356 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
1358 free_area_init_node(0, zones_size, pfn_base, zholes_size);
1362 static void srmmu_mmu_info(struct seq_file *m)
1364 seq_printf(m,
1365 "MMU type\t: %s\n"
1366 "contexts\t: %d\n"
1367 "nocache total\t: %ld\n"
1368 "nocache used\t: %d\n",
1369 srmmu_name,
1370 num_contexts,
1371 srmmu_nocache_size,
1372 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
1375 static void srmmu_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
1379 static void srmmu_destroy_context(struct mm_struct *mm)
1382 if(mm->context != NO_CONTEXT) {
1383 flush_cache_mm(mm);
1384 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1385 flush_tlb_mm(mm);
1386 spin_lock(&srmmu_context_spinlock);
1387 free_context(mm->context);
1388 spin_unlock(&srmmu_context_spinlock);
1389 mm->context = NO_CONTEXT;
1393 /* Init various srmmu chip types. */
1394 static void __init srmmu_is_bad(void)
1396 prom_printf("Could not determine SRMMU chip type.\n");
1397 prom_halt();
1400 static void __init init_vac_layout(void)
1402 phandle nd;
1403 int cache_lines;
1404 char node_str[128];
1405 #ifdef CONFIG_SMP
1406 int cpu = 0;
1407 unsigned long max_size = 0;
1408 unsigned long min_line_size = 0x10000000;
1409 #endif
1411 nd = prom_getchild(prom_root_node);
1412 while((nd = prom_getsibling(nd)) != 0) {
1413 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1414 if(!strcmp(node_str, "cpu")) {
1415 vac_line_size = prom_getint(nd, "cache-line-size");
1416 if (vac_line_size == -1) {
1417 prom_printf("can't determine cache-line-size, "
1418 "halting.\n");
1419 prom_halt();
1421 cache_lines = prom_getint(nd, "cache-nlines");
1422 if (cache_lines == -1) {
1423 prom_printf("can't determine cache-nlines, halting.\n");
1424 prom_halt();
1427 vac_cache_size = cache_lines * vac_line_size;
1428 #ifdef CONFIG_SMP
1429 if(vac_cache_size > max_size)
1430 max_size = vac_cache_size;
1431 if(vac_line_size < min_line_size)
1432 min_line_size = vac_line_size;
1433 //FIXME: cpus not contiguous!!
1434 cpu++;
1435 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1436 break;
1437 #else
1438 break;
1439 #endif
1442 if(nd == 0) {
1443 prom_printf("No CPU nodes found, halting.\n");
1444 prom_halt();
1446 #ifdef CONFIG_SMP
1447 vac_cache_size = max_size;
1448 vac_line_size = min_line_size;
1449 #endif
1450 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1451 (int)vac_cache_size, (int)vac_line_size);
1454 static void __cpuinit poke_hypersparc(void)
1456 volatile unsigned long clear;
1457 unsigned long mreg = srmmu_get_mmureg();
1459 hyper_flush_unconditional_combined();
1461 mreg &= ~(HYPERSPARC_CWENABLE);
1462 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1463 mreg |= (HYPERSPARC_CMODE);
1465 srmmu_set_mmureg(mreg);
1467 #if 0 /* XXX I think this is bad news... -DaveM */
1468 hyper_clear_all_tags();
1469 #endif
1471 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1472 hyper_flush_whole_icache();
1473 clear = srmmu_get_faddr();
1474 clear = srmmu_get_fstatus();
1477 static void __init init_hypersparc(void)
1479 srmmu_name = "ROSS HyperSparc";
1480 srmmu_modtype = HyperSparc;
1482 init_vac_layout();
1484 is_hypersparc = 1;
1486 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1487 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1488 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1489 BTFIXUPSET_CALL(flush_cache_all, hypersparc_flush_cache_all, BTFIXUPCALL_NORM);
1490 BTFIXUPSET_CALL(flush_cache_mm, hypersparc_flush_cache_mm, BTFIXUPCALL_NORM);
1491 BTFIXUPSET_CALL(flush_cache_range, hypersparc_flush_cache_range, BTFIXUPCALL_NORM);
1492 BTFIXUPSET_CALL(flush_cache_page, hypersparc_flush_cache_page, BTFIXUPCALL_NORM);
1494 BTFIXUPSET_CALL(flush_tlb_all, hypersparc_flush_tlb_all, BTFIXUPCALL_NORM);
1495 BTFIXUPSET_CALL(flush_tlb_mm, hypersparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1496 BTFIXUPSET_CALL(flush_tlb_range, hypersparc_flush_tlb_range, BTFIXUPCALL_NORM);
1497 BTFIXUPSET_CALL(flush_tlb_page, hypersparc_flush_tlb_page, BTFIXUPCALL_NORM);
1499 BTFIXUPSET_CALL(__flush_page_to_ram, hypersparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1500 BTFIXUPSET_CALL(flush_sig_insns, hypersparc_flush_sig_insns, BTFIXUPCALL_NORM);
1501 BTFIXUPSET_CALL(flush_page_for_dma, hypersparc_flush_page_for_dma, BTFIXUPCALL_NOP);
1504 poke_srmmu = poke_hypersparc;
1506 hypersparc_setup_blockops();
1509 static void __cpuinit poke_cypress(void)
1511 unsigned long mreg = srmmu_get_mmureg();
1512 unsigned long faddr, tagval;
1513 volatile unsigned long cypress_sucks;
