2 * Copyright (c) 2006, 2007, 2008, 2009, 2010 QLogic Corporation.
4 * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 * This file contains all of the code that is specific to the SerDes
36 * on the QLogic_IB 7220 chip.
39 #include <linux/pci.h>
40 #include <linux/delay.h>
41 #include <linux/firmware.h>
46 #define SD7220_FW_NAME "qlogic/sd7220.fw"
47 MODULE_FIRMWARE(SD7220_FW_NAME
);
50 * Same as in qib_iba7220.c, but just the registers needed here.
51 * Could move whole set to qib_7220.h, but decided better to keep
54 #define KREG_IDX(regname) (QIB_7220_##regname##_OFFS / sizeof(u64))
55 #define kr_hwerrclear KREG_IDX(HwErrClear)
56 #define kr_hwerrmask KREG_IDX(HwErrMask)
57 #define kr_hwerrstatus KREG_IDX(HwErrStatus)
58 #define kr_ibcstatus KREG_IDX(IBCStatus)
59 #define kr_ibserdesctrl KREG_IDX(IBSerDesCtrl)
60 #define kr_scratch KREG_IDX(Scratch)
61 #define kr_xgxs_cfg KREG_IDX(XGXSCfg)
62 /* these are used only here, not in qib_iba7220.c */
63 #define kr_ibsd_epb_access_ctrl KREG_IDX(ibsd_epb_access_ctrl)
64 #define kr_ibsd_epb_transaction_reg KREG_IDX(ibsd_epb_transaction_reg)
65 #define kr_pciesd_epb_transaction_reg KREG_IDX(pciesd_epb_transaction_reg)
66 #define kr_pciesd_epb_access_ctrl KREG_IDX(pciesd_epb_access_ctrl)
67 #define kr_serdes_ddsrxeq0 KREG_IDX(SerDes_DDSRXEQ0)
70 * The IBSerDesMappTable is a memory that holds values to be stored in
71 * various SerDes registers by IBC.
73 #define kr_serdes_maptable KREG_IDX(IBSerDesMappTable)
76 * Below used for sdnum parameter, selecting one of the two sections
77 * used for PCIe, or the single SerDes used for IB.
79 #define PCIE_SERDES0 0
80 #define PCIE_SERDES1 1
83 * The EPB requires addressing in a particular form. EPB_LOC() is intended
84 * to make #definitions a little more readable.
86 #define EPB_ADDR_SHF 8
87 #define EPB_LOC(chn, elt, reg) \
88 (((elt & 0xf) | ((chn & 7) << 4) | ((reg & 0x3f) << 9)) << \
90 #define EPB_IB_QUAD0_CS_SHF (25)
91 #define EPB_IB_QUAD0_CS (1U << EPB_IB_QUAD0_CS_SHF)
92 #define EPB_IB_UC_CS_SHF (26)
93 #define EPB_PCIE_UC_CS_SHF (27)
94 #define EPB_GLOBAL_WR (1U << (EPB_ADDR_SHF + 8))
96 /* Forward declarations. */
97 static int qib_sd7220_reg_mod(struct qib_devdata
*dd
, int sdnum
, u32 loc
,
99 static int ibsd_mod_allchnls(struct qib_devdata
*dd
, int loc
, int val
,
101 static int qib_sd_trimdone_poll(struct qib_devdata
*dd
);
102 static void qib_sd_trimdone_monitor(struct qib_devdata
*dd
, const char *where
);
103 static int qib_sd_setvals(struct qib_devdata
*dd
);
104 static int qib_sd_early(struct qib_devdata
*dd
);
105 static int qib_sd_dactrim(struct qib_devdata
*dd
);
106 static int qib_internal_presets(struct qib_devdata
*dd
);
107 /* Tweak the register (CMUCTRL5) that contains the TRIMSELF controls */
108 static int qib_sd_trimself(struct qib_devdata
*dd
, int val
);
109 static int epb_access(struct qib_devdata
*dd
, int sdnum
, int claim
);
110 static int qib_sd7220_ib_load(struct qib_devdata
*dd
,
111 const struct firmware
*fw
);
112 static int qib_sd7220_ib_vfy(struct qib_devdata
*dd
,
113 const struct firmware
*fw
);
116 * Below keeps track of whether the "once per power-on" initialization has
117 * been done, because uC code Version 1.32.17 or higher allows the uC to
118 * be reset at will, and Automatic Equalization may require it. So the
119 * state of the reset "pin", is no longer valid. Instead, we check for the
120 * actual uC code having been loaded.
122 static int qib_ibsd_ucode_loaded(struct qib_pportdata
*ppd
,
123 const struct firmware
*fw
)
125 struct qib_devdata
*dd
= ppd
->dd
;
127 if (!dd
->cspec
->serdes_first_init_done
&&
128 qib_sd7220_ib_vfy(dd
, fw
) > 0)
129 dd
->cspec
->serdes_first_init_done
= 1;
130 return dd
->cspec
->serdes_first_init_done
;
133 /* repeat #define for local use. "Real" #define is in qib_iba7220.c */
134 #define QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR 0x0000004000000000ULL
135 #define IB_MPREG5 (EPB_LOC(6, 0, 0xE) | (1L << EPB_IB_UC_CS_SHF))
136 #define IB_MPREG6 (EPB_LOC(6, 0, 0xF) | (1U << EPB_IB_UC_CS_SHF))
137 #define UC_PAR_CLR_D 8
138 #define UC_PAR_CLR_M 0xC
139 #define IB_CTRL2(chn) (EPB_LOC(chn, 7, 3) | EPB_IB_QUAD0_CS)
140 #define START_EQ1(chan) EPB_LOC(chan, 7, 0x27)
142 void qib_sd7220_clr_ibpar(struct qib_devdata
*dd
)
146 /* clear, then re-enable parity errs */
147 ret
= qib_sd7220_reg_mod(dd
, IB_7220_SERDES
, IB_MPREG6
,
148 UC_PAR_CLR_D
, UC_PAR_CLR_M
);
150 qib_dev_err(dd
, "Failed clearing IBSerDes Parity err\n");
153 ret
= qib_sd7220_reg_mod(dd
, IB_7220_SERDES
, IB_MPREG6
, 0,
156 qib_read_kreg32(dd
, kr_scratch
);
158 qib_write_kreg(dd
, kr_hwerrclear
,
159 QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR
);
160 qib_read_kreg32(dd
, kr_scratch
);
166 * After a reset or other unusual event, the epb interface may need
167 * to be re-synchronized, between the host and the uC.
