2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6 #include <linux/magic.h> /* STACK_END_MAGIC */
7 #include <linux/sched.h> /* test_thread_flag(), ... */
8 #include <linux/kdebug.h> /* oops_begin/end, ... */
9 #include <linux/module.h> /* search_exception_table */
10 #include <linux/bootmem.h> /* max_low_pfn */
11 #include <linux/kprobes.h> /* __kprobes, ... */
12 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
13 #include <linux/perf_event.h> /* perf_sw_event */
14 #include <linux/hugetlb.h> /* hstate_index_to_shift */
15 #include <linux/prefetch.h> /* prefetchw */
17 #include <asm/traps.h> /* dotraplinkage, ... */
18 #include <asm/pgalloc.h> /* pgd_*(), ... */
19 #include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
20 #include <asm/vsyscall.h>
23 * Page fault error code bits:
25 * bit 0 == 0: no page found 1: protection fault
26 * bit 1 == 0: read access 1: write access
27 * bit 2 == 0: kernel-mode access 1: user-mode access
28 * bit 3 == 1: use of reserved bit detected
29 * bit 4 == 1: fault was an instruction fetch
31 enum x86_pf_error_code
{
41 * Returns 0 if mmiotrace is disabled, or if the fault is not
42 * handled by mmiotrace:
44 static inline int __kprobes
45 kmmio_fault(struct pt_regs
*regs
, unsigned long addr
)
47 if (unlikely(is_kmmio_active()))
48 if (kmmio_handler(regs
, addr
) == 1)
53 static inline int __kprobes
notify_page_fault(struct pt_regs
*regs
)
57 /* kprobe_running() needs smp_processor_id() */
58 if (kprobes_built_in() && !user_mode_vm(regs
)) {
60 if (kprobe_running() && kprobe_fault_handler(regs
, 14))
73 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
74 * Check that here and ignore it.
78 * Sometimes the CPU reports invalid exceptions on prefetch.
79 * Check that here and ignore it.
81 * Opcode checker based on code by Richard Brunner.
84 check_prefetch_opcode(struct pt_regs
*regs
, unsigned char *instr
,
85 unsigned char opcode
, int *prefetch
)
87 unsigned char instr_hi
= opcode
& 0xf0;
88 unsigned char instr_lo
= opcode
& 0x0f;
94 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
95 * In X86_64 long mode, the CPU will signal invalid
96 * opcode if some of these prefixes are present so
97 * X86_64 will never get here anyway
99 return ((instr_lo
& 7) == 0x6);
103 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
104 * Need to figure out under what instruction mode the
105 * instruction was issued. Could check the LDT for lm,
106 * but for now it's good enough to assume that long
107 * mode only uses well known segments or kernel.
109 return (!user_mode(regs
) || user_64bit_mode(regs
));
112 /* 0x64 thru 0x67 are valid prefixes in all modes. */
113 return (instr_lo
& 0xC) == 0x4;
115 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
116 return !instr_lo
|| (instr_lo
>>1) == 1;
118 /* Prefetch instruction is 0x0F0D or 0x0F18 */
119 if (probe_kernel_address(instr
, opcode
))
122 *prefetch
= (instr_lo
== 0xF) &&
123 (opcode
== 0x0D || opcode
== 0x18);
131 is_prefetch(struct pt_regs
*regs
, unsigned long error_code
, unsigned long addr
)
133 unsigned char *max_instr
;
134 unsigned char *instr
;
138 * If it was a exec (instruction fetch) fault on NX page, then
139 * do not ignore the fault:
141 if (error_code
& PF_INSTR
)
144 instr
= (void *)convert_ip_to_linear(current
, regs
);
145 max_instr
= instr
+ 15;
147 if (user_mode(regs
) && instr