1514 volatile unsigned long clear;
1516 clear = srmmu_get_faddr();
1517 clear = srmmu_get_fstatus();
1519 if (!(mreg & CYPRESS_CENABLE)) {
1520 for(faddr = 0x0; faddr < 0x10000; faddr += 20) {
1521 __asm__ __volatile__("sta %%g0, [%0 + %1] %2\n\t"
1522 "sta %%g0, [%0] %2\n\t" : :
1523 "r" (faddr), "r" (0x40000),
1524 "i" (ASI_M_DATAC_TAG));
1526 } else {
1527 for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
1528 __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
1529 "=r" (tagval) :
1530 "r" (faddr), "r" (0x40000),
1531 "i" (ASI_M_DATAC_TAG));
1533 /* If modified and valid, kick it. */
1534 if((tagval & 0x60) == 0x60)
1535 cypress_sucks = *(unsigned long *)
1536 (0xf0020000 + faddr);
1540 /* And one more, for our good neighbor, Mr. Broken Cypress. */
1541 clear = srmmu_get_faddr();
1542 clear = srmmu_get_fstatus();
1544 mreg |= (CYPRESS_CENABLE | CYPRESS_CMODE);
1545 srmmu_set_mmureg(mreg);
1548 static void __init init_cypress_common(void)
1550 init_vac_layout();
1552 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1553 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1554 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1555 BTFIXUPSET_CALL(flush_cache_all, cypress_flush_cache_all, BTFIXUPCALL_NORM);
1556 BTFIXUPSET_CALL(flush_cache_mm, cypress_flush_cache_mm, BTFIXUPCALL_NORM);
1557 BTFIXUPSET_CALL(flush_cache_range, cypress_flush_cache_range, BTFIXUPCALL_NORM);
1558 BTFIXUPSET_CALL(flush_cache_page, cypress_flush_cache_page, BTFIXUPCALL_NORM);
1560 BTFIXUPSET_CALL(flush_tlb_all, cypress_flush_tlb_all, BTFIXUPCALL_NORM);
1561 BTFIXUPSET_CALL(flush_tlb_mm, cypress_flush_tlb_mm, BTFIXUPCALL_NORM);
1562 BTFIXUPSET_CALL(flush_tlb_page, cypress_flush_tlb_page, BTFIXUPCALL_NORM);
1563 BTFIXUPSET_CALL(flush_tlb_range, cypress_flush_tlb_range, BTFIXUPCALL_NORM);
1566 BTFIXUPSET_CALL(__flush_page_to_ram, cypress_flush_page_to_ram, BTFIXUPCALL_NORM);
1567 BTFIXUPSET_CALL(flush_sig_insns, cypress_flush_sig_insns, BTFIXUPCALL_NOP);
1568 BTFIXUPSET_CALL(flush_page_for_dma, cypress_flush_page_for_dma, BTFIXUPCALL_NOP);
1570 poke_srmmu = poke_cypress;
1573 static void __init init_cypress_604(void)
1575 srmmu_name = "ROSS Cypress-604(UP)";
1576 srmmu_modtype = Cypress;
1577 init_cypress_common();
1580 static void __init init_cypress_605(unsigned long mrev)
1582 srmmu_name = "ROSS Cypress-605(MP)";
1583 if(mrev == 0xe) {
1584 srmmu_modtype = Cypress_vE;
1585 hwbug_bitmask |= HWBUG_COPYBACK_BROKEN;
1586 } else {
1587 if(mrev == 0xd) {
1588 srmmu_modtype = Cypress_vD;
1589 hwbug_bitmask |= HWBUG_ASIFLUSH_BROKEN;
1590 } else {
1591 srmmu_modtype = Cypress;
1594 init_cypress_common();
1597 static void __cpuinit poke_swift(void)
1599 unsigned long mreg;
1601 /* Clear any crap from the cache or else... */
1602 swift_flush_cache_all();
1604 /* Enable I & D caches */
1605 mreg = srmmu_get_mmureg();
1606 mreg |= (SWIFT_IE | SWIFT_DE);
1608 * The Swift branch folding logic is completely broken. At
1609 * trap time, if things are just right, if can mistakenly
1610 * think that a trap is coming from kernel mode when in fact
1611 * it is coming from user mode (it mis-executes the branch in
1612 * the trap code). So you see things like crashme completely
1613 * hosing your machine which is completely unacceptable. Turn
1614 * this shit off... nice job Fujitsu.
1616 mreg &= ~(SWIFT_BF);
1617 srmmu_set_mmureg(mreg);
1620 #define SWIFT_MASKID_ADDR 0x10003018
1621 static void __init init_swift(void)
1623 unsigned long swift_rev;
1625 __asm__ __volatile__("lda [%1] %2, %0\n\t"
1626 "srl %0, 0x18, %0\n\t" :
1627 "=r" (swift_rev) :
1628 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1629 srmmu_name = "Fujitsu Swift";
1630 switch(swift_rev) {
1631 case 0x11:
1632 case 0x20:
1633 case 0x23:
1634 case 0x30:
1635 srmmu_modtype = Swift_lots_o_bugs;
1636 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1638 * Gee george, I wonder why Sun is so hush hush about
1639 * this hardware bug... really braindamage stuff going
1640 * on here. However I think we can find a way to avoid
1641 * all of the workaround overhead under Linux. Basically,
1642 * any page fault can cause kernel pages to become user
1643 * accessible (the mmu gets confused and clears some of
1644 * the ACC bits in kernel ptes). Aha, sounds pretty
1645 * horrible eh? But wait, after extensive testing it appears
1646 * that if you use pgd_t level large kernel pte's (like the
1647 * 4MB pages on the Pentium) the bug does not get tripped
1648 * at all. This avoids almost all of the major overhead.