168 * returns <0 for failure to resync within IBSD_RESYNC_TRIES (not expected)
170 #define IBSD_RESYNC_TRIES 3
171 #define IB_PGUDP(chn) (EPB_LOC((chn), 2, 1) | EPB_IB_QUAD0_CS)
172 #define IB_CMUDONE(chn) (EPB_LOC((chn), 7, 0xF) | EPB_IB_QUAD0_CS)
174 static int qib_resync_ibepb(struct qib_devdata
*dd
)
176 int ret
, pat
, tries
, chn
;
181 for (tries
= 0; tries
< (4 * IBSD_RESYNC_TRIES
); ++tries
) {
183 ret
= qib_sd7220_reg_mod(dd
, IB_7220_SERDES
, loc
, 0, 0);
185 qib_dev_err(dd
, "Failed read in resync\n");
188 if (ret
!= 0xF0 && ret
!= 0x55 && tries
== 0)
189 qib_dev_err(dd
, "unexpected pattern in resync\n");
190 pat
= ret
^ 0xA5; /* alternate F0 and 55 */
191 ret
= qib_sd7220_reg_mod(dd
, IB_7220_SERDES
, loc
, pat
, 0xFF);
193 qib_dev_err(dd
, "Failed write in resync\n");
196 ret
= qib_sd7220_reg_mod(dd
, IB_7220_SERDES
, loc
, 0, 0);
198 qib_dev_err(dd
, "Failed re-read in resync\n");
202 qib_dev_err(dd
, "Failed compare1 in resync\n");
205 loc
= IB_CMUDONE(chn
);
206 ret
= qib_sd7220_reg_mod(dd
, IB_7220_SERDES
, loc
, 0, 0);
208 qib_dev_err(dd
, "Failed CMUDONE rd in resync\n");
211 if ((ret
& 0x70) != ((chn
<< 4) | 0x40)) {
212 qib_dev_err(dd
, "Bad CMUDONE value %02X, chn %d\n",
219 return (ret
> 0) ? 0 : ret
;
223 * Localize the stuff that should be done to change IB uC reset
224 * returns <0 for errors.
226 static int qib_ibsd_reset(struct qib_devdata
*dd
, int assert_rst
)
232 rst_val
= qib_read_kreg64(dd
, kr_ibserdesctrl
);
235 * Vendor recommends "interrupting" uC before reset, to
236 * minimize possible glitches.
238 spin_lock_irqsave(&dd
->cspec
->sdepb_lock
, flags
);
239 epb_access(dd
, IB_7220_SERDES
, 1);
241 /* Squelch possible parity error from _asserting_ reset */
242 qib_write_kreg(dd
, kr_hwerrmask
,
243 dd
->cspec
->hwerrmask
&
244 ~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR
);
245 qib_write_kreg(dd
, kr_ibserdesctrl
, rst_val
);
246 /* flush write, delay to ensure it took effect */
247 qib_read_kreg32(dd
, kr_scratch
);
249 /* once it's reset, can remove interrupt */
250 epb_access(dd
, IB_7220_SERDES
, -1);
251 spin_unlock_irqrestore(&dd
->cspec
->sdepb_lock
, flags
);
254 * Before we de-assert reset, we need to deal with
255 * possible glitch on the Parity-error line.
256 * Suppress it around the reset, both in chip-level
257 * hwerrmask and in IB uC control reg. uC will allow
258 * it again during startup.
262 qib_write_kreg(dd
, kr_hwerrmask
,
263 dd
->cspec
->hwerrmask
&
264 ~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR
);
266 ret
= qib_resync_ibepb(dd
);
268 qib_dev_err(dd
, "unable to re-sync IB EPB\n");
270 /* set uC control regs to suppress parity errs */
271 ret
= qib_sd7220_reg_mod(dd
, IB_7220_SERDES
, IB_MPREG5
, 1, 1);
274 /* IB uC code past Version 1.32.17 allow suppression of wdog */
275 ret
= qib_sd7220_reg_mod(dd
, IB_7220_SERDES
, IB_MPREG6
, 0x80,
278 qib_dev_err(dd
, "Failed to set WDOG disable\n");
281 qib_write_kreg(dd
, kr_ibserdesctrl
, rst_val
);
282 /* flush write, delay for startup */
283 qib_read_kreg32(dd
, kr_scratch
);
285 /* clear, then re-enable parity errs */
286 qib_sd7220_clr_ibpar(dd
);
287 val
= qib_read_kreg64(dd
, kr_hwerrstatus
);
288 if (val
& QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR
) {
289 qib_dev_err(dd
, "IBUC Parity still set after RST\n");
290 dd
->cspec
->hwerrmask
&=
291 ~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR
;
293 qib_write_kreg(dd
, kr_hwerrmask
,
294 dd
->cspec
->hwerrmask
);
301 static void qib_sd_trimdone_monitor(struct qib_devdata
*dd
,
304 int ret
, chn
, baduns
;
310 /* give time for reset to settle out in EPB */
313 ret
= qib_resync_ibepb(dd
);
315 qib_dev_err(dd
, "not able to re-sync IB EPB (%s)\n", where
);
317 /* Do "sacrificial read" to get EPB in sane state after reset */
318 ret
= qib_sd7220_reg_mod(dd
, IB_7220_SERDES
, IB_CTRL2(0), 0, 0);
320 qib_dev_err(dd
, "Failed TRIMDONE 1st read, (%s)\n", where
);
322 /* Check/show "summary" Trim-done bit in IBCStatus */
323 val
= qib_read_kreg64(dd
, kr_ibcstatus
);
324 if (!(val
& (1ULL << 11)))
325 qib_dev_err(dd
, "IBCS TRIMDONE clear (%s)\n", where
);
327 * Do "dummy read/mod/wr" to get EPB in sane state after reset
328 * The default value for MPREG6 is 0.