>= (unsigned char *)TASK_SIZE
)
150 while (instr
< max_instr
) {
151 unsigned char opcode
;
153 if (probe_kernel_address(instr
, opcode
))
158 if (!check_prefetch_opcode(regs
, instr
, opcode
, &prefetch
))
165 force_sig_info_fault(int si_signo
, int si_code
, unsigned long address
,
166 struct task_struct
*tsk
, int fault
)
171 info
.si_signo
= si_signo
;
173 info
.si_code
= si_code
;
174 info
.si_addr
= (void __user
*)address
;
175 if (fault
& VM_FAULT_HWPOISON_LARGE
)
176 lsb
= hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault
));
177 if (fault
& VM_FAULT_HWPOISON
)
179 info
.si_addr_lsb
= lsb
;
181 force_sig_info(si_signo
, &info
, tsk
);
184 DEFINE_SPINLOCK(pgd_lock
);
188 static inline pmd_t
*vmalloc_sync_one(pgd_t
*pgd
, unsigned long address
)
190 unsigned index
= pgd_index(address
);
196 pgd_k
= init_mm
.pgd
+ index
;
198 if (!pgd_present(*pgd_k
))
202 * set_pgd(pgd, *pgd_k); here would be useless on PAE
203 * and redundant with the set_pmd() on non-PAE. As would
206 pud
= pud_offset(pgd
, address
);
207 pud_k
= pud_offset(pgd_k
, address
);
208 if (!pud_present(*pud_k
))
211 pmd
= pmd_offset(pud
, address
);
212 pmd_k
= pmd_offset(pud_k
, address
);
213 if (!pmd_present(*pmd_k
))
216 if (!pmd_present(*pmd
))
217 set_pmd(pmd
, *pmd_k
);
219 BUG_ON(pmd_page(*pmd
) != pmd_page(*pmd_k
));
224 void vmalloc_sync_all(void)
226 unsigned long address
;
228 if (SHARED_KERNEL_PMD
)
231 for (address
= VMALLOC_START
& PMD_MASK
;
232 address
>= TASK_SIZE
&& address
< FIXADDR_TOP
;
233 address
+= PMD_SIZE
) {
236 spin_lock(&pgd_lock
);
237 list_for_each_entry(page
, &pgd_list
, lru
) {
238 spinlock_t
*pgt_lock
;
241 /* the pgt_lock only for Xen */
242 pgt_lock
= &pgd_page_get_mm(page
)->page_table_lock
;
245 ret
= vmalloc_sync_one(page_address(page
), address
);
246 spin_unlock(pgt_lock
);
251 spin_unlock(&pgd_lock
);
258 * Handle a fault on the vmalloc or module mapping area
260 static noinline __kprobes
int vmalloc_fault(unsigned long address
)
262 unsigned long pgd_paddr
;
266 /* Make sure we are in vmalloc area: */
267 if (!(address
>= VMALLOC_START
&& address
< VMALLOC_END
))
270 WARN_ON_ONCE(in_nmi());
273 * Synchronize this task's top level page-table
274 * with the 'reference' page table.
276 * Do _not_ use "current" here. We might be inside
277 * an interrupt in the middle of a task switch..
279 pgd_paddr
= read_cr3();
280 pmd_k
= vmalloc_sync_one(__va(pgd_paddr
), address
);
284 pte_k
= pte_offset_kernel(pmd_k
, address
);
285 if (!pte_present(*pte_k
))
292 * Did it hit the DOS screen memory VA from vm86 mode?
295 check_v8086_mode(struct pt_regs
*regs
, unsigned long address
,
296 struct task_struct
*tsk
)
300 if (!v8086_mode(regs
))
303 bit
= (address
- 0xA0000) >> PAGE_SHIFT
;
305 tsk
->thread
.screen_bitmap
|= 1 << bit
;
308 static bool low_pfn(unsigned long pfn
)
310 return pfn
< max_low_pfn
;
313 static void dump_pagetable(unsigned long address
)
315 pgd_t
*base
= __va(read_cr3());
316 pgd_t
*pgd
= &base
[pgd_index(address
)];
320 #ifdef CONFIG_X86_PAE
321 printk("*pdpt = %016Lx ", pgd_val(*pgd
));
322 if (!low_pfn(pgd_val(*pgd
) >> PAGE_SHIFT
) || !pgd_present(*pgd
))
325 pmd
= pmd_offset(pud_offset(pgd
, address
), address
);
326 printk(KERN_CONT
"*pde = %0*Lx ", sizeof(*pmd
) * 2, (u64
)pmd_val(*pmd
));
329 * We must not directly access the pte in the highpte
330 * case if the page table is located in highmem.