1649 * Welcome to a world where your vendor tells you to,
1650 * "apply this kernel patch" instead of "sorry for the
1651 * broken hardware, send it back and we'll give you
1652 * properly functioning parts"
1654 break;
1655 case 0x25:
1656 case 0x31:
1657 srmmu_modtype = Swift_bad_c;
1658 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1660 * You see Sun allude to this hardware bug but never
1661 * admit things directly, they'll say things like,
1662 * "the Swift chip cache problems" or similar.
1664 break;
1665 default:
1666 srmmu_modtype = Swift_ok;
1667 break;
1670 BTFIXUPSET_CALL(flush_cache_all, swift_flush_cache_all, BTFIXUPCALL_NORM);
1671 BTFIXUPSET_CALL(flush_cache_mm, swift_flush_cache_mm, BTFIXUPCALL_NORM);
1672 BTFIXUPSET_CALL(flush_cache_page, swift_flush_cache_page, BTFIXUPCALL_NORM);
1673 BTFIXUPSET_CALL(flush_cache_range, swift_flush_cache_range, BTFIXUPCALL_NORM);
1676 BTFIXUPSET_CALL(flush_tlb_all, swift_flush_tlb_all, BTFIXUPCALL_NORM);
1677 BTFIXUPSET_CALL(flush_tlb_mm, swift_flush_tlb_mm, BTFIXUPCALL_NORM);
1678 BTFIXUPSET_CALL(flush_tlb_page, swift_flush_tlb_page, BTFIXUPCALL_NORM);
1679 BTFIXUPSET_CALL(flush_tlb_range, swift_flush_tlb_range, BTFIXUPCALL_NORM);
1681 BTFIXUPSET_CALL(__flush_page_to_ram, swift_flush_page_to_ram, BTFIXUPCALL_NORM);
1682 BTFIXUPSET_CALL(flush_sig_insns, swift_flush_sig_insns, BTFIXUPCALL_NORM);
1683 BTFIXUPSET_CALL(flush_page_for_dma, swift_flush_page_for_dma, BTFIXUPCALL_NORM);
1685 BTFIXUPSET_CALL(update_mmu_cache, swift_update_mmu_cache, BTFIXUPCALL_NORM);
1687 flush_page_for_dma_global = 0;
1690 * Are you now convinced that the Swift is one of the
1691 * biggest VLSI abortions of all time? Bravo Fujitsu!
1692 * Fujitsu, the !#?!%$'d up processor people. I bet if
1693 * you examined the microcode of the Swift you'd find
1694 * XXX's all over the place.
1696 poke_srmmu = poke_swift;
1699 static void turbosparc_flush_cache_all(void)
1701 flush_user_windows();
1702 turbosparc_idflash_clear();
1705 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1707 FLUSH_BEGIN(mm)
1708 flush_user_windows();
1709 turbosparc_idflash_clear();
1710 FLUSH_END
1713 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1715 FLUSH_BEGIN(vma->vm_mm)
1716 flush_user_windows();
1717 turbosparc_idflash_clear();
1718 FLUSH_END
1721 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1723 FLUSH_BEGIN(vma->vm_mm)
1724 flush_user_windows();
1725 if (vma->vm_flags & VM_EXEC)
1726 turbosparc_flush_icache();
1727 turbosparc_flush_dcache();
1728 FLUSH_END
1731 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1732 static void turbosparc_flush_page_to_ram(unsigned long page)
1734 #ifdef TURBOSPARC_WRITEBACK
1735 volatile unsigned long clear;
1737 if (srmmu_hwprobe(page))
1738 turbosparc_flush_page_cache(page);
1739 clear = srmmu_get_fstatus();
1740 #endif
1743 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1747 static void turbosparc_flush_page_for_dma(unsigned long page)
1749 turbosparc_flush_dcache();
1752 static void turbosparc_flush_tlb_all(void)
1754 srmmu_flush_whole_tlb();
1757 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1759 FLUSH_BEGIN(mm)
1760 srmmu_flush_whole_tlb();
1761 FLUSH_END
1764 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1766 FLUSH_BEGIN(vma->vm_mm)
1767 srmmu_flush_whole_tlb();
1768 FLUSH_END
1771 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1773 FLUSH_BEGIN(vma->vm_mm)
1774 srmmu_flush_whole_tlb();
1775 FLUSH_END
1779 static void __cpuinit poke_turbosparc(void)
1781 unsigned long mreg = srmmu_get_mmureg();
1782 unsigned long ccreg;
1784 /* Clear any crap from the cache or else... */
1785 turbosparc_flush_cache_all();
1786 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* Temporarily disable I & D caches */
1787 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
1788 srmmu_set_mmureg(mreg);
1790 ccreg = turbosparc_get_ccreg();
1792 #ifdef TURBOSPARC_WRITEBACK
1793 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
1794 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1795 /* Write-back D-cache, emulate VLSI
1796 * abortion number three, not number one */
1797 #else
1798 /* For now let's play safe, optimize later */
1799 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1800 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1801 ccreg &= ~(TURBOSPARC_uS2);
1802 /* Emulate VLSI abortion number three, not number one */
1803 #endif
1805 switch (ccreg & 7) {
1806 case 0: /* No SE cache */
1807 case 7: /* Test mode */
1808 break;