332 ret
= qib_sd7220_reg_mod(dd
, IB_7220_SERDES
, IB_MPREG6
, 0x80, 0x80);
334 qib_dev_err(dd
, "Failed Dummy RMW, (%s)\n", where
);
339 for (chn
= 3; chn
>= 0; --chn
) {
340 /* Read CTRL reg for each channel to check TRIMDONE */
341 ret
= qib_sd7220_reg_mod(dd
, IB_7220_SERDES
,
342 IB_CTRL2(chn
), 0, 0);
344 qib_dev_err(dd
, "Failed checking TRIMDONE, chn %d"
345 " (%s)\n", chn
, where
);
350 baduns
|= (1 << chn
);
351 qib_dev_err(dd
, "TRIMDONE cleared on chn %d (%02X)."
352 " (%s)\n", chn
, ret
, where
);
353 probe
= qib_sd7220_reg_mod(dd
, IB_7220_SERDES
,
355 qib_dev_err(dd
, "probe is %d (%02X)\n",
357 probe
= qib_sd7220_reg_mod(dd
, IB_7220_SERDES
,
358 IB_CTRL2(chn
), 0, 0);
359 qib_dev_err(dd
, "re-read: %d (%02X)\n",
361 ret
= qib_sd7220_reg_mod(dd
, IB_7220_SERDES
,
362 IB_CTRL2(chn
), 0x10, 0x10);
365 "Err on TRIMDONE rewrite1\n");
368 for (chn
= 3; chn
>= 0; --chn
) {
369 /* Read CTRL reg for each channel to check TRIMDONE */
370 if (baduns
& (1 << chn
)) {
372 "Reseting TRIMDONE on chn %d (%s)\n",
374 ret
= qib_sd7220_reg_mod(dd
, IB_7220_SERDES
,
375 IB_CTRL2(chn
), 0x10, 0x10);
377 qib_dev_err(dd
, "Failed re-setting "
378 "TRIMDONE, chn %d (%s)\n",
385 * Below is portion of IBA7220-specific bringup_serdes() that actually
386 * deals with registers and memory within the SerDes itself.
387 * Post IB uC code version 1.32.17, was_reset being 1 is not really
388 * informative, so we double-check.
390 int qib_sd7220_init(struct qib_devdata
*dd
)
392 const struct firmware
*fw
;
393 int ret
= 1; /* default to failure */
394 int first_reset
, was_reset
;
396 /* SERDES MPU reset recorded in D0 */
397 was_reset
= (qib_read_kreg64(dd
, kr_ibserdesctrl
) & 1);
399 /* entered with reset not asserted, we need to do it */
400 qib_ibsd_reset(dd
, 1);
401 qib_sd_trimdone_monitor(dd
, "Driver-reload");
404 ret
= request_firmware(&fw
, SD7220_FW_NAME
, &dd
->pcidev
->dev
);
406 qib_dev_err(dd
, "Failed to load IB SERDES image\n");
410 /* Substitute our deduced value for was_reset */
411 ret
= qib_ibsd_ucode_loaded(dd
->pport
, fw
);
415 first_reset
= !ret
; /* First reset if IBSD uCode not yet loaded */
417 * Alter some regs per vendor latest doc, reset-defaults
418 * are not right for IB.
420 ret
= qib_sd_early(dd
);
422 qib_dev_err(dd
, "Failed to set IB SERDES early defaults\n");
426 * Set DAC manual trim IB.
427 * We only do this once after chip has been reset (usually
428 * same as once per system boot).
431 ret
= qib_sd_dactrim(dd
);
433 qib_dev_err(dd
, "Failed IB SERDES DAC trim\n");
438 * Set various registers (DDS and RXEQ) that will be
439 * controlled by IBC (in 1.2 mode) to reasonable preset values
440 * Calling the "internal" version avoids the "check for needed"
441 * and "trimdone monitor" that might be counter-productive.
443 ret
= qib_internal_presets(dd
);
445 qib_dev_err(dd
, "Failed to set IB SERDES presets\n");
448 ret
= qib_sd_trimself(dd
, 0x80);
450 qib_dev_err(dd
, "Failed to set IB SERDES TRIMSELF\n");
454 /* Load image, then try to verify */
455 ret
= 0; /* Assume success */
460 ret
= qib_sd7220_ib_load(dd
, fw
);
462 qib_dev_err(dd
, "Failed to load IB SERDES image\n");
465 /* Loaded image, try to verify */
466 vfy
= qib_sd7220_ib_vfy(dd
, fw
);
468 qib_dev_err(dd
, "SERDES PRAM VFY failed\n");
470 } /* end if verified */
471 } /* end if loaded */
474 * Loaded and verified. Almost good...
475 * hold "success" in ret
479 * Prev steps all worked, continue bringup
480 * De-assert RESET to uC, only in first reset, to allow
483 * Since our default setup sets START_EQ1 to
484 * PRESET, we need to clear that for this very first run.
486 ret
= ibsd_mod_allchnls(dd
, START_EQ1(0), 0, 0x38);
488 qib_dev_err(dd
, "Failed clearing START_EQ1\n");
492 qib_ibsd_reset(dd
, 0);
494 * If this is not the first reset, trimdone should be set
495 * already. We may need to check about this.
497 trim_done
= qib_sd_trimdone_poll(dd
);
499 * Whether or not trimdone succeeded, we need to put the
500 * uC back into reset to avoid a possible fight with the
503 qib_ibsd_reset(dd
, 1);
506 qib_dev_err(dd
, "No TRIMDONE seen\n");
510 * DEBUG: check each time we reset if trimdone bits have
511 * gotten cleared, and re-set them.
513 qib_sd_trimdone_monitor(dd
, "First-reset");
514 /* Remember so we do not re-do the load, dactrim, etc. */
515 dd
->cspec
->serdes_first_init_done
= 1;
518 * setup for channel training and load values for
519 * RxEq and DDS in tables used by IBC in IB1.2 mode
522 if (qib_sd_setvals(dd
) >= 0)
527 /* start relock timer regardless, but start at 1 second */
528 set_7220_relock_poll(dd
, -1);
530 release_firmware(fw
);
534 #define EPB_ACC_REQ 1
535 #define EPB_ACC_GNT 0x100
536 #define EPB_DATA_MASK 0xFF
537 #define EPB_RD (1ULL << 24)
538 #define EPB_TRANS_RDY (1ULL << 31)
539 #define EPB_TRANS_ERR (1ULL << 30)
540 #define EPB_TRANS_TRIES 5
543 * query, claim, release ownership of the EPB (External Parallel Bus)
544 * for a specified SERDES.
545 * the "claim" parameter is >0 to claim, <0 to release, 0 to query.
546 * Returns <0 for errors, >0 if we had ownership, else 0.