331 * And let's rather not kmap-atomic the pte, just in case
332 * it's allocated already:
334 if (!low_pfn(pmd_pfn(*pmd
)) || !pmd_present(*pmd
) || pmd_large(*pmd
))
337 pte
= pte_offset_kernel(pmd
, address
);
338 printk("*pte = %0*Lx ", sizeof(*pte
) * 2, (u64
)pte_val(*pte
));
343 #else /* CONFIG_X86_64: */
345 void vmalloc_sync_all(void)
347 sync_global_pgds(VMALLOC_START
& PGDIR_MASK
, VMALLOC_END
);
353 * Handle a fault on the vmalloc area
355 * This assumes no large pages in there.
357 static noinline __kprobes
int vmalloc_fault(unsigned long address
)
359 pgd_t
*pgd
, *pgd_ref
;
360 pud_t
*pud
, *pud_ref
;
361 pmd_t
*pmd
, *pmd_ref
;
362 pte_t
*pte
, *pte_ref
;
364 /* Make sure we are in vmalloc area: */
365 if (!(address
>= VMALLOC_START
&& address
< VMALLOC_END
))
368 WARN_ON_ONCE(in_nmi());
371 * Copy kernel mappings over when needed. This can also
372 * happen within a race in page table update. In the later
375 pgd
= pgd_offset(current
->active_mm
, address
);
376 pgd_ref
= pgd_offset_k(address
);
377 if (pgd_none(*pgd_ref
))
381 set_pgd(pgd
, *pgd_ref
);
383 BUG_ON(pgd_page_vaddr(*pgd
) != pgd_page_vaddr(*pgd_ref
));
386 * Below here mismatches are bugs because these lower tables
390 pud
= pud_offset(pgd
, address
);
391 pud_ref
= pud_offset(pgd_ref
, address
);
392 if (pud_none(*pud_ref
))
395 if (pud_none(*pud
) || pud_page_vaddr(*pud
) != pud_page_vaddr(*pud_ref
))
398 pmd
= pmd_offset(pud
, address
);
399 pmd_ref
= pmd_offset(pud_ref
, address
);
400 if (pmd_none(*pmd_ref
))
403 if (pmd_none(*pmd
) || pmd_page(*pmd
) != pmd_page(*pmd_ref
))
406 pte_ref
= pte_offset_kernel(pmd_ref
, address
);
407 if (!pte_present(*pte_ref
))
410 pte
= pte_offset_kernel(pmd
, address
);
413 * Don't use pte_page here, because the mappings can point
414 * outside mem_map, and the NUMA hash lookup cannot handle
417 if (!pte_present(*pte
) || pte_pfn(*pte
) != pte_pfn(*pte_ref
))
423 static const char errata93_warning
[] =
425 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
426 "******* Working around it, but it may cause SEGVs or burn power.\n"
427 "******* Please consider a BIOS update.\n"
428 "******* Disabling USB legacy in the BIOS may also help.\n";
431 * No vm86 mode in 64-bit mode:
434 check_v8086_mode(struct pt_regs
*regs
, unsigned long address
,
435 struct task_struct
*tsk
)
439 static int bad_address(void *p
)
443 return probe_kernel_address((unsigned long *)p
, dummy
);
446 static void dump_pagetable(unsigned long address
)
448 pgd_t
*base
= __va(read_cr3() & PHYSICAL_PAGE_MASK
);
449 pgd_t
*pgd
= base
+ pgd_index(address
);
454 if (bad_address(pgd
))
457 printk("PGD %lx ", pgd_val(*pgd
));
459 if (!pgd_present(*pgd
))
462 pud
= pud_offset(pgd
, address
);
463 if (bad_address(pud
))
466 printk("PUD %lx ", pud_val(*pud
));
467 if (!pud_present(*pud
) || pud_large(*pud
))
470 pmd
= pmd_offset(pud
, address
);
471 if (bad_address(pmd
))
474 printk("PMD %lx ", pmd_val(*pmd
));
475 if (!pmd_present(*pmd
) || pmd_large(*pmd
))
478 pte
= pte_offset_kernel(pmd
, address
);
479 if (bad_address(pte
))
482 printk("PTE %lx", pte_val(*pte
));
490 #endif /* CONFIG_X86_64 */
493 * Workaround for K8 erratum #93 & buggy BIOS.
