2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
30 #include "print-tree.h"
31 #include "transaction.h"
34 #include "free-space-cache.h"
36 /* control flags for do_chunk_alloc's force field
37 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
38 * if we really need one.
40 * CHUNK_ALLOC_FORCE means it must try to allocate one
42 * CHUNK_ALLOC_LIMITED means to only try and allocate one
43 * if we have very few chunks already allocated. This is
44 * used as part of the clustering code to help make sure
45 * we have a good pool of storage to cluster in, without
46 * filling the FS with empty chunks
50 CHUNK_ALLOC_NO_FORCE
= 0,
51 CHUNK_ALLOC_FORCE
= 1,
52 CHUNK_ALLOC_LIMITED
= 2,
55 static int update_block_group(struct btrfs_trans_handle
*trans
,
56 struct btrfs_root
*root
,
57 u64 bytenr
, u64 num_bytes
, int alloc
);
58 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
59 struct btrfs_root
*root
,
60 u64 bytenr
, u64 num_bytes
, u64 parent
,
61 u64 root_objectid
, u64 owner_objectid
,
62 u64 owner_offset
, int refs_to_drop
,
63 struct btrfs_delayed_extent_op
*extra_op
);
64 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
65 struct extent_buffer
*leaf
,
66 struct btrfs_extent_item
*ei
);
67 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
68 struct btrfs_root
*root
,
69 u64 parent
, u64 root_objectid
,
70 u64 flags
, u64 owner
, u64 offset
,
71 struct btrfs_key
*ins
, int ref_mod
);
72 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
73 struct btrfs_root
*root
,
74 u64 parent
, u64 root_objectid
,
75 u64 flags
, struct btrfs_disk_key
*key
,
76 int level
, struct btrfs_key
*ins
);
77 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
78 struct btrfs_root
*extent_root
, u64 alloc_bytes
,
79 u64 flags
, int force
);
80 static int find_next_key(struct btrfs_path
*path
, int level
,
81 struct btrfs_key
*key
);
82 static void dump_space_info(struct btrfs_space_info
*info
, u64 bytes
,
83 int dump_block_groups
);
86 block_group_cache_done(struct btrfs_block_group_cache
*cache
)
89 return cache
->cached
== BTRFS_CACHE_FINISHED
;
92 static int block_group_bits(struct btrfs_block_group_cache
*cache
, u64 bits
)
94 return (cache
->flags
& bits
) == bits
;
97 void btrfs_get_block_group(struct btrfs_block_group_cache
*cache
)
99 atomic_inc(&cache
->count
);
102 void btrfs_put_block_group(struct btrfs_block_group_cache
*cache
)
104 if (atomic_dec_and_test(&cache
->count
)) {
105 WARN_ON(cache
->pinned
> 0);
106 WARN_ON(cache
->reserved
> 0);
107 WARN_ON(cache
->reserved_pinned
> 0);
113 * this adds the block group to the fs_info rb tree for the block group
116 static int btrfs_add_block_group_cache(struct btrfs_fs_info
*info
,
117 struct btrfs_block_group_cache
*block_group
)
120 struct rb_node
*parent
= NULL
;
121 struct btrfs_block_group_cache
*cache
;
123 spin_lock(&info
->block_group_cache_lock
);
124 p
= &info
->block_group_cache_tree
.rb_node
;
128 cache
= rb_entry(parent
, struct btrfs_block_group_cache
,
130 if (block_group
->key
.objectid
< cache
->key
.objectid
) {
132 } else if (block_group
->key
.objectid
> cache
->key
.objectid
) {
135 spin_unlock(&info
->block_group_cache_lock
);
140 rb_link_node(&block_group
->cache_node
, parent
, p
);
141 rb_insert_color(&block_group
->cache_node
,
142 &info
->block_group_cache_tree
);
143 spin_unlock(&info
->block_group_cache_lock
);
149 * This will return the block group at or after bytenr if contains is 0, else
150 * it will return the block group that contains the bytenr
152 static struct btrfs_block_group_cache
*
153 block_group_cache_tree_search(struct btrfs_fs_info
*info
, u64 bytenr
,
156 struct btrfs_block_group_cache
*cache
, *ret
= NULL
;
160 spin_lock(&info
->block_group_cache_lock
);
161 n
= info
->block_group_cache_tree
.rb_node
;
164 cache
= rb_entry(n
, struct btrfs_block_group_cache
,
166 end
= cache
->key
.objectid
+ cache
->key
.offset
- 1;
167 start
= cache
->key
.objectid
;
169 if (bytenr
< start
) {
170 if (!contains
&& (!ret
|| start
< ret
->key
.objectid
))
173 } else if (bytenr
> start
) {
174 if (contains
&& bytenr
<= end
) {
185 btrfs_get_block_group(ret
);
186 spin_unlock(&info
->block_group_cache_lock
);
191 static int add_excluded_extent(struct btrfs_root
*root
,
192 u64 start
, u64 num_bytes
)
194 u64 end
= start
+ num_bytes
- 1;
195 set_extent_bits(&root
->fs_info
->freed_extents
[0],
196 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
197 set_extent_bits(&root
->fs_info
->freed_extents
[1],
198 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
202 static void free_excluded_extents(struct btrfs_root
*root
,
203 struct btrfs_block_group_cache
*cache
)
207 start
= cache
->key
.objectid
;
208 end
= start
+ cache
->key
.offset
- 1;
210 clear_extent_bits(&root
->fs_info
->freed_extents
[0],
211 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
212 clear_extent_bits(&root
->fs_info
->freed_extents
[1],
213 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
216 static int exclude_super_stripes(struct btrfs_root
*root
,
217 struct btrfs_block_group_cache
*cache
)
224 if (cache
->key
.objectid
< BTRFS_SUPER_INFO_OFFSET
) {
225 stripe_len
= BTRFS_SUPER_INFO_OFFSET
- cache
->key
.objectid
;
226 cache
->bytes_super
+= stripe_len
;
227 ret
= add_excluded_extent(root
, cache
->key
.objectid
,
232 for (i
= 0; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
233 bytenr
= btrfs_sb_offset(i
);
234 ret
= btrfs_rmap_block(&root
->fs_info
->mapping_tree
,
235 cache
->key
.objectid
, bytenr
,
236 0, &logical
, &nr
, &stripe_len
);
240 cache
->bytes_super
+= stripe_len
;
241 ret
= add_excluded_extent(root
, logical
[nr
],
251 static struct btrfs_caching_control
*
252 get_caching_control(struct btrfs_block_group_cache
*cache
)
254 struct btrfs_caching_control
*ctl
;
256 spin_lock(&cache
->lock
);
257 if (cache
->cached
!= BTRFS_CACHE_STARTED
) {
258 spin_unlock(&cache
->lock
);
262 /* We're loading it the fast way, so we don't have a caching_ctl. */
263 if (!cache
->caching_ctl
) {
264 spin_unlock(&cache
->lock
);
268 ctl
= cache
->caching_ctl
;
269 atomic_inc(&ctl
->count
);
270 spin_unlock(&cache
->lock
);
274 static void put_caching_control(struct btrfs_caching_control
*ctl
)
276 if (atomic_dec_and_test(&ctl
->count
))
281 * this is only called by cache_block_group, since we could have freed extents
282 * we need to check the pinned_extents for any extents that can't be used yet
283 * since their free space will be released as soon as the transaction commits.
285 static u64
add_new_free_space(struct btrfs_block_group_cache
*block_group
,
286 struct btrfs_fs_info
*info
, u64 start
, u64 end
)
288 u64 extent_start
, extent_end
, size
, total_added
= 0;
291 while (start
< end
) {
292 ret
= find_first_extent_bit(info
->pinned_extents
, start
,
293 &extent_start
, &extent_end
,
294 EXTENT_DIRTY
| EXTENT_UPTODATE
);
298 if (extent_start
<= start
) {
299 start
= extent_end
+ 1;
300 } else if (extent_start
> start
&& extent_start
< end
) {
301 size
= extent_start
- start
;
303 ret
= btrfs_add_free_space(block_group
, start
,
306 start
= extent_end
+ 1;
315 ret
= btrfs_add_free_space(block_group
, start
, size
);
322 static int caching_kthread(void *data
)
324 struct btrfs_block_group_cache
*block_group
= data
;
325 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
326 struct btrfs_caching_control
*caching_ctl
= block_group
->caching_ctl
;
327 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
328 struct btrfs_path
*path
;
329 struct extent_buffer
*leaf
;
330 struct btrfs_key key
;
336 path
= btrfs_alloc_path();
340 last
= max_t(u64
, block_group
->key
.objectid
, BTRFS_SUPER_INFO_OFFSET
);
343 * We don't want to deadlock with somebody trying to allocate a new
344 * extent for the extent root while also trying to search the extent
345 * root to add free space. So we skip locking and search the commit
346 * root, since its read-only
348 path
->skip_locking
= 1;
349 path
->search_commit_root
= 1;
354 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
356 mutex_lock(&caching_ctl
->mutex
);
357 /* need to make sure the commit_root doesn't disappear */
358 down_read(&fs_info
->extent_commit_sem
);
360 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
364 leaf
= path
->nodes
[0];
365 nritems
= btrfs_header_nritems(leaf
);
369 if (fs_info
->closing
> 1) {
374 if (path
->slots
[0] < nritems
) {
375 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
377 ret
= find_next_key(path
, 0, &key
);
381 caching_ctl
->progress
= last
;
382 btrfs_release_path(extent_root
, path
);
383 up_read(&fs_info
->extent_commit_sem
);
384 mutex_unlock(&caching_ctl
->mutex
);
385 if (btrfs_transaction_in_commit(fs_info
))
392 if (key
.objectid
< block_group
->key
.objectid
) {
397 if (key
.objectid
>= block_group
->key
.objectid
+
398 block_group
->key
.offset
)
401 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
) {
402 total_found
+= add_new_free_space(block_group
,
405 last
= key
.objectid
+ key
.offset
;
407 if (total_found
> (1024 * 1024 * 2)) {
409 wake_up(&caching_ctl
->wait
);
416 total_found
+= add_new_free_space(block_group
, fs_info
, last
,
417 block_group
->key
.objectid
+
418 block_group
->key
.offset
);
419 caching_ctl
->progress
= (u64
)-1;
421 spin_lock(&block_group
->lock
);
422 block_group
->caching_ctl
= NULL
;
423 block_group
->cached
= BTRFS_CACHE_FINISHED
;
424 spin_unlock(&block_group
->lock
);
427 btrfs_free_path(path
);
428 up_read(&fs_info
->extent_commit_sem
);
430 free_excluded_extents(extent_root
, block_group
);
432 mutex_unlock(&caching_ctl
->mutex
);
433 wake_up(&caching_ctl
->wait
);
435 put_caching_control(caching_ctl
);
436 atomic_dec(&block_group
->space_info
->caching_threads
);
437 btrfs_put_block_group(block_group
);
442 static int cache_block_group(struct btrfs_block_group_cache
*cache
,
443 struct btrfs_trans_handle
*trans
,
444 struct btrfs_root
*root
,
447 struct btrfs_fs_info
*fs_info
= cache
->fs_info
;
448 struct btrfs_caching_control
*caching_ctl
;
449 struct task_struct
*tsk
;
453 if (cache
->cached
!= BTRFS_CACHE_NO
)
457 * We can't do the read from on-disk cache during a commit since we need
458 * to have the normal tree locking. Also if we are currently trying to
459 * allocate blocks for the tree root we can't do the fast caching since
460 * we likely hold important locks.
462 if (trans
&& (!trans
->transaction
->in_commit
) &&
463 (root
&& root
!= root
->fs_info
->tree_root
)) {
464 spin_lock(&cache
->lock
);
465 if (cache
->cached
!= BTRFS_CACHE_NO
) {
466 spin_unlock(&cache
->lock
);
469 cache
->cached
= BTRFS_CACHE_STARTED
;
470 spin_unlock(&cache
->lock
);
472 ret
= load_free_space_cache(fs_info
, cache
);
474 spin_lock(&cache
->lock
);
476 cache
->cached
= BTRFS_CACHE_FINISHED
;
477 cache
->last_byte_to_unpin
= (u64
)-1;
479 cache
->cached
= BTRFS_CACHE_NO
;
481 spin_unlock(&cache
->lock
);
483 free_excluded_extents(fs_info
->extent_root
, cache
);
491 caching_ctl
= kzalloc(sizeof(*caching_ctl
), GFP_NOFS
);
492 BUG_ON(!caching_ctl
);
494 INIT_LIST_HEAD(&caching_ctl
->list
);
495 mutex_init(&caching_ctl
->mutex
);
496 init_waitqueue_head(&caching_ctl
->wait
);
497 caching_ctl
->block_group
= cache
;
498 caching_ctl
->progress
= cache
->key
.objectid
;
499 /* one for caching kthread, one for caching block group list */
500 atomic_set(&caching_ctl
->count
, 2);
502 spin_lock(&cache
->lock
);
503 if (cache
->cached
!= BTRFS_CACHE_NO
) {
504 spin_unlock(&cache
->lock
);
508 cache
->caching_ctl
= caching_ctl
;
509 cache
->cached
= BTRFS_CACHE_STARTED
;
510 spin_unlock(&cache
->lock
);
512 down_write(&fs_info
->extent_commit_sem
);
513 list_add_tail(&caching_ctl
->list
, &fs_info
->caching_block_groups
);
514 up_write(&fs_info
->extent_commit_sem
);
516 atomic_inc(&cache
->space_info
->caching_threads
);
517 btrfs_get_block_group(cache
);
519 tsk
= kthread_run(caching_kthread
, cache
, "btrfs-cache-%llu\n",
520 cache
->key
.objectid
);
523 printk(KERN_ERR
"error running thread %d\n", ret
);
531 * return the block group that starts at or after bytenr
533 static struct btrfs_block_group_cache
*
534 btrfs_lookup_first_block_group(struct btrfs_fs_info
*info
, u64 bytenr
)
536 struct btrfs_block_group_cache
*cache
;
538 cache
= block_group_cache_tree_search(info
, bytenr
, 0);
544 * return the block group that contains the given bytenr
546 struct btrfs_block_group_cache
*btrfs_lookup_block_group(
547 struct btrfs_fs_info
*info
,
550 struct btrfs_block_group_cache
*cache
;
552 cache
= block_group_cache_tree_search(info
, bytenr
, 1);
557 static struct btrfs_space_info
*__find_space_info(struct btrfs_fs_info
*info
,
560 struct list_head
*head
= &info
->space_info
;
561 struct btrfs_space_info
*found
;
563 flags
&= BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_SYSTEM
|
564 BTRFS_BLOCK_GROUP_METADATA
;
567 list_for_each_entry_rcu(found
, head
, list
) {
568 if (found
->flags
& flags
) {
578 * after adding space to the filesystem, we need to clear the full flags
579 * on all the space infos.
581 void btrfs_clear_space_info_full(struct btrfs_fs_info
*info
)
583 struct list_head
*head
= &info
->space_info
;
584 struct btrfs_space_info
*found
;
587 list_for_each_entry_rcu(found
, head
, list
)
592 static u64
div_factor(u64 num
, int factor
)
601 static u64
div_factor_fine(u64 num
, int factor
)
610 u64
btrfs_find_block_group(struct btrfs_root
*root
,
611 u64 search_start
, u64 search_hint
, int owner
)
613 struct btrfs_block_group_cache
*cache
;
615 u64 last
= max(search_hint
, search_start
);
622 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
626 spin_lock(&cache
->lock
);
627 last
= cache
->key
.objectid
+ cache
->key
.offset
;
628 used
= btrfs_block_group_used(&cache
->item
);
630 if ((full_search
|| !cache
->ro
) &&
631 block_group_bits(cache
, BTRFS_BLOCK_GROUP_METADATA
)) {
632 if (used
+ cache
->pinned
+ cache
->reserved
<
633 div_factor(cache
->key
.offset
, factor
)) {
634 group_start
= cache
->key
.objectid
;
635 spin_unlock(&cache
->lock
);
636 btrfs_put_block_group(cache
);
640 spin_unlock(&cache
->lock
);
641 btrfs_put_block_group(cache
);
649 if (!full_search
&& factor
< 10) {
659 /* simple helper to search for an existing extent at a given offset */
660 int btrfs_lookup_extent(struct btrfs_root
*root
, u64 start
, u64 len
)
663 struct btrfs_key key
;
664 struct btrfs_path
*path
;
666 path
= btrfs_alloc_path();
668 key
.objectid
= start
;
670 btrfs_set_key_type(&key
, BTRFS_EXTENT_ITEM_KEY
);
671 ret
= btrfs_search_slot(NULL
, root
->fs_info
->extent_root
, &key
, path
,
673 btrfs_free_path(path
);
678 * helper function to lookup reference count and flags of extent.
680 * the head node for delayed ref is used to store the sum of all the
681 * reference count modifications queued up in the rbtree. the head
682 * node may also store the extent flags to set. This way you can check
683 * to see what the reference count and extent flags would be if all of
684 * the delayed refs are not processed.
686 int btrfs_lookup_extent_info(struct btrfs_trans_handle
*trans
,
687 struct btrfs_root
*root
, u64 bytenr
,
688 u64 num_bytes
, u64
*refs
, u64
*flags
)
690 struct btrfs_delayed_ref_head
*head
;
691 struct btrfs_delayed_ref_root
*delayed_refs
;
692 struct btrfs_path
*path
;
693 struct btrfs_extent_item
*ei
;
694 struct extent_buffer
*leaf
;
695 struct btrfs_key key
;
701 path
= btrfs_alloc_path();
705 key
.objectid
= bytenr
;
706 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
707 key
.offset
= num_bytes
;
709 path
->skip_locking
= 1;
710 path
->search_commit_root
= 1;
713 ret
= btrfs_search_slot(trans
, root
->fs_info
->extent_root
,
719 leaf
= path
->nodes
[0];
720 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
721 if (item_size
>= sizeof(*ei
)) {
722 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
723 struct btrfs_extent_item
);
724 num_refs
= btrfs_extent_refs(leaf
, ei
);
725 extent_flags
= btrfs_extent_flags(leaf
, ei
);
727 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
728 struct btrfs_extent_item_v0
*ei0
;
729 BUG_ON(item_size
!= sizeof(*ei0
));
730 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
731 struct btrfs_extent_item_v0
);
732 num_refs
= btrfs_extent_refs_v0(leaf
, ei0
);
733 /* FIXME: this isn't correct for data */
734 extent_flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
739 BUG_ON(num_refs
== 0);
749 delayed_refs
= &trans
->transaction
->delayed_refs
;
750 spin_lock(&delayed_refs
->lock
);
751 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
753 if (!mutex_trylock(&head
->mutex
)) {
754 atomic_inc(&head
->node
.refs
);
755 spin_unlock(&delayed_refs
->lock
);
757 btrfs_release_path(root
->fs_info
->extent_root
, path
);
759 mutex_lock(&head
->mutex
);
760 mutex_unlock(&head
->mutex
);
761 btrfs_put_delayed_ref(&head
->node
);
764 if (head
->extent_op
&& head
->extent_op
->update_flags
)
765 extent_flags
|= head
->extent_op
->flags_to_set
;
767 BUG_ON(num_refs
== 0);
769 num_refs
+= head
->node
.ref_mod
;
770 mutex_unlock(&head
->mutex
);
772 spin_unlock(&delayed_refs
->lock
);
774 WARN_ON(num_refs
== 0);
778 *flags
= extent_flags
;
780 btrfs_free_path(path
);
785 * Back reference rules. Back refs have three main goals:
787 * 1) differentiate between all holders of references to an extent so that
788 * when a reference is dropped we can make sure it was a valid reference
789 * before freeing the extent.
791 * 2) Provide enough information to quickly find the holders of an extent
792 * if we notice a given block is corrupted or bad.
794 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
795 * maintenance. This is actually the same as #2, but with a slightly
796 * different use case.
798 * There are two kinds of back refs. The implicit back refs is optimized
799 * for pointers in non-shared tree blocks. For a given pointer in a block,
800 * back refs of this kind provide information about the block's owner tree
801 * and the pointer's key. These information allow us to find the block by
802 * b-tree searching. The full back refs is for pointers in tree blocks not
803 * referenced by their owner trees. The location of tree block is recorded
804 * in the back refs. Actually the full back refs is generic, and can be
805 * used in all cases the implicit back refs is used. The major shortcoming
806 * of the full back refs is its overhead. Every time a tree block gets
807 * COWed, we have to update back refs entry for all pointers in it.
809 * For a newly allocated tree block, we use implicit back refs for
810 * pointers in it. This means most tree related operations only involve
811 * implicit back refs. For a tree block created in old transaction, the
812 * only way to drop a reference to it is COW it. So we can detect the
813 * event that tree block loses its owner tree's reference and do the
814 * back refs conversion.
816 * When a tree block is COW'd through a tree, there are four cases:
818 * The reference count of the block is one and the tree is the block's
819 * owner tree. Nothing to do in this case.
821 * The reference count of the block is one and the tree is not the
822 * block's owner tree. In this case, full back refs is used for pointers
823 * in the block. Remove these full back refs, add implicit back refs for
824 * every pointers in the new block.
826 * The reference count of the block is greater than one and the tree is
827 * the block's owner tree. In this case, implicit back refs is used for
828 * pointers in the block. Add full back refs for every pointers in the
829 * block, increase lower level extents' reference counts. The original
830 * implicit back refs are entailed to the new block.
832 * The reference count of the block is greater than one and the tree is
833 * not the block's owner tree. Add implicit back refs for every pointer in
834 * the new block, increase lower level extents' reference count.
836 * Back Reference Key composing:
838 * The key objectid corresponds to the first byte in the extent,
839 * The key type is used to differentiate between types of back refs.
840 * There are different meanings of the key offset for different types
843 * File extents can be referenced by:
845 * - multiple snapshots, subvolumes, or different generations in one subvol
846 * - different files inside a single subvolume
847 * - different offsets inside a file (bookend extents in file.c)
849 * The extent ref structure for the implicit back refs has fields for:
851 * - Objectid of the subvolume root
852 * - objectid of the file holding the reference
853 * - original offset in the file
854 * - how many bookend extents
856 * The key offset for the implicit back refs is hash of the first
859 * The extent ref structure for the full back refs has field for:
861 * - number of pointers in the tree leaf
863 * The key offset for the implicit back refs is the first byte of
866 * When a file extent is allocated, The implicit back refs is used.
867 * the fields are filled in:
869 * (root_key.objectid, inode objectid, offset in file, 1)
871 * When a file extent is removed file truncation, we find the
872 * corresponding implicit back refs and check the following fields:
874 * (btrfs_header_owner(leaf), inode objectid, offset in file)
876 * Btree extents can be referenced by:
878 * - Different subvolumes
880 * Both the implicit back refs and the full back refs for tree blocks
881 * only consist of key. The key offset for the implicit back refs is
882 * objectid of block's owner tree. The key offset for the full back refs
883 * is the first byte of parent block.
885 * When implicit back refs is used, information about the lowest key and
886 * level of the tree block are required. These information are stored in
887 * tree block info structure.
890 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
891 static int convert_extent_item_v0(struct btrfs_trans_handle
*trans
,
892 struct btrfs_root
*root
,
893 struct btrfs_path
*path
,
894 u64 owner
, u32 extra_size
)
896 struct btrfs_extent_item
*item
;
897 struct btrfs_extent_item_v0
*ei0
;
898 struct btrfs_extent_ref_v0
*ref0
;
899 struct btrfs_tree_block_info
*bi
;
900 struct extent_buffer
*leaf
;
901 struct btrfs_key key
;
902 struct btrfs_key found_key
;
903 u32 new_size
= sizeof(*item
);
907 leaf
= path
->nodes
[0];
908 BUG_ON(btrfs_item_size_nr(leaf
, path
->slots
[0]) != sizeof(*ei0
));
910 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
911 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
912 struct btrfs_extent_item_v0
);
913 refs
= btrfs_extent_refs_v0(leaf
, ei0
);
915 if (owner
== (u64
)-1) {
917 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
918 ret
= btrfs_next_leaf(root
, path
);
922 leaf
= path
->nodes
[0];
924 btrfs_item_key_to_cpu(leaf
, &found_key
,
926 BUG_ON(key
.objectid
!= found_key
.objectid
);
927 if (found_key
.type
!= BTRFS_EXTENT_REF_V0_KEY
) {
931 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
932 struct btrfs_extent_ref_v0
);
933 owner
= btrfs_ref_objectid_v0(leaf
, ref0
);
937 btrfs_release_path(root
, path
);
939 if (owner
< BTRFS_FIRST_FREE_OBJECTID
)
940 new_size
+= sizeof(*bi
);
942 new_size
-= sizeof(*ei0
);
943 ret
= btrfs_search_slot(trans
, root
, &key
, path
,
944 new_size
+ extra_size
, 1);
949 ret
= btrfs_extend_item(trans
, root
, path
, new_size
);
952 leaf
= path
->nodes
[0];
953 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
954 btrfs_set_extent_refs(leaf
, item
, refs
);
955 /* FIXME: get real generation */
956 btrfs_set_extent_generation(leaf
, item
, 0);
957 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
958 btrfs_set_extent_flags(leaf
, item
,
959 BTRFS_EXTENT_FLAG_TREE_BLOCK
|
960 BTRFS_BLOCK_FLAG_FULL_BACKREF
);
961 bi
= (struct btrfs_tree_block_info
*)(item
+ 1);
962 /* FIXME: get first key of the block */
963 memset_extent_buffer(leaf
, 0, (unsigned long)bi
, sizeof(*bi
));
964 btrfs_set_tree_block_level(leaf
, bi
, (int)owner
);
966 btrfs_set_extent_flags(leaf
, item
, BTRFS_EXTENT_FLAG_DATA
);
968 btrfs_mark_buffer_dirty(leaf
);
973 static u64
hash_extent_data_ref(u64 root_objectid
, u64 owner
, u64 offset
)
975 u32 high_crc
= ~(u32
)0;
976 u32 low_crc
= ~(u32
)0;
979 lenum
= cpu_to_le64(root_objectid
);
980 high_crc
= crc32c(high_crc
, &lenum
, sizeof(lenum
));
981 lenum
= cpu_to_le64(owner
);
982 low_crc
= crc32c(low_crc
, &lenum
, sizeof(lenum
));
983 lenum
= cpu_to_le64(offset
);
984 low_crc
= crc32c(low_crc
, &lenum
, sizeof(lenum
));
986 return ((u64
)high_crc
<< 31) ^ (u64
)low_crc
;
989 static u64
hash_extent_data_ref_item(struct extent_buffer
*leaf
,
990 struct btrfs_extent_data_ref
*ref
)
992 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf
, ref
),
993 btrfs_extent_data_ref_objectid(leaf
, ref
),
994 btrfs_extent_data_ref_offset(leaf
, ref
));
997 static int match_extent_data_ref(struct extent_buffer
*leaf
,
998 struct btrfs_extent_data_ref
*ref
,
999 u64 root_objectid
, u64 owner
, u64 offset
)
1001 if (btrfs_extent_data_ref_root(leaf
, ref
) != root_objectid
||
1002 btrfs_extent_data_ref_objectid(leaf
, ref
) != owner
||
1003 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
1008 static noinline
int lookup_extent_data_ref(struct btrfs_trans_handle
*trans
,
1009 struct btrfs_root
*root
,
1010 struct btrfs_path
*path
,
1011 u64 bytenr
, u64 parent
,
1013 u64 owner
, u64 offset
)
1015 struct btrfs_key key
;
1016 struct btrfs_extent_data_ref
*ref
;
1017 struct extent_buffer
*leaf
;
1023 key
.objectid
= bytenr
;
1025 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1026 key
.offset
= parent
;
1028 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1029 key
.offset
= hash_extent_data_ref(root_objectid
,
1034 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1043 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1044 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1045 btrfs_release_path(root
, path
);
1046 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1057 leaf
= path
->nodes
[0];
1058 nritems
= btrfs_header_nritems(leaf
);
1060 if (path
->slots
[0] >= nritems
) {
1061 ret
= btrfs_next_leaf(root
, path
);
1067 leaf
= path
->nodes
[0];
1068 nritems
= btrfs_header_nritems(leaf
);
1072 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1073 if (key
.objectid
!= bytenr
||
1074 key
.type
!= BTRFS_EXTENT_DATA_REF_KEY
)
1077 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1078 struct btrfs_extent_data_ref
);
1080 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1083 btrfs_release_path(root
, path
);
1095 static noinline
int insert_extent_data_ref(struct btrfs_trans_handle
*trans
,
1096 struct btrfs_root
*root
,
1097 struct btrfs_path
*path
,
1098 u64 bytenr
, u64 parent
,
1099 u64 root_objectid
, u64 owner
,
1100 u64 offset
, int refs_to_add
)
1102 struct btrfs_key key
;
1103 struct extent_buffer
*leaf
;
1108 key
.objectid
= bytenr
;
1110 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1111 key
.offset
= parent
;
1112 size
= sizeof(struct btrfs_shared_data_ref
);
1114 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1115 key
.offset
= hash_extent_data_ref(root_objectid
,
1117 size
= sizeof(struct btrfs_extent_data_ref
);
1120 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, size
);
1121 if (ret
&& ret
!= -EEXIST
)
1124 leaf
= path
->nodes
[0];
1126 struct btrfs_shared_data_ref
*ref
;
1127 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1128 struct btrfs_shared_data_ref
);
1130 btrfs_set_shared_data_ref_count(leaf
, ref
, refs_to_add
);
1132 num_refs
= btrfs_shared_data_ref_count(leaf
, ref
);
1133 num_refs
+= refs_to_add
;
1134 btrfs_set_shared_data_ref_count(leaf
, ref
, num_refs
);
1137 struct btrfs_extent_data_ref
*ref
;
1138 while (ret
== -EEXIST
) {
1139 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1140 struct btrfs_extent_data_ref
);
1141 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1144 btrfs_release_path(root
, path
);
1146 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1148 if (ret
&& ret
!= -EEXIST
)
1151 leaf
= path
->nodes
[0];
1153 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1154 struct btrfs_extent_data_ref
);
1156 btrfs_set_extent_data_ref_root(leaf
, ref
,
1158 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
1159 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
1160 btrfs_set_extent_data_ref_count(leaf
, ref
, refs_to_add
);
1162 num_refs
= btrfs_extent_data_ref_count(leaf
, ref
);
1163 num_refs
+= refs_to_add
;
1164 btrfs_set_extent_data_ref_count(leaf
, ref
, num_refs
);
1167 btrfs_mark_buffer_dirty(leaf
);
1170 btrfs_release_path(root
, path
);
1174 static noinline
int remove_extent_data_ref(struct btrfs_trans_handle
*trans
,
1175 struct btrfs_root
*root
,
1176 struct btrfs_path
*path
,
1179 struct btrfs_key key
;
1180 struct btrfs_extent_data_ref
*ref1
= NULL
;
1181 struct btrfs_shared_data_ref
*ref2
= NULL
;
1182 struct extent_buffer
*leaf
;
1186 leaf
= path
->nodes
[0];
1187 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1189 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1190 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1191 struct btrfs_extent_data_ref
);
1192 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1193 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1194 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1195 struct btrfs_shared_data_ref
);
1196 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1197 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1198 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1199 struct btrfs_extent_ref_v0
*ref0
;
1200 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1201 struct btrfs_extent_ref_v0
);
1202 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1208 BUG_ON(num_refs
< refs_to_drop
);
1209 num_refs
-= refs_to_drop
;
1211 if (num_refs
== 0) {
1212 ret
= btrfs_del_item(trans
, root
, path
);
1214 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
)
1215 btrfs_set_extent_data_ref_count(leaf
, ref1
, num_refs
);
1216 else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
)
1217 btrfs_set_shared_data_ref_count(leaf
, ref2
, num_refs
);
1218 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1220 struct btrfs_extent_ref_v0
*ref0
;
1221 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1222 struct btrfs_extent_ref_v0
);
1223 btrfs_set_ref_count_v0(leaf
, ref0
, num_refs
);
1226 btrfs_mark_buffer_dirty(leaf
);
1231 static noinline u32
extent_data_ref_count(struct btrfs_root
*root
,
1232 struct btrfs_path
*path
,
1233 struct btrfs_extent_inline_ref
*iref
)
1235 struct btrfs_key key
;
1236 struct extent_buffer
*leaf
;
1237 struct btrfs_extent_data_ref
*ref1
;
1238 struct btrfs_shared_data_ref
*ref2
;
1241 leaf
= path
->nodes
[0];
1242 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1244 if (btrfs_extent_inline_ref_type(leaf
, iref
) ==
1245 BTRFS_EXTENT_DATA_REF_KEY
) {
1246 ref1
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1247 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1249 ref2
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1250 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1252 } else if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1253 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1254 struct btrfs_extent_data_ref
);
1255 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1256 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1257 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1258 struct btrfs_shared_data_ref
);
1259 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1260 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1261 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1262 struct btrfs_extent_ref_v0
*ref0
;
1263 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1264 struct btrfs_extent_ref_v0
);
1265 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1273 static noinline
int lookup_tree_block_ref(struct btrfs_trans_handle
*trans
,
1274 struct btrfs_root
*root
,
1275 struct btrfs_path
*path
,
1276 u64 bytenr
, u64 parent
,
1279 struct btrfs_key key
;
1282 key
.objectid
= bytenr
;
1284 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1285 key
.offset
= parent
;
1287 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1288 key
.offset
= root_objectid
;
1291 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1294 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1295 if (ret
== -ENOENT
&& parent
) {
1296 btrfs_release_path(root
, path
);
1297 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1298 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1306 static noinline
int insert_tree_block_ref(struct btrfs_trans_handle
*trans
,
1307 struct btrfs_root
*root
,
1308 struct btrfs_path
*path
,
1309 u64 bytenr
, u64 parent
,
1312 struct btrfs_key key
;
1315 key
.objectid
= bytenr
;
1317 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1318 key
.offset
= parent
;
1320 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1321 key
.offset
= root_objectid
;
1324 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1325 btrfs_release_path(root
, path
);
1329 static inline int extent_ref_type(u64 parent
, u64 owner
)
1332 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1334 type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1336 type
= BTRFS_TREE_BLOCK_REF_KEY
;
1339 type
= BTRFS_SHARED_DATA_REF_KEY
;
1341 type
= BTRFS_EXTENT_DATA_REF_KEY
;
1346 static int find_next_key(struct btrfs_path
*path
, int level
,
1347 struct btrfs_key
*key
)
1350 for (; level
< BTRFS_MAX_LEVEL
; level
++) {
1351 if (!path
->nodes
[level
])
1353 if (path
->slots
[level
] + 1 >=
1354 btrfs_header_nritems(path
->nodes
[level
]))
1357 btrfs_item_key_to_cpu(path
->nodes
[level
], key
,
1358 path
->slots
[level
] + 1);
1360 btrfs_node_key_to_cpu(path
->nodes
[level
], key
,
1361 path
->slots
[level
] + 1);
1368 * look for inline back ref. if back ref is found, *ref_ret is set
1369 * to the address of inline back ref, and 0 is returned.