548 static int epb_access(struct qib_devdata
*dd
, int sdnum
, int claim
)
558 * The IB SERDES "ownership" is fairly simple. A single each
561 acc
= kr_ibsd_epb_access_ctrl
;
566 /* PCIe SERDES has two "octants", need to select which */
567 acc
= kr_pciesd_epb_access_ctrl
;
568 oct_sel
= (2 << (sdnum
- PCIE_SERDES0
));
575 /* Make sure any outstanding transaction was seen */
576 qib_read_kreg32(dd
, kr_scratch
);
579 accval
= qib_read_kreg32(dd
, acc
);
581 owned
= !!(accval
& EPB_ACC_GNT
);
583 /* Need to release */
586 * The only writeable bits are the request and CS.
587 * Both should be clear
590 qib_write_kreg(dd
, acc
, newval
);
591 /* First read after write is not trustworthy */
592 pollval
= qib_read_kreg32(dd
, acc
);
594 pollval
= qib_read_kreg32(dd
, acc
);
595 if (pollval
& EPB_ACC_GNT
)
597 } else if (claim
> 0) {
600 u64 newval
= EPB_ACC_REQ
| oct_sel
;
601 qib_write_kreg(dd
, acc
, newval
);
602 /* First read after write is not trustworthy */
603 pollval
= qib_read_kreg32(dd
, acc
);
605 pollval
= qib_read_kreg32(dd
, acc
);
606 if (!(pollval
& EPB_ACC_GNT
))
613 * Lemma to deal with race condition of write..read to epb regs
615 static int epb_trans(struct qib_devdata
*dd
, u16 reg
, u64 i_val
, u64
*o_vp
)
620 qib_write_kreg(dd
, reg
, i_val
);
621 /* Throw away first read, as RDY bit may be stale */
622 transval
= qib_read_kreg64(dd
, reg
);
624 for (tries
= EPB_TRANS_TRIES
; tries
; --tries
) {
625 transval
= qib_read_kreg32(dd
, reg
);
626 if (transval
& EPB_TRANS_RDY
)
630 if (transval
& EPB_TRANS_ERR
)
632 if (tries
> 0 && o_vp
)
638 * qib_sd7220_reg_mod - modify SERDES register
639 * @dd: the qlogic_ib device
640 * @sdnum: which SERDES to access
641 * @loc: location - channel, element, register, as packed by EPB_LOC() macro.
642 * @wd: Write Data - value to set in register
643 * @mask: ones where data should be spliced into reg.
645 * Basic register read/modify/write, with un-needed acesses elided. That is,
646 * a mask of zero will prevent write, while a mask of 0xFF will prevent read.
647 * returns current (presumed, if a write was done) contents of selected
648 * register, or <0 if errors.
650 static int qib_sd7220_reg_mod(struct qib_devdata
*dd
, int sdnum
, u32 loc
,
661 trans
= kr_ibsd_epb_transaction_reg
;
666 trans
= kr_pciesd_epb_transaction_reg
;
674 * All access is locked in software (vs other host threads) and
675 * hardware (vs uC access).
677 spin_lock_irqsave(&dd
->cspec
->sdepb_lock
, flags
);
679 owned
= epb_access(dd
, sdnum
, 1);
681 spin_unlock_irqrestore(&dd
->cspec
->sdepb_lock
, flags
);
685 for (tries
= EPB_TRANS_TRIES
; tries
; --tries
) {
686 transval
= qib_read_kreg32(dd
, trans
);
687 if (transval
& EPB_TRANS_RDY
)
693 tries
= 1; /* to make read-skip work */
696 * Not a pure write, so need to read.
697 * loc encodes chip-select as well as address
699 transval
= loc
| EPB_RD
;
700 tries
= epb_trans(dd
, trans
, transval
, &transval
);
702 if (tries
> 0 && mask
!= 0) {
704 * Not a pure read, so need to write.
706 wd
= (wd
& mask
) | (transval
& ~mask
);
707 transval
= loc
| (wd
& EPB_DATA_MASK
);
708 tries
= epb_trans(dd
, trans
, transval
, &transval
);
711 /* else, failed to see ready, what error-handling? */
714 * Release bus. Failure is an error.
716 if (epb_access(dd
, sdnum
, -1) < 0)
719 ret
= transval
& EPB_DATA_MASK
;
721 spin_unlock_irqrestore(&dd
->cspec
->sdepb_lock
, flags
);
727 #define EPB_ROM_R (2)
728 #define EPB_ROM_W (1)
730 * Below, all uC-related, use appropriate UC_CS, depending
731 * on which SerDes is used.
733 #define EPB_UC_CTL EPB_LOC(6, 0, 0)
734 #define EPB_MADDRL EPB_LOC(6, 0, 2)
735 #define EPB_MADDRH EPB_LOC(6, 0, 3)
736 #define EPB_ROMDATA EPB_LOC(6, 0, 4)
737 #define EPB_RAMDATA EPB_LOC(6, 0, 5)
739 /* Transfer date to/from uC Program RAM of IB or PCIe SerDes */
740 static int qib_sd7220_ram_xfer(struct qib_devdata
*dd
, int sdnum
, u32 loc
,
741 u8
*buf
, int cnt
, int rd_notwr
)
754 /* Pick appropriate transaction reg and "Chip select" for this serdes */
757 csbit
= 1ULL << EPB_IB_UC_CS_SHF
;
758 trans
= kr_ibsd_epb_transaction_reg
;
763 /* PCIe SERDES has uC "chip select" in different bit, too */
764 csbit
= 1ULL << EPB_PCIE_UC_CS_SHF
;
765 trans
= kr_pciesd_epb_transaction_reg
;
772 op
= rd_notwr
? "Rd" : "Wr";
773 spin_lock_irqsave(&dd
->cspec
->sdepb_lock
, flags
);
775 owned
= epb_access(dd
, sdnum
, 1);
777 spin_unlock_irqrestore(&dd
->cspec
->sdepb_lock
, flags
);
782 * In future code, we may need to distinguish several address ranges,
783 * and select various memories based on this. For now, just trim
784 * "loc" (location including address and memory select) to
785 * "addr" (address within memory). we will only support PRAM
789 for (tries
= EPB_TRANS_TRIES
; tries
; --tries
) {
790 transval
= qib_read_kreg32(dd
, trans
);
791 if (transval
& EPB_TRANS_RDY
)
799 * Every "memory" access is doubly-indirect.