1809 default:
1810 ccreg |= (TURBOSPARC_SCENABLE);
1812 turbosparc_set_ccreg (ccreg);
1814 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1815 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
1816 srmmu_set_mmureg(mreg);
1819 static void __init init_turbosparc(void)
1821 srmmu_name = "Fujitsu TurboSparc";
1822 srmmu_modtype = TurboSparc;
1824 BTFIXUPSET_CALL(flush_cache_all, turbosparc_flush_cache_all, BTFIXUPCALL_NORM);
1825 BTFIXUPSET_CALL(flush_cache_mm, turbosparc_flush_cache_mm, BTFIXUPCALL_NORM);
1826 BTFIXUPSET_CALL(flush_cache_page, turbosparc_flush_cache_page, BTFIXUPCALL_NORM);
1827 BTFIXUPSET_CALL(flush_cache_range, turbosparc_flush_cache_range, BTFIXUPCALL_NORM);
1829 BTFIXUPSET_CALL(flush_tlb_all, turbosparc_flush_tlb_all, BTFIXUPCALL_NORM);
1830 BTFIXUPSET_CALL(flush_tlb_mm, turbosparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1831 BTFIXUPSET_CALL(flush_tlb_page, turbosparc_flush_tlb_page, BTFIXUPCALL_NORM);
1832 BTFIXUPSET_CALL(flush_tlb_range, turbosparc_flush_tlb_range, BTFIXUPCALL_NORM);
1834 BTFIXUPSET_CALL(__flush_page_to_ram, turbosparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1836 BTFIXUPSET_CALL(flush_sig_insns, turbosparc_flush_sig_insns, BTFIXUPCALL_NOP);
1837 BTFIXUPSET_CALL(flush_page_for_dma, turbosparc_flush_page_for_dma, BTFIXUPCALL_NORM);
1839 poke_srmmu = poke_turbosparc;
1842 static void __cpuinit poke_tsunami(void)
1844 unsigned long mreg = srmmu_get_mmureg();
1846 tsunami_flush_icache();
1847 tsunami_flush_dcache();
1848 mreg &= ~TSUNAMI_ITD;
1849 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1850 srmmu_set_mmureg(mreg);
1853 static void __init init_tsunami(void)
1856 * Tsunami's pretty sane, Sun and TI actually got it
1857 * somewhat right this time. Fujitsu should have
1858 * taken some lessons from them.
1861 srmmu_name = "TI Tsunami";
1862 srmmu_modtype = Tsunami;
1864 BTFIXUPSET_CALL(flush_cache_all, tsunami_flush_cache_all, BTFIXUPCALL_NORM);
1865 BTFIXUPSET_CALL(flush_cache_mm, tsunami_flush_cache_mm, BTFIXUPCALL_NORM);
1866 BTFIXUPSET_CALL(flush_cache_page, tsunami_flush_cache_page, BTFIXUPCALL_NORM);
1867 BTFIXUPSET_CALL(flush_cache_range, tsunami_flush_cache_range, BTFIXUPCALL_NORM);
1870 BTFIXUPSET_CALL(flush_tlb_all, tsunami_flush_tlb_all, BTFIXUPCALL_NORM);
1871 BTFIXUPSET_CALL(flush_tlb_mm, tsunami_flush_tlb_mm, BTFIXUPCALL_NORM);
1872 BTFIXUPSET_CALL(flush_tlb_page, tsunami_flush_tlb_page, BTFIXUPCALL_NORM);
1873 BTFIXUPSET_CALL(flush_tlb_range, tsunami_flush_tlb_range, BTFIXUPCALL_NORM);
1875 BTFIXUPSET_CALL(__flush_page_to_ram, tsunami_flush_page_to_ram, BTFIXUPCALL_NOP);
1876 BTFIXUPSET_CALL(flush_sig_insns, tsunami_flush_sig_insns, BTFIXUPCALL_NORM);
1877 BTFIXUPSET_CALL(flush_page_for_dma, tsunami_flush_page_for_dma, BTFIXUPCALL_NORM);
1879 poke_srmmu = poke_tsunami;
1881 tsunami_setup_blockops();
1884 static void __cpuinit poke_viking(void)
1886 unsigned long mreg = srmmu_get_mmureg();
1887 static int smp_catch;
1889 if(viking_mxcc_present) {
1890 unsigned long mxcc_control = mxcc_get_creg();
1892 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1893 mxcc_control &= ~(MXCC_CTL_RRC);
1894 mxcc_set_creg(mxcc_control);
1897 * We don't need memory parity checks.
1898 * XXX This is a mess, have to dig out later. ecd.
1899 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1902 /* We do cache ptables on MXCC. */
1903 mreg |= VIKING_TCENABLE;
1904 } else {
1905 unsigned long bpreg;
1907 mreg &= ~(VIKING_TCENABLE);
1908 if(smp_catch++) {
1909 /* Must disable mixed-cmd mode here for other cpu's. */
1910 bpreg = viking_get_bpreg();
1911 bpreg &= ~(VIKING_ACTION_MIX);
1912 viking_set_bpreg(bpreg);
1914 /* Just in case PROM does something funny. */
1915 msi_set_sync();
1919 mreg |= VIKING_SPENABLE;
1920 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1921 mreg |= VIKING_SBENABLE;
1922 mreg &= ~(VIKING_ACENABLE);
1923 srmmu_set_mmureg(mreg);
1926 static void __init init_viking(void)
1928 unsigned long mreg = srmmu_get_mmureg();
1930 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1931 if(mreg & VIKING_MMODE) {
1932 srmmu_name = "TI Viking";
1933 viking_mxcc_present = 0;
1934 msi_set_sync();
1936 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1937 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1938 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1941 * We need this to make sure old viking takes no hits
1942 * on it's cache for dma snoops to workaround the
1943 * "load from non-cacheable memory" interrupt bug.