1371 * if back ref isn't found, *ref_ret is set to the address where it
1372 * should be inserted, and -ENOENT is returned.
1374 * if insert is true and there are too many inline back refs, the path
1375 * points to the extent item, and -EAGAIN is returned.
1377 * NOTE: inline back refs are ordered in the same way that back ref
1378 * items in the tree are ordered.
1380 static noinline_for_stack
1381 int lookup_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1382 struct btrfs_root
*root
,
1383 struct btrfs_path
*path
,
1384 struct btrfs_extent_inline_ref
**ref_ret
,
1385 u64 bytenr
, u64 num_bytes
,
1386 u64 parent
, u64 root_objectid
,
1387 u64 owner
, u64 offset
, int insert
)
1389 struct btrfs_key key
;
1390 struct extent_buffer
*leaf
;
1391 struct btrfs_extent_item
*ei
;
1392 struct btrfs_extent_inline_ref
*iref
;
1403 key
.objectid
= bytenr
;
1404 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1405 key
.offset
= num_bytes
;
1407 want
= extent_ref_type(parent
, owner
);
1409 extra_size
= btrfs_extent_inline_ref_size(want
);
1410 path
->keep_locks
= 1;
1413 ret
= btrfs_search_slot(trans
, root
, &key
, path
, extra_size
, 1);
1420 leaf
= path
->nodes
[0];
1421 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1422 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1423 if (item_size
< sizeof(*ei
)) {
1428 ret
= convert_extent_item_v0(trans
, root
, path
, owner
,
1434 leaf
= path
->nodes
[0];
1435 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1438 BUG_ON(item_size
< sizeof(*ei
));
1440 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1441 flags
= btrfs_extent_flags(leaf
, ei
);
1443 ptr
= (unsigned long)(ei
+ 1);
1444 end
= (unsigned long)ei
+ item_size
;
1446 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
1447 ptr
+= sizeof(struct btrfs_tree_block_info
);
1450 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_DATA
));
1459 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1460 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1464 ptr
+= btrfs_extent_inline_ref_size(type
);
1468 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1469 struct btrfs_extent_data_ref
*dref
;
1470 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1471 if (match_extent_data_ref(leaf
, dref
, root_objectid
,
1476 if (hash_extent_data_ref_item(leaf
, dref
) <
1477 hash_extent_data_ref(root_objectid
, owner
, offset
))
1481 ref_offset
= btrfs_extent_inline_ref_offset(leaf
, iref
);
1483 if (parent
== ref_offset
) {
1487 if (ref_offset
< parent
)
1490 if (root_objectid
== ref_offset
) {
1494 if (ref_offset
< root_objectid
)
1498 ptr
+= btrfs_extent_inline_ref_size(type
);
1500 if (err
== -ENOENT
&& insert
) {
1501 if (item_size
+ extra_size
>=
1502 BTRFS_MAX_EXTENT_ITEM_SIZE(root
)) {
1507 * To add new inline back ref, we have to make sure
1508 * there is no corresponding back ref item.
1509 * For simplicity, we just do not add new inline back
1510 * ref if there is any kind of item for this block
1512 if (find_next_key(path
, 0, &key
) == 0 &&
1513 key
.objectid
== bytenr
&&
1514 key
.type
< BTRFS_BLOCK_GROUP_ITEM_KEY
) {
1519 *ref_ret
= (struct btrfs_extent_inline_ref
*)ptr
;
1522 path
->keep_locks
= 0;
1523 btrfs_unlock_up_safe(path
, 1);
1529 * helper to add new inline back ref
1531 static noinline_for_stack
1532 int setup_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1533 struct btrfs_root
*root
,
1534 struct btrfs_path
*path
,
1535 struct btrfs_extent_inline_ref
*iref
,
1536 u64 parent
, u64 root_objectid
,
1537 u64 owner
, u64 offset
, int refs_to_add
,
1538 struct btrfs_delayed_extent_op
*extent_op
)
1540 struct extent_buffer
*leaf
;
1541 struct btrfs_extent_item
*ei
;
1544 unsigned long item_offset
;
1550 leaf
= path
->nodes
[0];
1551 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1552 item_offset
= (unsigned long)iref
- (unsigned long)ei
;
1554 type
= extent_ref_type(parent
, owner
);
1555 size
= btrfs_extent_inline_ref_size(type
);
1557 ret
= btrfs_extend_item(trans
, root
, path
, size
);
1560 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1561 refs
= btrfs_extent_refs(leaf
, ei
);
1562 refs
+= refs_to_add
;
1563 btrfs_set_extent_refs(leaf
, ei
, refs
);
1565 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1567 ptr
= (unsigned long)ei
+ item_offset
;
1568 end
= (unsigned long)ei
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
1569 if (ptr
< end
- size
)
1570 memmove_extent_buffer(leaf
, ptr
+ size
, ptr
,
1573 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1574 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
1575 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1576 struct btrfs_extent_data_ref
*dref
;
1577 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1578 btrfs_set_extent_data_ref_root(leaf
, dref
, root_objectid
);
1579 btrfs_set_extent_data_ref_objectid(leaf
, dref
, owner
);
1580 btrfs_set_extent_data_ref_offset(leaf
, dref
, offset
);
1581 btrfs_set_extent_data_ref_count(leaf
, dref
, refs_to_add
);
1582 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1583 struct btrfs_shared_data_ref
*sref
;
1584 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1585 btrfs_set_shared_data_ref_count(leaf
, sref
, refs_to_add
);
1586 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1587 } else if (type
== BTRFS_SHARED_BLOCK_REF_KEY
) {
1588 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1590 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
1592 btrfs_mark_buffer_dirty(leaf
);
1596 static int lookup_extent_backref(struct btrfs_trans_handle
*trans
,
1597 struct btrfs_root
*root
,
1598 struct btrfs_path
*path
,
1599 struct btrfs_extent_inline_ref
**ref_ret
,
1600 u64 bytenr
, u64 num_bytes
, u64 parent
,
1601 u64 root_objectid
, u64 owner
, u64 offset
)
1605 ret
= lookup_inline_extent_backref(trans
, root
, path
, ref_ret
,
1606 bytenr
, num_bytes
, parent
,
1607 root_objectid
, owner
, offset
, 0);
1611 btrfs_release_path(root
, path
);
1614 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1615 ret
= lookup_tree_block_ref(trans
, root
, path
, bytenr
, parent
,
1618 ret
= lookup_extent_data_ref(trans
, root
, path
, bytenr
, parent
,
1619 root_objectid
, owner
, offset
);
1625 * helper to update/remove inline back ref
1627 static noinline_for_stack
1628 int update_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1629 struct btrfs_root
*root
,
1630 struct btrfs_path
*path
,
1631 struct btrfs_extent_inline_ref
*iref
,
1633 struct btrfs_delayed_extent_op
*extent_op
)
1635 struct extent_buffer
*leaf
;
1636 struct btrfs_extent_item
*ei
;
1637 struct btrfs_extent_data_ref
*dref
= NULL
;
1638 struct btrfs_shared_data_ref
*sref
= NULL
;
1647 leaf
= path
->nodes
[0];
1648 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1649 refs
= btrfs_extent_refs(leaf
, ei
);
1650 WARN_ON(refs_to_mod
< 0 && refs
+ refs_to_mod
<= 0);
1651 refs
+= refs_to_mod
;
1652 btrfs_set_extent_refs(leaf
, ei
, refs
);
1654 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1656 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1658 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1659 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1660 refs
= btrfs_extent_data_ref_count(leaf
, dref
);
1661 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1662 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1663 refs
= btrfs_shared_data_ref_count(leaf
, sref
);
1666 BUG_ON(refs_to_mod
!= -1);
1669 BUG_ON(refs_to_mod
< 0 && refs
< -refs_to_mod
);
1670 refs
+= refs_to_mod
;
1673 if (type
== BTRFS_EXTENT_DATA_REF_KEY
)
1674 btrfs_set_extent_data_ref_count(leaf
, dref
, refs
);
1676 btrfs_set_shared_data_ref_count(leaf
, sref
, refs
);
1678 size
= btrfs_extent_inline_ref_size(type
);
1679 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1680 ptr
= (unsigned long)iref
;
1681 end
= (unsigned long)ei
+ item_size
;
1682 if (ptr
+ size
< end
)
1683 memmove_extent_buffer(leaf
, ptr
, ptr
+ size
,
1686 ret
= btrfs_truncate_item(trans
, root
, path
, item_size
, 1);
1689 btrfs_mark_buffer_dirty(leaf
);
1693 static noinline_for_stack
1694 int insert_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1695 struct btrfs_root
*root
,
1696 struct btrfs_path
*path
,
1697 u64 bytenr
, u64 num_bytes
, u64 parent
,
1698 u64 root_objectid
, u64 owner
,
1699 u64 offset
, int refs_to_add
,
1700 struct btrfs_delayed_extent_op
*extent_op
)
1702 struct btrfs_extent_inline_ref
*iref
;
1705 ret
= lookup_inline_extent_backref(trans
, root
, path
, &iref
,
1706 bytenr
, num_bytes
, parent
,
1707 root_objectid
, owner
, offset
, 1);
1709 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
);
1710 ret
= update_inline_extent_backref(trans
, root
, path
, iref
,
1711 refs_to_add
, extent_op
);
1712 } else if (ret
== -ENOENT
) {
1713 ret
= setup_inline_extent_backref(trans
, root
, path
, iref
,
1714 parent
, root_objectid
,
1715 owner
, offset
, refs_to_add
,
1721 static int insert_extent_backref(struct btrfs_trans_handle
*trans
,
1722 struct btrfs_root
*root
,
1723 struct btrfs_path
*path
,
1724 u64 bytenr
, u64 parent
, u64 root_objectid
,
1725 u64 owner
, u64 offset
, int refs_to_add
)
1728 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1729 BUG_ON(refs_to_add
!= 1);
1730 ret
= insert_tree_block_ref(trans
, root
, path
, bytenr
,
1731 parent
, root_objectid
);
1733 ret
= insert_extent_data_ref(trans
, root
, path
, bytenr
,
1734 parent
, root_objectid
,
1735 owner
, offset
, refs_to_add
);
1740 static int remove_extent_backref(struct btrfs_trans_handle
*trans
,
1741 struct btrfs_root
*root
,
1742 struct btrfs_path
*path
,
1743 struct btrfs_extent_inline_ref
*iref
,
1744 int refs_to_drop
, int is_data
)
1748 BUG_ON(!is_data
&& refs_to_drop
!= 1);
1750 ret
= update_inline_extent_backref(trans
, root
, path
, iref
,
1751 -refs_to_drop
, NULL
);
1752 } else if (is_data
) {
1753 ret
= remove_extent_data_ref(trans
, root
, path
, refs_to_drop
);
1755 ret
= btrfs_del_item(trans
, root
, path
);
1760 static int btrfs_issue_discard(struct block_device
*bdev
,
1763 return blkdev_issue_discard(bdev
, start
>> 9, len
>> 9, GFP_NOFS
, 0);
1766 static int btrfs_discard_extent(struct btrfs_root
*root
, u64 bytenr
,
1767 u64 num_bytes
, u64
*actual_bytes
)
1770 u64 discarded_bytes
= 0;
1771 struct btrfs_multi_bio
*multi
= NULL
;
1774 /* Tell the block device(s) that the sectors can be discarded */
1775 ret
= btrfs_map_block(&root
->fs_info
->mapping_tree
, REQ_DISCARD
,
1776 bytenr
, &num_bytes
, &multi
, 0);
1778 struct btrfs_bio_stripe
*stripe
= multi
->stripes
;
1782 for (i
= 0; i
< multi
->num_stripes
; i
++, stripe
++) {
1783 ret
= btrfs_issue_discard(stripe
->dev
->bdev
,
1787 discarded_bytes
+= stripe
->length
;
1788 else if (ret
!= -EOPNOTSUPP
)
1793 if (discarded_bytes
&& ret
== -EOPNOTSUPP
)
1797 *actual_bytes
= discarded_bytes
;
1803 int btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
1804 struct btrfs_root
*root
,
1805 u64 bytenr
, u64 num_bytes
, u64 parent
,
1806 u64 root_objectid
, u64 owner
, u64 offset
)
1809 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
&&
1810 root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
1812 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1813 ret
= btrfs_add_delayed_tree_ref(trans
, bytenr
, num_bytes
,
1814 parent
, root_objectid
, (int)owner
,
1815 BTRFS_ADD_DELAYED_REF
, NULL
);
1817 ret
= btrfs_add_delayed_data_ref(trans
, bytenr
, num_bytes
,
1818 parent
, root_objectid
, owner
, offset
,
1819 BTRFS_ADD_DELAYED_REF
, NULL
);
1824 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
1825 struct btrfs_root
*root
,
1826 u64 bytenr
, u64 num_bytes
,
1827 u64 parent
, u64 root_objectid
,
1828 u64 owner
, u64 offset
, int refs_to_add
,
1829 struct btrfs_delayed_extent_op
*extent_op
)
1831 struct btrfs_path
*path
;
1832 struct extent_buffer
*leaf
;
1833 struct btrfs_extent_item
*item
;
1838 path
= btrfs_alloc_path();
1843 path
->leave_spinning
= 1;
1844 /* this will setup the path even if it fails to insert the back ref */
1845 ret
= insert_inline_extent_backref(trans
, root
->fs_info
->extent_root
,
1846 path
, bytenr
, num_bytes
, parent
,
1847 root_objectid
, owner
, offset
,
1848 refs_to_add
, extent_op
);
1852 if (ret
!= -EAGAIN
) {
1857 leaf
= path
->nodes
[0];
1858 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1859 refs
= btrfs_extent_refs(leaf
, item
);
1860 btrfs_set_extent_refs(leaf
, item
, refs
+ refs_to_add
);
1862 __run_delayed_extent_op(extent_op
, leaf
, item
);
1864 btrfs_mark_buffer_dirty(leaf
);
1865 btrfs_release_path(root
->fs_info
->extent_root
, path
);
1868 path
->leave_spinning
= 1;
1870 /* now insert the actual backref */
1871 ret
= insert_extent_backref(trans
, root
->fs_info
->extent_root
,
1872 path
, bytenr
, parent
, root_objectid
,
1873 owner
, offset
, refs_to_add
);
1876 btrfs_free_path(path
);
1880 static int run_delayed_data_ref(struct btrfs_trans_handle
*trans
,
1881 struct btrfs_root
*root
,
1882 struct btrfs_delayed_ref_node
*node
,
1883 struct btrfs_delayed_extent_op
*extent_op
,
1884 int insert_reserved
)
1887 struct btrfs_delayed_data_ref
*ref
;
1888 struct btrfs_key ins
;
1893 ins
.objectid
= node
->bytenr
;
1894 ins
.offset
= node
->num_bytes
;
1895 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1897 ref
= btrfs_delayed_node_to_data_ref(node
);
1898 if (node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
1899 parent
= ref
->parent
;
1901 ref_root
= ref
->root
;
1903 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
1905 BUG_ON(extent_op
->update_key
);
1906 flags
|= extent_op
->flags_to_set
;
1908 ret
= alloc_reserved_file_extent(trans
, root
,
1909 parent
, ref_root
, flags
,
1910 ref
->objectid
, ref
->offset
,
1911 &ins
, node
->ref_mod
);
1912 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
1913 ret
= __btrfs_inc_extent_ref(trans
, root
, node
->bytenr
,
1914 node
->num_bytes
, parent
,
1915 ref_root
, ref
->objectid
,
1916 ref
->offset
, node
->ref_mod
,
1918 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
1919 ret
= __btrfs_free_extent(trans
, root
, node
->bytenr
,
1920 node
->num_bytes
, parent
,
1921 ref_root
, ref
->objectid
,
1922 ref
->offset
, node
->ref_mod
,
1930 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
1931 struct extent_buffer
*leaf
,
1932 struct btrfs_extent_item
*ei
)
1934 u64 flags
= btrfs_extent_flags(leaf
, ei
);
1935 if (extent_op
->update_flags
) {
1936 flags
|= extent_op
->flags_to_set
;
1937 btrfs_set_extent_flags(leaf
, ei
, flags
);
1940 if (extent_op
->update_key
) {
1941 struct btrfs_tree_block_info
*bi
;
1942 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
));
1943 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
1944 btrfs_set_tree_block_key(leaf
, bi
, &extent_op
->key
);
1948 static int run_delayed_extent_op(struct btrfs_trans_handle
*trans
,
1949 struct btrfs_root
*root
,
1950 struct btrfs_delayed_ref_node
*node
,
1951 struct btrfs_delayed_extent_op
*extent_op
)
1953 struct btrfs_key key
;
1954 struct btrfs_path
*path
;
1955 struct btrfs_extent_item
*ei
;
1956 struct extent_buffer
*leaf
;
1961 path
= btrfs_alloc_path();
1965 key
.objectid
= node
->bytenr
;
1966 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1967 key
.offset
= node
->num_bytes
;
1970 path
->leave_spinning
= 1;
1971 ret
= btrfs_search_slot(trans
, root
->fs_info
->extent_root
, &key
,
1982 leaf
= path
->nodes
[0];
1983 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1984 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1985 if (item_size
< sizeof(*ei
)) {
1986 ret
= convert_extent_item_v0(trans
, root
->fs_info
->extent_root
,
1992 leaf
= path
->nodes
[0];
1993 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1996 BUG_ON(item_size
< sizeof(*ei
));
1997 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1998 __run_delayed_extent_op(extent_op
, leaf
, ei
);
2000 btrfs_mark_buffer_dirty(leaf
);
2002 btrfs_free_path(path
);
2006 static int run_delayed_tree_ref(struct btrfs_trans_handle
*trans
,
2007 struct btrfs_root
*root
,
2008 struct btrfs_delayed_ref_node
*node
,
2009 struct btrfs_delayed_extent_op
*extent_op
,
2010 int insert_reserved
)
2013 struct btrfs_delayed_tree_ref
*ref
;
2014 struct btrfs_key ins
;
2018 ins
.objectid
= node
->bytenr
;
2019 ins
.offset
= node
->num_bytes
;
2020 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2022 ref
= btrfs_delayed_node_to_tree_ref(node
);
2023 if (node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2024 parent
= ref
->parent
;
2026 ref_root
= ref
->root
;
2028 BUG_ON(node
->ref_mod
!= 1);
2029 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
2030 BUG_ON(!extent_op
|| !extent_op
->update_flags
||
2031 !extent_op
->update_key
);
2032 ret
= alloc_reserved_tree_block(trans
, root
,
2034 extent_op
->flags_to_set
,
2037 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
2038 ret
= __btrfs_inc_extent_ref(trans
, root
, node
->bytenr
,
2039 node
->num_bytes
, parent
, ref_root
,
2040 ref
->level
, 0, 1, extent_op
);
2041 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
2042 ret
= __btrfs_free_extent(trans
, root
, node
->bytenr
,
2043 node
->num_bytes
, parent
, ref_root
,
2044 ref
->level
, 0, 1, extent_op
);
2051 /* helper function to actually process a single delayed ref entry */
2052 static int run_one_delayed_ref(struct btrfs_trans_handle
*trans
,
2053 struct btrfs_root
*root
,
2054 struct btrfs_delayed_ref_node
*node
,
2055 struct btrfs_delayed_extent_op
*extent_op
,
2056 int insert_reserved
)
2059 if (btrfs_delayed_ref_is_head(node
)) {
2060 struct btrfs_delayed_ref_head
*head
;
2062 * we've hit the end of the chain and we were supposed
2063 * to insert this extent into the tree. But, it got
2064 * deleted before we ever needed to insert it, so all
2065 * we have to do is clean up the accounting
2068 head
= btrfs_delayed_node_to_head(node
);
2069 if (insert_reserved
) {
2070 btrfs_pin_extent(root
, node
->bytenr
,
2071 node
->num_bytes
, 1);
2072 if (head
->is_data
) {
2073 ret
= btrfs_del_csums(trans
, root
,
2079 mutex_unlock(&head
->mutex
);
2083 if (node
->type
== BTRFS_TREE_BLOCK_REF_KEY
||
2084 node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2085 ret
= run_delayed_tree_ref(trans
, root
, node
, extent_op
,
2087 else if (node
->type
== BTRFS_EXTENT_DATA_REF_KEY
||
2088 node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
2089 ret
= run_delayed_data_ref(trans
, root
, node
, extent_op
,
2096 static noinline
struct btrfs_delayed_ref_node
*
2097 select_delayed_ref(struct btrfs_delayed_ref_head
*head
)
2099 struct rb_node
*node
;
2100 struct btrfs_delayed_ref_node
*ref
;
2101 int action
= BTRFS_ADD_DELAYED_REF
;
2104 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2105 * this prevents ref count from going down to zero when
2106 * there still are pending delayed ref.
2108 node
= rb_prev(&head
->node
.rb_node
);
2112 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
,
2114 if (ref
->bytenr
!= head
->node
.bytenr
)
2116 if (ref
->action
== action
)
2118 node
= rb_prev(node
);
2120 if (action
== BTRFS_ADD_DELAYED_REF
) {
2121 action
= BTRFS_DROP_DELAYED_REF
;
2127 static noinline
int run_clustered_refs(struct btrfs_trans_handle
*trans
,
2128 struct btrfs_root
*root
,
2129 struct list_head
*cluster
)
2131 struct btrfs_delayed_ref_root
*delayed_refs
;
2132 struct btrfs_delayed_ref_node
*ref
;
2133 struct btrfs_delayed_ref_head
*locked_ref
= NULL
;
2134 struct btrfs_delayed_extent_op
*extent_op
;
2137 int must_insert_reserved
= 0;
2139 delayed_refs
= &trans
->transaction
->delayed_refs
;
2142 /* pick a new head ref from the cluster list */
2143 if (list_empty(cluster
))
2146 locked_ref
= list_entry(cluster
->next
,
2147 struct btrfs_delayed_ref_head
, cluster
);
2149 /* grab the lock that says we are going to process
2150 * all the refs for this head */
2151 ret
= btrfs_delayed_ref_lock(trans
, locked_ref
);
2154 * we may have dropped the spin lock to get the head
2155 * mutex lock, and that might have given someone else
2156 * time to free the head. If that's true, it has been
2157 * removed from our list and we can move on.
2159 if (ret
== -EAGAIN
) {
2167 * record the must insert reserved flag before we
2168 * drop the spin lock.
2170 must_insert_reserved
= locked_ref
->must_insert_reserved
;
2171 locked_ref
->must_insert_reserved
= 0;
2173 extent_op
= locked_ref
->extent_op
;
2174 locked_ref
->extent_op
= NULL
;
2177 * locked_ref is the head node, so we have to go one
2178 * node back for any delayed ref updates
2180 ref
= select_delayed_ref(locked_ref
);
2182 /* All delayed refs have been processed, Go ahead
2183 * and send the head node to run_one_delayed_ref,
2184 * so that any accounting fixes can happen
2186 ref
= &locked_ref
->node
;
2188 if (extent_op
&& must_insert_reserved
) {
2194 spin_unlock(&delayed_refs
->lock
);
2196 ret
= run_delayed_extent_op(trans
, root
,
2202 spin_lock(&delayed_refs
->lock
);
2206 list_del_init(&locked_ref
->cluster
);
2211 rb_erase(&ref
->rb_node
, &delayed_refs
->root
);
2212 delayed_refs
->num_entries
--;
2214 spin_unlock(&delayed_refs
->lock
);
2216 ret
= run_one_delayed_ref(trans
, root
, ref
, extent_op
,
2217 must_insert_reserved
);
2220 btrfs_put_delayed_ref(ref
);
2225 spin_lock(&delayed_refs
->lock
);
2231 * this starts processing the delayed reference count updates and
2232 * extent insertions we have queued up so far. count can be
2233 * 0, which means to process everything in the tree at the start
2234 * of the run (but not newly added entries), or it can be some target
2235 * number you'd like to process.