495 * BIOS SMM functions are required to use a specific workaround
496 * to avoid corruption of the 64bit RIP register on C stepping K8.
498 * A lot of BIOS that didn't get tested properly miss this.
500 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
501 * Try to work around it here.
503 * Note we only handle faults in kernel here.
504 * Does nothing on 32-bit.
506 static int is_errata93(struct pt_regs
*regs
, unsigned long address
)
509 if (address
!= regs
->ip
)
512 if ((address
>> 32) != 0)
515 address
|= 0xffffffffUL
<< 32;
516 if ((address
>= (u64
)_stext
&& address
<= (u64
)_etext
) ||
517 (address
>= MODULES_VADDR
&& address
<= MODULES_END
)) {
518 printk_once(errata93_warning
);
527 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
528 * to illegal addresses >4GB.
530 * We catch this in the page fault handler because these addresses
531 * are not reachable. Just detect this case and return. Any code
532 * segment in LDT is compatibility mode.
534 static int is_errata100(struct pt_regs
*regs
, unsigned long address
)
537 if ((regs
->cs
== __USER32_CS
|| (regs
->cs
& (1<<2))) && (address
>> 32))
543 static int is_f00f_bug(struct pt_regs
*regs
, unsigned long address
)
545 #ifdef CONFIG_X86_F00F_BUG
549 * Pentium F0 0F C7 C8 bug workaround:
551 if (boot_cpu_data
.f00f_bug
) {
552 nr
= (address
- idt_descr
.address
) >> 3;
555 do_invalid_op(regs
, 0);
563 static const char nx_warning
[] = KERN_CRIT
564 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
567 show_fault_oops(struct pt_regs
*regs
, unsigned long error_code
,
568 unsigned long address
)
570 if (!oops_may_print())
573 if (error_code
& PF_INSTR
) {
576 pte_t
*pte
= lookup_address(address
, &level
);
578 if (pte
&& pte_present(*pte
) && !pte_exec(*pte
))
579 printk(nx_warning
, current_uid());
582 printk(KERN_ALERT
"BUG: unable to handle kernel ");
583 if (address
< PAGE_SIZE
)
584 printk(KERN_CONT
"NULL pointer dereference");
586 printk(KERN_CONT
"paging request");
588 printk(KERN_CONT
" at %p\n", (void *) address
);
589 printk(KERN_ALERT
"IP:");
590 printk_address(regs
->ip
, 1);
592 dump_pagetable(address
);
596 pgtable_bad(struct pt_regs
*regs
, unsigned long error_code
,
597 unsigned long address
)
599 struct task_struct
*tsk
;
603 flags
= oops_begin();
607 printk(KERN_ALERT
"%s: Corrupted page table at address %lx\n",
609 dump_pagetable(address
);
611 tsk
->thread
.cr2
= address
;
612 tsk
->thread
.trap_no
= 14;
613 tsk
->thread
.error_code
= error_code
;
615 if (__die("Bad pagetable", regs
, error_code
))
618 oops_end(flags
, regs
, sig
);
622 no_context(struct pt_regs
*regs
, unsigned long error_code
,
623 unsigned long address
)
625 struct task_struct
*tsk
= current
;
626 unsigned long *stackend
;
630 /* Are we prepared to handle this kernel fault? */
631 if (fixup_exception(regs
))
637 * Valid to do another page fault here, because if this fault
638 * had been triggered by is_prefetch fixup_exception would have
643 * Hall of shame of CPU/BIOS bugs.