1944 * This is only necessary because of the new way in
1945 * which we use the IOMMU.
1947 BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page, BTFIXUPCALL_NORM);
1949 flush_page_for_dma_global = 0;
1950 } else {
1951 srmmu_name = "TI Viking/MXCC";
1952 viking_mxcc_present = 1;
1954 srmmu_cache_pagetables = 1;
1956 /* MXCC vikings lack the DMA snooping bug. */
1957 BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page_for_dma, BTFIXUPCALL_NOP);
1960 BTFIXUPSET_CALL(flush_cache_all, viking_flush_cache_all, BTFIXUPCALL_NORM);
1961 BTFIXUPSET_CALL(flush_cache_mm, viking_flush_cache_mm, BTFIXUPCALL_NORM);
1962 BTFIXUPSET_CALL(flush_cache_page, viking_flush_cache_page, BTFIXUPCALL_NORM);
1963 BTFIXUPSET_CALL(flush_cache_range, viking_flush_cache_range, BTFIXUPCALL_NORM);
1965 #ifdef CONFIG_SMP
1966 if (sparc_cpu_model == sun4d) {
1967 BTFIXUPSET_CALL(flush_tlb_all, sun4dsmp_flush_tlb_all, BTFIXUPCALL_NORM);
1968 BTFIXUPSET_CALL(flush_tlb_mm, sun4dsmp_flush_tlb_mm, BTFIXUPCALL_NORM);
1969 BTFIXUPSET_CALL(flush_tlb_page, sun4dsmp_flush_tlb_page, BTFIXUPCALL_NORM);
1970 BTFIXUPSET_CALL(flush_tlb_range, sun4dsmp_flush_tlb_range, BTFIXUPCALL_NORM);
1971 } else
1972 #endif
1974 BTFIXUPSET_CALL(flush_tlb_all, viking_flush_tlb_all, BTFIXUPCALL_NORM);
1975 BTFIXUPSET_CALL(flush_tlb_mm, viking_flush_tlb_mm, BTFIXUPCALL_NORM);
1976 BTFIXUPSET_CALL(flush_tlb_page, viking_flush_tlb_page, BTFIXUPCALL_NORM);
1977 BTFIXUPSET_CALL(flush_tlb_range, viking_flush_tlb_range, BTFIXUPCALL_NORM);
1980 BTFIXUPSET_CALL(__flush_page_to_ram, viking_flush_page_to_ram, BTFIXUPCALL_NOP);
1981 BTFIXUPSET_CALL(flush_sig_insns, viking_flush_sig_insns, BTFIXUPCALL_NOP);
1983 poke_srmmu = poke_viking;
1986 #ifdef CONFIG_SPARC_LEON
1988 void __init poke_leonsparc(void)
1992 void __init init_leon(void)
1995 srmmu_name = "LEON";
1997 BTFIXUPSET_CALL(flush_cache_all, leon_flush_cache_all,
1998 BTFIXUPCALL_NORM);
1999 BTFIXUPSET_CALL(flush_cache_mm, leon_flush_cache_all,
2000 BTFIXUPCALL_NORM);
2001 BTFIXUPSET_CALL(flush_cache_page, leon_flush_pcache_all,
2002 BTFIXUPCALL_NORM);
2003 BTFIXUPSET_CALL(flush_cache_range, leon_flush_cache_all,
2004 BTFIXUPCALL_NORM);
2005 BTFIXUPSET_CALL(flush_page_for_dma, leon_flush_dcache_all,
2006 BTFIXUPCALL_NORM);
2008 BTFIXUPSET_CALL(flush_tlb_all, leon_flush_tlb_all, BTFIXUPCALL_NORM);
2009 BTFIXUPSET_CALL(flush_tlb_mm, leon_flush_tlb_all, BTFIXUPCALL_NORM);
2010 BTFIXUPSET_CALL(flush_tlb_page, leon_flush_tlb_all, BTFIXUPCALL_NORM);
2011 BTFIXUPSET_CALL(flush_tlb_range, leon_flush_tlb_all, BTFIXUPCALL_NORM);
2013 BTFIXUPSET_CALL(__flush_page_to_ram, leon_flush_cache_all,
2014 BTFIXUPCALL_NOP);
2015 BTFIXUPSET_CALL(flush_sig_insns, leon_flush_cache_all, BTFIXUPCALL_NOP);
2017 poke_srmmu = poke_leonsparc;
2019 srmmu_cache_pagetables = 0;
2021 leon_flush_during_switch = leon_flush_needed();
2023 #endif
2025 /* Probe for the srmmu chip version. */
2026 static void __init get_srmmu_type(void)
2028 unsigned long mreg, psr;
2029 unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
2031 srmmu_modtype = SRMMU_INVAL_MOD;
2032 hwbug_bitmask = 0;
2034 mreg = srmmu_get_mmureg(); psr = get_psr();
2035 mod_typ = (mreg & 0xf0000000) >> 28;
2036 mod_rev = (mreg & 0x0f000000) >> 24;
2037 psr_typ = (psr >> 28) & 0xf;
2038 psr_vers = (psr >> 24) & 0xf;
2040 /* First, check for sparc-leon. */
2041 if (sparc_cpu_model == sparc_leon) {
2042 init_leon();
2043 return;
2046 /* Second, check for HyperSparc or Cypress. */
2047 if(mod_typ == 1) {
2048 switch(mod_rev) {
2049 case 7:
2050 /* UP or MP Hypersparc */
2051 init_hypersparc();
2052 break;
2053 case 0:
2054 case 2:
2055 /* Uniprocessor Cypress */
2056 init_cypress_604();
2057 break;
2058 case 10:
2059 case 11:
2060 case 12:
2061 /* _REALLY OLD_ Cypress MP chips... */
2062 case 13:
2063 case 14:
2064 case 15:
2065 /* MP Cypress mmu/cache-controller */
2066 init_cypress_605(mod_rev);
2067 break;
2068 default:
2069 /* Some other Cypress revision, assume a 605. */
2070 init_cypress_605(mod_rev);
2071 break;
2073 return;
2077 * Now Fujitsu TurboSparc. It might happen that it is
2078 * in Swift emulation mode, so we will check later...