2237 int btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
2238 struct btrfs_root
*root
, unsigned long count
)
2240 struct rb_node
*node
;
2241 struct btrfs_delayed_ref_root
*delayed_refs
;
2242 struct btrfs_delayed_ref_node
*ref
;
2243 struct list_head cluster
;
2245 int run_all
= count
== (unsigned long)-1;
2248 if (root
== root
->fs_info
->extent_root
)
2249 root
= root
->fs_info
->tree_root
;
2251 delayed_refs
= &trans
->transaction
->delayed_refs
;
2252 INIT_LIST_HEAD(&cluster
);
2254 spin_lock(&delayed_refs
->lock
);
2256 count
= delayed_refs
->num_entries
* 2;
2260 if (!(run_all
|| run_most
) &&
2261 delayed_refs
->num_heads_ready
< 64)
2265 * go find something we can process in the rbtree. We start at
2266 * the beginning of the tree, and then build a cluster
2267 * of refs to process starting at the first one we are able to
2270 ret
= btrfs_find_ref_cluster(trans
, &cluster
,
2271 delayed_refs
->run_delayed_start
);
2275 ret
= run_clustered_refs(trans
, root
, &cluster
);
2278 count
-= min_t(unsigned long, ret
, count
);
2285 node
= rb_first(&delayed_refs
->root
);
2288 count
= (unsigned long)-1;
2291 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
,
2293 if (btrfs_delayed_ref_is_head(ref
)) {
2294 struct btrfs_delayed_ref_head
*head
;
2296 head
= btrfs_delayed_node_to_head(ref
);
2297 atomic_inc(&ref
->refs
);
2299 spin_unlock(&delayed_refs
->lock
);
2300 mutex_lock(&head
->mutex
);
2301 mutex_unlock(&head
->mutex
);
2303 btrfs_put_delayed_ref(ref
);
2307 node
= rb_next(node
);
2309 spin_unlock(&delayed_refs
->lock
);
2310 schedule_timeout(1);
2314 spin_unlock(&delayed_refs
->lock
);
2318 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle
*trans
,
2319 struct btrfs_root
*root
,
2320 u64 bytenr
, u64 num_bytes
, u64 flags
,
2323 struct btrfs_delayed_extent_op
*extent_op
;
2326 extent_op
= kmalloc(sizeof(*extent_op
), GFP_NOFS
);
2330 extent_op
->flags_to_set
= flags
;
2331 extent_op
->update_flags
= 1;
2332 extent_op
->update_key
= 0;
2333 extent_op
->is_data
= is_data
? 1 : 0;
2335 ret
= btrfs_add_delayed_extent_op(trans
, bytenr
, num_bytes
, extent_op
);
2341 static noinline
int check_delayed_ref(struct btrfs_trans_handle
*trans
,
2342 struct btrfs_root
*root
,
2343 struct btrfs_path
*path
,
2344 u64 objectid
, u64 offset
, u64 bytenr
)
2346 struct btrfs_delayed_ref_head
*head
;
2347 struct btrfs_delayed_ref_node
*ref
;
2348 struct btrfs_delayed_data_ref
*data_ref
;
2349 struct btrfs_delayed_ref_root
*delayed_refs
;
2350 struct rb_node
*node
;
2354 delayed_refs
= &trans
->transaction
->delayed_refs
;
2355 spin_lock(&delayed_refs
->lock
);
2356 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
2360 if (!mutex_trylock(&head
->mutex
)) {
2361 atomic_inc(&head
->node
.refs
);
2362 spin_unlock(&delayed_refs
->lock
);
2364 btrfs_release_path(root
->fs_info
->extent_root
, path
);
2366 mutex_lock(&head
->mutex
);
2367 mutex_unlock(&head
->mutex
);
2368 btrfs_put_delayed_ref(&head
->node
);
2372 node
= rb_prev(&head
->node
.rb_node
);
2376 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
2378 if (ref
->bytenr
!= bytenr
)
2382 if (ref
->type
!= BTRFS_EXTENT_DATA_REF_KEY
)
2385 data_ref
= btrfs_delayed_node_to_data_ref(ref
);
2387 node
= rb_prev(node
);
2389 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
2390 if (ref
->bytenr
== bytenr
)
2394 if (data_ref
->root
!= root
->root_key
.objectid
||
2395 data_ref
->objectid
!= objectid
|| data_ref
->offset
!= offset
)
2400 mutex_unlock(&head
->mutex
);
2402 spin_unlock(&delayed_refs
->lock
);
2406 static noinline
int check_committed_ref(struct btrfs_trans_handle
*trans
,
2407 struct btrfs_root
*root
,
2408 struct btrfs_path
*path
,
2409 u64 objectid
, u64 offset
, u64 bytenr
)
2411 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
2412 struct extent_buffer
*leaf
;
2413 struct btrfs_extent_data_ref
*ref
;
2414 struct btrfs_extent_inline_ref
*iref
;
2415 struct btrfs_extent_item
*ei
;
2416 struct btrfs_key key
;
2420 key
.objectid
= bytenr
;
2421 key
.offset
= (u64
)-1;
2422 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2424 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
2430 if (path
->slots
[0] == 0)
2434 leaf
= path
->nodes
[0];
2435 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2437 if (key
.objectid
!= bytenr
|| key
.type
!= BTRFS_EXTENT_ITEM_KEY
)
2441 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2442 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2443 if (item_size
< sizeof(*ei
)) {
2444 WARN_ON(item_size
!= sizeof(struct btrfs_extent_item_v0
));
2448 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2450 if (item_size
!= sizeof(*ei
) +
2451 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY
))
2454 if (btrfs_extent_generation(leaf
, ei
) <=
2455 btrfs_root_last_snapshot(&root
->root_item
))
2458 iref
= (struct btrfs_extent_inline_ref
*)(ei
+ 1);
2459 if (btrfs_extent_inline_ref_type(leaf
, iref
) !=
2460 BTRFS_EXTENT_DATA_REF_KEY
)
2463 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
2464 if (btrfs_extent_refs(leaf
, ei
) !=
2465 btrfs_extent_data_ref_count(leaf
, ref
) ||
2466 btrfs_extent_data_ref_root(leaf
, ref
) !=
2467 root
->root_key
.objectid
||
2468 btrfs_extent_data_ref_objectid(leaf
, ref
) != objectid
||
2469 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
2477 int btrfs_cross_ref_exist(struct btrfs_trans_handle
*trans
,
2478 struct btrfs_root
*root
,
2479 u64 objectid
, u64 offset
, u64 bytenr
)
2481 struct btrfs_path
*path
;
2485 path
= btrfs_alloc_path();
2490 ret
= check_committed_ref(trans
, root
, path
, objectid
,
2492 if (ret
&& ret
!= -ENOENT
)
2495 ret2
= check_delayed_ref(trans
, root
, path
, objectid
,
2497 } while (ret2
== -EAGAIN
);
2499 if (ret2
&& ret2
!= -ENOENT
) {
2504 if (ret
!= -ENOENT
|| ret2
!= -ENOENT
)
2507 btrfs_free_path(path
);
2508 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
2514 int btrfs_cache_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2515 struct extent_buffer
*buf
, u32 nr_extents
)
2517 struct btrfs_key key
;
2518 struct btrfs_file_extent_item
*fi
;
2526 if (!root
->ref_cows
)
2529 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
) {
2531 root_gen
= root
->root_key
.offset
;
2534 root_gen
= trans
->transid
- 1;
2537 level
= btrfs_header_level(buf
);
2538 nritems
= btrfs_header_nritems(buf
);
2541 struct btrfs_leaf_ref
*ref
;
2542 struct btrfs_extent_info
*info
;
2544 ref
= btrfs_alloc_leaf_ref(root
, nr_extents
);
2550 ref
->root_gen
= root_gen
;
2551 ref
->bytenr
= buf
->start
;
2552 ref
->owner
= btrfs_header_owner(buf
);
2553 ref
->generation
= btrfs_header_generation(buf
);
2554 ref
->nritems
= nr_extents
;
2555 info
= ref
->extents
;
2557 for (i
= 0; nr_extents
> 0 && i
< nritems
; i
++) {
2559 btrfs_item_key_to_cpu(buf
, &key
, i
);
2560 if (btrfs_key_type(&key
) != BTRFS_EXTENT_DATA_KEY
)
2562 fi
= btrfs_item_ptr(buf
, i
,
2563 struct btrfs_file_extent_item
);
2564 if (btrfs_file_extent_type(buf
, fi
) ==
2565 BTRFS_FILE_EXTENT_INLINE
)
2567 disk_bytenr
= btrfs_file_extent_disk_bytenr(buf
, fi
);
2568 if (disk_bytenr
== 0)
2571 info
->bytenr
= disk_bytenr
;
2573 btrfs_file_extent_disk_num_bytes(buf
, fi
);
2574 info
->objectid
= key
.objectid
;
2575 info
->offset
= key
.offset
;
2579 ret
= btrfs_add_leaf_ref(root
, ref
, shared
);
2580 if (ret
== -EEXIST
&& shared
) {
2581 struct btrfs_leaf_ref
*old
;
2582 old
= btrfs_lookup_leaf_ref(root
, ref
->bytenr
);
2584 btrfs_remove_leaf_ref(root
, old
);
2585 btrfs_free_leaf_ref(root
, old
);
2586 ret
= btrfs_add_leaf_ref(root
, ref
, shared
);
2589 btrfs_free_leaf_ref(root
, ref
);
2595 /* when a block goes through cow, we update the reference counts of
2596 * everything that block points to. The internal pointers of the block
2597 * can be in just about any order, and it is likely to have clusters of
2598 * things that are close together and clusters of things that are not.
2600 * To help reduce the seeks that come with updating all of these reference
2601 * counts, sort them by byte number before actual updates are done.
2603 * struct refsort is used to match byte number to slot in the btree block.
2604 * we sort based on the byte number and then use the slot to actually
2607 * struct refsort is smaller than strcut btrfs_item and smaller than
2608 * struct btrfs_key_ptr. Since we're currently limited to the page size
2609 * for a btree block, there's no way for a kmalloc of refsorts for a
2610 * single node to be bigger than a page.
2618 * for passing into sort()
2620 static int refsort_cmp(const void *a_void
, const void *b_void
)
2622 const struct refsort
*a
= a_void
;
2623 const struct refsort
*b
= b_void
;
2625 if (a
->bytenr
< b
->bytenr
)
2627 if (a
->bytenr
> b
->bytenr
)
2633 static int __btrfs_mod_ref(struct btrfs_trans_handle
*trans
,
2634 struct btrfs_root
*root
,
2635 struct extent_buffer
*buf
,
2636 int full_backref
, int inc
)
2643 struct btrfs_key key
;
2644 struct btrfs_file_extent_item
*fi
;
2648 int (*process_func
)(struct btrfs_trans_handle
*, struct btrfs_root
*,
2649 u64
, u64
, u64
, u64
, u64
, u64
);
2651 ref_root
= btrfs_header_owner(buf
);
2652 nritems
= btrfs_header_nritems(buf
);
2653 level
= btrfs_header_level(buf
);
2655 if (!root
->ref_cows
&& level
== 0)
2659 process_func
= btrfs_inc_extent_ref
;
2661 process_func
= btrfs_free_extent
;
2664 parent
= buf
->start
;
2668 for (i
= 0; i
< nritems
; i
++) {
2670 btrfs_item_key_to_cpu(buf
, &key
, i
);
2671 if (btrfs_key_type(&key
) != BTRFS_EXTENT_DATA_KEY
)
2673 fi
= btrfs_item_ptr(buf
, i
,
2674 struct btrfs_file_extent_item
);
2675 if (btrfs_file_extent_type(buf
, fi
) ==
2676 BTRFS_FILE_EXTENT_INLINE
)
2678 bytenr
= btrfs_file_extent_disk_bytenr(buf
, fi
);
2682 num_bytes
= btrfs_file_extent_disk_num_bytes(buf
, fi
);
2683 key
.offset
-= btrfs_file_extent_offset(buf
, fi
);
2684 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
2685 parent
, ref_root
, key
.objectid
,
2690 bytenr
= btrfs_node_blockptr(buf
, i
);
2691 num_bytes
= btrfs_level_size(root
, level
- 1);
2692 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
2693 parent
, ref_root
, level
- 1, 0);
2704 int btrfs_inc_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2705 struct extent_buffer
*buf
, int full_backref
)
2707 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 1);
2710 int btrfs_dec_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2711 struct extent_buffer
*buf
, int full_backref
)
2713 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 0);
2716 static int write_one_cache_group(struct btrfs_trans_handle
*trans
,
2717 struct btrfs_root
*root
,
2718 struct btrfs_path
*path
,
2719 struct btrfs_block_group_cache
*cache
)
2722 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
2724 struct extent_buffer
*leaf
;
2726 ret
= btrfs_search_slot(trans
, extent_root
, &cache
->key
, path
, 0, 1);
2731 leaf
= path
->nodes
[0];
2732 bi
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
2733 write_extent_buffer(leaf
, &cache
->item
, bi
, sizeof(cache
->item
));
2734 btrfs_mark_buffer_dirty(leaf
);
2735 btrfs_release_path(extent_root
, path
);
2743 static struct btrfs_block_group_cache
*
2744 next_block_group(struct btrfs_root
*root
,
2745 struct btrfs_block_group_cache
*cache
)
2747 struct rb_node
*node
;
2748 spin_lock(&root
->fs_info
->block_group_cache_lock
);
2749 node
= rb_next(&cache
->cache_node
);
2750 btrfs_put_block_group(cache
);
2752 cache
= rb_entry(node
, struct btrfs_block_group_cache
,
2754 btrfs_get_block_group(cache
);
2757 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
2761 static int cache_save_setup(struct btrfs_block_group_cache
*block_group
,
2762 struct btrfs_trans_handle
*trans
,
2763 struct btrfs_path
*path
)
2765 struct btrfs_root
*root
= block_group
->fs_info
->tree_root
;
2766 struct inode
*inode
= NULL
;
2768 int dcs
= BTRFS_DC_ERROR
;
2774 * If this block group is smaller than 100 megs don't bother caching the
2777 if (block_group
->key
.offset
< (100 * 1024 * 1024)) {
2778 spin_lock(&block_group
->lock
);
2779 block_group
->disk_cache_state
= BTRFS_DC_WRITTEN
;
2780 spin_unlock(&block_group
->lock
);
2785 inode
= lookup_free_space_inode(root
, block_group
, path
);
2786 if (IS_ERR(inode
) && PTR_ERR(inode
) != -ENOENT
) {
2787 ret
= PTR_ERR(inode
);
2788 btrfs_release_path(root
, path
);
2792 if (IS_ERR(inode
)) {
2796 if (block_group
->ro
)
2799 ret
= create_free_space_inode(root
, trans
, block_group
, path
);
2806 * We want to set the generation to 0, that way if anything goes wrong
2807 * from here on out we know not to trust this cache when we load up next
2810 BTRFS_I(inode
)->generation
= 0;
2811 ret
= btrfs_update_inode(trans
, root
, inode
);
2814 if (i_size_read(inode
) > 0) {
2815 ret
= btrfs_truncate_free_space_cache(root
, trans
, path
,
2821 spin_lock(&block_group
->lock
);
2822 if (block_group
->cached
!= BTRFS_CACHE_FINISHED
) {
2823 /* We're not cached, don't bother trying to write stuff out */
2824 dcs
= BTRFS_DC_WRITTEN
;
2825 spin_unlock(&block_group
->lock
);
2828 spin_unlock(&block_group
->lock
);
2830 num_pages
= (int)div64_u64(block_group
->key
.offset
, 1024 * 1024 * 1024);
2835 * Just to make absolutely sure we have enough space, we're going to
2836 * preallocate 12 pages worth of space for each block group. In
2837 * practice we ought to use at most 8, but we need extra space so we can
2838 * add our header and have a terminator between the extents and the
2842 num_pages
*= PAGE_CACHE_SIZE
;
2844 ret
= btrfs_check_data_free_space(inode
, num_pages
);
2848 ret
= btrfs_prealloc_file_range_trans(inode
, trans
, 0, 0, num_pages
,
2849 num_pages
, num_pages
,
2852 dcs
= BTRFS_DC_SETUP
;
2853 btrfs_free_reserved_data_space(inode
, num_pages
);
2857 btrfs_release_path(root
, path
);
2859 spin_lock(&block_group
->lock
);
2860 block_group
->disk_cache_state
= dcs
;
2861 spin_unlock(&block_group
->lock
);
2866 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle
*trans
,
2867 struct btrfs_root
*root
)
2869 struct btrfs_block_group_cache
*cache
;
2871 struct btrfs_path
*path
;
2874 path
= btrfs_alloc_path();
2880 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
2882 if (cache
->disk_cache_state
== BTRFS_DC_CLEAR
)
2884 cache
= next_block_group(root
, cache
);
2892 err
= cache_save_setup(cache
, trans
, path
);
2893 last
= cache
->key
.objectid
+ cache
->key
.offset
;
2894 btrfs_put_block_group(cache
);
2899 err
= btrfs_run_delayed_refs(trans
, root
,
2904 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
2906 if (cache
->disk_cache_state
== BTRFS_DC_CLEAR
) {
2907 btrfs_put_block_group(cache
);
2913 cache
= next_block_group(root
, cache
);
2922 if (cache
->disk_cache_state
== BTRFS_DC_SETUP
)
2923 cache
->disk_cache_state
= BTRFS_DC_NEED_WRITE
;
2925 last
= cache
->key
.objectid
+ cache
->key
.offset
;
2927 err
= write_one_cache_group(trans
, root
, path
, cache
);
2929 btrfs_put_block_group(cache
);
2934 * I don't think this is needed since we're just marking our
2935 * preallocated extent as written, but just in case it can't
2939 err
= btrfs_run_delayed_refs(trans
, root
,
2944 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
2947 * Really this shouldn't happen, but it could if we
2948 * couldn't write the entire preallocated extent and
2949 * splitting the extent resulted in a new block.
2952 btrfs_put_block_group(cache
);
2955 if (cache
->disk_cache_state
== BTRFS_DC_NEED_WRITE
)
2957 cache
= next_block_group(root
, cache
);
2966 btrfs_write_out_cache(root
, trans
, cache
, path
);
2969 * If we didn't have an error then the cache state is still
2970 * NEED_WRITE, so we can set it to WRITTEN.
2972 if (cache
->disk_cache_state
== BTRFS_DC_NEED_WRITE
)
2973 cache
->disk_cache_state
= BTRFS_DC_WRITTEN
;
2974 last
= cache
->key
.objectid
+ cache
->key
.offset
;
2975 btrfs_put_block_group(cache
);
2978 btrfs_free_path(path
);
2982 int btrfs_extent_readonly(struct btrfs_root
*root
, u64 bytenr
)
2984 struct btrfs_block_group_cache
*block_group
;
2987 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
2988 if (!block_group
|| block_group
->ro
)
2991 btrfs_put_block_group(block_group
);
2995 static int update_space_info(struct btrfs_fs_info
*info
, u64 flags
,
2996 u64 total_bytes
, u64 bytes_used
,
2997 struct btrfs_space_info
**space_info
)
2999 struct btrfs_space_info
*found
;
3003 if (flags
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
3004 BTRFS_BLOCK_GROUP_RAID10
))
3009 found
= __find_space_info(info
, flags
);
3011 spin_lock(&found
->lock
);
3012 found
->total_bytes
+= total_bytes
;
3013 found
->disk_total
+= total_bytes
* factor
;
3014 found
->bytes_used
+= bytes_used
;
3015 found
->disk_used
+= bytes_used
* factor
;
3017 spin_unlock(&found
->lock
);
3018 *space_info
= found
;
3021 found
= kzalloc(sizeof(*found
), GFP_NOFS
);
3025 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++)
3026 INIT_LIST_HEAD(&found
->block_groups
[i
]);
3027 init_rwsem(&found
->groups_sem
);
3028 spin_lock_init(&found
->lock
);
3029 found
->flags
= flags
& (BTRFS_BLOCK_GROUP_DATA
|
3030 BTRFS_BLOCK_GROUP_SYSTEM
|
3031 BTRFS_BLOCK_GROUP_METADATA
);
3032 found
->total_bytes
= total_bytes
;
3033 found
->disk_total
= total_bytes
* factor
;
3034 found
->bytes_used
= bytes_used
;
3035 found
->disk_used
= bytes_used
* factor
;
3036 found
->bytes_pinned
= 0;
3037 found
->bytes_reserved
= 0;
3038 found
->bytes_readonly
= 0;
3039 found
->bytes_may_use
= 0;
3041 found
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
3042 found
->chunk_alloc
= 0;
3043 *space_info
= found
;
3044 list_add_rcu(&found
->list
, &info
->space_info
);
3045 atomic_set(&found
->caching_threads
, 0);
3049 static void set_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
3051 u64 extra_flags
= flags
& (BTRFS_BLOCK_GROUP_RAID0
|
3052 BTRFS_BLOCK_GROUP_RAID1
|
3053 BTRFS_BLOCK_GROUP_RAID10
|
3054 BTRFS_BLOCK_GROUP_DUP
);
3056 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
3057 fs_info
->avail_data_alloc_bits
|= extra_flags
;
3058 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
3059 fs_info
->avail_metadata_alloc_bits
|= extra_flags
;
3060 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
3061 fs_info
->avail_system_alloc_bits
|= extra_flags
;
3065 u64
btrfs_reduce_alloc_profile(struct btrfs_root
*root
, u64 flags
)
3068 * we add in the count of missing devices because we want
3069 * to make sure that any RAID levels on a degraded FS
3070 * continue to be honored.
3072 u64 num_devices
= root
->fs_info
->fs_devices
->rw_devices
+
3073 root
->fs_info
->fs_devices
->missing_devices
;
3075 if (num_devices
== 1)
3076 flags
&= ~(BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID0
);
3077 if (num_devices
< 4)
3078 flags
&= ~BTRFS_BLOCK_GROUP_RAID10
;
3080 if ((flags
& BTRFS_BLOCK_GROUP_DUP
) &&
3081 (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
3082 BTRFS_BLOCK_GROUP_RAID10
))) {
3083 flags
&= ~BTRFS_BLOCK_GROUP_DUP
;
3086 if ((flags
& BTRFS_BLOCK_GROUP_RAID1
) &&
3087 (flags
& BTRFS_BLOCK_GROUP_RAID10
)) {
3088 flags
&= ~BTRFS_BLOCK_GROUP_RAID1
;
3091 if ((flags
& BTRFS_BLOCK_GROUP_RAID0
) &&
3092 ((flags
& BTRFS_BLOCK_GROUP_RAID1
) |
3093 (flags
& BTRFS_BLOCK_GROUP_RAID10
) |
3094 (flags
& BTRFS_BLOCK_GROUP_DUP
)))
3095 flags
&= ~BTRFS_BLOCK_GROUP_RAID0
;
3099 static u64
get_alloc_profile(struct btrfs_root
*root
, u64 flags
)
3101 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
3102 flags
|= root
->fs_info
->avail_data_alloc_bits
&
3103 root
->fs_info
->data_alloc_profile
;
3104 else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
3105 flags
|= root
->fs_info
->avail_system_alloc_bits
&
3106 root
->fs_info
->system_alloc_profile
;
3107 else if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
3108 flags
|= root
->fs_info
->avail_metadata_alloc_bits
&
3109 root
->fs_info
->metadata_alloc_profile
;
3110 return btrfs_reduce_alloc_profile(root
, flags
);
3113 u64
btrfs_get_alloc_profile(struct btrfs_root
*root
, int data
)
3118 flags
= BTRFS_BLOCK_GROUP_DATA
;
3119 else if (root
== root
->fs_info
->chunk_root
)
3120 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
3122 flags
= BTRFS_BLOCK_GROUP_METADATA
;
3124 return get_alloc_profile(root
, flags
);
3127 void btrfs_set_inode_space_info(struct btrfs_root
*root
, struct inode
*inode
)
3129 BTRFS_I(inode
)->space_info
= __find_space_info(root
->fs_info
,
3130 BTRFS_BLOCK_GROUP_DATA
);
3134 * This will check the space that the inode allocates from to make sure we have
3135 * enough space for bytes.
3137 int btrfs_check_data_free_space(struct inode
*inode
, u64 bytes
)
3139 struct btrfs_space_info
*data_sinfo
;
3140 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3142 int ret
= 0, committed
= 0, alloc_chunk
= 1;
3144 /* make sure bytes are sectorsize aligned */
3145 bytes
= (bytes
+ root
->sectorsize
- 1) & ~((u64
)root
->sectorsize
- 1);
3147 if (root
== root
->fs_info
->tree_root
) {
3152 data_sinfo
= BTRFS_I(inode
)->space_info
;
3157 /* make sure we have enough space to handle the data first */
3158 spin_lock(&data_sinfo
->lock
);
3159 used
= data_sinfo
->bytes_used
+ data_sinfo
->bytes_reserved
+
3160 data_sinfo
->bytes_pinned
+ data_sinfo
->bytes_readonly
+
3161 data_sinfo
->bytes_may_use
;
3163 if (used
+ bytes
> data_sinfo
->total_bytes
) {
3164 struct btrfs_trans_handle
*trans
;
3167 * if we don't have enough free bytes in this space then we need
3168 * to alloc a new chunk.
3170 if (!data_sinfo
->full
&& alloc_chunk
) {
3173 data_sinfo
->force_alloc
= CHUNK_ALLOC_FORCE
;
3174 spin_unlock(&data_sinfo
->lock
);
3176 alloc_target
= btrfs_get_alloc_profile(root
, 1);
3177 trans
= btrfs_join_transaction(root
, 1);
3179 return PTR_ERR(trans
);
3181 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
3182 bytes
+ 2 * 1024 * 1024,
3184 CHUNK_ALLOC_NO_FORCE
);
3185 btrfs_end_transaction(trans
, root
);
3194 btrfs_set_inode_space_info(root
, inode
);
3195 data_sinfo
= BTRFS_I(inode
)->space_info
;
3199 spin_unlock(&data_sinfo
->lock
);
3201 /* commit the current transaction and try again */
3203 if (!committed
&& !root
->fs_info
->open_ioctl_trans
) {
3205 trans
= btrfs_join_transaction(root
, 1);
3207 return PTR_ERR(trans
);
3208 ret
= btrfs_commit_transaction(trans
, root
);
3214 #if 0 /* I hope we never need this code again, just in case */
3215 printk(KERN_ERR
"no space left, need %llu, %llu bytes_used, "
3216 "%llu bytes_reserved, " "%llu bytes_pinned, "
3217 "%llu bytes_readonly, %llu may use %llu total\n",
3218 (unsigned long long)bytes
,
3219 (unsigned long long)data_sinfo
->bytes_used
,
3220 (unsigned long long)data_sinfo
->bytes_reserved
,
3221 (unsigned long long)data_sinfo
->bytes_pinned
,
3222 (unsigned long long)data_sinfo
->bytes_readonly
,
3223 (unsigned long long)data_sinfo
->bytes_may_use
,
3224 (unsigned long long)data_sinfo
->total_bytes
);
3228 data_sinfo
->bytes_may_use
+= bytes
;
3229 BTRFS_I(inode
)->reserved_bytes
+= bytes
;
3230 spin_unlock(&data_sinfo
->lock
);
3236 * called when we are clearing an delalloc extent from the
3237 * inode's io_tree or there was an error for whatever reason
3238 * after calling btrfs_check_data_free_space
3240 void btrfs_free_reserved_data_space(struct inode
*inode
, u64 bytes
)
3242 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3243 struct btrfs_space_info
*data_sinfo
;
3245 /* make sure bytes are sectorsize aligned */
3246 bytes
= (bytes
+ root
->sectorsize
- 1) & ~((u64
)root
->sectorsize
- 1);
3248 data_sinfo
= BTRFS_I(inode
)->space_info
;
3249 spin_lock(&data_sinfo
->lock
);
3250 data_sinfo
->bytes_may_use
-= bytes
;
3251 BTRFS_I(inode
)->reserved_bytes
-= bytes
;
3252 spin_unlock(&data_sinfo
->lock
);
3255 static void force_metadata_allocation(struct btrfs_fs_info
*info
)
3257 struct list_head
*head
= &info
->space_info
;
3258 struct btrfs_space_info
*found
;
3261 list_for_each_entry_rcu(found
, head
, list
) {
3262 if (found
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
3263 found
->force_alloc
= CHUNK_ALLOC_FORCE
;
3268 static int should_alloc_chunk(struct btrfs_root
*root
,
3269 struct btrfs_space_info
*sinfo
, u64 alloc_bytes
,
3272 u64 num_bytes
= sinfo
->total_bytes
- sinfo
->bytes_readonly
;
3273 u64 num_allocated
= sinfo
->bytes_used
+ sinfo
->bytes_reserved
;
3276 if (force
== CHUNK_ALLOC_FORCE
)
3280 * in limited mode, we want to have some free space up to
3281 * about 1% of the FS size.
3283 if (force
== CHUNK_ALLOC_LIMITED
) {
3284 thresh
= btrfs_super_total_bytes(&root
->fs_info
->super_copy
);
3285 thresh
= max_t(u64
, 64 * 1024 * 1024,
3286 div_factor_fine(thresh
, 1));
3288 if (num_bytes
- num_allocated
< thresh
)
3293 * we have two similar checks here, one based on percentage
3294 * and once based on a hard number of 256MB. The idea
3295 * is that if we have a good amount of free
3296 * room, don't allocate a chunk. A good mount is
3297 * less than 80% utilized of the chunks we have allocated,
3298 * or more than 256MB free
3300 if (num_allocated
+ alloc_bytes
+ 256 * 1024 * 1024 < num_bytes
)
3303 if (num_allocated
+ alloc_bytes
< div_factor(num_bytes
, 8))
3306 thresh
= btrfs_super_total_bytes(&root
->fs_info
->super_copy
);
3308 /* 256MB or 5% of the FS */
3309 thresh
= max_t(u64
, 256 * 1024 * 1024, div_factor_fine(thresh
, 5));
3311 if (num_bytes
> thresh
&& sinfo
->bytes_used
< div_factor(num_bytes
, 3))
3316 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
3317 struct btrfs_root
*extent_root
, u64 alloc_bytes
,
3318 u64 flags
, int force
)
3320 struct btrfs_space_info
*space_info
;
3321 struct btrfs_fs_info
*fs_info
= extent_root
->fs_info
;
3322 int wait_for_alloc
= 0;
3325 flags
= btrfs_reduce_alloc_profile(extent_root
, flags
);
3327 space_info
= __find_space_info(extent_root
->fs_info
, flags
);
3329 ret
= update_space_info(extent_root
->fs_info
, flags
,
3333 BUG_ON(!space_info
);
3336 spin_lock(&space_info
->lock
);
3337 if (space_info
->force_alloc
)
3338 force
= space_info
->force_alloc
;
3339 if (space_info
->full
) {
3340 spin_unlock(&space_info
->lock
);
3344 if (!should_alloc_chunk(extent_root
, space_info
, alloc_bytes
, force
)) {
3345 spin_unlock(&space_info
->lock
);
3347 } else if (space_info
->chunk_alloc
) {
3350 space_info
->chunk_alloc
= 1;
3353 spin_unlock(&space_info
->lock
);
3355 mutex_lock(&fs_info
->chunk_mutex
);
3358 * The chunk_mutex is held throughout the entirety of a chunk
3359 * allocation, so once we've acquired the chunk_mutex we know that the
3360 * other guy is done and we need to recheck and see if we should
3363 if (wait_for_alloc
) {
3364 mutex_unlock(&fs_info
->chunk_mutex
);
3370 * If we have mixed data/metadata chunks we want to make sure we keep
3371 * allocating mixed chunks instead of individual chunks.
3373 if (btrfs_mixed_space_info(space_info
))
3374 flags
|= (BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
);
3377 * if we're doing a data chunk, go ahead and make sure that
3378 * we keep a reasonable number of metadata chunks allocated in the
3381 if (flags
& BTRFS_BLOCK_GROUP_DATA
&& fs_info
->metadata_ratio
) {
3382 fs_info
->data_chunk_allocations
++;
3383 if (!(fs_info
->data_chunk_allocations
%
3384 fs_info
->metadata_ratio
))
3385 force_metadata_allocation(fs_info
);
3388 ret
= btrfs_alloc_chunk(trans
, extent_root
, flags
);
3389 spin_lock(&space_info
->lock
);
3391 space_info
->full
= 1;
3395 space_info
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
3396 space_info
->chunk_alloc
= 0;
3397 spin_unlock(&space_info
->lock
);
3398 mutex_unlock(&extent_root
->fs_info
->chunk_mutex
);
3403 * shrink metadata reservation for delalloc
3405 static int shrink_delalloc(struct btrfs_trans_handle
*trans
,
3406 struct btrfs_root
*root
, u64 to_reclaim
, int sync
)
3408 struct btrfs_block_rsv
*block_rsv
;
3409 struct btrfs_space_info
*space_info
;
3414 int nr_pages
= (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT
;
3416 unsigned long progress
;
3418 block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
3419 space_info
= block_rsv
->space_info
;
3422 reserved
= space_info
->bytes_reserved
;
3423 progress
= space_info
->reservation_progress
;
3428 max_reclaim
= min(reserved
, to_reclaim
);
3430 while (loops
< 1024) {
3431 /* have the flusher threads jump in and do some IO */
3433 nr_pages
= min_t(unsigned long, nr_pages
,
3434 root
->fs_info
->delalloc_bytes
>> PAGE_CACHE_SHIFT
);
3435 writeback_inodes_sb_nr_if_idle(root
->fs_info
->sb
, nr_pages
);
3437 spin_lock(&space_info
->lock
);
3438 if (reserved
> space_info
->bytes_reserved
)
3439 reclaimed
+= reserved
- space_info
->bytes_reserved
;
3440 reserved
= space_info
->bytes_reserved
;
3441 spin_unlock(&space_info
->lock
);
3445 if (reserved
== 0 || reclaimed
>= max_reclaim
)
3448 if (trans
&& trans
->transaction
->blocked
)
3451 time_left
= schedule_timeout_interruptible(1);
3453 /* We were interrupted, exit */
3457 /* we've kicked the IO a few times, if anything has been freed,
3458 * exit. There is no sense in looping here for a long time
3459 * when we really need to commit the transaction, or there are
3460 * just too many writers without enough free space
3465 if (progress
!= space_info
->reservation_progress
)
3470 return reclaimed
>= to_reclaim
;
3474 * Retries tells us how many times we've called reserve_metadata_bytes. The
3475 * idea is if this is the first call (retries == 0) then we will add to our
3476 * reserved count if we can't make the allocation in order to hold our place
3477 * while we go and try and free up space. That way for retries > 1 we don't try
3478 * and add space, we just check to see if the amount of unused space is >= the
3479 * total space, meaning that our reservation is valid.
3481 * However if we don't intend to retry this reservation, pass -1 as retries so
3482 * that it short circuits this logic.