800 * We set two bytes of address, then read/write
801 * one or mores bytes of data.
804 /* First, we set control to "Read" or "Write" */
805 transval
= csbit
| EPB_UC_CTL
|
806 (rd_notwr
? EPB_ROM_R
: EPB_ROM_W
);
807 tries
= epb_trans(dd
, trans
, transval
, &transval
);
808 while (tries
> 0 && sofar
< cnt
) {
810 /* Only set address at start of chunk */
811 int addrbyte
= (addr
+ sofar
) >> 8;
812 transval
= csbit
| EPB_MADDRH
| addrbyte
;
813 tries
= epb_trans(dd
, trans
, transval
,
817 addrbyte
= (addr
+ sofar
) & 0xFF;
818 transval
= csbit
| EPB_MADDRL
| addrbyte
;
819 tries
= epb_trans(dd
, trans
, transval
,
826 transval
= csbit
| EPB_ROMDATA
| EPB_RD
;
828 transval
= csbit
| EPB_ROMDATA
| buf
[sofar
];
829 tries
= epb_trans(dd
, trans
, transval
, &transval
);
833 buf
[sofar
] = transval
& EPB_DATA_MASK
;
836 /* Finally, clear control-bit for Read or Write */
837 transval
= csbit
| EPB_UC_CTL
;
838 tries
= epb_trans(dd
, trans
, transval
, &transval
);
842 /* Release bus. Failure is an error */
843 if (epb_access(dd
, sdnum
, -1) < 0)
846 spin_unlock_irqrestore(&dd
->cspec
->sdepb_lock
, flags
);
852 #define PROG_CHUNK 64
854 static int qib_sd7220_prog_ld(struct qib_devdata
*dd
, int sdnum
,
855 const u8
*img
, int len
, int offset
)
860 while (sofar
< len
) {
862 if (req
> PROG_CHUNK
)
864 cnt
= qib_sd7220_ram_xfer(dd
, sdnum
, offset
+ sofar
,
865 (u8
*)img
+ sofar
, req
, 0);
876 #define SD_PRAM_ERROR_LIMIT 42
878 static int qib_sd7220_prog_vfy(struct qib_devdata
*dd
, int sdnum
,
879 const u8
*img
, int len
, int offset
)
881 int cnt
, sofar
, req
, idx
, errors
;
882 unsigned char readback
[VFY_CHUNK
];
886 while (sofar
< len
) {
890 cnt
= qib_sd7220_ram_xfer(dd
, sdnum
, sofar
+ offset
,
893 /* failed in read itself */
897 for (idx
= 0; idx
< cnt
; ++idx
) {
898 if (readback
[idx
] != img
[idx
+sofar
])
903 return errors
? -errors
: sofar
;
907 qib_sd7220_ib_load(struct qib_devdata
*dd
, const struct firmware
*fw
)
909 return qib_sd7220_prog_ld(dd
, IB_7220_SERDES
, fw
->data
, fw
->size
, 0);
913 qib_sd7220_ib_vfy(struct qib_devdata
*dd
, const struct firmware
*fw
)
915 return qib_sd7220_prog_vfy(dd
, IB_7220_SERDES
, fw
->data
, fw
->size
, 0);
919 * IRQ not set up at this point in init, so we poll.
921 #define IB_SERDES_TRIM_DONE (1ULL << 11)
922 #define TRIM_TMO (30)
924 static int qib_sd_trimdone_poll(struct qib_devdata
*dd
)
930 * Default to failure, so IBC will not start
931 * without IB_SERDES_TRIM_DONE.
934 for (trim_tmo
= 0; trim_tmo
< TRIM_TMO
; ++trim_tmo
) {
935 val
= qib_read_kreg64(dd
, kr_ibcstatus
);
936 if (val
& IB_SERDES_TRIM_DONE
) {
942 if (trim_tmo
>= TRIM_TMO
) {
943 qib_dev_err(dd
, "No TRIMDONE in %d tries\n", trim_tmo
);
949 #define TX_FAST_ELT (9)
952 * Set the "negotiation" values for SERDES. These are used by the IB1.2
953 * link negotiation. Macros below are attempt to keep the values a
954 * little more human-editable.
955 * First, values related to Drive De-emphasis Settings.
958 #define NUM_DDS_REGS 6
959 #define DDS_REG_MAP 0x76A910 /* LSB-first list of regs (in elt 9) to mod */
961 #define DDS_VAL(amp_d, main_d, ipst_d, ipre_d, amp_s, main_s, ipst_s, ipre_s) \
962 { { ((amp_d & 0x1F) << 1) | 1, ((amp_s & 0x1F) << 1) | 1, \
963 (main_d << 3) | 4 | (ipre_d >> 2), \
964 (main_s << 3) | 4 | (ipre_s >> 2), \
965 ((ipst_d & 0xF) << 1) | ((ipre_d & 3) << 6) | 0x21, \
966 ((ipst_s & 0xF) << 1) | ((ipre_s & 3) << 6) | 0x21 } }
968 static struct dds_init
{
969 uint8_t reg_vals
[NUM_DDS_REGS
];
970 } dds_init_vals
[] = {
971 /* DDR(FDR) SDR(HDR) */
972 /* Vendor recommends below for 3m cable */
974 DDS_VAL(31, 19, 12, 0, 29, 22, 9, 0),
975 DDS_VAL(31, 12, 15, 4, 31, 15, 15, 1),
976 DDS_VAL(31, 13, 15, 3, 31, 16, 15, 0),
977 DDS_VAL(31, 14, 15, 2, 31, 17, 14, 0),
978 DDS_VAL(31, 15, 15, 1, 31, 18, 13, 0),
979 DDS_VAL(31, 16, 15, 0, 31, 19, 12, 0),
980 DDS_VAL(31, 17, 14, 0, 31, 20, 11, 0),
981 DDS_VAL(31, 18, 13, 0, 30, 21, 10, 0),
982 DDS_VAL(31, 20, 11, 0, 28, 23, 8, 0),
983 DDS_VAL(31, 21, 10, 0, 27, 24, 7, 0),
984 DDS_VAL(31, 22, 9, 0, 26, 25, 6, 0),
985 DDS_VAL(30, 23, 8, 0, 25, 26, 5, 0),
986 DDS_VAL(29, 24, 7, 0, 23, 27, 4, 0),
987 /* Vendor recommends below for 1m cable */
989 DDS_VAL(28, 25, 6, 0, 21, 28, 3, 0),
990 DDS_VAL(27, 26, 5, 0, 19, 29, 2, 0),
991 DDS_VAL(25, 27, 4, 0, 17, 30, 1, 0)
995 * Now the RXEQ section of the table.