2080 if (psr_typ == 0 && psr_vers == 5) {
2081 init_turbosparc();
2082 return;
2085 /* Next check for Fujitsu Swift. */
2086 if(psr_typ == 0 && psr_vers == 4) {
2087 phandle cpunode;
2088 char node_str[128];
2090 /* Look if it is not a TurboSparc emulating Swift... */
2091 cpunode = prom_getchild(prom_root_node);
2092 while((cpunode = prom_getsibling(cpunode)) != 0) {
2093 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
2094 if(!strcmp(node_str, "cpu")) {
2095 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
2096 prom_getintdefault(cpunode, "psr-version", 1) == 5) {
2097 init_turbosparc();
2098 return;
2100 break;
2104 init_swift();
2105 return;
2108 /* Now the Viking family of srmmu. */
2109 if(psr_typ == 4 &&
2110 ((psr_vers == 0) ||
2111 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
2112 init_viking();
2113 return;
2116 /* Finally the Tsunami. */
2117 if(psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
2118 init_tsunami();
2119 return;
2122 /* Oh well */
2123 srmmu_is_bad();
2126 /* don't laugh, static pagetables */
2127 static void srmmu_check_pgt_cache(int low, int high)
2131 extern unsigned long spwin_mmu_patchme, fwin_mmu_patchme,
2132 tsetup_mmu_patchme, rtrap_mmu_patchme;
2134 extern unsigned long spwin_srmmu_stackchk, srmmu_fwin_stackchk,
2135 tsetup_srmmu_stackchk, srmmu_rett_stackchk;
2137 extern unsigned long srmmu_fault;
2139 #define PATCH_BRANCH(insn, dest) do { \
2140 iaddr = &(insn); \
2141 daddr = &(dest); \
2142 *iaddr = SPARC_BRANCH((unsigned long) daddr, (unsigned long) iaddr); \
2143 } while(0)
2145 static void __init patch_window_trap_handlers(void)
2147 unsigned long *iaddr, *daddr;
2149 PATCH_BRANCH(spwin_mmu_patchme, spwin_srmmu_stackchk);
2150 PATCH_BRANCH(fwin_mmu_patchme, srmmu_fwin_stackchk);
2151 PATCH_BRANCH(tsetup_mmu_patchme, tsetup_srmmu_stackchk);
2152 PATCH_BRANCH(rtrap_mmu_patchme, srmmu_rett_stackchk);
2153 PATCH_BRANCH(sparc_ttable[SP_TRAP_TFLT].inst_three, srmmu_fault);
2154 PATCH_BRANCH(sparc_ttable[SP_TRAP_DFLT].inst_three, srmmu_fault);
2155 PATCH_BRANCH(sparc_ttable[SP_TRAP_DACC].inst_three, srmmu_fault);
2158 #ifdef CONFIG_SMP
2159 /* Local cross-calls. */
2160 static void smp_flush_page_for_dma(unsigned long page)
2162 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_for_dma), page);
2163 local_flush_page_for_dma(page);
2166 #endif
2168 static pte_t srmmu_pgoff_to_pte(unsigned long pgoff)
2170 return __pte((pgoff << SRMMU_PTE_FILE_SHIFT) | SRMMU_FILE);
2173 static unsigned long srmmu_pte_to_pgoff(pte_t pte)
2175 return pte_val(pte) >> SRMMU_PTE_FILE_SHIFT;
2178 static pgprot_t srmmu_pgprot_noncached(pgprot_t prot)
2180 prot &= ~__pgprot(SRMMU_CACHE);
2182 return prot;
2185 /* Load up routines and constants for sun4m and sun4d mmu */
2186 void __init ld_mmu_srmmu(void)
2188 extern void ld_mmu_iommu(void);
2189 extern void ld_mmu_iounit(void);
2190 extern void ___xchg32_sun4md(void);
2192 BTFIXUPSET_SIMM13(pgdir_shift, SRMMU_PGDIR_SHIFT);
2193 BTFIXUPSET_SETHI(pgdir_size, SRMMU_PGDIR_SIZE);
2194 BTFIXUPSET_SETHI(pgdir_mask, SRMMU_PGDIR_MASK);
2196 BTFIXUPSET_SIMM13(ptrs_per_pmd, SRMMU_PTRS_PER_PMD);
2197 BTFIXUPSET_SIMM13(ptrs_per_pgd, SRMMU_PTRS_PER_PGD);
2199 BTFIXUPSET_INT(page_none, pgprot_val(SRMMU_PAGE_NONE));
2200 PAGE_SHARED = pgprot_val(SRMMU_PAGE_SHARED);
2201 BTFIXUPSET_INT(page_copy, pgprot_val(SRMMU_PAGE_COPY));