3484 static int reserve_metadata_bytes(struct btrfs_trans_handle
*trans
,
3485 struct btrfs_root
*root
,
3486 struct btrfs_block_rsv
*block_rsv
,
3487 u64 orig_bytes
, int flush
)
3489 struct btrfs_space_info
*space_info
= block_rsv
->space_info
;
3491 u64 num_bytes
= orig_bytes
;
3494 bool reserved
= false;
3495 bool committed
= false;
3502 spin_lock(&space_info
->lock
);
3503 unused
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
3504 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
3505 space_info
->bytes_may_use
;
3508 * The idea here is that we've not already over-reserved the block group
3509 * then we can go ahead and save our reservation first and then start
3510 * flushing if we need to. Otherwise if we've already overcommitted
3511 * lets start flushing stuff first and then come back and try to make
3514 if (unused
<= space_info
->total_bytes
) {
3515 unused
= space_info
->total_bytes
- unused
;
3516 if (unused
>= num_bytes
) {
3518 space_info
->bytes_reserved
+= orig_bytes
;
3522 * Ok set num_bytes to orig_bytes since we aren't
3523 * overocmmitted, this way we only try and reclaim what
3526 num_bytes
= orig_bytes
;
3530 * Ok we're over committed, set num_bytes to the overcommitted
3531 * amount plus the amount of bytes that we need for this
3534 num_bytes
= unused
- space_info
->total_bytes
+
3535 (orig_bytes
* (retries
+ 1));
3539 * Couldn't make our reservation, save our place so while we're trying
3540 * to reclaim space we can actually use it instead of somebody else
3541 * stealing it from us.
3543 if (ret
&& !reserved
) {
3544 space_info
->bytes_reserved
+= orig_bytes
;
3548 spin_unlock(&space_info
->lock
);
3557 * We do synchronous shrinking since we don't actually unreserve
3558 * metadata until after the IO is completed.
3560 ret
= shrink_delalloc(trans
, root
, num_bytes
, 1);
3567 * So if we were overcommitted it's possible that somebody else flushed
3568 * out enough space and we simply didn't have enough space to reclaim,
3569 * so go back around and try again.
3576 spin_lock(&space_info
->lock
);
3578 * Not enough space to be reclaimed, don't bother committing the
3581 if (space_info
->bytes_pinned
< orig_bytes
)
3583 spin_unlock(&space_info
->lock
);
3588 if (trans
|| committed
)
3592 trans
= btrfs_join_transaction(root
, 1);
3595 ret
= btrfs_commit_transaction(trans
, root
);
3604 spin_lock(&space_info
->lock
);
3605 space_info
->bytes_reserved
-= orig_bytes
;
3606 spin_unlock(&space_info
->lock
);
3612 static struct btrfs_block_rsv
*get_block_rsv(struct btrfs_trans_handle
*trans
,
3613 struct btrfs_root
*root
)
3615 struct btrfs_block_rsv
*block_rsv
;
3617 block_rsv
= trans
->block_rsv
;
3619 block_rsv
= root
->block_rsv
;
3622 block_rsv
= &root
->fs_info
->empty_block_rsv
;
3627 static int block_rsv_use_bytes(struct btrfs_block_rsv
*block_rsv
,
3631 spin_lock(&block_rsv
->lock
);
3632 if (block_rsv
->reserved
>= num_bytes
) {
3633 block_rsv
->reserved
-= num_bytes
;
3634 if (block_rsv
->reserved
< block_rsv
->size
)
3635 block_rsv
->full
= 0;
3638 spin_unlock(&block_rsv
->lock
);
3642 static void block_rsv_add_bytes(struct btrfs_block_rsv
*block_rsv
,
3643 u64 num_bytes
, int update_size
)
3645 spin_lock(&block_rsv
->lock
);
3646 block_rsv
->reserved
+= num_bytes
;
3648 block_rsv
->size
+= num_bytes
;
3649 else if (block_rsv
->reserved
>= block_rsv
->size
)
3650 block_rsv
->full
= 1;
3651 spin_unlock(&block_rsv
->lock
);
3654 void block_rsv_release_bytes(struct btrfs_block_rsv
*block_rsv
,
3655 struct btrfs_block_rsv
*dest
, u64 num_bytes
)
3657 struct btrfs_space_info
*space_info
= block_rsv
->space_info
;
3659 spin_lock(&block_rsv
->lock
);
3660 if (num_bytes
== (u64
)-1)
3661 num_bytes
= block_rsv
->size
;
3662 block_rsv
->size
-= num_bytes
;
3663 if (block_rsv
->reserved
>= block_rsv
->size
) {
3664 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
3665 block_rsv
->reserved
= block_rsv
->size
;
3666 block_rsv
->full
= 1;
3670 spin_unlock(&block_rsv
->lock
);
3672 if (num_bytes
> 0) {
3674 spin_lock(&dest
->lock
);
3678 bytes_to_add
= dest
->size
- dest
->reserved
;
3679 bytes_to_add
= min(num_bytes
, bytes_to_add
);
3680 dest
->reserved
+= bytes_to_add
;
3681 if (dest
->reserved
>= dest
->size
)
3683 num_bytes
-= bytes_to_add
;
3685 spin_unlock(&dest
->lock
);
3688 spin_lock(&space_info
->lock
);
3689 space_info
->bytes_reserved
-= num_bytes
;
3690 space_info
->reservation_progress
++;
3691 spin_unlock(&space_info
->lock
);
3696 static int block_rsv_migrate_bytes(struct btrfs_block_rsv
*src
,
3697 struct btrfs_block_rsv
*dst
, u64 num_bytes
)
3701 ret
= block_rsv_use_bytes(src
, num_bytes
);
3705 block_rsv_add_bytes(dst
, num_bytes
, 1);
3709 void btrfs_init_block_rsv(struct btrfs_block_rsv
*rsv
)
3711 memset(rsv
, 0, sizeof(*rsv
));
3712 spin_lock_init(&rsv
->lock
);
3713 atomic_set(&rsv
->usage
, 1);
3715 INIT_LIST_HEAD(&rsv
->list
);
3718 struct btrfs_block_rsv
*btrfs_alloc_block_rsv(struct btrfs_root
*root
)
3720 struct btrfs_block_rsv
*block_rsv
;
3721 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3723 block_rsv
= kmalloc(sizeof(*block_rsv
), GFP_NOFS
);
3727 btrfs_init_block_rsv(block_rsv
);
3728 block_rsv
->space_info
= __find_space_info(fs_info
,
3729 BTRFS_BLOCK_GROUP_METADATA
);
3733 void btrfs_free_block_rsv(struct btrfs_root
*root
,
3734 struct btrfs_block_rsv
*rsv
)
3736 if (rsv
&& atomic_dec_and_test(&rsv
->usage
)) {
3737 btrfs_block_rsv_release(root
, rsv
, (u64
)-1);
3744 * make the block_rsv struct be able to capture freed space.
3745 * the captured space will re-add to the the block_rsv struct
3746 * after transaction commit
3748 void btrfs_add_durable_block_rsv(struct btrfs_fs_info
*fs_info
,
3749 struct btrfs_block_rsv
*block_rsv
)
3751 block_rsv
->durable
= 1;
3752 mutex_lock(&fs_info
->durable_block_rsv_mutex
);
3753 list_add_tail(&block_rsv
->list
, &fs_info
->durable_block_rsv_list
);
3754 mutex_unlock(&fs_info
->durable_block_rsv_mutex
);
3757 int btrfs_block_rsv_add(struct btrfs_trans_handle
*trans
,
3758 struct btrfs_root
*root
,
3759 struct btrfs_block_rsv
*block_rsv
,
3767 ret
= reserve_metadata_bytes(trans
, root
, block_rsv
, num_bytes
, 1);
3769 block_rsv_add_bytes(block_rsv
, num_bytes
, 1);
3776 int btrfs_block_rsv_check(struct btrfs_trans_handle
*trans
,
3777 struct btrfs_root
*root
,
3778 struct btrfs_block_rsv
*block_rsv
,
3779 u64 min_reserved
, int min_factor
)
3782 int commit_trans
= 0;
3788 spin_lock(&block_rsv
->lock
);
3790 num_bytes
= div_factor(block_rsv
->size
, min_factor
);
3791 if (min_reserved
> num_bytes
)
3792 num_bytes
= min_reserved
;
3794 if (block_rsv
->reserved
>= num_bytes
) {
3797 num_bytes
-= block_rsv
->reserved
;
3798 if (block_rsv
->durable
&&
3799 block_rsv
->freed
[0] + block_rsv
->freed
[1] >= num_bytes
)
3802 spin_unlock(&block_rsv
->lock
);
3806 if (block_rsv
->refill_used
) {
3807 ret
= reserve_metadata_bytes(trans
, root
, block_rsv
,
3810 block_rsv_add_bytes(block_rsv
, num_bytes
, 0);
3819 trans
= btrfs_join_transaction(root
, 1);
3820 BUG_ON(IS_ERR(trans
));
3821 ret
= btrfs_commit_transaction(trans
, root
);
3828 int btrfs_block_rsv_migrate(struct btrfs_block_rsv
*src_rsv
,
3829 struct btrfs_block_rsv
*dst_rsv
,
3832 return block_rsv_migrate_bytes(src_rsv
, dst_rsv
, num_bytes
);
3835 void btrfs_block_rsv_release(struct btrfs_root
*root
,
3836 struct btrfs_block_rsv
*block_rsv
,
3839 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
3840 if (global_rsv
->full
|| global_rsv
== block_rsv
||
3841 block_rsv
->space_info
!= global_rsv
->space_info
)
3843 block_rsv_release_bytes(block_rsv
, global_rsv
, num_bytes
);
3847 * helper to calculate size of global block reservation.
3848 * the desired value is sum of space used by extent tree,
3849 * checksum tree and root tree
3851 static u64
calc_global_metadata_size(struct btrfs_fs_info
*fs_info
)
3853 struct btrfs_space_info
*sinfo
;
3857 int csum_size
= btrfs_super_csum_size(&fs_info
->super_copy
);
3860 * per tree used space accounting can be inaccuracy, so we
3863 spin_lock(&fs_info
->extent_root
->accounting_lock
);
3864 num_bytes
= btrfs_root_used(&fs_info
->extent_root
->root_item
);
3865 spin_unlock(&fs_info
->extent_root
->accounting_lock
);
3867 spin_lock(&fs_info
->csum_root
->accounting_lock
);
3868 num_bytes
+= btrfs_root_used(&fs_info
->csum_root
->root_item
);
3869 spin_unlock(&fs_info
->csum_root
->accounting_lock
);
3871 spin_lock(&fs_info
->tree_root
->accounting_lock
);
3872 num_bytes
+= btrfs_root_used(&fs_info
->tree_root
->root_item
);
3873 spin_unlock(&fs_info
->tree_root
->accounting_lock
);
3875 sinfo
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_DATA
);
3876 spin_lock(&sinfo
->lock
);
3877 data_used
= sinfo
->bytes_used
;
3878 spin_unlock(&sinfo
->lock
);
3880 sinfo
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
3881 spin_lock(&sinfo
->lock
);
3882 if (sinfo
->flags
& BTRFS_BLOCK_GROUP_DATA
)
3884 meta_used
= sinfo
->bytes_used
;
3885 spin_unlock(&sinfo
->lock
);
3887 num_bytes
= (data_used
>> fs_info
->sb
->s_blocksize_bits
) *
3889 num_bytes
+= div64_u64(data_used
+ meta_used
, 50);
3891 if (num_bytes
* 3 > meta_used
)
3892 num_bytes
= div64_u64(meta_used
, 3);
3894 return ALIGN(num_bytes
, fs_info
->extent_root
->leafsize
<< 10);
3897 static void update_global_block_rsv(struct btrfs_fs_info
*fs_info
)
3899 struct btrfs_block_rsv
*block_rsv
= &fs_info
->global_block_rsv
;
3900 struct btrfs_space_info
*sinfo
= block_rsv
->space_info
;
3903 num_bytes
= calc_global_metadata_size(fs_info
);
3905 spin_lock(&block_rsv
->lock
);
3906 spin_lock(&sinfo
->lock
);
3908 block_rsv
->size
= num_bytes
;
3910 num_bytes
= sinfo
->bytes_used
+ sinfo
->bytes_pinned
+
3911 sinfo
->bytes_reserved
+ sinfo
->bytes_readonly
+
3912 sinfo
->bytes_may_use
;
3914 if (sinfo
->total_bytes
> num_bytes
) {
3915 num_bytes
= sinfo
->total_bytes
- num_bytes
;
3916 block_rsv
->reserved
+= num_bytes
;
3917 sinfo
->bytes_reserved
+= num_bytes
;
3920 if (block_rsv
->reserved
>= block_rsv
->size
) {
3921 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
3922 sinfo
->bytes_reserved
-= num_bytes
;
3923 sinfo
->reservation_progress
++;
3924 block_rsv
->reserved
= block_rsv
->size
;
3925 block_rsv
->full
= 1;
3928 printk(KERN_INFO
"global block rsv size %llu reserved %llu\n",
3929 block_rsv
->size
, block_rsv
->reserved
);
3931 spin_unlock(&sinfo
->lock
);
3932 spin_unlock(&block_rsv
->lock
);
3935 static void init_global_block_rsv(struct btrfs_fs_info
*fs_info
)
3937 struct btrfs_space_info
*space_info
;
3939 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
3940 fs_info
->chunk_block_rsv
.space_info
= space_info
;
3941 fs_info
->chunk_block_rsv
.priority
= 10;
3943 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
3944 fs_info
->global_block_rsv
.space_info
= space_info
;
3945 fs_info
->global_block_rsv
.priority
= 10;
3946 fs_info
->global_block_rsv
.refill_used
= 1;
3947 fs_info
->delalloc_block_rsv
.space_info
= space_info
;
3948 fs_info
->trans_block_rsv
.space_info
= space_info
;
3949 fs_info
->empty_block_rsv
.space_info
= space_info
;
3950 fs_info
->empty_block_rsv
.priority
= 10;
3952 fs_info
->extent_root
->block_rsv
= &fs_info
->global_block_rsv
;
3953 fs_info
->csum_root
->block_rsv
= &fs_info
->global_block_rsv
;
3954 fs_info
->dev_root
->block_rsv
= &fs_info
->global_block_rsv
;
3955 fs_info
->tree_root
->block_rsv
= &fs_info
->global_block_rsv
;
3956 fs_info
->chunk_root
->block_rsv
= &fs_info
->chunk_block_rsv
;
3958 btrfs_add_durable_block_rsv(fs_info
, &fs_info
->global_block_rsv
);
3960 btrfs_add_durable_block_rsv(fs_info
, &fs_info
->delalloc_block_rsv
);
3962 update_global_block_rsv(fs_info
);
3965 static void release_global_block_rsv(struct btrfs_fs_info
*fs_info
)
3967 block_rsv_release_bytes(&fs_info
->global_block_rsv
, NULL
, (u64
)-1);
3968 WARN_ON(fs_info
->delalloc_block_rsv
.size
> 0);
3969 WARN_ON(fs_info
->delalloc_block_rsv
.reserved
> 0);
3970 WARN_ON(fs_info
->trans_block_rsv
.size
> 0);
3971 WARN_ON(fs_info
->trans_block_rsv
.reserved
> 0);
3972 WARN_ON(fs_info
->chunk_block_rsv
.size
> 0);
3973 WARN_ON(fs_info
->chunk_block_rsv
.reserved
> 0);
3976 static u64
calc_trans_metadata_size(struct btrfs_root
*root
, int num_items
)
3978 return (root
->leafsize
+ root
->nodesize
* (BTRFS_MAX_LEVEL
- 1)) *
3982 int btrfs_trans_reserve_metadata(struct btrfs_trans_handle
*trans
,
3983 struct btrfs_root
*root
,
3989 if (num_items
== 0 || root
->fs_info
->chunk_root
== root
)
3992 num_bytes
= calc_trans_metadata_size(root
, num_items
);
3993 ret
= btrfs_block_rsv_add(trans
, root
, &root
->fs_info
->trans_block_rsv
,
3996 trans
->bytes_reserved
+= num_bytes
;
3997 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
4002 void btrfs_trans_release_metadata(struct btrfs_trans_handle
*trans
,
4003 struct btrfs_root
*root
)
4005 if (!trans
->bytes_reserved
)
4008 BUG_ON(trans
->block_rsv
!= &root
->fs_info
->trans_block_rsv
);
4009 btrfs_block_rsv_release(root
, trans
->block_rsv
,
4010 trans
->bytes_reserved
);
4011 trans
->bytes_reserved
= 0;
4014 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle
*trans
,
4015 struct inode
*inode
)
4017 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4018 struct btrfs_block_rsv
*src_rsv
= get_block_rsv(trans
, root
);
4019 struct btrfs_block_rsv
*dst_rsv
= root
->orphan_block_rsv
;
4022 * one for deleting orphan item, one for updating inode and
4023 * two for calling btrfs_truncate_inode_items.
4025 * btrfs_truncate_inode_items is a delete operation, it frees
4026 * more space than it uses in most cases. So two units of
4027 * metadata space should be enough for calling it many times.
4028 * If all of the metadata space is used, we can commit
4029 * transaction and use space it freed.
4031 u64 num_bytes
= calc_trans_metadata_size(root
, 4);
4032 return block_rsv_migrate_bytes(src_rsv
, dst_rsv
, num_bytes
);
4035 void btrfs_orphan_release_metadata(struct inode
*inode
)
4037 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4038 u64 num_bytes
= calc_trans_metadata_size(root
, 4);
4039 btrfs_block_rsv_release(root
, root
->orphan_block_rsv
, num_bytes
);
4042 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle
*trans
,
4043 struct btrfs_pending_snapshot
*pending
)
4045 struct btrfs_root
*root
= pending
->root
;
4046 struct btrfs_block_rsv
*src_rsv
= get_block_rsv(trans
, root
);
4047 struct btrfs_block_rsv
*dst_rsv
= &pending
->block_rsv
;
4049 * two for root back/forward refs, two for directory entries
4050 * and one for root of the snapshot.
4052 u64 num_bytes
= calc_trans_metadata_size(root
, 5);
4053 dst_rsv
->space_info
= src_rsv
->space_info
;
4054 return block_rsv_migrate_bytes(src_rsv
, dst_rsv
, num_bytes
);
4057 static u64
calc_csum_metadata_size(struct inode
*inode
, u64 num_bytes
)
4059 return num_bytes
>>= 3;
4062 int btrfs_delalloc_reserve_metadata(struct inode
*inode
, u64 num_bytes
)
4064 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4065 struct btrfs_block_rsv
*block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
4068 int reserved_extents
;
4071 if (btrfs_transaction_in_commit(root
->fs_info
))
4072 schedule_timeout(1);
4074 num_bytes
= ALIGN(num_bytes
, root
->sectorsize
);
4076 nr_extents
= atomic_read(&BTRFS_I(inode
)->outstanding_extents
) + 1;
4077 reserved_extents
= atomic_read(&BTRFS_I(inode
)->reserved_extents
);
4079 if (nr_extents
> reserved_extents
) {
4080 nr_extents
-= reserved_extents
;
4081 to_reserve
= calc_trans_metadata_size(root
, nr_extents
);
4087 to_reserve
+= calc_csum_metadata_size(inode
, num_bytes
);
4088 ret
= reserve_metadata_bytes(NULL
, root
, block_rsv
, to_reserve
, 1);
4092 atomic_add(nr_extents
, &BTRFS_I(inode
)->reserved_extents
);
4093 atomic_inc(&BTRFS_I(inode
)->outstanding_extents
);
4095 block_rsv_add_bytes(block_rsv
, to_reserve
, 1);
4097 if (block_rsv
->size
> 512 * 1024 * 1024)
4098 shrink_delalloc(NULL
, root
, to_reserve
, 0);
4103 void btrfs_delalloc_release_metadata(struct inode
*inode
, u64 num_bytes
)
4105 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4108 int reserved_extents
;
4110 num_bytes
= ALIGN(num_bytes
, root
->sectorsize
);
4111 atomic_dec(&BTRFS_I(inode
)->outstanding_extents
);
4112 WARN_ON(atomic_read(&BTRFS_I(inode
)->outstanding_extents
) < 0);
4114 reserved_extents
= atomic_read(&BTRFS_I(inode
)->reserved_extents
);
4118 nr_extents
= atomic_read(&BTRFS_I(inode
)->outstanding_extents
);
4119 if (nr_extents
>= reserved_extents
) {
4123 old
= reserved_extents
;
4124 nr_extents
= reserved_extents
- nr_extents
;
4125 new = reserved_extents
- nr_extents
;
4126 old
= atomic_cmpxchg(&BTRFS_I(inode
)->reserved_extents
,
4127 reserved_extents
, new);
4128 if (likely(old
== reserved_extents
))
4130 reserved_extents
= old
;
4133 to_free
= calc_csum_metadata_size(inode
, num_bytes
);
4135 to_free
+= calc_trans_metadata_size(root
, nr_extents
);
4137 btrfs_block_rsv_release(root
, &root
->fs_info
->delalloc_block_rsv
,
4141 int btrfs_delalloc_reserve_space(struct inode
*inode
, u64 num_bytes
)
4145 ret
= btrfs_check_data_free_space(inode
, num_bytes
);
4149 ret
= btrfs_delalloc_reserve_metadata(inode
, num_bytes
);
4151 btrfs_free_reserved_data_space(inode
, num_bytes
);
4158 void btrfs_delalloc_release_space(struct inode
*inode
, u64 num_bytes
)
4160 btrfs_delalloc_release_metadata(inode
, num_bytes
);
4161 btrfs_free_reserved_data_space(inode
, num_bytes
);
4164 static int update_block_group(struct btrfs_trans_handle
*trans
,
4165 struct btrfs_root
*root
,
4166 u64 bytenr
, u64 num_bytes
, int alloc
)
4168 struct btrfs_block_group_cache
*cache
= NULL
;
4169 struct btrfs_fs_info
*info
= root
->fs_info
;
4170 u64 total
= num_bytes
;
4175 /* block accounting for super block */
4176 spin_lock(&info
->delalloc_lock
);
4177 old_val
= btrfs_super_bytes_used(&info
->super_copy
);
4179 old_val
+= num_bytes
;
4181 old_val
-= num_bytes
;
4182 btrfs_set_super_bytes_used(&info
->super_copy
, old_val
);
4183 spin_unlock(&info
->delalloc_lock
);
4186 cache
= btrfs_lookup_block_group(info
, bytenr
);
4189 if (cache
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
4190 BTRFS_BLOCK_GROUP_RAID1
|
4191 BTRFS_BLOCK_GROUP_RAID10
))
4196 * If this block group has free space cache written out, we
4197 * need to make sure to load it if we are removing space. This
4198 * is because we need the unpinning stage to actually add the
4199 * space back to the block group, otherwise we will leak space.
4201 if (!alloc
&& cache
->cached
== BTRFS_CACHE_NO
)
4202 cache_block_group(cache
, trans
, NULL
, 1);
4204 byte_in_group
= bytenr
- cache
->key
.objectid
;
4205 WARN_ON(byte_in_group
> cache
->key
.offset
);
4207 spin_lock(&cache
->space_info
->lock
);
4208 spin_lock(&cache
->lock
);
4210 if (btrfs_super_cache_generation(&info
->super_copy
) != 0 &&
4211 cache
->disk_cache_state
< BTRFS_DC_CLEAR
)
4212 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
4215 old_val
= btrfs_block_group_used(&cache
->item
);
4216 num_bytes
= min(total
, cache
->key
.offset
- byte_in_group
);
4218 old_val
+= num_bytes
;
4219 btrfs_set_block_group_used(&cache
->item
, old_val
);
4220 cache
->reserved
-= num_bytes
;
4221 cache
->space_info
->bytes_reserved
-= num_bytes
;
4222 cache
->space_info
->reservation_progress
++;
4223 cache
->space_info
->bytes_used
+= num_bytes
;
4224 cache
->space_info
->disk_used
+= num_bytes
* factor
;
4225 spin_unlock(&cache
->lock
);
4226 spin_unlock(&cache
->space_info
->lock
);
4228 old_val
-= num_bytes
;
4229 btrfs_set_block_group_used(&cache
->item
, old_val
);
4230 cache
->pinned
+= num_bytes
;
4231 cache
->space_info
->bytes_pinned
+= num_bytes
;
4232 cache
->space_info
->bytes_used
-= num_bytes
;
4233 cache
->space_info
->disk_used
-= num_bytes
* factor
;
4234 spin_unlock(&cache
->lock
);
4235 spin_unlock(&cache
->space_info
->lock
);
4237 set_extent_dirty(info
->pinned_extents
,
4238 bytenr
, bytenr
+ num_bytes
- 1,
4239 GFP_NOFS
| __GFP_NOFAIL
);
4241 btrfs_put_block_group(cache
);
4243 bytenr
+= num_bytes
;
4248 static u64
first_logical_byte(struct btrfs_root
*root
, u64 search_start
)
4250 struct btrfs_block_group_cache
*cache
;
4253 cache
= btrfs_lookup_first_block_group(root
->fs_info
, search_start
);
4257 bytenr
= cache
->key
.objectid
;
4258 btrfs_put_block_group(cache
);
4263 static int pin_down_extent(struct btrfs_root
*root
,
4264 struct btrfs_block_group_cache
*cache
,
4265 u64 bytenr
, u64 num_bytes
, int reserved
)
4267 spin_lock(&cache
->space_info
->lock
);
4268 spin_lock(&cache
->lock
);
4269 cache
->pinned
+= num_bytes
;
4270 cache
->space_info
->bytes_pinned
+= num_bytes
;
4272 cache
->reserved
-= num_bytes
;
4273 cache
->space_info
->bytes_reserved
-= num_bytes
;
4274 cache
->space_info
->reservation_progress
++;
4276 spin_unlock(&cache
->lock
);
4277 spin_unlock(&cache
->space_info
->lock
);
4279 set_extent_dirty(root
->fs_info
->pinned_extents
, bytenr
,
4280 bytenr
+ num_bytes
- 1, GFP_NOFS
| __GFP_NOFAIL
);
4285 * this function must be called within transaction
4287 int btrfs_pin_extent(struct btrfs_root
*root
,
4288 u64 bytenr
, u64 num_bytes
, int reserved
)
4290 struct btrfs_block_group_cache
*cache
;
4292 cache
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
4295 pin_down_extent(root
, cache
, bytenr
, num_bytes
, reserved
);
4297 btrfs_put_block_group(cache
);
4302 * update size of reserved extents. this function may return -EAGAIN
4303 * if 'reserve' is true or 'sinfo' is false.