997 /* Hardware packs an element number and register address thus: */
998 #define RXEQ_INIT_RDESC(elt, addr) (((elt) & 0xF) | ((addr) << 4))
999 #define RXEQ_VAL(elt, adr, val0, val1, val2, val3) \
1000 {RXEQ_INIT_RDESC((elt), (adr)), {(val0), (val1), (val2), (val3)} }
1002 #define RXEQ_VAL_ALL(elt, adr, val) \
1003 {RXEQ_INIT_RDESC((elt), (adr)), {(val), (val), (val), (val)} }
1005 #define RXEQ_SDR_DFELTH 0
1006 #define RXEQ_SDR_TLTH 0
1007 #define RXEQ_SDR_G1CNT_Z1CNT 0x11
1008 #define RXEQ_SDR_ZCNT 23
1010 static struct rxeq_init
{
1011 u16 rdesc
; /* in form used in SerDesDDSRXEQ */
1013 } rxeq_init_vals
[] = {
1014 /* Set Rcv Eq. to Preset node */
1015 RXEQ_VAL_ALL(7, 0x27, 0x10),
1016 /* Set DFELTHFDR/HDR thresholds */
1017 RXEQ_VAL(7, 8, 0, 0, 0, 0), /* FDR, was 0, 1, 2, 3 */
1018 RXEQ_VAL(7, 0x21, 0, 0, 0, 0), /* HDR */
1019 /* Set TLTHFDR/HDR theshold */
1020 RXEQ_VAL(7, 9, 2, 2, 2, 2), /* FDR, was 0, 2, 4, 6 */
1021 RXEQ_VAL(7, 0x23, 2, 2, 2, 2), /* HDR, was 0, 1, 2, 3 */
1022 /* Set Preamp setting 2 (ZFR/ZCNT) */
1023 RXEQ_VAL(7, 0x1B, 12, 12, 12, 12), /* FDR, was 12, 16, 20, 24 */
1024 RXEQ_VAL(7, 0x1C, 12, 12, 12, 12), /* HDR, was 12, 16, 20, 24 */
1025 /* Set Preamp DC gain and Setting 1 (GFR/GHR) */
1026 RXEQ_VAL(7, 0x1E, 16, 16, 16, 16), /* FDR, was 16, 17, 18, 20 */
1027 RXEQ_VAL(7, 0x1F, 16, 16, 16, 16), /* HDR, was 16, 17, 18, 20 */
1028 /* Toggle RELOCK (in VCDL_CTRL0) to lock to data */
1029 RXEQ_VAL_ALL(6, 6, 0x20), /* Set D5 High */
1030 RXEQ_VAL_ALL(6, 6, 0), /* Set D5 Low */
1033 /* There are 17 values from vendor, but IBC only accesses the first 16 */
1034 #define DDS_ROWS (16)
1035 #define RXEQ_ROWS ARRAY_SIZE(rxeq_init_vals)
1037 static int qib_sd_setvals(struct qib_devdata
*dd
)
1040 int min_idx
; /* Minimum index for this portion of table */
1041 uint32_t dds_reg_map
;
1042 u64 __iomem
*taddr
, *iaddr
;
1046 taddr
= dd
->kregbase
+ kr_serdes_maptable
;
1047 iaddr
= dd
->kregbase
+ kr_serdes_ddsrxeq0
;
1050 * Init the DDS section of the table.
1051 * Each "row" of the table provokes NUM_DDS_REG writes, to the
1052 * registers indicated in DDS_REG_MAP.
1054 sdctl
= qib_read_kreg64(dd
, kr_ibserdesctrl
);
1055 sdctl
= (sdctl
& ~(0x1f << 8)) | (NUM_DDS_REGS
<< 8);
1056 sdctl
= (sdctl
& ~(0x1f << 13)) | (RXEQ_ROWS
<< 13);
1057 qib_write_kreg(dd
, kr_ibserdesctrl
, sdctl
);
1060 * Iterate down table within loop for each register to store.
1062 dds_reg_map
= DDS_REG_MAP
;
1063 for (idx
= 0; idx
< NUM_DDS_REGS
; ++idx
) {
1064 data
= ((dds_reg_map
& 0xF) << 4) | TX_FAST_ELT
;
1065 writeq(data
, iaddr
+ idx
);
1067 qib_read_kreg32(dd
, kr_scratch
);
1069 for (midx
= 0; midx
< DDS_ROWS
; ++midx
) {
1070 u64 __iomem
*daddr
= taddr
+ ((midx
<< 4) + idx
);
1071 data
= dds_init_vals
[midx
].reg_vals
[idx
];
1072 writeq(data
, daddr
);
1074 qib_read_kreg32(dd
, kr_scratch
);
1075 } /* End inner for (vals for this reg, each row) */
1076 } /* end outer for (regs to be stored) */
1079 * Init the RXEQ section of the table.
1080 * This runs in a different order, as the pattern of
1081 * register references is more complex, but there are only
1082 * four "data" values per register.
1084 min_idx
= idx
; /* RXEQ indices pick up where DDS left off */
1085 taddr
+= 0x100; /* RXEQ data is in second half of table */
1086 /* Iterate through RXEQ register addresses */
1087 for (idx
= 0; idx
< RXEQ_ROWS
; ++idx
) {
1088 int didx
; /* "destination" */
1091 /* didx is offset by min_idx to address RXEQ range of regs */
1092 didx
= idx
+ min_idx
;
1093 /* Store the next RXEQ register address */
1094 writeq(rxeq_init_vals
[idx
].rdesc
, iaddr
+ didx
);
1096 qib_read_kreg32(dd
, kr_scratch
);
1097 /* Iterate through RXEQ values */
1098 for (vidx
= 0; vidx
< 4; vidx
++) {
1099 data
= rxeq_init_vals
[idx
].rdata
[vidx
];
1100 writeq(data
, taddr
+ (vidx
<< 6) + idx
);
1102 qib_read_kreg32(dd
, kr_scratch
);
1104 } /* end outer for (Reg-writes for RXEQ) */
1108 #define CMUCTRL5 EPB_LOC(7, 0, 0x15)
1109 #define RXHSCTRL0(chan) EPB_LOC(chan, 6, 0)
1110 #define VCDL_DAC2(chan) EPB_LOC(chan, 6, 5)
1111 #define VCDL_CTRL0(chan) EPB_LOC(chan, 6, 6)
1112 #define VCDL_CTRL2(chan) EPB_LOC(chan, 6, 8)
1113 #define START_EQ2(chan) EPB_LOC(chan, 7, 0x28)
1116 * Repeat a "store" across all channels of the IB SerDes.