2202 BTFIXUPSET_INT(page_readonly, pgprot_val(SRMMU_PAGE_RDONLY));
2203 BTFIXUPSET_INT(page_kernel, pgprot_val(SRMMU_PAGE_KERNEL));
2204 page_kernel = pgprot_val(SRMMU_PAGE_KERNEL);
2206 /* Functions */
2207 BTFIXUPSET_CALL(pgprot_noncached, srmmu_pgprot_noncached, BTFIXUPCALL_NORM);
2208 #ifndef CONFIG_SMP
2209 BTFIXUPSET_CALL(___xchg32, ___xchg32_sun4md, BTFIXUPCALL_SWAPG1G2);
2210 #endif
2211 BTFIXUPSET_CALL(do_check_pgt_cache, srmmu_check_pgt_cache, BTFIXUPCALL_NOP);
2213 BTFIXUPSET_CALL(set_pte, srmmu_set_pte, BTFIXUPCALL_SWAPO0O1);
2214 BTFIXUPSET_CALL(switch_mm, srmmu_switch_mm, BTFIXUPCALL_NORM);
2216 BTFIXUPSET_CALL(pte_pfn, srmmu_pte_pfn, BTFIXUPCALL_NORM);
2217 BTFIXUPSET_CALL(pmd_page, srmmu_pmd_page, BTFIXUPCALL_NORM);
2218 BTFIXUPSET_CALL(pgd_page_vaddr, srmmu_pgd_page, BTFIXUPCALL_NORM);
2220 BTFIXUPSET_CALL(pte_present, srmmu_pte_present, BTFIXUPCALL_NORM);
2221 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_SWAPO0G0);
2223 BTFIXUPSET_CALL(pmd_bad, srmmu_pmd_bad, BTFIXUPCALL_NORM);
2224 BTFIXUPSET_CALL(pmd_present, srmmu_pmd_present, BTFIXUPCALL_NORM);
2225 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_SWAPO0G0);
2227 BTFIXUPSET_CALL(pgd_none, srmmu_pgd_none, BTFIXUPCALL_NORM);
2228 BTFIXUPSET_CALL(pgd_bad, srmmu_pgd_bad, BTFIXUPCALL_NORM);
2229 BTFIXUPSET_CALL(pgd_present, srmmu_pgd_present, BTFIXUPCALL_NORM);
2230 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_SWAPO0G0);
2232 BTFIXUPSET_CALL(mk_pte, srmmu_mk_pte, BTFIXUPCALL_NORM);
2233 BTFIXUPSET_CALL(mk_pte_phys, srmmu_mk_pte_phys, BTFIXUPCALL_NORM);
2234 BTFIXUPSET_CALL(mk_pte_io, srmmu_mk_pte_io, BTFIXUPCALL_NORM);
2235 BTFIXUPSET_CALL(pgd_set, srmmu_pgd_set, BTFIXUPCALL_NORM);
2236 BTFIXUPSET_CALL(pmd_set, srmmu_pmd_set, BTFIXUPCALL_NORM);
2237 BTFIXUPSET_CALL(pmd_populate, srmmu_pmd_populate, BTFIXUPCALL_NORM);
2239 BTFIXUPSET_INT(pte_modify_mask, SRMMU_CHG_MASK);
2240 BTFIXUPSET_CALL(pmd_offset, srmmu_pmd_offset, BTFIXUPCALL_NORM);
2241 BTFIXUPSET_CALL(pte_offset_kernel, srmmu_pte_offset, BTFIXUPCALL_NORM);
2243 BTFIXUPSET_CALL(free_pte_fast, srmmu_free_pte_fast, BTFIXUPCALL_NORM);
2244 BTFIXUPSET_CALL(pte_free, srmmu_pte_free, BTFIXUPCALL_NORM);
2245 BTFIXUPSET_CALL(pte_alloc_one_kernel, srmmu_pte_alloc_one_kernel, BTFIXUPCALL_NORM);
2246 BTFIXUPSET_CALL(pte_alloc_one, srmmu_pte_alloc_one, BTFIXUPCALL_NORM);
2247 BTFIXUPSET_CALL(free_pmd_fast, srmmu_pmd_free, BTFIXUPCALL_NORM);
2248 BTFIXUPSET_CALL(pmd_alloc_one, srmmu_pmd_alloc_one, BTFIXUPCALL_NORM);
2249 BTFIXUPSET_CALL(free_pgd_fast, srmmu_free_pgd_fast, BTFIXUPCALL_NORM);
2250 BTFIXUPSET_CALL(get_pgd_fast, srmmu_get_pgd_fast, BTFIXUPCALL_NORM);
2252 BTFIXUPSET_HALF(pte_writei, SRMMU_WRITE);
2253 BTFIXUPSET_HALF(pte_dirtyi, SRMMU_DIRTY);
2254 BTFIXUPSET_HALF(pte_youngi, SRMMU_REF);
2255 BTFIXUPSET_HALF(pte_filei, SRMMU_FILE);
2256 BTFIXUPSET_HALF(pte_wrprotecti, SRMMU_WRITE);
2257 BTFIXUPSET_HALF(pte_mkcleani, SRMMU_DIRTY);
2258 BTFIXUPSET_HALF(pte_mkoldi, SRMMU_REF);
2259 BTFIXUPSET_CALL(pte_mkwrite, srmmu_pte_mkwrite, BTFIXUPCALL_ORINT(SRMMU_WRITE));
2260 BTFIXUPSET_CALL(pte_mkdirty, srmmu_pte_mkdirty, BTFIXUPCALL_ORINT(SRMMU_DIRTY));
2261 BTFIXUPSET_CALL(pte_mkyoung, srmmu_pte_mkyoung, BTFIXUPCALL_ORINT(SRMMU_REF));
2262 BTFIXUPSET_CALL(update_mmu_cache, srmmu_update_mmu_cache, BTFIXUPCALL_NOP);
2263 BTFIXUPSET_CALL(destroy_context, srmmu_destroy_context, BTFIXUPCALL_NORM);