4305 int btrfs_update_reserved_bytes(struct btrfs_block_group_cache
*cache
,
4306 u64 num_bytes
, int reserve
, int sinfo
)
4310 struct btrfs_space_info
*space_info
= cache
->space_info
;
4311 spin_lock(&space_info
->lock
);
4312 spin_lock(&cache
->lock
);
4317 cache
->reserved
+= num_bytes
;
4318 space_info
->bytes_reserved
+= num_bytes
;
4322 space_info
->bytes_readonly
+= num_bytes
;
4323 cache
->reserved
-= num_bytes
;
4324 space_info
->bytes_reserved
-= num_bytes
;
4325 space_info
->reservation_progress
++;
4327 spin_unlock(&cache
->lock
);
4328 spin_unlock(&space_info
->lock
);
4330 spin_lock(&cache
->lock
);
4335 cache
->reserved
+= num_bytes
;
4337 cache
->reserved
-= num_bytes
;
4339 spin_unlock(&cache
->lock
);
4344 int btrfs_prepare_extent_commit(struct btrfs_trans_handle
*trans
,
4345 struct btrfs_root
*root
)
4347 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4348 struct btrfs_caching_control
*next
;
4349 struct btrfs_caching_control
*caching_ctl
;
4350 struct btrfs_block_group_cache
*cache
;
4352 down_write(&fs_info
->extent_commit_sem
);
4354 list_for_each_entry_safe(caching_ctl
, next
,
4355 &fs_info
->caching_block_groups
, list
) {
4356 cache
= caching_ctl
->block_group
;
4357 if (block_group_cache_done(cache
)) {
4358 cache
->last_byte_to_unpin
= (u64
)-1;
4359 list_del_init(&caching_ctl
->list
);
4360 put_caching_control(caching_ctl
);
4362 cache
->last_byte_to_unpin
= caching_ctl
->progress
;
4366 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
4367 fs_info
->pinned_extents
= &fs_info
->freed_extents
[1];
4369 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
4371 up_write(&fs_info
->extent_commit_sem
);
4373 update_global_block_rsv(fs_info
);
4377 static int unpin_extent_range(struct btrfs_root
*root
, u64 start
, u64 end
)
4379 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4380 struct btrfs_block_group_cache
*cache
= NULL
;
4383 while (start
<= end
) {
4385 start
>= cache
->key
.objectid
+ cache
->key
.offset
) {
4387 btrfs_put_block_group(cache
);
4388 cache
= btrfs_lookup_block_group(fs_info
, start
);
4392 len
= cache
->key
.objectid
+ cache
->key
.offset
- start
;
4393 len
= min(len
, end
+ 1 - start
);
4395 if (start
< cache
->last_byte_to_unpin
) {
4396 len
= min(len
, cache
->last_byte_to_unpin
- start
);
4397 btrfs_add_free_space(cache
, start
, len
);
4402 spin_lock(&cache
->space_info
->lock
);
4403 spin_lock(&cache
->lock
);
4404 cache
->pinned
-= len
;
4405 cache
->space_info
->bytes_pinned
-= len
;
4407 cache
->space_info
->bytes_readonly
+= len
;
4408 } else if (cache
->reserved_pinned
> 0) {
4409 len
= min(len
, cache
->reserved_pinned
);
4410 cache
->reserved_pinned
-= len
;
4411 cache
->space_info
->bytes_reserved
+= len
;
4413 spin_unlock(&cache
->lock
);
4414 spin_unlock(&cache
->space_info
->lock
);
4418 btrfs_put_block_group(cache
);
4422 int btrfs_finish_extent_commit(struct btrfs_trans_handle
*trans
,
4423 struct btrfs_root
*root
)
4425 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4426 struct extent_io_tree
*unpin
;
4427 struct btrfs_block_rsv
*block_rsv
;
4428 struct btrfs_block_rsv
*next_rsv
;
4434 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
4435 unpin
= &fs_info
->freed_extents
[1];
4437 unpin
= &fs_info
->freed_extents
[0];
4440 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
4445 if (btrfs_test_opt(root
, DISCARD
))
4446 ret
= btrfs_discard_extent(root
, start
,
4447 end
+ 1 - start
, NULL
);
4449 clear_extent_dirty(unpin
, start
, end
, GFP_NOFS
);
4450 unpin_extent_range(root
, start
, end
);
4454 mutex_lock(&fs_info
->durable_block_rsv_mutex
);
4455 list_for_each_entry_safe(block_rsv
, next_rsv
,
4456 &fs_info
->durable_block_rsv_list
, list
) {
4458 idx
= trans
->transid
& 0x1;
4459 if (block_rsv
->freed
[idx
] > 0) {
4460 block_rsv_add_bytes(block_rsv
,
4461 block_rsv
->freed
[idx
], 0);
4462 block_rsv
->freed
[idx
] = 0;
4464 if (atomic_read(&block_rsv
->usage
) == 0) {
4465 btrfs_block_rsv_release(root
, block_rsv
, (u64
)-1);
4467 if (block_rsv
->freed
[0] == 0 &&
4468 block_rsv
->freed
[1] == 0) {
4469 list_del_init(&block_rsv
->list
);
4473 btrfs_block_rsv_release(root
, block_rsv
, 0);
4476 mutex_unlock(&fs_info
->durable_block_rsv_mutex
);
4481 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
4482 struct btrfs_root
*root
,
4483 u64 bytenr
, u64 num_bytes
, u64 parent
,
4484 u64 root_objectid
, u64 owner_objectid
,
4485 u64 owner_offset
, int refs_to_drop
,
4486 struct btrfs_delayed_extent_op
*extent_op
)
4488 struct btrfs_key key
;
4489 struct btrfs_path
*path
;
4490 struct btrfs_fs_info
*info
= root
->fs_info
;
4491 struct btrfs_root
*extent_root
= info
->extent_root
;
4492 struct extent_buffer
*leaf
;
4493 struct btrfs_extent_item
*ei
;
4494 struct btrfs_extent_inline_ref
*iref
;
4497 int extent_slot
= 0;
4498 int found_extent
= 0;
4503 path
= btrfs_alloc_path();
4508 path
->leave_spinning
= 1;
4510 is_data
= owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
;
4511 BUG_ON(!is_data
&& refs_to_drop
!= 1);
4513 ret
= lookup_extent_backref(trans
, extent_root
, path
, &iref
,
4514 bytenr
, num_bytes
, parent
,
4515 root_objectid
, owner_objectid
,
4518 extent_slot
= path
->slots
[0];
4519 while (extent_slot
>= 0) {
4520 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
4522 if (key
.objectid
!= bytenr
)
4524 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
4525 key
.offset
== num_bytes
) {
4529 if (path
->slots
[0] - extent_slot
> 5)
4533 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4534 item_size
= btrfs_item_size_nr(path
->nodes
[0], extent_slot
);
4535 if (found_extent
&& item_size
< sizeof(*ei
))
4538 if (!found_extent
) {
4540 ret
= remove_extent_backref(trans
, extent_root
, path
,
4544 btrfs_release_path(extent_root
, path
);
4545 path
->leave_spinning
= 1;
4547 key
.objectid
= bytenr
;
4548 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
4549 key
.offset
= num_bytes
;
4551 ret
= btrfs_search_slot(trans
, extent_root
,
4554 printk(KERN_ERR
"umm, got %d back from search"
4555 ", was looking for %llu\n", ret
,
4556 (unsigned long long)bytenr
);
4557 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
4560 extent_slot
= path
->slots
[0];
4563 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
4565 printk(KERN_ERR
"btrfs unable to find ref byte nr %llu "
4566 "parent %llu root %llu owner %llu offset %llu\n",
4567 (unsigned long long)bytenr
,
4568 (unsigned long long)parent
,
4569 (unsigned long long)root_objectid
,
4570 (unsigned long long)owner_objectid
,
4571 (unsigned long long)owner_offset
);
4574 leaf
= path
->nodes
[0];
4575 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
4576 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4577 if (item_size
< sizeof(*ei
)) {
4578 BUG_ON(found_extent
|| extent_slot
!= path
->slots
[0]);
4579 ret
= convert_extent_item_v0(trans
, extent_root
, path
,
4583 btrfs_release_path(extent_root
, path
);
4584 path
->leave_spinning
= 1;
4586 key
.objectid
= bytenr
;
4587 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
4588 key
.offset
= num_bytes
;
4590 ret
= btrfs_search_slot(trans
, extent_root
, &key
, path
,
4593 printk(KERN_ERR
"umm, got %d back from search"
4594 ", was looking for %llu\n", ret
,
4595 (unsigned long long)bytenr
);
4596 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
4599 extent_slot
= path
->slots
[0];
4600 leaf
= path
->nodes
[0];
4601 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
4604 BUG_ON(item_size
< sizeof(*ei
));
4605 ei
= btrfs_item_ptr(leaf
, extent_slot
,
4606 struct btrfs_extent_item
);
4607 if (owner_objectid
< BTRFS_FIRST_FREE_OBJECTID
) {
4608 struct btrfs_tree_block_info
*bi
;
4609 BUG_ON(item_size
< sizeof(*ei
) + sizeof(*bi
));
4610 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
4611 WARN_ON(owner_objectid
!= btrfs_tree_block_level(leaf
, bi
));
4614 refs
= btrfs_extent_refs(leaf
, ei
);
4615 BUG_ON(refs
< refs_to_drop
);
4616 refs
-= refs_to_drop
;
4620 __run_delayed_extent_op(extent_op
, leaf
, ei
);
4622 * In the case of inline back ref, reference count will
4623 * be updated by remove_extent_backref
4626 BUG_ON(!found_extent
);
4628 btrfs_set_extent_refs(leaf
, ei
, refs
);
4629 btrfs_mark_buffer_dirty(leaf
);
4632 ret
= remove_extent_backref(trans
, extent_root
, path
,
4639 BUG_ON(is_data
&& refs_to_drop
!=
4640 extent_data_ref_count(root
, path
, iref
));
4642 BUG_ON(path
->slots
[0] != extent_slot
);
4644 BUG_ON(path
->slots
[0] != extent_slot
+ 1);
4645 path
->slots
[0] = extent_slot
;
4650 ret
= btrfs_del_items(trans
, extent_root
, path
, path
->slots
[0],
4653 btrfs_release_path(extent_root
, path
);
4656 ret
= btrfs_del_csums(trans
, root
, bytenr
, num_bytes
);
4659 invalidate_mapping_pages(info
->btree_inode
->i_mapping
,
4660 bytenr
>> PAGE_CACHE_SHIFT
,
4661 (bytenr
+ num_bytes
- 1) >> PAGE_CACHE_SHIFT
);
4664 ret
= update_block_group(trans
, root
, bytenr
, num_bytes
, 0);
4667 btrfs_free_path(path
);
4672 * when we free an block, it is possible (and likely) that we free the last
4673 * delayed ref for that extent as well. This searches the delayed ref tree for
4674 * a given extent, and if there are no other delayed refs to be processed, it
4675 * removes it from the tree.
4677 static noinline
int check_ref_cleanup(struct btrfs_trans_handle
*trans
,
4678 struct btrfs_root
*root
, u64 bytenr
)
4680 struct btrfs_delayed_ref_head
*head
;
4681 struct btrfs_delayed_ref_root
*delayed_refs
;
4682 struct btrfs_delayed_ref_node
*ref
;
4683 struct rb_node
*node
;
4686 delayed_refs
= &trans
->transaction
->delayed_refs
;
4687 spin_lock(&delayed_refs
->lock
);
4688 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
4692 node
= rb_prev(&head
->node
.rb_node
);
4696 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
4698 /* there are still entries for this ref, we can't drop it */
4699 if (ref
->bytenr
== bytenr
)
4702 if (head
->extent_op
) {
4703 if (!head
->must_insert_reserved
)
4705 kfree(head
->extent_op
);
4706 head
->extent_op
= NULL
;
4710 * waiting for the lock here would deadlock. If someone else has it
4711 * locked they are already in the process of dropping it anyway
4713 if (!mutex_trylock(&head
->mutex
))
4717 * at this point we have a head with no other entries. Go
4718 * ahead and process it.
4720 head
->node
.in_tree
= 0;
4721 rb_erase(&head
->node
.rb_node
, &delayed_refs
->root
);
4723 delayed_refs
->num_entries
--;
4726 * we don't take a ref on the node because we're removing it from the
4727 * tree, so we just steal the ref the tree was holding.
4729 delayed_refs
->num_heads
--;
4730 if (list_empty(&head
->cluster
))
4731 delayed_refs
->num_heads_ready
--;
4733 list_del_init(&head
->cluster
);
4734 spin_unlock(&delayed_refs
->lock
);
4736 BUG_ON(head
->extent_op
);
4737 if (head
->must_insert_reserved
)
4740 mutex_unlock(&head
->mutex
);
4741 btrfs_put_delayed_ref(&head
->node
);
4744 spin_unlock(&delayed_refs
->lock
);
4748 void btrfs_free_tree_block(struct btrfs_trans_handle
*trans
,
4749 struct btrfs_root
*root
,
4750 struct extent_buffer
*buf
,
4751 u64 parent
, int last_ref
)
4753 struct btrfs_block_rsv
*block_rsv
;
4754 struct btrfs_block_group_cache
*cache
= NULL
;
4757 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
4758 ret
= btrfs_add_delayed_tree_ref(trans
, buf
->start
, buf
->len
,
4759 parent
, root
->root_key
.objectid
,
4760 btrfs_header_level(buf
),
4761 BTRFS_DROP_DELAYED_REF
, NULL
);
4768 block_rsv
= get_block_rsv(trans
, root
);
4769 cache
= btrfs_lookup_block_group(root
->fs_info
, buf
->start
);
4770 if (block_rsv
->space_info
!= cache
->space_info
)
4773 if (btrfs_header_generation(buf
) == trans
->transid
) {
4774 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
4775 ret
= check_ref_cleanup(trans
, root
, buf
->start
);
4780 if (btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
)) {
4781 pin_down_extent(root
, cache
, buf
->start
, buf
->len
, 1);
4785 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
));
4787 btrfs_add_free_space(cache
, buf
->start
, buf
->len
);
4788 ret
= btrfs_update_reserved_bytes(cache
, buf
->len
, 0, 0);
4789 if (ret
== -EAGAIN
) {
4790 /* block group became read-only */
4791 btrfs_update_reserved_bytes(cache
, buf
->len
, 0, 1);
4796 spin_lock(&block_rsv
->lock
);
4797 if (block_rsv
->reserved
< block_rsv
->size
) {
4798 block_rsv
->reserved
+= buf
->len
;
4801 spin_unlock(&block_rsv
->lock
);
4804 spin_lock(&cache
->space_info
->lock
);
4805 cache
->space_info
->bytes_reserved
-= buf
->len
;
4806 cache
->space_info
->reservation_progress
++;
4807 spin_unlock(&cache
->space_info
->lock
);
4812 if (block_rsv
->durable
&& !cache
->ro
) {
4814 spin_lock(&cache
->lock
);
4816 cache
->reserved_pinned
+= buf
->len
;
4819 spin_unlock(&cache
->lock
);
4822 spin_lock(&block_rsv
->lock
);
4823 block_rsv
->freed
[trans
->transid
& 0x1] += buf
->len
;
4824 spin_unlock(&block_rsv
->lock
);
4829 * Deleting the buffer, clear the corrupt flag since it doesn't matter
4832 clear_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
);
4833 btrfs_put_block_group(cache
);
4836 int btrfs_free_extent(struct btrfs_trans_handle
*trans
,
4837 struct btrfs_root
*root
,
4838 u64 bytenr
, u64 num_bytes
, u64 parent
,
4839 u64 root_objectid
, u64 owner
, u64 offset
)
4844 * tree log blocks never actually go into the extent allocation
4845 * tree, just update pinning info and exit early.
4847 if (root_objectid
== BTRFS_TREE_LOG_OBJECTID
) {
4848 WARN_ON(owner
>= BTRFS_FIRST_FREE_OBJECTID
);
4849 /* unlocks the pinned mutex */
4850 btrfs_pin_extent(root
, bytenr
, num_bytes
, 1);
4852 } else if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
4853 ret
= btrfs_add_delayed_tree_ref(trans
, bytenr
, num_bytes
,
4854 parent
, root_objectid
, (int)owner
,
4855 BTRFS_DROP_DELAYED_REF
, NULL
);
4858 ret
= btrfs_add_delayed_data_ref(trans
, bytenr
, num_bytes
,
4859 parent
, root_objectid
, owner
,
4860 offset
, BTRFS_DROP_DELAYED_REF
, NULL
);
4866 static u64
stripe_align(struct btrfs_root
*root
, u64 val
)
4868 u64 mask
= ((u64
)root
->stripesize
- 1);
4869 u64 ret
= (val
+ mask
) & ~mask
;
4874 * when we wait for progress in the block group caching, its because
4875 * our allocation attempt failed at least once. So, we must sleep
4876 * and let some progress happen before we try again.
4878 * This function will sleep at least once waiting for new free space to
4879 * show up, and then it will check the block group free space numbers
4880 * for our min num_bytes. Another option is to have it go ahead
4881 * and look in the rbtree for a free extent of a given size, but this
4885 wait_block_group_cache_progress(struct btrfs_block_group_cache
*cache
,
4888 struct btrfs_caching_control
*caching_ctl
;
4891 caching_ctl
= get_caching_control(cache
);
4895 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
) ||
4896 (cache
->free_space
>= num_bytes
));
4898 put_caching_control(caching_ctl
);
4903 wait_block_group_cache_done(struct btrfs_block_group_cache
*cache
)
4905 struct btrfs_caching_control
*caching_ctl
;
4908 caching_ctl
= get_caching_control(cache
);
4912 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
));
4914 put_caching_control(caching_ctl
);
4918 static int get_block_group_index(struct btrfs_block_group_cache
*cache
)
4921 if (cache
->flags
& BTRFS_BLOCK_GROUP_RAID10
)
4923 else if (cache
->flags
& BTRFS_BLOCK_GROUP_RAID1
)
4925 else if (cache
->flags
& BTRFS_BLOCK_GROUP_DUP
)
4927 else if (cache
->flags
& BTRFS_BLOCK_GROUP_RAID0
)
4934 enum btrfs_loop_type
{
4935 LOOP_FIND_IDEAL
= 0,
4936 LOOP_CACHING_NOWAIT
= 1,
4937 LOOP_CACHING_WAIT
= 2,
4938 LOOP_ALLOC_CHUNK
= 3,
4939 LOOP_NO_EMPTY_SIZE
= 4,
4943 * walks the btree of allocated extents and find a hole of a given size.
4944 * The key ins is changed to record the hole:
4945 * ins->objectid == block start
4946 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4947 * ins->offset == number of blocks
4948 * Any available blocks before search_start are skipped.
4950 static noinline
int find_free_extent(struct btrfs_trans_handle
*trans
,
4951 struct btrfs_root
*orig_root
,
4952 u64 num_bytes
, u64 empty_size
,
4953 u64 search_start
, u64 search_end
,
4954 u64 hint_byte
, struct btrfs_key
*ins
,
4958 struct btrfs_root
*root
= orig_root
->fs_info
->extent_root
;
4959 struct btrfs_free_cluster
*last_ptr
= NULL
;
4960 struct btrfs_block_group_cache
*block_group
= NULL
;
4961 int empty_cluster
= 2 * 1024 * 1024;
4962 int allowed_chunk_alloc
= 0;
4963 int done_chunk_alloc
= 0;
4964 struct btrfs_space_info
*space_info
;
4965 int last_ptr_loop
= 0;
4968 bool found_uncached_bg
= false;
4969 bool failed_cluster_refill
= false;
4970 bool failed_alloc
= false;
4971 bool use_cluster
= true;
4972 u64 ideal_cache_percent
= 0;
4973 u64 ideal_cache_offset
= 0;
4975 WARN_ON(num_bytes
< root
->sectorsize
);
4976 btrfs_set_key_type(ins
, BTRFS_EXTENT_ITEM_KEY
);
4980 space_info
= __find_space_info(root
->fs_info
, data
);
4982 printk(KERN_ERR
"No space info for %d\n", data
);
4987 * If the space info is for both data and metadata it means we have a
4988 * small filesystem and we can't use the clustering stuff.
4990 if (btrfs_mixed_space_info(space_info
))
4991 use_cluster
= false;
4993 if (orig_root
->ref_cows
|| empty_size
)
4994 allowed_chunk_alloc
= 1;
4996 if (data
& BTRFS_BLOCK_GROUP_METADATA
&& use_cluster
) {
4997 last_ptr
= &root
->fs_info
->meta_alloc_cluster
;
4998 if (!btrfs_test_opt(root
, SSD
))
4999 empty_cluster
= 64 * 1024;
5002 if ((data
& BTRFS_BLOCK_GROUP_DATA
) && use_cluster
&&
5003 btrfs_test_opt(root
, SSD
)) {
5004 last_ptr
= &root
->fs_info
->data_alloc_cluster
;
5008 spin_lock(&last_ptr
->lock
);
5009 if (last_ptr
->block_group
)
5010 hint_byte
= last_ptr
->window_start
;
5011 spin_unlock(&last_ptr
->lock
);
5014 search_start
= max(search_start
, first_logical_byte(root
, 0));
5015 search_start
= max(search_start
, hint_byte
);
5020 if (search_start
== hint_byte
) {
5022 block_group
= btrfs_lookup_block_group(root
->fs_info
,
5025 * we don't want to use the block group if it doesn't match our
5026 * allocation bits, or if its not cached.
5028 * However if we are re-searching with an ideal block group
5029 * picked out then we don't care that the block group is cached.
5031 if (block_group
&& block_group_bits(block_group
, data
) &&
5032 (block_group
->cached
!= BTRFS_CACHE_NO
||
5033 search_start
== ideal_cache_offset
)) {
5034 down_read(&space_info
->groups_sem
);
5035 if (list_empty(&block_group
->list
) ||
5038 * someone is removing this block group,
5039 * we can't jump into the have_block_group
5040 * target because our list pointers are not
5043 btrfs_put_block_group(block_group
);
5044 up_read(&space_info
->groups_sem
);
5046 index
= get_block_group_index(block_group
);
5047 goto have_block_group
;
5049 } else if (block_group
) {
5050 btrfs_put_block_group(block_group
);
5054 down_read(&space_info
->groups_sem
);
5055 list_for_each_entry(block_group
, &space_info
->block_groups
[index
],
5060 btrfs_get_block_group(block_group
);
5061 search_start
= block_group
->key
.objectid
;
5064 * this can happen if we end up cycling through all the
5065 * raid types, but we want to make sure we only allocate
5066 * for the proper type.
5068 if (!block_group_bits(block_group
, data
)) {
5069 u64 extra
= BTRFS_BLOCK_GROUP_DUP
|
5070 BTRFS_BLOCK_GROUP_RAID1
|
5071 BTRFS_BLOCK_GROUP_RAID10
;
5074 * if they asked for extra copies and this block group
5075 * doesn't provide them, bail. This does allow us to
5076 * fill raid0 from raid1.
5078 if ((data
& extra
) && !(block_group
->flags
& extra
))
5083 if (unlikely(block_group
->cached
== BTRFS_CACHE_NO
)) {
5086 ret
= cache_block_group(block_group
, trans
,
5088 if (block_group
->cached
== BTRFS_CACHE_FINISHED
)
5089 goto have_block_group
;
5091 free_percent
= btrfs_block_group_used(&block_group
->item
);
5092 free_percent
*= 100;
5093 free_percent
= div64_u64(free_percent
,
5094 block_group
->key
.offset
);
5095 free_percent
= 100 - free_percent
;
5096 if (free_percent
> ideal_cache_percent
&&
5097 likely(!block_group
->ro
)) {
5098 ideal_cache_offset
= block_group
->key
.objectid
;
5099 ideal_cache_percent
= free_percent
;
5103 * We only want to start kthread caching if we are at
5104 * the point where we will wait for caching to make
5105 * progress, or if our ideal search is over and we've
5106 * found somebody to start caching.
5108 if (loop
> LOOP_CACHING_NOWAIT
||
5109 (loop
> LOOP_FIND_IDEAL
&&
5110 atomic_read(&space_info
->caching_threads
) < 2)) {
5111 ret
= cache_block_group(block_group
, trans
,
5115 found_uncached_bg
= true;
5118 * If loop is set for cached only, try the next block
5121 if (loop
== LOOP_FIND_IDEAL
)
5125 cached
= block_group_cache_done(block_group
);
5126 if (unlikely(!cached
))
5127 found_uncached_bg
= true;
5129 if (unlikely(block_group
->ro
))
5133 * Ok we want to try and use the cluster allocator, so lets look
5134 * there, unless we are on LOOP_NO_EMPTY_SIZE, since we will
5135 * have tried the cluster allocator plenty of times at this
5136 * point and not have found anything, so we are likely way too
5137 * fragmented for the clustering stuff to find anything, so lets
5138 * just skip it and let the allocator find whatever block it can
5141 if (last_ptr
&& loop
< LOOP_NO_EMPTY_SIZE
) {
5143 * the refill lock keeps out other
5144 * people trying to start a new cluster
5146 spin_lock(&last_ptr
->refill_lock
);
5147 if (last_ptr
->block_group
&&
5148 (last_ptr
->block_group
->ro
||
5149 !block_group_bits(last_ptr
->block_group
, data
))) {
5151 goto refill_cluster
;
5154 offset
= btrfs_alloc_from_cluster(block_group
, last_ptr
,
5155 num_bytes
, search_start
);
5157 /* we have a block, we're done */
5158 spin_unlock(&last_ptr
->refill_lock
);
5162 spin_lock(&last_ptr
->lock
);
5164 * whoops, this cluster doesn't actually point to
5165 * this block group. Get a ref on the block
5166 * group is does point to and try again
5168 if (!last_ptr_loop
&& last_ptr
->block_group
&&
5169 last_ptr
->block_group
!= block_group
) {
5171 btrfs_put_block_group(block_group
);
5172 block_group
= last_ptr
->block_group
;
5173 btrfs_get_block_group(block_group
);
5174 spin_unlock(&last_ptr
->lock
);
5175 spin_unlock(&last_ptr
->refill_lock
);
5178 search_start
= block_group
->key
.objectid
;
5180 * we know this block group is properly
5181 * in the list because
5182 * btrfs_remove_block_group, drops the
5183 * cluster before it removes the block
5184 * group from the list
5186 goto have_block_group
;
5188 spin_unlock(&last_ptr
->lock
);
5191 * this cluster didn't work out, free it and
5194 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
5198 /* allocate a cluster in this block group */
5199 ret
= btrfs_find_space_cluster(trans
, root
,
5200 block_group
, last_ptr
,
5202 empty_cluster
+ empty_size
);
5205 * now pull our allocation out of this
5208 offset
= btrfs_alloc_from_cluster(block_group
,
5209 last_ptr
, num_bytes
,
5212 /* we found one, proceed */
5213 spin_unlock(&last_ptr
->refill_lock
);
5216 } else if (!cached
&& loop
> LOOP_CACHING_NOWAIT
5217 && !failed_cluster_refill
) {
5218 spin_unlock(&last_ptr
->refill_lock
);
5220 failed_cluster_refill
= true;
5221 wait_block_group_cache_progress(block_group
,
5222 num_bytes
+ empty_cluster
+ empty_size
);
5223 goto have_block_group
;
5227 * at this point we either didn't find a cluster
5228 * or we weren't able to allocate a block from our
5229 * cluster. Free the cluster we've been trying
5230 * to use, and go to the next block group
5232 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
5233 spin_unlock(&last_ptr
->refill_lock
);
5237 offset
= btrfs_find_space_for_alloc(block_group
, search_start
,
5238 num_bytes
, empty_size
);
5240 * If we didn't find a chunk, and we haven't failed on this
5241 * block group before, and this block group is in the middle of
5242 * caching and we are ok with waiting, then go ahead and wait
5243 * for progress to be made, and set failed_alloc to true.
5245 * If failed_alloc is true then we've already waited on this
5246 * block group once and should move on to the next block group.
5248 if (!offset
&& !failed_alloc
&& !cached
&&
5249 loop
> LOOP_CACHING_NOWAIT
) {
5250 wait_block_group_cache_progress(block_group
,
5251 num_bytes
+ empty_size
);
5252 failed_alloc
= true;
5253 goto have_block_group
;
5254 } else if (!offset
) {
5258 search_start
= stripe_align(root
, offset
);
5259 /* move on to the next group */
5260 if (search_start
+ num_bytes
>= search_end
) {
5261 btrfs_add_free_space(block_group
, offset
, num_bytes
);
5265 /* move on to the next group */
5266 if (search_start
+ num_bytes
>
5267 block_group
->key
.objectid
+ block_group
->key
.offset
) {
5268 btrfs_add_free_space(block_group
, offset
, num_bytes
);
5272 ins
->objectid
= search_start
;
5273 ins
->offset
= num_bytes
;
5275 if (offset
< search_start
)
5276 btrfs_add_free_space(block_group
, offset
,
5277 search_start
- offset
);
5278 BUG_ON(offset
> search_start
);
5280 ret
= btrfs_update_reserved_bytes(block_group
, num_bytes
, 1,
5281 (data
& BTRFS_BLOCK_GROUP_DATA
));
5282 if (ret
== -EAGAIN
) {
5283 btrfs_add_free_space(block_group
, offset
, num_bytes
);
5287 /* we are all good, lets return */
5288 ins
->objectid
= search_start
;
5289 ins
->offset
= num_bytes
;
5291 if (offset
< search_start
)
5292 btrfs_add_free_space(block_group
, offset
,
5293 search_start
- offset
);
5294 BUG_ON(offset
> search_start
);
5297 failed_cluster_refill
= false;
5298 failed_alloc
= false;
5299 BUG_ON(index
!= get_block_group_index(block_group
));
5300 btrfs_put_block_group(block_group
);
5302 up_read(&space_info
->groups_sem
);
5304 if (!ins
->objectid
&& ++index
< BTRFS_NR_RAID_TYPES
)
5307 /* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
5308 * for them to make caching progress. Also
5309 * determine the best possible bg to cache
5310 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5311 * caching kthreads as we move along
5312 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5313 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5314 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5317 if (!ins
->objectid
&& loop
< LOOP_NO_EMPTY_SIZE
&&
5318 (found_uncached_bg
|| empty_size
|| empty_cluster
||
5319 allowed_chunk_alloc
)) {
5321 if (loop
== LOOP_FIND_IDEAL
&& found_uncached_bg
) {
5322 found_uncached_bg
= false;
5324 if (!ideal_cache_percent
&&
5325 atomic_read(&space_info
->caching_threads
))
5329 * 1 of the following 2 things have happened so far
5331 * 1) We found an ideal block group for caching that
5332 * is mostly full and will cache quickly, so we might
5333 * as well wait for it.