645 if (is_prefetch(regs
, error_code
, address
))
648 if (is_errata93(regs
, address
))
652 * Oops. The kernel tried to access some bad page. We'll have to
653 * terminate things with extreme prejudice:
655 flags
= oops_begin();
657 show_fault_oops(regs
, error_code
, address
);
659 stackend
= end_of_stack(tsk
);
660 if (tsk
!= &init_task
&& *stackend
!= STACK_END_MAGIC
)
661 printk(KERN_ALERT
"Thread overran stack, or stack corrupted\n");
663 tsk
->thread
.cr2
= address
;
664 tsk
->thread
.trap_no
= 14;
665 tsk
->thread
.error_code
= error_code
;
668 if (__die("Oops", regs
, error_code
))
671 /* Executive summary in case the body of the oops scrolled away */
672 printk(KERN_EMERG
"CR2: %016lx\n", address
);
674 oops_end(flags
, regs
, sig
);
678 * Print out info about fatal segfaults, if the show_unhandled_signals
682 show_signal_msg(struct pt_regs
*regs
, unsigned long error_code
,
683 unsigned long address
, struct task_struct
*tsk
)
685 if (!unhandled_signal(tsk
, SIGSEGV
))
688 if (!printk_ratelimit())
691 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
692 task_pid_nr(tsk
) > 1 ? KERN_INFO
: KERN_EMERG
,
693 tsk
->comm
, task_pid_nr(tsk
), address
,
694 (void *)regs
->ip
, (void *)regs
->sp
, error_code
);
696 print_vma_addr(KERN_CONT
" in ", regs
->ip
);
698 printk(KERN_CONT
"\n");
702 __bad_area_nosemaphore(struct pt_regs
*regs
, unsigned long error_code
,
703 unsigned long address
, int si_code
)
705 struct task_struct
*tsk
= current
;
707 /* User mode accesses just cause a SIGSEGV */
708 if (error_code
& PF_USER
) {
710 * It's possible to have interrupts off here:
715 * Valid to do another page fault here because this one came
718 if (is_prefetch(regs
, error_code
, address
))
721 if (is_errata100(regs
, address
))
726 * Instruction fetch faults in the vsyscall page might need
729 if (unlikely((error_code
& PF_INSTR
) &&
730 ((address
& ~0xfff) == VSYSCALL_START
))) {
731 if (emulate_vsyscall(regs
, address
))
736 if (unlikely(show_unhandled_signals
))
737 show_signal_msg(regs
, error_code
, address
, tsk
);
739 /* Kernel addresses are always protection faults: */
740 tsk
->thread
.cr2
= address
;
741 tsk
->thread
.error_code
= error_code
| (address
>= TASK_SIZE
);
742 tsk
->thread
.trap_no
= 14;
744 force_sig_info_fault(SIGSEGV
, si_code
, address
, tsk
, 0);
749 if (is_f00f_bug(regs
, address
))
752 no_context(regs
, error_code
, address
);
756 bad_area_nosemaphore(struct pt_regs
*regs
, unsigned long error_code
,
757 unsigned long address
)
759 __bad_area_nosemaphore(regs
, error_code
, address
, SEGV_MAPERR
);
763 __bad_area(struct pt_regs
*regs
, unsigned long error_code
,
764 unsigned long address
, int si_code
)
766 struct mm_struct
*mm
= current
->mm
;
769 * Something tried to access memory that isn't in our memory map..
770 * Fix it, but check if it's kernel or user first..
