Staging: hv: mousevsc: Change the allocation flags to reflect interrupt context
[zen-stable.git] / kernel / sched_cpupri.c
blob2722dc1b41383fa6f8108802315cbc82c3c1e814
1 /*
2 * kernel/sched_cpupri.c
4 * CPU priority management
6 * Copyright (C) 2007-2008 Novell
8 * Author: Gregory Haskins <ghaskins@novell.com>
10 * This code tracks the priority of each CPU so that global migration
11 * decisions are easy to calculate. Each CPU can be in a state as follows:
13 * (INVALID), IDLE, NORMAL, RT1, ... RT99
15 * going from the lowest priority to the highest. CPUs in the INVALID state
16 * are not eligible for routing. The system maintains this state with
17 * a 2 dimensional bitmap (the first for priority class, the second for cpus
18 * in that class). Therefore a typical application without affinity
19 * restrictions can find a suitable CPU with O(1) complexity (e.g. two bit
20 * searches). For tasks with affinity restrictions, the algorithm has a
21 * worst case complexity of O(min(102, nr_domcpus)), though the scenario that
22 * yields the worst case search is fairly contrived.
24 * This program is free software; you can redistribute it and/or
25 * modify it under the terms of the GNU General Public License
26 * as published by the Free Software Foundation; version 2
27 * of the License.
30 #include <linux/gfp.h>
31 #include "sched_cpupri.h"
33 /* Convert between a 140 based task->prio, and our 102 based cpupri */
34 static int convert_prio(int prio)
36 int cpupri;
38 if (prio == CPUPRI_INVALID)
39 cpupri = CPUPRI_INVALID;
40 else if (prio == MAX_PRIO)
41 cpupri = CPUPRI_IDLE;
42 else if (prio >= MAX_RT_PRIO)
43 cpupri = CPUPRI_NORMAL;
44 else
45 cpupri = MAX_RT_PRIO - prio + 1;
47 return cpupri;
50 #define for_each_cpupri_active(array, idx) \
51 for_each_set_bit(idx, array, CPUPRI_NR_PRIORITIES)
53 /**
54 * cpupri_find - find the best (lowest-pri) CPU in the system
55 * @cp: The cpupri context
56 * @p: The task
57 * @lowest_mask: A mask to fill in with selected CPUs (or NULL)
59 * Note: This function returns the recommended CPUs as calculated during the
60 * current invocation. By the time the call returns, the CPUs may have in
61 * fact changed priorities any number of times. While not ideal, it is not
62 * an issue of correctness since the normal rebalancer logic will correct
63 * any discrepancies created by racing against the uncertainty of the current
64 * priority configuration.
66 * Returns: (int)bool - CPUs were found
68 int cpupri_find(struct cpupri *cp, struct task_struct *p,
69 struct cpumask *lowest_mask)
71 int idx = 0;
72 int task_pri = convert_prio(p->prio);
74 for_each_cpupri_active(cp->pri_active, idx) {
75 struct cpupri_vec *vec = &cp->pri_to_cpu[idx];
77 if (idx >= task_pri)
78 break;
80 if (cpumask_any_and(&p->cpus_allowed, vec->mask) >= nr_cpu_ids)
81 continue;
83 if (lowest_mask) {
84 cpumask_and(lowest_mask, &p->cpus_allowed, vec->mask);
87 * We have to ensure that we have at least one bit
88 * still set in the array, since the map could have
89 * been concurrently emptied between the first and
90 * second reads of vec->mask. If we hit this
91 * condition, simply act as though we never hit this
92 * priority level and continue on.
94 if (cpumask_any(lowest_mask) >= nr_cpu_ids)
95 continue;
98 return 1;
101 return 0;
105 * cpupri_set - update the cpu priority setting
106 * @cp: The cpupri context
107 * @cpu: The target cpu
108 * @pri: The priority (INVALID-RT99) to assign to this CPU
110 * Note: Assumes cpu_rq(cpu)->lock is locked
112 * Returns: (void)
114 void cpupri_set(struct cpupri *cp, int cpu, int newpri)
116 int *currpri = &cp->cpu_to_pri[cpu];
117 int oldpri = *currpri;
118 unsigned long flags;
120 newpri = convert_prio(newpri);
122 BUG_ON(newpri >= CPUPRI_NR_PRIORITIES);
124 if (newpri == oldpri)
125 return;
128 * If the cpu was currently mapped to a different value, we
129 * need to map it to the new value then remove the old value.
130 * Note, we must add the new value first, otherwise we risk the
131 * cpu being cleared from pri_active, and this cpu could be
132 * missed for a push or pull.
134 if (likely(newpri != CPUPRI_INVALID)) {
135 struct cpupri_vec *vec = &cp->pri_to_cpu[newpri];
137 raw_spin_lock_irqsave(&vec->lock, flags);
139 cpumask_set_cpu(cpu, vec->mask);
140 vec->count++;
141 if (vec->count == 1)
142 set_bit(newpri, cp->pri_active);
144 raw_spin_unlock_irqrestore(&vec->lock, flags);
146 if (likely(oldpri != CPUPRI_INVALID)) {
147 struct cpupri_vec *vec = &cp->pri_to_cpu[oldpri];
149 raw_spin_lock_irqsave(&vec->lock, flags);
151 vec->count--;
152 if (!vec->count)
153 clear_bit(oldpri, cp->pri_active);
154 cpumask_clear_cpu(cpu, vec->mask);
156 raw_spin_unlock_irqrestore(&vec->lock, flags);
159 *currpri = newpri;
163 * cpupri_init - initialize the cpupri structure
164 * @cp: The cpupri context
165 * @bootmem: true if allocations need to use bootmem
167 * Returns: -ENOMEM if memory fails.
169 int cpupri_init(struct cpupri *cp)
171 int i;
173 memset(cp, 0, sizeof(*cp));
175 for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) {
176 struct cpupri_vec *vec = &cp->pri_to_cpu[i];
178 raw_spin_lock_init(&vec->lock);
179 vec->count = 0;
180 if (!zalloc_cpumask_var(&vec->mask, GFP_KERNEL))
181 goto cleanup;
184 for_each_possible_cpu(i)
185 cp->cpu_to_pri[i] = CPUPRI_INVALID;
186 return 0;
188 cleanup:
189 for (i--; i >= 0; i--)
190 free_cpumask_var(cp->pri_to_cpu[i].mask);
191 return -ENOMEM;
195 * cpupri_cleanup - clean up the cpupri structure
196 * @cp: The cpupri context
198 void cpupri_cleanup(struct cpupri *cp)
200 int i;
202 for (i = 0; i < CPUPRI_NR_PRIORITIES; i++)
203 free_cpumask_var(cp->pri_to_cpu[i].mask);