5335 * 2) We searched for cached only and we didn't find
5336 * anything, and we didn't start any caching kthreads
5337 * either, so chances are we will loop through and
5338 * start a couple caching kthreads, and then come back
5339 * around and just wait for them. This will be slower
5340 * because we will have 2 caching kthreads reading at
5341 * the same time when we could have just started one
5342 * and waited for it to get far enough to give us an
5343 * allocation, so go ahead and go to the wait caching
5346 loop
= LOOP_CACHING_WAIT
;
5347 search_start
= ideal_cache_offset
;
5348 ideal_cache_percent
= 0;
5350 } else if (loop
== LOOP_FIND_IDEAL
) {
5352 * Didn't find a uncached bg, wait on anything we find
5355 loop
= LOOP_CACHING_WAIT
;
5359 if (loop
< LOOP_CACHING_WAIT
) {
5364 if (loop
== LOOP_ALLOC_CHUNK
) {
5369 if (allowed_chunk_alloc
) {
5370 ret
= do_chunk_alloc(trans
, root
, num_bytes
+
5371 2 * 1024 * 1024, data
,
5372 CHUNK_ALLOC_LIMITED
);
5373 allowed_chunk_alloc
= 0;
5374 done_chunk_alloc
= 1;
5375 } else if (!done_chunk_alloc
&&
5376 space_info
->force_alloc
== CHUNK_ALLOC_NO_FORCE
) {
5377 space_info
->force_alloc
= CHUNK_ALLOC_LIMITED
;
5380 if (loop
< LOOP_NO_EMPTY_SIZE
) {
5385 } else if (!ins
->objectid
) {
5389 /* we found what we needed */
5390 if (ins
->objectid
) {
5391 if (!(data
& BTRFS_BLOCK_GROUP_DATA
))
5392 trans
->block_group
= block_group
->key
.objectid
;
5394 btrfs_put_block_group(block_group
);
5401 static void dump_space_info(struct btrfs_space_info
*info
, u64 bytes
,
5402 int dump_block_groups
)
5404 struct btrfs_block_group_cache
*cache
;
5407 spin_lock(&info
->lock
);
5408 printk(KERN_INFO
"space_info has %llu free, is %sfull\n",
5409 (unsigned long long)(info
->total_bytes
- info
->bytes_used
-
5410 info
->bytes_pinned
- info
->bytes_reserved
-
5411 info
->bytes_readonly
),
5412 (info
->full
) ? "" : "not ");
5413 printk(KERN_INFO
"space_info total=%llu, used=%llu, pinned=%llu, "
5414 "reserved=%llu, may_use=%llu, readonly=%llu\n",
5415 (unsigned long long)info
->total_bytes
,
5416 (unsigned long long)info
->bytes_used
,
5417 (unsigned long long)info
->bytes_pinned
,
5418 (unsigned long long)info
->bytes_reserved
,
5419 (unsigned long long)info
->bytes_may_use
,
5420 (unsigned long long)info
->bytes_readonly
);
5421 spin_unlock(&info
->lock
);
5423 if (!dump_block_groups
)
5426 down_read(&info
->groups_sem
);
5428 list_for_each_entry(cache
, &info
->block_groups
[index
], list
) {
5429 spin_lock(&cache
->lock
);
5430 printk(KERN_INFO
"block group %llu has %llu bytes, %llu used "
5431 "%llu pinned %llu reserved\n",
5432 (unsigned long long)cache
->key
.objectid
,
5433 (unsigned long long)cache
->key
.offset
,
5434 (unsigned long long)btrfs_block_group_used(&cache
->item
),
5435 (unsigned long long)cache
->pinned
,
5436 (unsigned long long)cache
->reserved
);
5437 btrfs_dump_free_space(cache
, bytes
);
5438 spin_unlock(&cache
->lock
);
5440 if (++index
< BTRFS_NR_RAID_TYPES
)
5442 up_read(&info
->groups_sem
);
5445 int btrfs_reserve_extent(struct btrfs_trans_handle
*trans
,
5446 struct btrfs_root
*root
,
5447 u64 num_bytes
, u64 min_alloc_size
,
5448 u64 empty_size
, u64 hint_byte
,
5449 u64 search_end
, struct btrfs_key
*ins
,
5453 u64 search_start
= 0;
5455 data
= btrfs_get_alloc_profile(root
, data
);
5458 * the only place that sets empty_size is btrfs_realloc_node, which
5459 * is not called recursively on allocations
5461 if (empty_size
|| root
->ref_cows
)
5462 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
5463 num_bytes
+ 2 * 1024 * 1024, data
,
5464 CHUNK_ALLOC_NO_FORCE
);
5466 WARN_ON(num_bytes
< root
->sectorsize
);
5467 ret
= find_free_extent(trans
, root
, num_bytes
, empty_size
,
5468 search_start
, search_end
, hint_byte
,
5471 if (ret
== -ENOSPC
&& num_bytes
> min_alloc_size
) {
5472 num_bytes
= num_bytes
>> 1;
5473 num_bytes
= num_bytes
& ~(root
->sectorsize
- 1);
5474 num_bytes
= max(num_bytes
, min_alloc_size
);
5475 do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
5476 num_bytes
, data
, CHUNK_ALLOC_FORCE
);
5479 if (ret
== -ENOSPC
&& btrfs_test_opt(root
, ENOSPC_DEBUG
)) {
5480 struct btrfs_space_info
*sinfo
;
5482 sinfo
= __find_space_info(root
->fs_info
, data
);
5483 printk(KERN_ERR
"btrfs allocation failed flags %llu, "
5484 "wanted %llu\n", (unsigned long long)data
,
5485 (unsigned long long)num_bytes
);
5486 dump_space_info(sinfo
, num_bytes
, 1);
5489 trace_btrfs_reserved_extent_alloc(root
, ins
->objectid
, ins
->offset
);
5494 int btrfs_free_reserved_extent(struct btrfs_root
*root
, u64 start
, u64 len
)
5496 struct btrfs_block_group_cache
*cache
;
5499 cache
= btrfs_lookup_block_group(root
->fs_info
, start
);
5501 printk(KERN_ERR
"Unable to find block group for %llu\n",
5502 (unsigned long long)start
);
5506 if (btrfs_test_opt(root
, DISCARD
))
5507 ret
= btrfs_discard_extent(root
, start
, len
, NULL
);
5509 btrfs_add_free_space(cache
, start
, len
);
5510 btrfs_update_reserved_bytes(cache
, len
, 0, 1);
5511 btrfs_put_block_group(cache
);
5513 trace_btrfs_reserved_extent_free(root
, start
, len
);
5518 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
5519 struct btrfs_root
*root
,
5520 u64 parent
, u64 root_objectid
,
5521 u64 flags
, u64 owner
, u64 offset
,
5522 struct btrfs_key
*ins
, int ref_mod
)
5525 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5526 struct btrfs_extent_item
*extent_item
;
5527 struct btrfs_extent_inline_ref
*iref
;
5528 struct btrfs_path
*path
;
5529 struct extent_buffer
*leaf
;
5534 type
= BTRFS_SHARED_DATA_REF_KEY
;
5536 type
= BTRFS_EXTENT_DATA_REF_KEY
;
5538 size
= sizeof(*extent_item
) + btrfs_extent_inline_ref_size(type
);
5540 path
= btrfs_alloc_path();
5544 path
->leave_spinning
= 1;
5545 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
5549 leaf
= path
->nodes
[0];
5550 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
5551 struct btrfs_extent_item
);
5552 btrfs_set_extent_refs(leaf
, extent_item
, ref_mod
);
5553 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
5554 btrfs_set_extent_flags(leaf
, extent_item
,
5555 flags
| BTRFS_EXTENT_FLAG_DATA
);
5557 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
5558 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
5560 struct btrfs_shared_data_ref
*ref
;
5561 ref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
5562 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
5563 btrfs_set_shared_data_ref_count(leaf
, ref
, ref_mod
);
5565 struct btrfs_extent_data_ref
*ref
;
5566 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
5567 btrfs_set_extent_data_ref_root(leaf
, ref
, root_objectid
);
5568 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
5569 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
5570 btrfs_set_extent_data_ref_count(leaf
, ref
, ref_mod
);
5573 btrfs_mark_buffer_dirty(path
->nodes
[0]);
5574 btrfs_free_path(path
);
5576 ret
= update_block_group(trans
, root
, ins
->objectid
, ins
->offset
, 1);
5578 printk(KERN_ERR
"btrfs update block group failed for %llu "
5579 "%llu\n", (unsigned long long)ins
->objectid
,
5580 (unsigned long long)ins
->offset
);
5586 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
5587 struct btrfs_root
*root
,
5588 u64 parent
, u64 root_objectid
,
5589 u64 flags
, struct btrfs_disk_key
*key
,
5590 int level
, struct btrfs_key
*ins
)
5593 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5594 struct btrfs_extent_item
*extent_item
;
5595 struct btrfs_tree_block_info
*block_info
;
5596 struct btrfs_extent_inline_ref
*iref
;
5597 struct btrfs_path
*path
;
5598 struct extent_buffer
*leaf
;
5599 u32 size
= sizeof(*extent_item
) + sizeof(*block_info
) + sizeof(*iref
);
5601 path
= btrfs_alloc_path();
5604 path
->leave_spinning
= 1;
5605 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
5609 leaf
= path
->nodes
[0];
5610 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
5611 struct btrfs_extent_item
);
5612 btrfs_set_extent_refs(leaf
, extent_item
, 1);
5613 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
5614 btrfs_set_extent_flags(leaf
, extent_item
,
5615 flags
| BTRFS_EXTENT_FLAG_TREE_BLOCK
);
5616 block_info
= (struct btrfs_tree_block_info
*)(extent_item
+ 1);
5618 btrfs_set_tree_block_key(leaf
, block_info
, key
);
5619 btrfs_set_tree_block_level(leaf
, block_info
, level
);
5621 iref
= (struct btrfs_extent_inline_ref
*)(block_info
+ 1);
5623 BUG_ON(!(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
5624 btrfs_set_extent_inline_ref_type(leaf
, iref
,
5625 BTRFS_SHARED_BLOCK_REF_KEY
);
5626 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
5628 btrfs_set_extent_inline_ref_type(leaf
, iref
,
5629 BTRFS_TREE_BLOCK_REF_KEY
);
5630 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
5633 btrfs_mark_buffer_dirty(leaf
);
5634 btrfs_free_path(path
);
5636 ret
= update_block_group(trans
, root
, ins
->objectid
, ins
->offset
, 1);
5638 printk(KERN_ERR
"btrfs update block group failed for %llu "
5639 "%llu\n", (unsigned long long)ins
->objectid
,
5640 (unsigned long long)ins
->offset
);
5646 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
5647 struct btrfs_root
*root
,
5648 u64 root_objectid
, u64 owner
,
5649 u64 offset
, struct btrfs_key
*ins
)
5653 BUG_ON(root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
5655 ret
= btrfs_add_delayed_data_ref(trans
, ins
->objectid
, ins
->offset
,
5656 0, root_objectid
, owner
, offset
,
5657 BTRFS_ADD_DELAYED_EXTENT
, NULL
);
5662 * this is used by the tree logging recovery code. It records that
5663 * an extent has been allocated and makes sure to clear the free
5664 * space cache bits as well
5666 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle
*trans
,
5667 struct btrfs_root
*root
,
5668 u64 root_objectid
, u64 owner
, u64 offset
,
5669 struct btrfs_key
*ins
)
5672 struct btrfs_block_group_cache
*block_group
;
5673 struct btrfs_caching_control
*caching_ctl
;
5674 u64 start
= ins
->objectid
;
5675 u64 num_bytes
= ins
->offset
;
5677 block_group
= btrfs_lookup_block_group(root
->fs_info
, ins
->objectid
);
5678 cache_block_group(block_group
, trans
, NULL
, 0);
5679 caching_ctl
= get_caching_control(block_group
);
5682 BUG_ON(!block_group_cache_done(block_group
));
5683 ret
= btrfs_remove_free_space(block_group
, start
, num_bytes
);
5686 mutex_lock(&caching_ctl
->mutex
);
5688 if (start
>= caching_ctl
->progress
) {
5689 ret
= add_excluded_extent(root
, start
, num_bytes
);
5691 } else if (start
+ num_bytes
<= caching_ctl
->progress
) {
5692 ret
= btrfs_remove_free_space(block_group
,
5696 num_bytes
= caching_ctl
->progress
- start
;
5697 ret
= btrfs_remove_free_space(block_group
,
5701 start
= caching_ctl
->progress
;
5702 num_bytes
= ins
->objectid
+ ins
->offset
-
5703 caching_ctl
->progress
;
5704 ret
= add_excluded_extent(root
, start
, num_bytes
);
5708 mutex_unlock(&caching_ctl
->mutex
);
5709 put_caching_control(caching_ctl
);
5712 ret
= btrfs_update_reserved_bytes(block_group
, ins
->offset
, 1, 1);
5714 btrfs_put_block_group(block_group
);
5715 ret
= alloc_reserved_file_extent(trans
, root
, 0, root_objectid
,
5716 0, owner
, offset
, ins
, 1);
5720 struct extent_buffer
*btrfs_init_new_buffer(struct btrfs_trans_handle
*trans
,
5721 struct btrfs_root
*root
,
5722 u64 bytenr
, u32 blocksize
,
5725 struct extent_buffer
*buf
;
5727 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
5729 return ERR_PTR(-ENOMEM
);
5730 btrfs_set_header_generation(buf
, trans
->transid
);
5731 btrfs_set_buffer_lockdep_class(buf
, level
);
5732 btrfs_tree_lock(buf
);
5733 clean_tree_block(trans
, root
, buf
);
5735 btrfs_set_lock_blocking(buf
);
5736 btrfs_set_buffer_uptodate(buf
);
5738 if (root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
) {
5740 * we allow two log transactions at a time, use different
5741 * EXENT bit to differentiate dirty pages.
5743 if (root
->log_transid
% 2 == 0)
5744 set_extent_dirty(&root
->dirty_log_pages
, buf
->start
,
5745 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
5747 set_extent_new(&root
->dirty_log_pages
, buf
->start
,
5748 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
5750 set_extent_dirty(&trans
->transaction
->dirty_pages
, buf
->start
,
5751 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
5753 trans
->blocks_used
++;
5754 /* this returns a buffer locked for blocking */
5758 static struct btrfs_block_rsv
*
5759 use_block_rsv(struct btrfs_trans_handle
*trans
,
5760 struct btrfs_root
*root
, u32 blocksize
)
5762 struct btrfs_block_rsv
*block_rsv
;
5763 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
5766 block_rsv
= get_block_rsv(trans
, root
);
5768 if (block_rsv
->size
== 0) {
5769 ret
= reserve_metadata_bytes(trans
, root
, block_rsv
,
5772 * If we couldn't reserve metadata bytes try and use some from
5773 * the global reserve.
5775 if (ret
&& block_rsv
!= global_rsv
) {
5776 ret
= block_rsv_use_bytes(global_rsv
, blocksize
);
5779 return ERR_PTR(ret
);
5781 return ERR_PTR(ret
);
5786 ret
= block_rsv_use_bytes(block_rsv
, blocksize
);
5791 ret
= reserve_metadata_bytes(trans
, root
, block_rsv
, blocksize
,
5794 spin_lock(&block_rsv
->lock
);
5795 block_rsv
->size
+= blocksize
;
5796 spin_unlock(&block_rsv
->lock
);
5798 } else if (ret
&& block_rsv
!= global_rsv
) {
5799 ret
= block_rsv_use_bytes(global_rsv
, blocksize
);
5805 return ERR_PTR(-ENOSPC
);
5808 static void unuse_block_rsv(struct btrfs_block_rsv
*block_rsv
, u32 blocksize
)
5810 block_rsv_add_bytes(block_rsv
, blocksize
, 0);
5811 block_rsv_release_bytes(block_rsv
, NULL
, 0);
5815 * finds a free extent and does all the dirty work required for allocation
5816 * returns the key for the extent through ins, and a tree buffer for
5817 * the first block of the extent through buf.
5819 * returns the tree buffer or NULL.
5821 struct extent_buffer
*btrfs_alloc_free_block(struct btrfs_trans_handle
*trans
,
5822 struct btrfs_root
*root
, u32 blocksize
,
5823 u64 parent
, u64 root_objectid
,
5824 struct btrfs_disk_key
*key
, int level
,
5825 u64 hint
, u64 empty_size
)
5827 struct btrfs_key ins
;
5828 struct btrfs_block_rsv
*block_rsv
;
5829 struct extent_buffer
*buf
;
5834 block_rsv
= use_block_rsv(trans
, root
, blocksize
);
5835 if (IS_ERR(block_rsv
))
5836 return ERR_CAST(block_rsv
);
5838 ret
= btrfs_reserve_extent(trans
, root
, blocksize
, blocksize
,
5839 empty_size
, hint
, (u64
)-1, &ins
, 0);
5841 unuse_block_rsv(block_rsv
, blocksize
);
5842 return ERR_PTR(ret
);
5845 buf
= btrfs_init_new_buffer(trans
, root
, ins
.objectid
,
5847 BUG_ON(IS_ERR(buf
));
5849 if (root_objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
5851 parent
= ins
.objectid
;
5852 flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
5856 if (root_objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
5857 struct btrfs_delayed_extent_op
*extent_op
;
5858 extent_op
= kmalloc(sizeof(*extent_op
), GFP_NOFS
);
5861 memcpy(&extent_op
->key
, key
, sizeof(extent_op
->key
));
5863 memset(&extent_op
->key
, 0, sizeof(extent_op
->key
));
5864 extent_op
->flags_to_set
= flags
;
5865 extent_op
->update_key
= 1;
5866 extent_op
->update_flags
= 1;
5867 extent_op
->is_data
= 0;
5869 ret
= btrfs_add_delayed_tree_ref(trans
, ins
.objectid
,
5870 ins
.offset
, parent
, root_objectid
,
5871 level
, BTRFS_ADD_DELAYED_EXTENT
,
5878 struct walk_control
{
5879 u64 refs
[BTRFS_MAX_LEVEL
];
5880 u64 flags
[BTRFS_MAX_LEVEL
];
5881 struct btrfs_key update_progress
;
5891 #define DROP_REFERENCE 1
5892 #define UPDATE_BACKREF 2
5894 static noinline
void reada_walk_down(struct btrfs_trans_handle
*trans
,
5895 struct btrfs_root
*root
,
5896 struct walk_control
*wc
,
5897 struct btrfs_path
*path
)
5905 struct btrfs_key key
;
5906 struct extent_buffer
*eb
;
5911 if (path
->slots
[wc
->level
] < wc
->reada_slot
) {
5912 wc
->reada_count
= wc
->reada_count
* 2 / 3;
5913 wc
->reada_count
= max(wc
->reada_count
, 2);
5915 wc
->reada_count
= wc
->reada_count
* 3 / 2;
5916 wc
->reada_count
= min_t(int, wc
->reada_count
,
5917 BTRFS_NODEPTRS_PER_BLOCK(root
));
5920 eb
= path
->nodes
[wc
->level
];
5921 nritems
= btrfs_header_nritems(eb
);
5922 blocksize
= btrfs_level_size(root
, wc
->level
- 1);
5924 for (slot
= path
->slots
[wc
->level
]; slot
< nritems
; slot
++) {
5925 if (nread
>= wc
->reada_count
)
5929 bytenr
= btrfs_node_blockptr(eb
, slot
);
5930 generation
= btrfs_node_ptr_generation(eb
, slot
);
5932 if (slot
== path
->slots
[wc
->level
])
5935 if (wc
->stage
== UPDATE_BACKREF
&&
5936 generation
<= root
->root_key
.offset
)
5939 /* We don't lock the tree block, it's OK to be racy here */
5940 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
, blocksize
,
5945 if (wc
->stage
== DROP_REFERENCE
) {
5949 if (wc
->level
== 1 &&
5950 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
5952 if (!wc
->update_ref
||
5953 generation
<= root
->root_key
.offset
)
5955 btrfs_node_key_to_cpu(eb
, &key
, slot
);
5956 ret
= btrfs_comp_cpu_keys(&key
,
5957 &wc
->update_progress
);
5961 if (wc
->level
== 1 &&
5962 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
5966 ret
= readahead_tree_block(root
, bytenr
, blocksize
,
5972 wc
->reada_slot
= slot
;
5976 * hepler to process tree block while walking down the tree.
5978 * when wc->stage == UPDATE_BACKREF, this function updates
5979 * back refs for pointers in the block.
5981 * NOTE: return value 1 means we should stop walking down.
5983 static noinline
int walk_down_proc(struct btrfs_trans_handle
*trans
,
5984 struct btrfs_root
*root
,
5985 struct btrfs_path
*path
,
5986 struct walk_control
*wc
, int lookup_info
)
5988 int level
= wc
->level
;
5989 struct extent_buffer
*eb
= path
->nodes
[level
];
5990 u64 flag
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
5993 if (wc
->stage
== UPDATE_BACKREF
&&
5994 btrfs_header_owner(eb
) != root
->root_key
.objectid
)
5998 * when reference count of tree block is 1, it won't increase
5999 * again. once full backref flag is set, we never clear it.
6002 ((wc
->stage
== DROP_REFERENCE
&& wc
->refs
[level
] != 1) ||
6003 (wc
->stage
== UPDATE_BACKREF
&& !(wc
->flags
[level
] & flag
)))) {
6004 BUG_ON(!path
->locks
[level
]);
6005 ret
= btrfs_lookup_extent_info(trans
, root
,
6010 BUG_ON(wc
->refs
[level
] == 0);
6013 if (wc
->stage
== DROP_REFERENCE
) {
6014 if (wc
->refs
[level
] > 1)
6017 if (path
->locks
[level
] && !wc
->keep_locks
) {
6018 btrfs_tree_unlock(eb
);
6019 path
->locks
[level
] = 0;
6024 /* wc->stage == UPDATE_BACKREF */
6025 if (!(wc
->flags
[level
] & flag
)) {
6026 BUG_ON(!path
->locks
[level
]);
6027 ret
= btrfs_inc_ref(trans
, root
, eb
, 1);
6029 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
6031 ret
= btrfs_set_disk_extent_flags(trans
, root
, eb
->start
,
6034 wc
->flags
[level
] |= flag
;
6038 * the block is shared by multiple trees, so it's not good to
6039 * keep the tree lock
6041 if (path
->locks
[level
] && level
> 0) {
6042 btrfs_tree_unlock(eb
);
6043 path
->locks
[level
] = 0;
6049 * hepler to process tree block pointer.
6051 * when wc->stage == DROP_REFERENCE, this function checks
6052 * reference count of the block pointed to. if the block
6053 * is shared and we need update back refs for the subtree
6054 * rooted at the block, this function changes wc->stage to
6055 * UPDATE_BACKREF. if the block is shared and there is no
6056 * need to update back, this function drops the reference
6059 * NOTE: return value 1 means we should stop walking down.
6061 static noinline
int do_walk_down(struct btrfs_trans_handle
*trans
,
6062 struct btrfs_root
*root
,
6063 struct btrfs_path
*path
,
6064 struct walk_control
*wc
, int *lookup_info
)
6070 struct btrfs_key key
;
6071 struct extent_buffer
*next
;
6072 int level
= wc
->level
;
6076 generation
= btrfs_node_ptr_generation(path
->nodes
[level
],
6077 path
->slots
[level
]);
6079 * if the lower level block was created before the snapshot
6080 * was created, we know there is no need to update back refs
6083 if (wc
->stage
== UPDATE_BACKREF
&&
6084 generation
<= root
->root_key
.offset
) {
6089 bytenr
= btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]);
6090 blocksize
= btrfs_level_size(root
, level
- 1);
6092 next
= btrfs_find_tree_block(root
, bytenr
, blocksize
);
6094 next
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
6099 btrfs_tree_lock(next
);
6100 btrfs_set_lock_blocking(next
);
6102 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
, blocksize
,
6103 &wc
->refs
[level
- 1],
6104 &wc
->flags
[level
- 1]);
6106 BUG_ON(wc
->refs
[level
- 1] == 0);
6109 if (wc
->stage
== DROP_REFERENCE
) {
6110 if (wc
->refs
[level
- 1] > 1) {
6112 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
6115 if (!wc
->update_ref
||
6116 generation
<= root
->root_key
.offset
)
6119 btrfs_node_key_to_cpu(path
->nodes
[level
], &key
,
6120 path
->slots
[level
]);
6121 ret
= btrfs_comp_cpu_keys(&key
, &wc
->update_progress
);
6125 wc
->stage
= UPDATE_BACKREF
;
6126 wc
->shared_level
= level
- 1;
6130 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
6134 if (!btrfs_buffer_uptodate(next
, generation
)) {
6135 btrfs_tree_unlock(next
);
6136 free_extent_buffer(next
);
6142 if (reada
&& level
== 1)
6143 reada_walk_down(trans
, root
, wc
, path
);
6144 next
= read_tree_block(root
, bytenr
, blocksize
, generation
);
6147 btrfs_tree_lock(next
);
6148 btrfs_set_lock_blocking(next
);
6152 BUG_ON(level
!= btrfs_header_level(next
));
6153 path
->nodes
[level
] = next
;
6154 path
->slots
[level
] = 0;
6155 path
->locks
[level
] = 1;
6161 wc
->refs
[level
- 1] = 0;
6162 wc
->flags
[level
- 1] = 0;
6163 if (wc
->stage
== DROP_REFERENCE
) {
6164 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
6165 parent
= path
->nodes
[level
]->start
;
6167 BUG_ON(root
->root_key
.objectid
!=
6168 btrfs_header_owner(path
->nodes
[level
]));
6172 ret
= btrfs_free_extent(trans
, root
, bytenr
, blocksize
, parent
,
6173 root
->root_key
.objectid
, level
- 1, 0);
6176 btrfs_tree_unlock(next
);
6177 free_extent_buffer(next
);
6183 * hepler to process tree block while walking up the tree.
6185 * when wc->stage == DROP_REFERENCE, this function drops
6186 * reference count on the block.
6188 * when wc->stage == UPDATE_BACKREF, this function changes
6189 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6190 * to UPDATE_BACKREF previously while processing the block.
6192 * NOTE: return value 1 means we should stop walking up.
6194 static noinline
int walk_up_proc(struct btrfs_trans_handle
*trans
,
6195 struct btrfs_root
*root
,
6196 struct btrfs_path
*path
,
6197 struct walk_control
*wc
)
6200 int level
= wc
->level
;
6201 struct extent_buffer
*eb
= path
->nodes
[level
];
6204 if (wc
->stage
== UPDATE_BACKREF
) {
6205 BUG_ON(wc
->shared_level
< level
);
6206 if (level
< wc
->shared_level
)
6209 ret
= find_next_key(path
, level
+ 1, &wc
->update_progress
);
6213 wc
->stage
= DROP_REFERENCE
;
6214 wc
->shared_level
= -1;
6215 path
->slots
[level
] = 0;
6218 * check reference count again if the block isn't locked.
6219 * we should start walking down the tree again if reference
6222 if (!path
->locks
[level
]) {
6224 btrfs_tree_lock(eb
);
6225 btrfs_set_lock_blocking(eb
);
6226 path
->locks
[level
] = 1;
6228 ret
= btrfs_lookup_extent_info(trans
, root
,
6233 BUG_ON(wc
->refs
[level
] == 0);
6234 if (wc
->refs
[level
] == 1) {
6235 btrfs_tree_unlock(eb
);
6236 path
->locks
[level
] = 0;
6242 /* wc->stage == DROP_REFERENCE */
6243 BUG_ON(wc
->refs
[level
] > 1 && !path
->locks
[level
]);
6245 if (wc
->refs
[level
] == 1) {
6247 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
6248 ret
= btrfs_dec_ref(trans
, root
, eb
, 1);
6250 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
6253 /* make block locked assertion in clean_tree_block happy */
6254 if (!path
->locks
[level
] &&
6255 btrfs_header_generation(eb
) == trans
->transid
) {
6256 btrfs_tree_lock(eb
);
6257 btrfs_set_lock_blocking(eb
);
6258 path
->locks
[level
] = 1;
6260 clean_tree_block(trans
, root
, eb
);
6263 if (eb
== root
->node
) {
6264 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
6267 BUG_ON(root
->root_key
.objectid
!=
6268 btrfs_header_owner(eb
));
6270 if (wc
->flags
[level
+ 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
6271 parent
= path
->nodes
[level
+ 1]->start
;
6273 BUG_ON(root
->root_key
.objectid
!=
6274 btrfs_header_owner(path
->nodes
[level
+ 1]));
6277 btrfs_free_tree_block(trans
, root
, eb
, parent
, wc
->refs
[level
] == 1);
6279 wc
->refs
[level
] = 0;
6280 wc
->flags
[level
] = 0;
6284 static noinline
int walk_down_tree(struct btrfs_trans_handle
*trans
,
6285 struct btrfs_root
*root
,
6286 struct btrfs_path
*path
,
6287 struct walk_control
*wc
)
6289 int level
= wc
->level
;
6290 int lookup_info
= 1;
6293 while (level
>= 0) {
6294 ret
= walk_down_proc(trans
, root
, path
, wc
, lookup_info
);
6301 if (path
->slots
[level
] >=
6302 btrfs_header_nritems(path
->nodes
[level
]))
6305 ret
= do_walk_down(trans
, root
, path
, wc
, &lookup_info
);
6307 path
->slots
[level
]++;
6316 static noinline
int walk_up_tree(struct btrfs_trans_handle
*trans
,
6317 struct btrfs_root
*root
,
6318 struct btrfs_path
*path
,
6319 struct walk_control
*wc
, int max_level
)
6321 int level
= wc
->level
;
6324 path
->slots
[level
] = btrfs_header_nritems(path
->nodes
[level
]);
6325 while (level
< max_level
&& path
->nodes
[level
]) {
6327 if (path
->slots
[level
] + 1 <
6328 btrfs_header_nritems(path
->nodes
[level
])) {
6329 path
->slots
[level
]++;
6332 ret
= walk_up_proc(trans
, root
, path
, wc
);
6336 if (path
->locks
[level
]) {
6337 btrfs_tree_unlock(path
->nodes
[level
]);
6338 path
->locks
[level
] = 0;
6340 free_extent_buffer(path
->nodes
[level
]);
6341 path
->nodes
[level
] = NULL
;
6349 * drop a subvolume tree.
6351 * this function traverses the tree freeing any blocks that only
6352 * referenced by the tree.
6354 * when a shared tree block is found. this function decreases its
6355 * reference count by one. if update_ref is true, this function
6356 * also make sure backrefs for the shared block and all lower level
6357 * blocks are properly updated.
6359 int btrfs_drop_snapshot(struct btrfs_root
*root
,
6360 struct btrfs_block_rsv
*block_rsv
, int update_ref
)
6362 struct btrfs_path
*path
;
6363 struct btrfs_trans_handle
*trans
;
6364 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
6365 struct btrfs_root_item
*root_item
= &root
->root_item
;
6366 struct walk_control
*wc
;
6367 struct btrfs_key key
;
6372 path
= btrfs_alloc_path();
6375 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
6378 trans
= btrfs_start_transaction(tree_root
, 0);
6379 BUG_ON(IS_ERR(trans
));
6382 trans
->block_rsv
= block_rsv
;
6384 if (btrfs_disk_key_objectid(&root_item
->drop_progress
) == 0) {
6385 level
= btrfs_header_level(root
->node
);
6386 path
->nodes
[level
] = btrfs_lock_root_node(root
);
6387 btrfs_set_lock_blocking(path
->nodes
[level
]);
6388 path
->slots
[level
] = 0;
6389 path
->locks
[level
] = 1;
6390 memset(&wc
->update_progress
, 0,
6391 sizeof(wc
->update_progress
));
6393 btrfs_disk_key_to_cpu(&key
, &root_item
->drop_progress
);
6394 memcpy(&wc
->update_progress
, &key
,
6395 sizeof(wc
->update_progress
));
6397 level
= root_item
->drop_level
;
6399 path
->lowest_level
= level
;
6400 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
6401 path
->lowest_level
= 0;
6409 * unlock our path, this is safe because only this
6410 * function is allowed to delete this snapshot
6412 btrfs_unlock_up_safe(path
, 0);
6414 level
= btrfs_header_level(root
->node
);
6416 btrfs_tree_lock(path
->nodes
[level
]);
6417 btrfs_set_lock_blocking(path
->nodes
[level
]);
6419 ret
= btrfs_lookup_extent_info(trans
, root
,
6420 path
->nodes
[level
]->start
,
6421 path
->nodes
[level
]->len
,
6425 BUG_ON(wc
->refs
[level
] == 0);
6427 if (level
== root_item
->drop_level
)
6430 btrfs_tree_unlock(path
->nodes
[level
]);
6431 WARN_ON(wc
->refs
[level
] != 1);
6437 wc
->shared_level
= -1;
6438 wc
->stage
= DROP_REFERENCE
;
6439 wc
->update_ref
= update_ref
;
6441 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
6444 ret
= walk_down_tree(trans
, root
, path
, wc
);
6450 ret
= walk_up_tree(trans
, root
, path
, wc
, BTRFS_MAX_LEVEL
);
6457 BUG_ON(wc
->stage
!= DROP_REFERENCE
);
6461 if (wc
->stage
== DROP_REFERENCE
) {
6463 btrfs_node_key(path
->nodes
[level
],
6464 &root_item
->drop_progress
,
6465 path
->slots
[level
]);
6466 root_item
->drop_level
= level
;
6469 BUG_ON(wc
->level
== 0);
6470 if (btrfs_should_end_transaction(trans
, tree_root
)) {
6471 ret
= btrfs_update_root(trans
, tree_root
,
6476 btrfs_end_transaction_throttle(trans
, tree_root
);
6477 trans
= btrfs_start_transaction(tree_root
, 0);
6478 BUG_ON(IS_ERR(trans
));
6480 trans
->block_rsv
= block_rsv
;
6483 btrfs_release_path(root
, path
);
6486 ret
= btrfs_del_root(trans
, tree_root
, &root
->root_key
);
6489 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
) {
6490 ret
= btrfs_find_last_root(tree_root
, root
->root_key
.objectid
,
6494 /* if we fail to delete the orphan item this time
6495 * around, it'll get picked up the next time.
6497 * The most common failure here is just -ENOENT.
6499 btrfs_del_orphan_item(trans
, tree_root
,
6500 root
->root_key
.objectid
);
6504 if (root
->in_radix
) {
6505 btrfs_free_fs_root(tree_root
->fs_info
, root
);
6507 free_extent_buffer(root
->node
);
6508 free_extent_buffer(root
->commit_root
);
6512 btrfs_end_transaction_throttle(trans
, tree_root
);
6514 btrfs_free_path(path
);
6519 * drop subtree rooted at tree block 'node'.