772 up_read(&mm
->mmap_sem
);
774 __bad_area_nosemaphore(regs
, error_code
, address
, si_code
);
778 bad_area(struct pt_regs
*regs
, unsigned long error_code
, unsigned long address
)
780 __bad_area(regs
, error_code
, address
, SEGV_MAPERR
);
784 bad_area_access_error(struct pt_regs
*regs
, unsigned long error_code
,
785 unsigned long address
)
787 __bad_area(regs
, error_code
, address
, SEGV_ACCERR
);
790 /* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
792 out_of_memory(struct pt_regs
*regs
, unsigned long error_code
,
793 unsigned long address
)
796 * We ran out of memory, call the OOM killer, and return the userspace
797 * (which will retry the fault, or kill us if we got oom-killed):
799 up_read(¤t
->mm
->mmap_sem
);
801 pagefault_out_of_memory();
805 do_sigbus(struct pt_regs
*regs
, unsigned long error_code
, unsigned long address
,
808 struct task_struct
*tsk
= current
;
809 struct mm_struct
*mm
= tsk
->mm
;
810 int code
= BUS_ADRERR
;
812 up_read(&mm
->mmap_sem
);
814 /* Kernel mode? Handle exceptions or die: */
815 if (!(error_code
& PF_USER
)) {
816 no_context(regs
, error_code
, address
);
820 /* User-space => ok to do another page fault: */
821 if (is_prefetch(regs
, error_code
, address
))
824 tsk
->thread
.cr2
= address
;
825 tsk
->thread
.error_code
= error_code
;
826 tsk
->thread
.trap_no
= 14;
828 #ifdef CONFIG_MEMORY_FAILURE
829 if (fault
& (VM_FAULT_HWPOISON
|VM_FAULT_HWPOISON_LARGE
)) {
831 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
832 tsk
->comm
, tsk
->pid
, address
);
833 code
= BUS_MCEERR_AR
;
836 force_sig_info_fault(SIGBUS
, code
, address
, tsk
, fault
);
840 mm_fault_error(struct pt_regs
*regs
, unsigned long error_code
,
841 unsigned long address
, unsigned int fault
)
844 * Pagefault was interrupted by SIGKILL. We have no reason to
845 * continue pagefault.
847 if (fatal_signal_pending(current
)) {
848 if (!(fault
& VM_FAULT_RETRY
))
849 up_read(¤t
->mm
->mmap_sem
);
850 if (!(error_code
& PF_USER
))
851 no_context(regs
, error_code
, address
);
854 if (!(fault
& VM_FAULT_ERROR
))
857 if (fault
& VM_FAULT_OOM
) {
858 /* Kernel mode? Handle exceptions or die: */
859 if (!(error_code
& PF_USER
)) {
860 up_read(¤t
->mm
->mmap_sem
);
861 no_context(regs
, error_code
, address
);
865 out_of_memory(regs
, error_code
, address
);
867 if (fault
& (VM_FAULT_SIGBUS
|VM_FAULT_HWPOISON
|
868 VM_FAULT_HWPOISON_LARGE
))
869 do_sigbus(regs
, error_code
, address
, fault
);
876 static int spurious_fault_check(unsigned long error_code
, pte_t
*pte
)
878 if ((error_code
& PF_WRITE
) && !pte_write(*pte
))
881 if ((error_code
& PF_INSTR
) && !pte_exec(*pte
))
888 * Handle a spurious fault caused by a stale TLB entry.
890 * This allows us to lazily refresh the TLB when increasing the
891 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
892 * eagerly is very expensive since that implies doing a full
893 * cross-processor TLB flush, even if no stale TLB entries exist
894 * on other processors.
896 * There are no security implications to leaving a stale TLB when
897 * increasing the permissions on a page.