1117 * Although nominally it inherits the "read value" of the last
1118 * channel it modified, the only really useful return is <0 for
1119 * failure, >= 0 for success. The parameter 'loc' is assumed to
1120 * be the location in some channel of the register to be modified
1121 * The caller can specify use of the "gang write" option of EPB,
1122 * in which case we use the specified channel data for any fields
1123 * not explicitely written.
1125 static int ibsd_mod_allchnls(struct qib_devdata
*dd
, int loc
, int val
,
1131 if (loc
& EPB_GLOBAL_WR
) {
1133 * Our caller has assured us that we can set all four
1134 * channels at once. Trust that. If mask is not 0xFF,
1135 * we will read the _specified_ channel for our starting
1138 loc
|= (1U << EPB_IB_QUAD0_CS_SHF
);
1139 chnl
= (loc
>> (4 + EPB_ADDR_SHF
)) & 7;
1141 ret
= qib_sd7220_reg_mod(dd
, IB_7220_SERDES
,
1142 loc
& ~EPB_GLOBAL_WR
, 0, 0);
1144 int sloc
= loc
>> EPB_ADDR_SHF
;
1146 qib_dev_err(dd
, "pre-read failed: elt %d,"
1147 " addr 0x%X, chnl %d\n",
1149 (sloc
>> 9) & 0x3f, chnl
);
1152 val
= (ret
& ~mask
) | (val
& mask
);
1154 loc
&= ~(7 << (4+EPB_ADDR_SHF
));
1155 ret
= qib_sd7220_reg_mod(dd
, IB_7220_SERDES
, loc
, val
, 0xFF);
1157 int sloc
= loc
>> EPB_ADDR_SHF
;
1159 qib_dev_err(dd
, "Global WR failed: elt %d,"
1160 " addr 0x%X, val %02X\n",
1161 (sloc
& 0xF), (sloc
>> 9) & 0x3f, val
);
1165 /* Clear "channel" and set CS so we can simply iterate */
1166 loc
&= ~(7 << (4+EPB_ADDR_SHF
));
1167 loc
|= (1U << EPB_IB_QUAD0_CS_SHF
);
1168 for (chnl
= 0; chnl
< 4; ++chnl
) {
1169 int cloc
= loc
| (chnl
<< (4+EPB_ADDR_SHF
));
1171 ret
= qib_sd7220_reg_mod(dd
, IB_7220_SERDES
, cloc
, val
, mask
);
1173 int sloc
= loc
>> EPB_ADDR_SHF
;
1175 qib_dev_err(dd
, "Write failed: elt %d,"
1176 " addr 0x%X, chnl %d, val 0x%02X,"
1178 (sloc
& 0xF), (sloc
>> 9) & 0x3f, chnl
,
1179 val
& 0xFF, mask
& 0xFF);
1187 * Set the Tx values normally modified by IBC in IB1.2 mode to default
1188 * values, as gotten from first row of init table.
1190 static int set_dds_vals(struct qib_devdata
*dd
, struct dds_init
*ddi
)
1196 regmap
= DDS_REG_MAP
;
1197 for (idx
= 0; idx
< NUM_DDS_REGS
; ++idx
) {
1198 reg
= (regmap
& 0xF);
1200 data
= ddi
->reg_vals
[idx
];
1201 /* Vendor says RMW not needed for these regs, use 0xFF mask */
1202 ret
= ibsd_mod_allchnls(dd
, EPB_LOC(0, 9, reg
), data
, 0xFF);
1210 * Set the Rx values normally modified by IBC in IB1.2 mode to default
1211 * values, as gotten from selected column of init table.
1213 static int set_rxeq_vals(struct qib_devdata
*dd
, int vsel
)
1217 int cnt
= ARRAY_SIZE(rxeq_init_vals
);
1219 for (ridx
= 0; ridx
< cnt
; ++ridx
) {
1220 int elt
, reg
, val
, loc
;
1222 elt
= rxeq_init_vals
[ridx
].rdesc
& 0xF;
1223 reg
= rxeq_init_vals
[ridx
].rdesc
>> 4;
1224 loc
= EPB_LOC(0, elt
, reg
);
1225 val
= rxeq_init_vals
[ridx
].rdata
[vsel
];
1226 /* mask of 0xFF, because hardware does full-byte store. */
1227 ret
= ibsd_mod_allchnls(dd
, loc
, val
, 0xFF);
1235 * Set the default values (row 0) for DDR Driver Demphasis.
1236 * we do this initially and whenever we turn off IB-1.2
1238 * The "default" values for Rx equalization are also stored to
1239 * SerDes registers. Formerly (and still default), we used set 2.
1240 * For experimenting with cables and link-partners, we allow changing
1241 * that via a module parameter.