6521 * NOTE: this function will unlock and release tree block 'node'
6523 int btrfs_drop_subtree(struct btrfs_trans_handle
*trans
,
6524 struct btrfs_root
*root
,
6525 struct extent_buffer
*node
,
6526 struct extent_buffer
*parent
)
6528 struct btrfs_path
*path
;
6529 struct walk_control
*wc
;
6535 BUG_ON(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
);
6537 path
= btrfs_alloc_path();
6541 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
6543 btrfs_free_path(path
);
6547 btrfs_assert_tree_locked(parent
);
6548 parent_level
= btrfs_header_level(parent
);
6549 extent_buffer_get(parent
);
6550 path
->nodes
[parent_level
] = parent
;
6551 path
->slots
[parent_level
] = btrfs_header_nritems(parent
);
6553 btrfs_assert_tree_locked(node
);
6554 level
= btrfs_header_level(node
);
6555 path
->nodes
[level
] = node
;
6556 path
->slots
[level
] = 0;
6557 path
->locks
[level
] = 1;
6559 wc
->refs
[parent_level
] = 1;
6560 wc
->flags
[parent_level
] = BTRFS_BLOCK_FLAG_FULL_BACKREF
;
6562 wc
->shared_level
= -1;
6563 wc
->stage
= DROP_REFERENCE
;
6566 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
6569 wret
= walk_down_tree(trans
, root
, path
, wc
);
6575 wret
= walk_up_tree(trans
, root
, path
, wc
, parent_level
);
6583 btrfs_free_path(path
);
6588 static unsigned long calc_ra(unsigned long start
, unsigned long last
,
6591 return min(last
, start
+ nr
- 1);
6594 static noinline
int relocate_inode_pages(struct inode
*inode
, u64 start
,
6599 unsigned long first_index
;
6600 unsigned long last_index
;
6603 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
6604 struct file_ra_state
*ra
;
6605 struct btrfs_ordered_extent
*ordered
;
6606 unsigned int total_read
= 0;
6607 unsigned int total_dirty
= 0;
6610 ra
= kzalloc(sizeof(*ra
), GFP_NOFS
);
6614 mutex_lock(&inode
->i_mutex
);
6615 first_index
= start
>> PAGE_CACHE_SHIFT
;
6616 last_index
= (start
+ len
- 1) >> PAGE_CACHE_SHIFT
;
6618 /* make sure the dirty trick played by the caller work */
6619 ret
= invalidate_inode_pages2_range(inode
->i_mapping
,
6620 first_index
, last_index
);
6624 file_ra_state_init(ra
, inode
->i_mapping
);
6626 for (i
= first_index
; i
<= last_index
; i
++) {
6627 if (total_read
% ra
->ra_pages
== 0) {
6628 btrfs_force_ra(inode
->i_mapping
, ra
, NULL
, i
,
6629 calc_ra(i
, last_index
, ra
->ra_pages
));
6633 if (((u64
)i
<< PAGE_CACHE_SHIFT
) > i_size_read(inode
))
6635 page
= grab_cache_page(inode
->i_mapping
, i
);
6640 if (!PageUptodate(page
)) {
6641 btrfs_readpage(NULL
, page
);
6643 if (!PageUptodate(page
)) {
6645 page_cache_release(page
);
6650 wait_on_page_writeback(page
);
6652 page_start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
6653 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
6654 lock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
6656 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
6658 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
6660 page_cache_release(page
);
6661 btrfs_start_ordered_extent(inode
, ordered
, 1);
6662 btrfs_put_ordered_extent(ordered
);
6665 set_page_extent_mapped(page
);
6667 if (i
== first_index
)
6668 set_extent_bits(io_tree
, page_start
, page_end
,
6669 EXTENT_BOUNDARY
, GFP_NOFS
);
6670 btrfs_set_extent_delalloc(inode
, page_start
, page_end
);
6672 set_page_dirty(page
);
6675 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
6677 page_cache_release(page
);
6682 mutex_unlock(&inode
->i_mutex
);
6683 balance_dirty_pages_ratelimited_nr(inode
->i_mapping
, total_dirty
);
6687 static noinline
int relocate_data_extent(struct inode
*reloc_inode
,
6688 struct btrfs_key
*extent_key
,
6691 struct btrfs_root
*root
= BTRFS_I(reloc_inode
)->root
;
6692 struct extent_map_tree
*em_tree
= &BTRFS_I(reloc_inode
)->extent_tree
;
6693 struct extent_map
*em
;
6694 u64 start
= extent_key
->objectid
- offset
;
6695 u64 end
= start
+ extent_key
->offset
- 1;
6697 em
= alloc_extent_map(GFP_NOFS
);
6701 em
->len
= extent_key
->offset
;
6702 em
->block_len
= extent_key
->offset
;
6703 em
->block_start
= extent_key
->objectid
;
6704 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
6705 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
6707 /* setup extent map to cheat btrfs_readpage */
6708 lock_extent(&BTRFS_I(reloc_inode
)->io_tree
, start
, end
, GFP_NOFS
);
6711 write_lock(&em_tree
->lock
);
6712 ret
= add_extent_mapping(em_tree
, em
);
6713 write_unlock(&em_tree
->lock
);
6714 if (ret
!= -EEXIST
) {
6715 free_extent_map(em
);
6718 btrfs_drop_extent_cache(reloc_inode
, start
, end
, 0);
6720 unlock_extent(&BTRFS_I(reloc_inode
)->io_tree
, start
, end
, GFP_NOFS
);
6722 return relocate_inode_pages(reloc_inode
, start
, extent_key
->offset
);
6725 struct btrfs_ref_path
{
6727 u64 nodes
[BTRFS_MAX_LEVEL
];
6729 u64 root_generation
;
6736 struct btrfs_key node_keys
[BTRFS_MAX_LEVEL
];
6737 u64 new_nodes
[BTRFS_MAX_LEVEL
];
6740 struct disk_extent
{
6751 static int is_cowonly_root(u64 root_objectid
)
6753 if (root_objectid
== BTRFS_ROOT_TREE_OBJECTID
||
6754 root_objectid
== BTRFS_EXTENT_TREE_OBJECTID
||
6755 root_objectid
== BTRFS_CHUNK_TREE_OBJECTID
||
6756 root_objectid
== BTRFS_DEV_TREE_OBJECTID
||
6757 root_objectid
== BTRFS_TREE_LOG_OBJECTID
||
6758 root_objectid
== BTRFS_CSUM_TREE_OBJECTID
)
6763 static noinline
int __next_ref_path(struct btrfs_trans_handle
*trans
,
6764 struct btrfs_root
*extent_root
,
6765 struct btrfs_ref_path
*ref_path
,
6768 struct extent_buffer
*leaf
;
6769 struct btrfs_path
*path
;
6770 struct btrfs_extent_ref
*ref
;
6771 struct btrfs_key key
;
6772 struct btrfs_key found_key
;
6778 path
= btrfs_alloc_path();
6783 ref_path
->lowest_level
= -1;
6784 ref_path
->current_level
= -1;
6785 ref_path
->shared_level
= -1;
6789 level
= ref_path
->current_level
- 1;
6790 while (level
>= -1) {
6792 if (level
< ref_path
->lowest_level
)
6796 bytenr
= ref_path
->nodes
[level
];
6798 bytenr
= ref_path
->extent_start
;
6799 BUG_ON(bytenr
== 0);
6801 parent
= ref_path
->nodes
[level
+ 1];
6802 ref_path
->nodes
[level
+ 1] = 0;
6803 ref_path
->current_level
= level
;
6804 BUG_ON(parent
== 0);
6806 key
.objectid
= bytenr
;
6807 key
.offset
= parent
+ 1;
6808 key
.type
= BTRFS_EXTENT_REF_KEY
;
6810 ret
= btrfs_search_slot(trans
, extent_root
, &key
, path
, 0, 0);
6815 leaf
= path
->nodes
[0];
6816 nritems
= btrfs_header_nritems(leaf
);
6817 if (path
->slots
[0] >= nritems
) {
6818 ret
= btrfs_next_leaf(extent_root
, path
);
6823 leaf
= path
->nodes
[0];
6826 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6827 if (found_key
.objectid
== bytenr
&&
6828 found_key
.type
== BTRFS_EXTENT_REF_KEY
) {
6829 if (level
< ref_path
->shared_level
)
6830 ref_path
->shared_level
= level
;
6835 btrfs_release_path(extent_root
, path
);
6838 /* reached lowest level */
6842 level
= ref_path
->current_level
;
6843 while (level
< BTRFS_MAX_LEVEL
- 1) {
6847 bytenr
= ref_path
->nodes
[level
];
6849 bytenr
= ref_path
->extent_start
;
6851 BUG_ON(bytenr
== 0);
6853 key
.objectid
= bytenr
;
6855 key
.type
= BTRFS_EXTENT_REF_KEY
;
6857 ret
= btrfs_search_slot(trans
, extent_root
, &key
, path
, 0, 0);
6861 leaf
= path
->nodes
[0];
6862 nritems
= btrfs_header_nritems(leaf
);
6863 if (path
->slots
[0] >= nritems
) {
6864 ret
= btrfs_next_leaf(extent_root
, path
);
6868 /* the extent was freed by someone */
6869 if (ref_path
->lowest_level
== level
)
6871 btrfs_release_path(extent_root
, path
);
6874 leaf
= path
->nodes
[0];
6877 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6878 if (found_key
.objectid
!= bytenr
||
6879 found_key
.type
!= BTRFS_EXTENT_REF_KEY
) {
6880 /* the extent was freed by someone */
6881 if (ref_path
->lowest_level
== level
) {
6885 btrfs_release_path(extent_root
, path
);
6889 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
6890 struct btrfs_extent_ref
);
6891 ref_objectid
= btrfs_ref_objectid(leaf
, ref
);
6892 if (ref_objectid
< BTRFS_FIRST_FREE_OBJECTID
) {
6894 level
= (int)ref_objectid
;
6895 BUG_ON(level
>= BTRFS_MAX_LEVEL
);
6896 ref_path
->lowest_level
= level
;
6897 ref_path
->current_level
= level
;
6898 ref_path
->nodes
[level
] = bytenr
;
6900 WARN_ON(ref_objectid
!= level
);
6903 WARN_ON(level
!= -1);
6907 if (ref_path
->lowest_level
== level
) {
6908 ref_path
->owner_objectid
= ref_objectid
;
6909 ref_path
->num_refs
= btrfs_ref_num_refs(leaf
, ref
);
6913 * the block is tree root or the block isn't in reference
6916 if (found_key
.objectid
== found_key
.offset
||
6917 is_cowonly_root(btrfs_ref_root(leaf
, ref
))) {
6918 ref_path
->root_objectid
= btrfs_ref_root(leaf
, ref
);
6919 ref_path
->root_generation
=
6920 btrfs_ref_generation(leaf
, ref
);
6922 /* special reference from the tree log */
6923 ref_path
->nodes
[0] = found_key
.offset
;
6924 ref_path
->current_level
= 0;
6931 BUG_ON(ref_path
->nodes
[level
] != 0);
6932 ref_path
->nodes
[level
] = found_key
.offset
;
6933 ref_path
->current_level
= level
;
6936 * the reference was created in the running transaction,
6937 * no need to continue walking up.
6939 if (btrfs_ref_generation(leaf
, ref
) == trans
->transid
) {
6940 ref_path
->root_objectid
= btrfs_ref_root(leaf
, ref
);
6941 ref_path
->root_generation
=
6942 btrfs_ref_generation(leaf
, ref
);
6947 btrfs_release_path(extent_root
, path
);
6950 /* reached max tree level, but no tree root found. */
6953 btrfs_free_path(path
);
6957 static int btrfs_first_ref_path(struct btrfs_trans_handle
*trans
,
6958 struct btrfs_root
*extent_root
,
6959 struct btrfs_ref_path
*ref_path
,
6962 memset(ref_path
, 0, sizeof(*ref_path
));
6963 ref_path
->extent_start
= extent_start
;
6965 return __next_ref_path(trans
, extent_root
, ref_path
, 1);
6968 static int btrfs_next_ref_path(struct btrfs_trans_handle
*trans
,
6969 struct btrfs_root
*extent_root
,
6970 struct btrfs_ref_path
*ref_path
)
6972 return __next_ref_path(trans
, extent_root
, ref_path
, 0);
6975 static noinline
int get_new_locations(struct inode
*reloc_inode
,
6976 struct btrfs_key
*extent_key
,
6977 u64 offset
, int no_fragment
,
6978 struct disk_extent
**extents
,
6981 struct btrfs_root
*root
= BTRFS_I(reloc_inode
)->root
;
6982 struct btrfs_path
*path
;
6983 struct btrfs_file_extent_item
*fi
;
6984 struct extent_buffer
*leaf
;
6985 struct disk_extent
*exts
= *extents
;
6986 struct btrfs_key found_key
;
6991 int max
= *nr_extents
;
6994 WARN_ON(!no_fragment
&& *extents
);
6997 exts
= kmalloc(sizeof(*exts
) * max
, GFP_NOFS
);
7002 path
= btrfs_alloc_path();
7004 if (exts
!= *extents
)
7009 cur_pos
= extent_key
->objectid
- offset
;
7010 last_byte
= extent_key
->objectid
+ extent_key
->offset
;
7011 ret
= btrfs_lookup_file_extent(NULL
, root
, path
, reloc_inode
->i_ino
,
7021 leaf
= path
->nodes
[0];
7022 nritems
= btrfs_header_nritems(leaf
);
7023 if (path
->slots
[0] >= nritems
) {
7024 ret
= btrfs_next_leaf(root
, path
);
7029 leaf
= path
->nodes
[0];
7032 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
7033 if (found_key
.offset
!= cur_pos
||
7034 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
||
7035 found_key
.objectid
!= reloc_inode
->i_ino
)
7038 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
7039 struct btrfs_file_extent_item
);
7040 if (btrfs_file_extent_type(leaf
, fi
) !=
7041 BTRFS_FILE_EXTENT_REG
||
7042 btrfs_file_extent_disk_bytenr(leaf
, fi
) == 0)
7046 struct disk_extent
*old
= exts
;
7048 exts
= kzalloc(sizeof(*exts
) * max
, GFP_NOFS
);
7053 memcpy(exts
, old
, sizeof(*exts
) * nr
);
7054 if (old
!= *extents
)
7058 exts
[nr
].disk_bytenr
=
7059 btrfs_file_extent_disk_bytenr(leaf
, fi
);
7060 exts
[nr
].disk_num_bytes
=
7061 btrfs_file_extent_disk_num_bytes(leaf
, fi
);
7062 exts
[nr
].offset
= btrfs_file_extent_offset(leaf
, fi
);
7063 exts
[nr
].num_bytes
= btrfs_file_extent_num_bytes(leaf
, fi
);
7064 exts
[nr
].ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
7065 exts
[nr
].compression
= btrfs_file_extent_compression(leaf
, fi
);
7066 exts
[nr
].encryption
= btrfs_file_extent_encryption(leaf
, fi
);
7067 exts
[nr
].other_encoding
= btrfs_file_extent_other_encoding(leaf
,
7069 BUG_ON(exts
[nr
].offset
> 0);
7070 BUG_ON(exts
[nr
].compression
|| exts
[nr
].encryption
);
7071 BUG_ON(exts
[nr
].num_bytes
!= exts
[nr
].disk_num_bytes
);
7073 cur_pos
+= exts
[nr
].num_bytes
;
7076 if (cur_pos
+ offset
>= last_byte
)
7086 BUG_ON(cur_pos
+ offset
> last_byte
);
7087 if (cur_pos
+ offset
< last_byte
) {
7093 btrfs_free_path(path
);
7095 if (exts
!= *extents
)
7104 static noinline
int replace_one_extent(struct btrfs_trans_handle
*trans
,
7105 struct btrfs_root
*root
,
7106 struct btrfs_path
*path
,
7107 struct btrfs_key
*extent_key
,
7108 struct btrfs_key
*leaf_key
,
7109 struct btrfs_ref_path
*ref_path
,
7110 struct disk_extent
*new_extents
,
7113 struct extent_buffer
*leaf
;
7114 struct btrfs_file_extent_item
*fi
;
7115 struct inode
*inode
= NULL
;
7116 struct btrfs_key key
;
7121 u64 search_end
= (u64
)-1;
7124 int extent_locked
= 0;
7128 memcpy(&key
, leaf_key
, sizeof(key
));
7129 if (ref_path
->owner_objectid
!= BTRFS_MULTIPLE_OBJECTIDS
) {
7130 if (key
.objectid
< ref_path
->owner_objectid
||
7131 (key
.objectid
== ref_path
->owner_objectid
&&
7132 key
.type
< BTRFS_EXTENT_DATA_KEY
)) {
7133 key
.objectid
= ref_path
->owner_objectid
;
7134 key
.type
= BTRFS_EXTENT_DATA_KEY
;
7140 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
7144 leaf
= path
->nodes
[0];
7145 nritems
= btrfs_header_nritems(leaf
);
7147 if (extent_locked
&& ret
> 0) {
7149 * the file extent item was modified by someone
7150 * before the extent got locked.
7152 unlock_extent(&BTRFS_I(inode
)->io_tree
, lock_start
,
7153 lock_end
, GFP_NOFS
);
7157 if (path
->slots
[0] >= nritems
) {
7158 if (++nr_scaned
> 2)
7161 BUG_ON(extent_locked
);
7162 ret
= btrfs_next_leaf(root
, path
);
7167 leaf
= path
->nodes
[0];
7168 nritems
= btrfs_header_nritems(leaf
);
7171 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
7173 if (ref_path
->owner_objectid
!= BTRFS_MULTIPLE_OBJECTIDS
) {
7174 if ((key
.objectid
> ref_path
->owner_objectid
) ||
7175 (key
.objectid
== ref_path
->owner_objectid
&&
7176 key
.type
> BTRFS_EXTENT_DATA_KEY
) ||
7177 key
.offset
>= search_end
)
7181 if (inode
&& key
.objectid
!= inode
->i_ino
) {
7182 BUG_ON(extent_locked
);
7183 btrfs_release_path(root
, path
);
7184 mutex_unlock(&inode
->i_mutex
);
7190 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
7195 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
7196 struct btrfs_file_extent_item
);
7197 extent_type
= btrfs_file_extent_type(leaf
, fi
);
7198 if ((extent_type
!= BTRFS_FILE_EXTENT_REG
&&
7199 extent_type
!= BTRFS_FILE_EXTENT_PREALLOC
) ||
7200 (btrfs_file_extent_disk_bytenr(leaf
, fi
) !=
7201 extent_key
->objectid
)) {
7207 num_bytes
= btrfs_file_extent_num_bytes(leaf
, fi
);
7208 ext_offset
= btrfs_file_extent_offset(leaf
, fi
);
7210 if (search_end
== (u64
)-1) {
7211 search_end
= key
.offset
- ext_offset
+
7212 btrfs_file_extent_ram_bytes(leaf
, fi
);
7215 if (!extent_locked
) {
7216 lock_start
= key
.offset
;
7217 lock_end
= lock_start
+ num_bytes
- 1;
7219 if (lock_start
> key
.offset
||
7220 lock_end
+ 1 < key
.offset
+ num_bytes
) {
7221 unlock_extent(&BTRFS_I(inode
)->io_tree
,
7222 lock_start
, lock_end
, GFP_NOFS
);
7228 btrfs_release_path(root
, path
);
7230 inode
= btrfs_iget_locked(root
->fs_info
->sb
,
7231 key
.objectid
, root
);
7232 if (inode
->i_state
& I_NEW
) {
7233 BTRFS_I(inode
)->root
= root
;
7234 BTRFS_I(inode
)->location
.objectid
=
7236 BTRFS_I(inode
)->location
.type
=
7237 BTRFS_INODE_ITEM_KEY
;
7238 BTRFS_I(inode
)->location
.offset
= 0;
7239 btrfs_read_locked_inode(inode
);
7240 unlock_new_inode(inode
);
7243 * some code call btrfs_commit_transaction while
7244 * holding the i_mutex, so we can't use mutex_lock
7247 if (is_bad_inode(inode
) ||
7248 !mutex_trylock(&inode
->i_mutex
)) {
7251 key
.offset
= (u64
)-1;
7256 if (!extent_locked
) {
7257 struct btrfs_ordered_extent
*ordered
;
7259 btrfs_release_path(root
, path
);
7261 lock_extent(&BTRFS_I(inode
)->io_tree
, lock_start
,
7262 lock_end
, GFP_NOFS
);
7263 ordered
= btrfs_lookup_first_ordered_extent(inode
,
7266 ordered
->file_offset
<= lock_end
&&
7267 ordered
->file_offset
+ ordered
->len
> lock_start
) {
7268 unlock_extent(&BTRFS_I(inode
)->io_tree
,
7269 lock_start
, lock_end
, GFP_NOFS
);
7270 btrfs_start_ordered_extent(inode
, ordered
, 1);
7271 btrfs_put_ordered_extent(ordered
);
7272 key
.offset
+= num_bytes
;
7276 btrfs_put_ordered_extent(ordered
);
7282 if (nr_extents
== 1) {
7283 /* update extent pointer in place */
7284 btrfs_set_file_extent_disk_bytenr(leaf
, fi
,
7285 new_extents
[0].disk_bytenr
);
7286 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
,
7287 new_extents
[0].disk_num_bytes
);
7288 btrfs_mark_buffer_dirty(leaf
);
7290 btrfs_drop_extent_cache(inode
, key
.offset
,
7291 key
.offset
+ num_bytes
- 1, 0);
7293 ret
= btrfs_inc_extent_ref(trans
, root
,
7294 new_extents
[0].disk_bytenr
,
7295 new_extents
[0].disk_num_bytes
,
7297 root
->root_key
.objectid
,
7302 ret
= btrfs_free_extent(trans
, root
,
7303 extent_key
->objectid
,
7306 btrfs_header_owner(leaf
),
7307 btrfs_header_generation(leaf
),
7311 btrfs_release_path(root
, path
);
7312 key
.offset
+= num_bytes
;
7320 * drop old extent pointer at first, then insert the
7321 * new pointers one bye one
7323 btrfs_release_path(root
, path
);
7324 ret
= btrfs_drop_extents(trans
, root
, inode
, key
.offset
,
7325 key
.offset
+ num_bytes
,
7326 key
.offset
, &alloc_hint
);
7329 for (i
= 0; i
< nr_extents
; i
++) {
7330 if (ext_offset
>= new_extents
[i
].num_bytes
) {
7331 ext_offset
-= new_extents
[i
].num_bytes
;
7334 extent_len
= min(new_extents
[i
].num_bytes
-
7335 ext_offset
, num_bytes
);
7337 ret
= btrfs_insert_empty_item(trans
, root
,
7342 leaf
= path
->nodes
[0];
7343 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
7344 struct btrfs_file_extent_item
);
7345 btrfs_set_file_extent_generation(leaf
, fi
,
7347 btrfs_set_file_extent_type(leaf
, fi
,
7348 BTRFS_FILE_EXTENT_REG
);
7349 btrfs_set_file_extent_disk_bytenr(leaf
, fi
,
7350 new_extents
[i
].disk_bytenr
);
7351 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
,
7352 new_extents
[i
].disk_num_bytes
);
7353 btrfs_set_file_extent_ram_bytes(leaf
, fi
,
7354 new_extents
[i
].ram_bytes
);
7356 btrfs_set_file_extent_compression(leaf
, fi
,
7357 new_extents
[i
].compression
);
7358 btrfs_set_file_extent_encryption(leaf
, fi
,
7359 new_extents
[i
].encryption
);
7360 btrfs_set_file_extent_other_encoding(leaf
, fi
,
7361 new_extents
[i
].other_encoding
);
7363 btrfs_set_file_extent_num_bytes(leaf
, fi
,
7365 ext_offset
+= new_extents
[i
].offset
;
7366 btrfs_set_file_extent_offset(leaf
, fi
,
7368 btrfs_mark_buffer_dirty(leaf
);
7370 btrfs_drop_extent_cache(inode
, key
.offset
,
7371 key
.offset
+ extent_len
- 1, 0);
7373 ret
= btrfs_inc_extent_ref(trans
, root
,
7374 new_extents
[i
].disk_bytenr
,
7375 new_extents
[i
].disk_num_bytes
,
7377 root
->root_key
.objectid
,
7378 trans
->transid
, key
.objectid
);
7380 btrfs_release_path(root
, path
);
7382 inode_add_bytes(inode
, extent_len
);
7385 num_bytes
-= extent_len
;
7386 key
.offset
+= extent_len
;
7391 BUG_ON(i
>= nr_extents
);
7395 if (extent_locked
) {
7396 unlock_extent(&BTRFS_I(inode
)->io_tree
, lock_start
,
7397 lock_end
, GFP_NOFS
);
7401 if (ref_path
->owner_objectid
!= BTRFS_MULTIPLE_OBJECTIDS
&&
7402 key
.offset
>= search_end
)
7409 btrfs_release_path(root
, path
);
7411 mutex_unlock(&inode
->i_mutex
);
7412 if (extent_locked
) {
7413 unlock_extent(&BTRFS_I(inode
)->io_tree
, lock_start
,
7414 lock_end
, GFP_NOFS
);
7421 int btrfs_reloc_tree_cache_ref(struct btrfs_trans_handle
*trans
,
7422 struct btrfs_root
*root
,
7423 struct extent_buffer
*buf
, u64 orig_start
)
7428 BUG_ON(btrfs_header_generation(buf
) != trans
->transid
);
7429 BUG_ON(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
);
7431 level
= btrfs_header_level(buf
);
7433 struct btrfs_leaf_ref
*ref
;
7434 struct btrfs_leaf_ref
*orig_ref
;
7436 orig_ref
= btrfs_lookup_leaf_ref(root
, orig_start
);
7440 ref
= btrfs_alloc_leaf_ref(root
, orig_ref
->nritems
);
7442 btrfs_free_leaf_ref(root
, orig_ref
);
7446 ref
->nritems
= orig_ref
->nritems
;
7447 memcpy(ref
->extents
, orig_ref
->extents
,
7448 sizeof(ref
->extents
[0]) * ref
->nritems
);
7450 btrfs_free_leaf_ref(root
, orig_ref
);
7452 ref
->root_gen
= trans
->transid
;
7453 ref
->bytenr
= buf
->start
;
7454 ref
->owner
= btrfs_header_owner(buf
);
7455 ref
->generation
= btrfs_header_generation(buf
);
7457 ret
= btrfs_add_leaf_ref(root
, ref
, 0);
7459 btrfs_free_leaf_ref(root
, ref
);
7464 static noinline
int invalidate_extent_cache(struct btrfs_root
*root
,
7465 struct extent_buffer
*leaf
,
7466 struct btrfs_block_group_cache
*group
,
7467 struct btrfs_root
*target_root
)
7469 struct btrfs_key key
;
7470 struct inode
*inode
= NULL
;
7471 struct btrfs_file_extent_item
*fi
;
7472 struct extent_state
*cached_state
= NULL
;
7474 u64 skip_objectid
= 0;
7478 nritems
= btrfs_header_nritems(leaf
);
7479 for (i
= 0; i
< nritems
; i
++) {
7480 btrfs_item_key_to_cpu(leaf
, &key
, i
);
7481 if (key
.objectid
== skip_objectid
||
7482 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
7484 fi
= btrfs_item_ptr(leaf
, i
, struct btrfs_file_extent_item
);
7485 if (btrfs_file_extent_type(leaf
, fi
) ==
7486 BTRFS_FILE_EXTENT_INLINE
)
7488 if (btrfs_file_extent_disk_bytenr(leaf
, fi
) == 0)
7490 if (!inode
|| inode
->i_ino
!= key
.objectid
) {
7492 inode
= btrfs_ilookup(target_root
->fs_info
->sb
,
7493 key
.objectid
, target_root
, 1);
7496 skip_objectid
= key
.objectid
;
7499 num_bytes
= btrfs_file_extent_num_bytes(leaf
, fi
);
7501 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, key
.offset
,
7502 key
.offset
+ num_bytes
- 1, 0, &cached_state
,
7504 btrfs_drop_extent_cache(inode
, key
.offset
,
7505 key
.offset
+ num_bytes
- 1, 1);
7506 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, key
.offset
,
7507 key
.offset
+ num_bytes
- 1, &cached_state
,
7515 static noinline
int replace_extents_in_leaf(struct btrfs_trans_handle
*trans
,
7516 struct btrfs_root
*root
,
7517 struct extent_buffer
*leaf
,
7518 struct btrfs_block_group_cache
*group
,
7519 struct inode
*reloc_inode
)
7521 struct btrfs_key key
;
7522 struct btrfs_key extent_key
;
7523 struct btrfs_file_extent_item
*fi
;
7524 struct btrfs_leaf_ref
*ref
;
7525 struct disk_extent
*new_extent
;
7534 new_extent
= kmalloc(sizeof(*new_extent
), GFP_NOFS
);
7538 ref
= btrfs_lookup_leaf_ref(root
, leaf
->start
);
7542 nritems
= btrfs_header_nritems(leaf
);
7543 for (i
= 0; i
< nritems
; i
++) {
7544 btrfs_item_key_to_cpu(leaf
, &key
, i
);
7545 if (btrfs_key_type(&key
) != BTRFS_EXTENT_DATA_KEY
)
7547 fi
= btrfs_item_ptr(leaf
, i
, struct btrfs_file_extent_item
);
7548 if (btrfs_file_extent_type(leaf
, fi
) ==
7549 BTRFS_FILE_EXTENT_INLINE
)
7551 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
7552 num_bytes
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
7557 if (bytenr
>= group
->key
.objectid
+ group
->key
.offset
||
7558 bytenr
+ num_bytes
<= group
->key
.objectid
)
7561 extent_key
.objectid
= bytenr
;
7562 extent_key
.offset
= num_bytes
;
7563 extent_key
.type
= BTRFS_EXTENT_ITEM_KEY
;
7565 ret
= get_new_locations(reloc_inode
, &extent_key
,
7566 group
->key
.objectid
, 1,
7567 &new_extent
, &nr_extent
);
7572 BUG_ON(ref
->extents
[ext_index
].bytenr
!= bytenr
);
7573 BUG_ON(ref
->extents
[ext_index
].num_bytes
!= num_bytes
);
7574 ref
->extents
[ext_index
].bytenr
= new_extent
->disk_bytenr
;
7575 ref
->extents
[ext_index
].num_bytes
= new_extent
->disk_num_bytes
;
7577 btrfs_set_file_extent_disk_bytenr(leaf
, fi
,
7578 new_extent
->disk_bytenr
);
7579 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
,
7580 new_extent
->disk_num_bytes
);
7581 btrfs_mark_buffer_dirty(leaf
);
7583 ret
= btrfs_inc_extent_ref(trans
, root
,
7584 new_extent
->disk_bytenr
,
7585 new_extent
->disk_num_bytes
,
7587 root
->root_key
.objectid
,
7588 trans
->transid
, key
.objectid
);
7591 ret
= btrfs_free_extent(trans
, root
,
7592 bytenr
, num_bytes
, leaf
->start
,
7593 btrfs_header_owner(leaf
),
7594 btrfs_header_generation(leaf
),
7600 BUG_ON(ext_index
+ 1 != ref
->nritems
);
7601 btrfs_free_leaf_ref(root
, ref
);
7605 int btrfs_free_reloc_root(struct btrfs_trans_handle
*trans
,
7606 struct btrfs_root
*root
)
7608 struct btrfs_root
*reloc_root
;
7611 if (root
->reloc_root
) {
7612 reloc_root
= root
->reloc_root
;
7613 root
->reloc_root
= NULL
;
7614 list_add(&reloc_root
->dead_list
,
7615 &root
->fs_info
->dead_reloc_roots
);
7617 btrfs_set_root_bytenr(&reloc_root
->root_item
,
7618 reloc_root
->node
->start
);
7619 btrfs_set_root_level(&root
->root_item
,
7620 btrfs_header_level(reloc_root
->node
));
7621 memset(&reloc_root
->root_item
.drop_progress
, 0,
7622 sizeof(struct btrfs_disk_key
));
7623 reloc_root
->root_item
.drop_level
= 0;
7625 ret
= btrfs_update_root(trans
, root
->fs_info
->tree_root
,
7626 &reloc_root
->root_key
,
7627 &reloc_root
->root_item
);
7633 int btrfs_drop_dead_reloc_roots(struct btrfs_root
*root
)
7635 struct btrfs_trans_handle
*trans
;
7636 struct btrfs_root
*reloc_root
;
7637 struct btrfs_root
*prev_root
= NULL
;
7638 struct list_head dead_roots
;
7642 INIT_LIST_HEAD(&dead_roots
);
7643 list_splice_init(&root
->fs_info
->dead_reloc_roots
, &dead_roots
);
7645 while (!list_empty(&dead_roots
)) {
7646 reloc_root
= list_entry(dead_roots
.prev
,
7647 struct btrfs_root
, dead_list
);
7648 list_del_init(&reloc_root
->dead_list
);
7650 BUG_ON(reloc_root
->commit_root
!= NULL
);
7652 trans
= btrfs_join_transaction(root
, 1);
7653 BUG_ON(IS_ERR(trans
));
7655 mutex_lock(&root
->fs_info
->drop_mutex
);
7656 ret
= btrfs_drop_snapshot(trans
, reloc_root
);
7659 mutex_unlock(&root
->fs_info
->drop_mutex
);
7661 nr
= trans
->blocks_used
;
7662 ret
= btrfs_end_transaction(trans
, root
);
7664 btrfs_btree_balance_dirty(root
, nr
);
7667 free_extent_buffer(reloc_root
->node
);
7669 ret
= btrfs_del_root(trans
, root
->fs_info
->tree_root
,
7670 &reloc_root
->root_key
);
7672 mutex_unlock(&root
->fs_info
->drop_mutex
);
7674 nr
= trans
->blocks_used
;
7675 ret
= btrfs_end_transaction(trans
, root
);
7677 btrfs_btree_balance_dirty(root
, nr
);
7680 prev_root
= reloc_root
;
7683 btrfs_remove_leaf_refs(prev_root
, (u64
)-1, 0);
7689 int btrfs_add_dead_reloc_root(struct btrfs_root
*root
)
7691 list_add(&root
->dead_list
, &root
->fs_info
->dead_reloc_roots
);
7695 int btrfs_cleanup_reloc_trees(struct btrfs_root
*root
)
7697 struct btrfs_root
*reloc_root
;
7698 struct btrfs_trans_handle
*trans
;
7699 struct btrfs_key location
;
7703 mutex_lock(&root
->fs_info
->tree_reloc_mutex
);
7704 ret
= btrfs_find_dead_roots(root
, BTRFS_TREE_RELOC_OBJECTID
, NULL
);
7706 found
= !list_empty(&root
->fs_info
->dead_reloc_roots
);
7707 mutex_unlock(&root
->fs_info
->tree_reloc_mutex
);
7710 trans
= btrfs_start_transaction(root
, 1);
7711 BUG_ON(IS_ERR(trans
));
7712 ret
= btrfs_commit_transaction(trans
, root
);
7716 location
.objectid
= BTRFS_DATA_RELOC_TREE_OBJECTID
;
7717 location
.offset
= (u64
)-1;
7718 location
.type
= BTRFS_ROOT_ITEM_KEY
;
7720 reloc_root
= btrfs_read_fs_root_no_name(root
->fs_info
, &location
);
7721 BUG_ON(!reloc_root
);
7722 ret
= btrfs_orphan_cleanup(reloc_root
);
7727 static noinline
int init_reloc_tree(struct btrfs_trans_handle
*trans
,
7728 struct btrfs_root
*root
)
7730 struct btrfs_root
*reloc_root
;
7731 struct extent_buffer
*eb
;
7732 struct btrfs_root_item
*root_item
;
7733 struct btrfs_key root_key
;
7736 BUG_ON(!root
->ref_cows
);
7737 if (root
->reloc_root
)
7740 root_item
= kmalloc(sizeof(*root_item
), GFP_NOFS
);
7744 ret
= btrfs_copy_root(trans
, root
, root
->commit_root
,
7745 &eb
, BTRFS_TREE_RELOC_OBJECTID
);
7748 root_key
.objectid
= BTRFS_TREE_RELOC_OBJECTID
;
7749 root_key
.offset
= root
->root_key
.objectid
;
7750 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
7752 memcpy(root_item
, &root
->root_item
, sizeof(root_item
));
7753 btrfs_set_root_refs(root_item
, 0);
7754 btrfs_set_root_bytenr(root_item
, eb
->start
);
7755 btrfs_set_root_level(root_item
, btrfs_header_level(eb
));
7756 btrfs_set_root_generation(root_item
, trans
->transid
);
7758 btrfs_tree_unlock(eb
);
7759 free_extent_buffer(eb
);
7761 ret
= btrfs_insert_root(trans
, root
->fs_info
->tree_root
,
7762 &root_key
, root_item
);
7766 reloc_root
= btrfs_read_fs_root_no_radix(root
->fs_info
->tree_root
,
7768 BUG_ON(IS_ERR(reloc_root
));
7769 reloc_root
->last_trans
= trans
->transid
;
7770 reloc_root
->commit_root
= NULL
;
7771 reloc_root
->ref_tree
= &root
->fs_info
->reloc_ref_tree
;
7773 root
->reloc_root
= reloc_root
;
7778 * Core function of space balance.