899 static noinline __kprobes
int
900 spurious_fault(unsigned long error_code
, unsigned long address
)
908 /* Reserved-bit violation or user access to kernel space? */
909 if (error_code
& (PF_USER
| PF_RSVD
))
912 pgd
= init_mm
.pgd
+ pgd_index(address
);
913 if (!pgd_present(*pgd
))
916 pud
= pud_offset(pgd
, address
);
917 if (!pud_present(*pud
))
921 return spurious_fault_check(error_code
, (pte_t
*) pud
);
923 pmd
= pmd_offset(pud
, address
);
924 if (!pmd_present(*pmd
))
928 return spurious_fault_check(error_code
, (pte_t
*) pmd
);
931 * Note: don't use pte_present() here, since it returns true
932 * if the _PAGE_PROTNONE bit is set. However, this aliases the
933 * _PAGE_GLOBAL bit, which for kernel pages give false positives
934 * when CONFIG_DEBUG_PAGEALLOC is used.
936 pte
= pte_offset_kernel(pmd
, address
);
937 if (!(pte_flags(*pte
) & _PAGE_PRESENT
))
940 ret
= spurious_fault_check(error_code
, pte
);
945 * Make sure we have permissions in PMD.
946 * If not, then there's a bug in the page tables:
948 ret
= spurious_fault_check(error_code
, (pte_t
*) pmd
);
949 WARN_ONCE(!ret
, "PMD has incorrect permission bits\n");
954 int show_unhandled_signals
= 1;
957 access_error(unsigned long error_code
, struct vm_area_struct
*vma
)
959 if (error_code
& PF_WRITE
) {
960 /* write, present and write, not present: */
961 if (unlikely(!(vma
->vm_flags
& VM_WRITE
)))
967 if (unlikely(error_code
& PF_PROT
))
970 /* read, not present: */
971 if (unlikely(!(vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
))))
977 static int fault_in_kernel_space(unsigned long address
)
979 return address
>= TASK_SIZE_MAX
;
983 * This routine handles page faults. It determines the address,
984 * and the problem, and then passes it off to one of the appropriate
987 dotraplinkage
void __kprobes
988 do_page_fault(struct pt_regs
*regs
, unsigned long error_code
)
990 struct vm_area_struct
*vma
;
991 struct task_struct
*tsk
;
992 unsigned long address
;
993 struct mm_struct
*mm
;
995 int write
= error_code
& PF_WRITE
;
996 unsigned int flags
= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_KILLABLE
|
997 (write
? FAULT_FLAG_WRITE
: 0);
1002 /* Get the faulting address: */
1003 address
= read_cr2();
1006 * Detect and handle instructions that would cause a page fault for
1007 * both a tracked kernel page and a userspace page.
1009 if (kmemcheck_active(regs
))
1010 kmemcheck_hide(regs
);
1011 prefetchw(&mm
->mmap_sem
);
1013 if (unlikely(kmmio_fault(regs
, address
)))
1017 * We fault-in kernel-space virtual memory on-demand. The
1018 * 'reference' page table is init_mm.pgd.
1020 * NOTE! We MUST NOT take any locks for this case. We may
1021 * be in an interrupt or a critical region, and should
1022 * only copy the information from the master page table,
1025 * This verifies that the fault happens in kernel space
1026 * (error_code & 4) == 0, and that the fault was not a
1027 * protection error (error_code & 9) == 0.
1029 if (unlikely(fault_in_kernel_space(address
))) {
1030 if (!(error_code
& (PF_RSVD
| PF_USER
| PF_PROT
))) {
1031 if (vmalloc_fault(address
) >= 0)
1034 if (kmemcheck_fault(regs
, address
, error_code
))
1038 /* Can handle a stale RO->RW TLB: */
1039 if (spurious_fault(error_code
, address
))
1042 /* kprobes don't want to hook the spurious faults: */
1043 if (notify_page_fault(regs
))
1046 * Don't take the mm semaphore here. If we fixup a prefetch
1047 * fault we could otherwise deadlock:
1049 bad_area_nosemaphore(regs
, error_code
, address
);
1054 /* kprobes don't want to hook the spurious faults: */
1055 if (unlikely(notify_page_fault(regs
)))
1058 * It's safe to allow irq's after cr2 has been saved and the
1059 * vmalloc fault has been handled.