2265 BTFIXUPSET_CALL(sparc_mapiorange, srmmu_mapiorange, BTFIXUPCALL_NORM);
2266 BTFIXUPSET_CALL(sparc_unmapiorange, srmmu_unmapiorange, BTFIXUPCALL_NORM);
2268 BTFIXUPSET_CALL(__swp_type, srmmu_swp_type, BTFIXUPCALL_NORM);
2269 BTFIXUPSET_CALL(__swp_offset, srmmu_swp_offset, BTFIXUPCALL_NORM);
2270 BTFIXUPSET_CALL(__swp_entry, srmmu_swp_entry, BTFIXUPCALL_NORM);
2272 BTFIXUPSET_CALL(mmu_info, srmmu_mmu_info, BTFIXUPCALL_NORM);
2274 BTFIXUPSET_CALL(alloc_thread_info_node, srmmu_alloc_thread_info_node, BTFIXUPCALL_NORM);
2275 BTFIXUPSET_CALL(free_thread_info, srmmu_free_thread_info, BTFIXUPCALL_NORM);
2277 BTFIXUPSET_CALL(pte_to_pgoff, srmmu_pte_to_pgoff, BTFIXUPCALL_NORM);
2278 BTFIXUPSET_CALL(pgoff_to_pte, srmmu_pgoff_to_pte, BTFIXUPCALL_NORM);
2280 get_srmmu_type();
2281 patch_window_trap_handlers();
2283 #ifdef CONFIG_SMP
2284 /* El switcheroo... */
2286 BTFIXUPCOPY_CALL(local_flush_cache_all, flush_cache_all);
2287 BTFIXUPCOPY_CALL(local_flush_cache_mm, flush_cache_mm);
2288 BTFIXUPCOPY_CALL(local_flush_cache_range, flush_cache_range);
2289 BTFIXUPCOPY_CALL(local_flush_cache_page, flush_cache_page);
2290 BTFIXUPCOPY_CALL(local_flush_tlb_all, flush_tlb_all);
2291 BTFIXUPCOPY_CALL(local_flush_tlb_mm, flush_tlb_mm);
2292 BTFIXUPCOPY_CALL(local_flush_tlb_range, flush_tlb_range);
2293 BTFIXUPCOPY_CALL(local_flush_tlb_page, flush_tlb_page);
2294 BTFIXUPCOPY_CALL(local_flush_page_to_ram, __flush_page_to_ram);
2295 BTFIXUPCOPY_CALL(local_flush_sig_insns, flush_sig_insns);
2296 BTFIXUPCOPY_CALL(local_flush_page_for_dma, flush_page_for_dma);
2298 BTFIXUPSET_CALL(flush_cache_all, smp_flush_cache_all, BTFIXUPCALL_NORM);
2299 BTFIXUPSET_CALL(flush_cache_mm, smp_flush_cache_mm, BTFIXUPCALL_NORM);
2300 BTFIXUPSET_CALL(flush_cache_range, smp_flush_cache_range, BTFIXUPCALL_NORM);
2301 BTFIXUPSET_CALL(flush_cache_page, smp_flush_cache_page, BTFIXUPCALL_NORM);
2302 if (sparc_cpu_model != sun4d &&
2303 sparc_cpu_model != sparc_leon) {
2304 BTFIXUPSET_CALL(flush_tlb_all, smp_flush_tlb_all, BTFIXUPCALL_NORM);
2305 BTFIXUPSET_CALL(flush_tlb_mm, smp_flush_tlb_mm, BTFIXUPCALL_NORM);
2306 BTFIXUPSET_CALL(flush_tlb_range, smp_flush_tlb_range, BTFIXUPCALL_NORM);
2307 BTFIXUPSET_CALL(flush_tlb_page, smp_flush_tlb_page, BTFIXUPCALL_NORM);
2309 BTFIXUPSET_CALL(__flush_page_to_ram, smp_flush_page_to_ram, BTFIXUPCALL_NORM);
2310 BTFIXUPSET_CALL(flush_sig_insns, smp_flush_sig_insns, BTFIXUPCALL_NORM);
2311 BTFIXUPSET_CALL(flush_page_for_dma, smp_flush_page_for_dma, BTFIXUPCALL_NORM);
2313 if (poke_srmmu == poke_viking) {
2314 /* Avoid unnecessary cross calls. */
2315 BTFIXUPCOPY_CALL(flush_cache_all, local_flush_cache_all);
2316 BTFIXUPCOPY_CALL(flush_cache_mm, local_flush_cache_mm);
2317 BTFIXUPCOPY_CALL(flush_cache_range, local_flush_cache_range);
2318 BTFIXUPCOPY_CALL(flush_cache_page, local_flush_cache_page);
2319 BTFIXUPCOPY_CALL(__flush_page_to_ram, local_flush_page_to_ram);
2320 BTFIXUPCOPY_CALL(flush_sig_insns, local_flush_sig_insns);
2321 BTFIXUPCOPY_CALL(flush_page_for_dma, local_flush_page_for_dma);
2323 #endif
2325 if (sparc_cpu_model == sun4d)
2326 ld_mmu_iounit();
2327 else
2328 ld_mmu_iommu();
2329 #ifdef CONFIG_SMP
2330 if (sparc_cpu_model == sun4d)
2331 sun4d_init_smp();
2332 else if (sparc_cpu_model == sparc_leon)
2333 leon_init_smp();
2334 else
2335 sun4m_init_smp();
2336 #endif