1243 static unsigned qib_rxeq_set
= 2;
1244 module_param_named(rxeq_default_set
, qib_rxeq_set
, uint
,
1246 MODULE_PARM_DESC(rxeq_default_set
,
1247 "Which set [0..3] of Rx Equalization values is default");
1249 static int qib_internal_presets(struct qib_devdata
*dd
)
1253 ret
= set_dds_vals(dd
, dds_init_vals
+ DDS_3M
);
1256 qib_dev_err(dd
, "Failed to set default DDS values\n");
1257 ret
= set_rxeq_vals(dd
, qib_rxeq_set
& 3);
1259 qib_dev_err(dd
, "Failed to set default RXEQ values\n");
1263 int qib_sd7220_presets(struct qib_devdata
*dd
)
1267 if (!dd
->cspec
->presets_needed
)
1269 dd
->cspec
->presets_needed
= 0;
1270 /* Assert uC reset, so we don't clash with it. */
1271 qib_ibsd_reset(dd
, 1);
1273 qib_sd_trimdone_monitor(dd
, "link-down");
1275 ret
= qib_internal_presets(dd
);
1279 static int qib_sd_trimself(struct qib_devdata
*dd
, int val
)
1281 int loc
= CMUCTRL5
| (1U << EPB_IB_QUAD0_CS_SHF
);
1283 return qib_sd7220_reg_mod(dd
, IB_7220_SERDES
, loc
, val
, 0xFF);
1286 static int qib_sd_early(struct qib_devdata
*dd
)
1290 ret
= ibsd_mod_allchnls(dd
, RXHSCTRL0(0) | EPB_GLOBAL_WR
, 0xD4, 0xFF);
1293 ret
= ibsd_mod_allchnls(dd
, START_EQ1(0) | EPB_GLOBAL_WR
, 0x10, 0xFF);
1296 ret
= ibsd_mod_allchnls(dd
, START_EQ2(0) | EPB_GLOBAL_WR
, 0x30, 0xFF);
1301 #define BACTRL(chnl) EPB_LOC(chnl, 6, 0x0E)
1302 #define LDOUTCTRL1(chnl) EPB_LOC(chnl, 7, 6)
1303 #define RXHSSTATUS(chnl) EPB_LOC(chnl, 6, 0xF)
1305 static int qib_sd_dactrim(struct qib_devdata
*dd
)
1309 ret
= ibsd_mod_allchnls(dd
, VCDL_DAC2(0) | EPB_GLOBAL_WR
, 0x2D, 0xFF);
1313 /* more fine-tuning of what will be default */
1314 ret
= ibsd_mod_allchnls(dd
, VCDL_CTRL2(0), 3, 0xF);
1318 ret
= ibsd_mod_allchnls(dd
, BACTRL(0) | EPB_GLOBAL_WR
, 0x40, 0xFF);
1322 ret
= ibsd_mod_allchnls(dd
, LDOUTCTRL1(0) | EPB_GLOBAL_WR
, 0x04, 0xFF);
1326 ret
= ibsd_mod_allchnls(dd
, RXHSSTATUS(0) | EPB_GLOBAL_WR
, 0x04, 0xFF);
1331 * Delay for max possible number of steps, with slop.
1332 * Each step is about 4usec.
1336 ret
= ibsd_mod_allchnls(dd
, LDOUTCTRL1(0) | EPB_GLOBAL_WR
, 0x00, 0xFF);
1342 #define RELOCK_FIRST_MS 3
1343 #define RXLSPPM(chan) EPB_LOC(chan, 0, 2)
1344 void toggle_7220_rclkrls(struct qib_devdata
*dd
)
1346 int loc
= RXLSPPM(0) | EPB_GLOBAL_WR
;
1349 ret
= ibsd_mod_allchnls(dd
, loc
, 0, 0x80);
1351 qib_dev_err(dd
, "RCLKRLS failed to clear D7\n");
1354 ibsd_mod_allchnls(dd
, loc
, 0x80, 0x80);
1356 /* And again for good measure */
1358 ret
= ibsd_mod_allchnls(dd
, loc
, 0, 0x80);
1360 qib_dev_err(dd
, "RCLKRLS failed to clear D7\n");
1363 ibsd_mod_allchnls(dd
, loc
, 0x80, 0x80);
1365 /* Now reset xgxs and IBC to complete the recovery */
1366 dd
->f_xgxs_reset(dd
->pport
);
1370 * Shut down the timer that polls for relock occasions, if needed
1371 * this is "hooked" from qib_7220_quiet_serdes(), which is called
1372 * just before qib_shutdown_device() in qib_driver.c shuts down all
1375 void shutdown_7220_relock_poll(struct qib_devdata
*dd
)
1377 if (dd
->cspec
->relock_timer_active
)
1378 del_timer_sync(&dd
->cspec
->relock_timer
);
1381 static unsigned qib_relock_by_timer
= 1;
1382 module_param_named(relock_by_timer
, qib_relock_by_timer
, uint
,
1384 MODULE_PARM_DESC(relock_by_timer
, "Allow relock attempt if link not up");
1386 static void qib_run_relock(unsigned long opaque
)
1388 struct qib_devdata
*dd
= (struct qib_devdata
*)opaque
;
1389 struct qib_pportdata
*ppd
= dd
->pport
;
1390 struct qib_chip_specific
*cs
= dd
->cspec
;
1394 * Check link-training state for "stuck" state, when down.
1395 * if found, try relock and schedule another try at
1396 * exponentially growing delay, maxed at one second.
1397 * if not stuck, our work is done.
1399 if ((dd
->flags
& QIB_INITTED
) && !(ppd
->lflags
&
1400 (QIBL_IB_AUTONEG_INPROG
| QIBL_LINKINIT
| QIBL_LINKARMED
|
1401 QIBL_LINKACTIVE
))) {
1402 if (qib_relock_by_timer
) {
1403 if (!(ppd
->lflags
& QIBL_IB_LINK_DISABLED
))
1404 toggle_7220_rclkrls(dd
);
1406 /* re-set timer for next check */
1407 timeoff
= cs
->relock_interval
<< 1;
1410 cs
->relock_interval
= timeoff
;
1413 mod_timer(&cs
->relock_timer
, jiffies
+ timeoff
);
1416 void set_7220_relock_poll(struct qib_devdata
*dd
, int ibup
)
1418 struct qib_chip_specific
*cs
= dd
->cspec
;
1421 /* We are now up, relax timer to 1 second interval */
1422 if (cs
->relock_timer_active
) {
1423 cs
->relock_interval
= HZ
;
1424 mod_timer(&cs
->relock_timer
, jiffies
+ HZ
);
1427 /* Transition to down, (re-)set timer to short interval. */
1428 unsigned int timeout
;
1430 timeout
= msecs_to_jiffies(RELOCK_FIRST_MS
);
1433 /* If timer has not yet been started, do so. */
1434 if (!cs
->relock_timer_active
) {
1435 cs
->relock_timer_active
= 1;
1436 init_timer(&cs
->relock_timer
);
1437 cs
->relock_timer
.function
= qib_run_relock
;
1438 cs
->relock_timer
.data
= (unsigned long) dd
;
1439 cs
->relock_interval
= timeout
;
1440 cs
->relock_timer
.expires
= jiffies
+ timeout
;
1441 add_timer(&cs
->relock_timer
);
1443 cs
->relock_interval
= timeout
;
1444 mod_timer(&cs
->relock_timer
, jiffies
+ timeout
);