1061 * User-mode registers count as a user access even for any
1062 * potential system fault or CPU buglet:
1064 if (user_mode_vm(regs
)) {
1066 error_code
|= PF_USER
;
1068 if (regs
->flags
& X86_EFLAGS_IF
)
1072 if (unlikely(error_code
& PF_RSVD
))
1073 pgtable_bad(regs
, error_code
, address
);
1075 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS
, 1, regs
, address
);
1078 * If we're in an interrupt, have no user context or are running
1079 * in an atomic region then we must not take the fault:
1081 if (unlikely(in_atomic() || !mm
)) {
1082 bad_area_nosemaphore(regs
, error_code
, address
);
1087 * When running in the kernel we expect faults to occur only to
1088 * addresses in user space. All other faults represent errors in
1089 * the kernel and should generate an OOPS. Unfortunately, in the
1090 * case of an erroneous fault occurring in a code path which already
1091 * holds mmap_sem we will deadlock attempting to validate the fault
1092 * against the address space. Luckily the kernel only validly
1093 * references user space from well defined areas of code, which are
1094 * listed in the exceptions table.
1096 * As the vast majority of faults will be valid we will only perform
1097 * the source reference check when there is a possibility of a
1098 * deadlock. Attempt to lock the address space, if we cannot we then
1099 * validate the source. If this is invalid we can skip the address
1100 * space check, thus avoiding the deadlock:
1102 if (unlikely(!down_read_trylock(&mm
->mmap_sem
))) {
1103 if ((error_code
& PF_USER
) == 0 &&
1104 !search_exception_tables(regs
->ip
)) {
1105 bad_area_nosemaphore(regs
, error_code
, address
);
1109 down_read(&mm
->mmap_sem
);
1112 * The above down_read_trylock() might have succeeded in
1113 * which case we'll have missed the might_sleep() from
1119 vma
= find_vma(mm
, address
);
1120 if (unlikely(!vma
)) {
1121 bad_area(regs
, error_code
, address
);
1124 if (likely(vma
->vm_start
<= address
))
1126 if (unlikely(!(vma
->vm_flags
& VM_GROWSDOWN
))) {
1127 bad_area(regs
, error_code
, address
);
1130 if (error_code
& PF_USER
) {
1132 * Accessing the stack below %sp is always a bug.
1133 * The large cushion allows instructions like enter
1134 * and pusha to work. ("enter $65535, $31" pushes
1135 * 32 pointers and then decrements %sp by 65535.)
1137 if (unlikely(address
+ 65536 + 32 * sizeof(unsigned long) < regs
->sp
)) {
1138 bad_area(regs
, error_code
, address
);
1142 if (unlikely(expand_stack(vma
, address
))) {
1143 bad_area(regs
, error_code
, address
);
1148 * Ok, we have a good vm_area for this memory access, so
1149 * we can handle it..
1152 if (unlikely(access_error(error_code
, vma
))) {
1153 bad_area_access_error(regs
, error_code
, address
);
1158 * If for any reason at all we couldn't handle the fault,
1159 * make sure we exit gracefully rather than endlessly redo
1162 fault
= handle_mm_fault(mm
, vma
, address
, flags
);
1164 if (unlikely(fault
& (VM_FAULT_RETRY
|VM_FAULT_ERROR
))) {
1165 if (mm_fault_error(regs
, error_code
, address
, fault
))
1170 * Major/minor page fault accounting is only done on the
1171 * initial attempt. If we go through a retry, it is extremely
1172 * likely that the page will be found in page cache at that point.
1174 if (flags
& FAULT_FLAG_ALLOW_RETRY
) {
1175 if (fault
& VM_FAULT_MAJOR
) {
1177 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ
, 1,
1181 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN
, 1,
1184 if (fault
& VM_FAULT_RETRY
) {
1185 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
1187 flags
&= ~FAULT_FLAG_ALLOW_RETRY
;
1192 check_v8086_mode(regs
, address
, tsk
);
1194 up_read(&mm
->mmap_sem
);