7780 * The idea is using reloc trees to relocate tree blocks in reference
7781 * counted roots. There is one reloc tree for each subvol, and all
7782 * reloc trees share same root key objectid. Reloc trees are snapshots
7783 * of the latest committed roots of subvols (root->commit_root).
7785 * To relocate a tree block referenced by a subvol, there are two steps.
7786 * COW the block through subvol's reloc tree, then update block pointer
7787 * in the subvol to point to the new block. Since all reloc trees share
7788 * same root key objectid, doing special handing for tree blocks owned
7789 * by them is easy. Once a tree block has been COWed in one reloc tree,
7790 * we can use the resulting new block directly when the same block is
7791 * required to COW again through other reloc trees. By this way, relocated
7792 * tree blocks are shared between reloc trees, so they are also shared
7795 static noinline
int relocate_one_path(struct btrfs_trans_handle
*trans
,
7796 struct btrfs_root
*root
,
7797 struct btrfs_path
*path
,
7798 struct btrfs_key
*first_key
,
7799 struct btrfs_ref_path
*ref_path
,
7800 struct btrfs_block_group_cache
*group
,
7801 struct inode
*reloc_inode
)
7803 struct btrfs_root
*reloc_root
;
7804 struct extent_buffer
*eb
= NULL
;
7805 struct btrfs_key
*keys
;
7809 int lowest_level
= 0;
7812 if (ref_path
->owner_objectid
< BTRFS_FIRST_FREE_OBJECTID
)
7813 lowest_level
= ref_path
->owner_objectid
;
7815 if (!root
->ref_cows
) {
7816 path
->lowest_level
= lowest_level
;
7817 ret
= btrfs_search_slot(trans
, root
, first_key
, path
, 0, 1);
7819 path
->lowest_level
= 0;
7820 btrfs_release_path(root
, path
);
7824 mutex_lock(&root
->fs_info
->tree_reloc_mutex
);
7825 ret
= init_reloc_tree(trans
, root
);
7827 reloc_root
= root
->reloc_root
;
7829 shared_level
= ref_path
->shared_level
;
7830 ref_path
->shared_level
= BTRFS_MAX_LEVEL
- 1;
7832 keys
= ref_path
->node_keys
;
7833 nodes
= ref_path
->new_nodes
;
7834 memset(&keys
[shared_level
+ 1], 0,
7835 sizeof(*keys
) * (BTRFS_MAX_LEVEL
- shared_level
- 1));
7836 memset(&nodes
[shared_level
+ 1], 0,
7837 sizeof(*nodes
) * (BTRFS_MAX_LEVEL
- shared_level
- 1));
7839 if (nodes
[lowest_level
] == 0) {
7840 path
->lowest_level
= lowest_level
;
7841 ret
= btrfs_search_slot(trans
, reloc_root
, first_key
, path
,
7844 for (level
= lowest_level
; level
< BTRFS_MAX_LEVEL
; level
++) {
7845 eb
= path
->nodes
[level
];
7846 if (!eb
|| eb
== reloc_root
->node
)
7848 nodes
[level
] = eb
->start
;
7850 btrfs_item_key_to_cpu(eb
, &keys
[level
], 0);
7852 btrfs_node_key_to_cpu(eb
, &keys
[level
], 0);
7855 ref_path
->owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
) {
7856 eb
= path
->nodes
[0];
7857 ret
= replace_extents_in_leaf(trans
, reloc_root
, eb
,
7858 group
, reloc_inode
);
7861 btrfs_release_path(reloc_root
, path
);
7863 ret
= btrfs_merge_path(trans
, reloc_root
, keys
, nodes
,
7869 * replace tree blocks in the fs tree with tree blocks in
7872 ret
= btrfs_merge_path(trans
, root
, keys
, nodes
, lowest_level
);
7875 if (ref_path
->owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
) {
7876 ret
= btrfs_search_slot(trans
, reloc_root
, first_key
, path
,
7879 extent_buffer_get(path
->nodes
[0]);
7880 eb
= path
->nodes
[0];
7881 btrfs_release_path(reloc_root
, path
);
7882 ret
= invalidate_extent_cache(reloc_root
, eb
, group
, root
);
7884 free_extent_buffer(eb
);
7887 mutex_unlock(&root
->fs_info
->tree_reloc_mutex
);
7888 path
->lowest_level
= 0;
7892 static noinline
int relocate_tree_block(struct btrfs_trans_handle
*trans
,
7893 struct btrfs_root
*root
,
7894 struct btrfs_path
*path
,
7895 struct btrfs_key
*first_key
,
7896 struct btrfs_ref_path
*ref_path
)
7900 ret
= relocate_one_path(trans
, root
, path
, first_key
,
7901 ref_path
, NULL
, NULL
);
7907 static noinline
int del_extent_zero(struct btrfs_trans_handle
*trans
,
7908 struct btrfs_root
*extent_root
,
7909 struct btrfs_path
*path
,
7910 struct btrfs_key
*extent_key
)
7914 ret
= btrfs_search_slot(trans
, extent_root
, extent_key
, path
, -1, 1);
7917 ret
= btrfs_del_item(trans
, extent_root
, path
);
7919 btrfs_release_path(extent_root
, path
);
7923 static noinline
struct btrfs_root
*read_ref_root(struct btrfs_fs_info
*fs_info
,
7924 struct btrfs_ref_path
*ref_path
)
7926 struct btrfs_key root_key
;
7928 root_key
.objectid
= ref_path
->root_objectid
;
7929 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
7930 if (is_cowonly_root(ref_path
->root_objectid
))
7931 root_key
.offset
= 0;
7933 root_key
.offset
= (u64
)-1;
7935 return btrfs_read_fs_root_no_name(fs_info
, &root_key
);
7938 static noinline
int relocate_one_extent(struct btrfs_root
*extent_root
,
7939 struct btrfs_path
*path
,
7940 struct btrfs_key
*extent_key
,
7941 struct btrfs_block_group_cache
*group
,
7942 struct inode
*reloc_inode
, int pass
)
7944 struct btrfs_trans_handle
*trans
;
7945 struct btrfs_root
*found_root
;
7946 struct btrfs_ref_path
*ref_path
= NULL
;
7947 struct disk_extent
*new_extents
= NULL
;
7952 struct btrfs_key first_key
;
7956 trans
= btrfs_start_transaction(extent_root
, 1);
7957 BUG_ON(IS_ERR(trans
));
7959 if (extent_key
->objectid
== 0) {
7960 ret
= del_extent_zero(trans
, extent_root
, path
, extent_key
);
7964 ref_path
= kmalloc(sizeof(*ref_path
), GFP_NOFS
);
7970 for (loops
= 0; ; loops
++) {
7972 ret
= btrfs_first_ref_path(trans
, extent_root
, ref_path
,
7973 extent_key
->objectid
);
7975 ret
= btrfs_next_ref_path(trans
, extent_root
, ref_path
);
7982 if (ref_path
->root_objectid
== BTRFS_TREE_LOG_OBJECTID
||
7983 ref_path
->root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
7986 found_root
= read_ref_root(extent_root
->fs_info
, ref_path
);
7987 BUG_ON(!found_root
);
7989 * for reference counted tree, only process reference paths
7990 * rooted at the latest committed root.
7992 if (found_root
->ref_cows
&&
7993 ref_path
->root_generation
!= found_root
->root_key
.offset
)
7996 if (ref_path
->owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
) {
7999 * copy data extents to new locations
8001 u64 group_start
= group
->key
.objectid
;
8002 ret
= relocate_data_extent(reloc_inode
,
8011 level
= ref_path
->owner_objectid
;
8014 if (prev_block
!= ref_path
->nodes
[level
]) {
8015 struct extent_buffer
*eb
;
8016 u64 block_start
= ref_path
->nodes
[level
];
8017 u64 block_size
= btrfs_level_size(found_root
, level
);
8019 eb
= read_tree_block(found_root
, block_start
,
8025 btrfs_tree_lock(eb
);
8026 BUG_ON(level
!= btrfs_header_level(eb
));
8029 btrfs_item_key_to_cpu(eb
, &first_key
, 0);
8031 btrfs_node_key_to_cpu(eb
, &first_key
, 0);
8033 btrfs_tree_unlock(eb
);
8034 free_extent_buffer(eb
);
8035 prev_block
= block_start
;
8038 mutex_lock(&extent_root
->fs_info
->trans_mutex
);
8039 btrfs_record_root_in_trans(found_root
);
8040 mutex_unlock(&extent_root
->fs_info
->trans_mutex
);
8041 if (ref_path
->owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
) {
8043 * try to update data extent references while
8044 * keeping metadata shared between snapshots.
8047 ret
= relocate_one_path(trans
, found_root
,
8048 path
, &first_key
, ref_path
,
8049 group
, reloc_inode
);
8055 * use fallback method to process the remaining
8059 u64 group_start
= group
->key
.objectid
;
8060 new_extents
= kmalloc(sizeof(*new_extents
),
8063 ret
= get_new_locations(reloc_inode
,
8071 ret
= replace_one_extent(trans
, found_root
,
8073 &first_key
, ref_path
,
8074 new_extents
, nr_extents
);
8076 ret
= relocate_tree_block(trans
, found_root
, path
,
8077 &first_key
, ref_path
);
8084 btrfs_end_transaction(trans
, extent_root
);
8091 static u64
update_block_group_flags(struct btrfs_root
*root
, u64 flags
)
8094 u64 stripped
= BTRFS_BLOCK_GROUP_RAID0
|
8095 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
;
8098 * we add in the count of missing devices because we want
8099 * to make sure that any RAID levels on a degraded FS
8100 * continue to be honored.
8102 num_devices
= root
->fs_info
->fs_devices
->rw_devices
+
8103 root
->fs_info
->fs_devices
->missing_devices
;
8105 if (num_devices
== 1) {
8106 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
8107 stripped
= flags
& ~stripped
;
8109 /* turn raid0 into single device chunks */
8110 if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
8113 /* turn mirroring into duplication */
8114 if (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
8115 BTRFS_BLOCK_GROUP_RAID10
))
8116 return stripped
| BTRFS_BLOCK_GROUP_DUP
;
8119 /* they already had raid on here, just return */
8120 if (flags
& stripped
)
8123 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
8124 stripped
= flags
& ~stripped
;
8126 /* switch duplicated blocks with raid1 */
8127 if (flags
& BTRFS_BLOCK_GROUP_DUP
)
8128 return stripped
| BTRFS_BLOCK_GROUP_RAID1
;
8130 /* turn single device chunks into raid0 */
8131 return stripped
| BTRFS_BLOCK_GROUP_RAID0
;
8136 static int set_block_group_ro(struct btrfs_block_group_cache
*cache
)
8138 struct btrfs_space_info
*sinfo
= cache
->space_info
;
8145 spin_lock(&sinfo
->lock
);
8146 spin_lock(&cache
->lock
);
8147 num_bytes
= cache
->key
.offset
- cache
->reserved
- cache
->pinned
-
8148 cache
->bytes_super
- btrfs_block_group_used(&cache
->item
);
8150 if (sinfo
->bytes_used
+ sinfo
->bytes_reserved
+ sinfo
->bytes_pinned
+
8151 sinfo
->bytes_may_use
+ sinfo
->bytes_readonly
+
8152 cache
->reserved_pinned
+ num_bytes
<= sinfo
->total_bytes
) {
8153 sinfo
->bytes_readonly
+= num_bytes
;
8154 sinfo
->bytes_reserved
+= cache
->reserved_pinned
;
8155 cache
->reserved_pinned
= 0;
8160 spin_unlock(&cache
->lock
);
8161 spin_unlock(&sinfo
->lock
);
8165 int btrfs_set_block_group_ro(struct btrfs_root
*root
,
8166 struct btrfs_block_group_cache
*cache
)
8169 struct btrfs_trans_handle
*trans
;
8175 trans
= btrfs_join_transaction(root
, 1);
8176 BUG_ON(IS_ERR(trans
));
8178 alloc_flags
= update_block_group_flags(root
, cache
->flags
);
8179 if (alloc_flags
!= cache
->flags
)
8180 do_chunk_alloc(trans
, root
, 2 * 1024 * 1024, alloc_flags
,
8183 ret
= set_block_group_ro(cache
);
8186 alloc_flags
= get_alloc_profile(root
, cache
->space_info
->flags
);
8187 ret
= do_chunk_alloc(trans
, root
, 2 * 1024 * 1024, alloc_flags
,
8191 ret
= set_block_group_ro(cache
);
8193 btrfs_end_transaction(trans
, root
);
8197 int btrfs_force_chunk_alloc(struct btrfs_trans_handle
*trans
,
8198 struct btrfs_root
*root
, u64 type
)
8200 u64 alloc_flags
= get_alloc_profile(root
, type
);
8201 return do_chunk_alloc(trans
, root
, 2 * 1024 * 1024, alloc_flags
,
8206 * helper to account the unused space of all the readonly block group in the
8207 * list. takes mirrors into account.
8209 static u64
__btrfs_get_ro_block_group_free_space(struct list_head
*groups_list
)
8211 struct btrfs_block_group_cache
*block_group
;
8215 list_for_each_entry(block_group
, groups_list
, list
) {
8216 spin_lock(&block_group
->lock
);
8218 if (!block_group
->ro
) {
8219 spin_unlock(&block_group
->lock
);
8223 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_RAID1
|
8224 BTRFS_BLOCK_GROUP_RAID10
|
8225 BTRFS_BLOCK_GROUP_DUP
))
8230 free_bytes
+= (block_group
->key
.offset
-
8231 btrfs_block_group_used(&block_group
->item
)) *
8234 spin_unlock(&block_group
->lock
);
8241 * helper to account the unused space of all the readonly block group in the
8242 * space_info. takes mirrors into account.
8244 u64
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info
*sinfo
)
8249 spin_lock(&sinfo
->lock
);
8251 for(i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++)
8252 if (!list_empty(&sinfo
->block_groups
[i
]))
8253 free_bytes
+= __btrfs_get_ro_block_group_free_space(
8254 &sinfo
->block_groups
[i
]);
8256 spin_unlock(&sinfo
->lock
);
8261 int btrfs_set_block_group_rw(struct btrfs_root
*root
,
8262 struct btrfs_block_group_cache
*cache
)
8264 struct btrfs_space_info
*sinfo
= cache
->space_info
;
8269 spin_lock(&sinfo
->lock
);
8270 spin_lock(&cache
->lock
);
8271 num_bytes
= cache
->key
.offset
- cache
->reserved
- cache
->pinned
-
8272 cache
->bytes_super
- btrfs_block_group_used(&cache
->item
);
8273 sinfo
->bytes_readonly
-= num_bytes
;
8275 spin_unlock(&cache
->lock
);
8276 spin_unlock(&sinfo
->lock
);
8281 * checks to see if its even possible to relocate this block group.
8283 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8284 * ok to go ahead and try.
8286 int btrfs_can_relocate(struct btrfs_root
*root
, u64 bytenr
)
8288 struct btrfs_block_group_cache
*block_group
;
8289 struct btrfs_space_info
*space_info
;
8290 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
8291 struct btrfs_device
*device
;
8295 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
8297 /* odd, couldn't find the block group, leave it alone */
8301 /* no bytes used, we're good */
8302 if (!btrfs_block_group_used(&block_group
->item
))
8305 space_info
= block_group
->space_info
;
8306 spin_lock(&space_info
->lock
);
8308 full
= space_info
->full
;
8311 * if this is the last block group we have in this space, we can't
8312 * relocate it unless we're able to allocate a new chunk below.
8314 * Otherwise, we need to make sure we have room in the space to handle
8315 * all of the extents from this block group. If we can, we're good
8317 if ((space_info
->total_bytes
!= block_group
->key
.offset
) &&
8318 (space_info
->bytes_used
+ space_info
->bytes_reserved
+
8319 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
8320 btrfs_block_group_used(&block_group
->item
) <
8321 space_info
->total_bytes
)) {
8322 spin_unlock(&space_info
->lock
);
8325 spin_unlock(&space_info
->lock
);
8328 * ok we don't have enough space, but maybe we have free space on our
8329 * devices to allocate new chunks for relocation, so loop through our
8330 * alloc devices and guess if we have enough space. However, if we
8331 * were marked as full, then we know there aren't enough chunks, and we
8338 mutex_lock(&root
->fs_info
->chunk_mutex
);
8339 list_for_each_entry(device
, &fs_devices
->alloc_list
, dev_alloc_list
) {
8340 u64 min_free
= btrfs_block_group_used(&block_group
->item
);
8344 * check to make sure we can actually find a chunk with enough
8345 * space to fit our block group in.
8347 if (device
->total_bytes
> device
->bytes_used
+ min_free
) {
8348 ret
= find_free_dev_extent(NULL
, device
, min_free
,
8355 mutex_unlock(&root
->fs_info
->chunk_mutex
);
8357 btrfs_put_block_group(block_group
);
8361 static int find_first_block_group(struct btrfs_root
*root
,
8362 struct btrfs_path
*path
, struct btrfs_key
*key
)
8365 struct btrfs_key found_key
;
8366 struct extent_buffer
*leaf
;
8369 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
8374 slot
= path
->slots
[0];
8375 leaf
= path
->nodes
[0];
8376 if (slot
>= btrfs_header_nritems(leaf
)) {
8377 ret
= btrfs_next_leaf(root
, path
);
8384 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
8386 if (found_key
.objectid
>= key
->objectid
&&
8387 found_key
.type
== BTRFS_BLOCK_GROUP_ITEM_KEY
) {
8397 void btrfs_put_block_group_cache(struct btrfs_fs_info
*info
)
8399 struct btrfs_block_group_cache
*block_group
;
8403 struct inode
*inode
;
8405 block_group
= btrfs_lookup_first_block_group(info
, last
);
8406 while (block_group
) {
8407 spin_lock(&block_group
->lock
);
8408 if (block_group
->iref
)
8410 spin_unlock(&block_group
->lock
);
8411 block_group
= next_block_group(info
->tree_root
,
8421 inode
= block_group
->inode
;
8422 block_group
->iref
= 0;
8423 block_group
->inode
= NULL
;
8424 spin_unlock(&block_group
->lock
);
8426 last
= block_group
->key
.objectid
+ block_group
->key
.offset
;
8427 btrfs_put_block_group(block_group
);
8431 int btrfs_free_block_groups(struct btrfs_fs_info
*info
)
8433 struct btrfs_block_group_cache
*block_group
;
8434 struct btrfs_space_info
*space_info
;
8435 struct btrfs_caching_control
*caching_ctl
;
8438 down_write(&info
->extent_commit_sem
);
8439 while (!list_empty(&info
->caching_block_groups
)) {
8440 caching_ctl
= list_entry(info
->caching_block_groups
.next
,
8441 struct btrfs_caching_control
, list
);
8442 list_del(&caching_ctl
->list
);
8443 put_caching_control(caching_ctl
);
8445 up_write(&info
->extent_commit_sem
);
8447 spin_lock(&info
->block_group_cache_lock
);
8448 while ((n
= rb_last(&info
->block_group_cache_tree
)) != NULL
) {
8449 block_group
= rb_entry(n
, struct btrfs_block_group_cache
,
8451 rb_erase(&block_group
->cache_node
,
8452 &info
->block_group_cache_tree
);
8453 spin_unlock(&info
->block_group_cache_lock
);
8455 down_write(&block_group
->space_info
->groups_sem
);
8456 list_del(&block_group
->list
);
8457 up_write(&block_group
->space_info
->groups_sem
);
8459 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
8460 wait_block_group_cache_done(block_group
);
8463 * We haven't cached this block group, which means we could
8464 * possibly have excluded extents on this block group.
8466 if (block_group
->cached
== BTRFS_CACHE_NO
)
8467 free_excluded_extents(info
->extent_root
, block_group
);
8469 btrfs_remove_free_space_cache(block_group
);
8470 btrfs_put_block_group(block_group
);
8472 spin_lock(&info
->block_group_cache_lock
);
8474 spin_unlock(&info
->block_group_cache_lock
);
8476 /* now that all the block groups are freed, go through and
8477 * free all the space_info structs. This is only called during
8478 * the final stages of unmount, and so we know nobody is
8479 * using them. We call synchronize_rcu() once before we start,
8480 * just to be on the safe side.
8484 release_global_block_rsv(info
);
8486 while(!list_empty(&info
->space_info
)) {
8487 space_info
= list_entry(info
->space_info
.next
,
8488 struct btrfs_space_info
,
8490 if (space_info
->bytes_pinned
> 0 ||
8491 space_info
->bytes_reserved
> 0) {
8493 dump_space_info(space_info
, 0, 0);
8495 list_del(&space_info
->list
);
8501 static void __link_block_group(struct btrfs_space_info
*space_info
,
8502 struct btrfs_block_group_cache
*cache
)
8504 int index
= get_block_group_index(cache
);
8506 down_write(&space_info
->groups_sem
);
8507 list_add_tail(&cache
->list
, &space_info
->block_groups
[index
]);
8508 up_write(&space_info
->groups_sem
);
8511 int btrfs_read_block_groups(struct btrfs_root
*root
)
8513 struct btrfs_path
*path
;
8515 struct btrfs_block_group_cache
*cache
;
8516 struct btrfs_fs_info
*info
= root
->fs_info
;
8517 struct btrfs_space_info
*space_info
;
8518 struct btrfs_key key
;
8519 struct btrfs_key found_key
;
8520 struct extent_buffer
*leaf
;
8524 root
= info
->extent_root
;
8527 btrfs_set_key_type(&key
, BTRFS_BLOCK_GROUP_ITEM_KEY
);
8528 path
= btrfs_alloc_path();
8532 cache_gen
= btrfs_super_cache_generation(&root
->fs_info
->super_copy
);
8533 if (cache_gen
!= 0 &&
8534 btrfs_super_generation(&root
->fs_info
->super_copy
) != cache_gen
)
8536 if (btrfs_test_opt(root
, CLEAR_CACHE
))
8538 if (!btrfs_test_opt(root
, SPACE_CACHE
) && cache_gen
)
8539 printk(KERN_INFO
"btrfs: disk space caching is enabled\n");
8542 ret
= find_first_block_group(root
, path
, &key
);
8547 leaf
= path
->nodes
[0];
8548 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
8549 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
8555 atomic_set(&cache
->count
, 1);
8556 spin_lock_init(&cache
->lock
);
8557 spin_lock_init(&cache
->tree_lock
);
8558 cache
->fs_info
= info
;
8559 INIT_LIST_HEAD(&cache
->list
);
8560 INIT_LIST_HEAD(&cache
->cluster_list
);
8563 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
8566 * we only want to have 32k of ram per block group for keeping
8567 * track of free space, and if we pass 1/2 of that we want to
8568 * start converting things over to using bitmaps
8570 cache
->extents_thresh
= ((1024 * 32) / 2) /
8571 sizeof(struct btrfs_free_space
);
8573 read_extent_buffer(leaf
, &cache
->item
,
8574 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
8575 sizeof(cache
->item
));
8576 memcpy(&cache
->key
, &found_key
, sizeof(found_key
));
8578 key
.objectid
= found_key
.objectid
+ found_key
.offset
;
8579 btrfs_release_path(root
, path
);
8580 cache
->flags
= btrfs_block_group_flags(&cache
->item
);
8581 cache
->sectorsize
= root
->sectorsize
;
8584 * We need to exclude the super stripes now so that the space
8585 * info has super bytes accounted for, otherwise we'll think
8586 * we have more space than we actually do.
8588 exclude_super_stripes(root
, cache
);
8591 * check for two cases, either we are full, and therefore
8592 * don't need to bother with the caching work since we won't
8593 * find any space, or we are empty, and we can just add all
8594 * the space in and be done with it. This saves us _alot_ of
8595 * time, particularly in the full case.
8597 if (found_key
.offset
== btrfs_block_group_used(&cache
->item
)) {
8598 cache
->last_byte_to_unpin
= (u64
)-1;
8599 cache
->cached
= BTRFS_CACHE_FINISHED
;
8600 free_excluded_extents(root
, cache
);
8601 } else if (btrfs_block_group_used(&cache
->item
) == 0) {
8602 cache
->last_byte_to_unpin
= (u64
)-1;
8603 cache
->cached
= BTRFS_CACHE_FINISHED
;
8604 add_new_free_space(cache
, root
->fs_info
,
8606 found_key
.objectid
+
8608 free_excluded_extents(root
, cache
);
8611 ret
= update_space_info(info
, cache
->flags
, found_key
.offset
,
8612 btrfs_block_group_used(&cache
->item
),
8615 cache
->space_info
= space_info
;
8616 spin_lock(&cache
->space_info
->lock
);
8617 cache
->space_info
->bytes_readonly
+= cache
->bytes_super
;
8618 spin_unlock(&cache
->space_info
->lock
);
8620 __link_block_group(space_info
, cache
);
8622 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
8625 set_avail_alloc_bits(root
->fs_info
, cache
->flags
);
8626 if (btrfs_chunk_readonly(root
, cache
->key
.objectid
))
8627 set_block_group_ro(cache
);
8630 list_for_each_entry_rcu(space_info
, &root
->fs_info
->space_info
, list
) {
8631 if (!(get_alloc_profile(root
, space_info
->flags
) &
8632 (BTRFS_BLOCK_GROUP_RAID10
|
8633 BTRFS_BLOCK_GROUP_RAID1
|
8634 BTRFS_BLOCK_GROUP_DUP
)))
8637 * avoid allocating from un-mirrored block group if there are
8638 * mirrored block groups.
8640 list_for_each_entry(cache
, &space_info
->block_groups
[3], list
)
8641 set_block_group_ro(cache
);
8642 list_for_each_entry(cache
, &space_info
->block_groups
[4], list
)
8643 set_block_group_ro(cache
);
8646 init_global_block_rsv(info
);
8649 btrfs_free_path(path
);
8653 int btrfs_make_block_group(struct btrfs_trans_handle
*trans
,
8654 struct btrfs_root
*root
, u64 bytes_used
,
8655 u64 type
, u64 chunk_objectid
, u64 chunk_offset
,
8659 struct btrfs_root
*extent_root
;
8660 struct btrfs_block_group_cache
*cache
;
8662 extent_root
= root
->fs_info
->extent_root
;
8664 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
8666 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
8670 cache
->key
.objectid
= chunk_offset
;
8671 cache
->key
.offset
= size
;
8672 cache
->key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
8673 cache
->sectorsize
= root
->sectorsize
;
8674 cache
->fs_info
= root
->fs_info
;
8677 * we only want to have 32k of ram per block group for keeping track
8678 * of free space, and if we pass 1/2 of that we want to start
8679 * converting things over to using bitmaps
8681 cache
->extents_thresh
= ((1024 * 32) / 2) /
8682 sizeof(struct btrfs_free_space
);
8683 atomic_set(&cache
->count
, 1);
8684 spin_lock_init(&cache
->lock
);
8685 spin_lock_init(&cache
->tree_lock
);
8686 INIT_LIST_HEAD(&cache
->list
);
8687 INIT_LIST_HEAD(&cache
->cluster_list
);
8689 btrfs_set_block_group_used(&cache
->item
, bytes_used
);
8690 btrfs_set_block_group_chunk_objectid(&cache
->item
, chunk_objectid
);
8691 cache
->flags
= type
;
8692 btrfs_set_block_group_flags(&cache
->item
, type
);
8694 cache
->last_byte_to_unpin
= (u64
)-1;
8695 cache
->cached
= BTRFS_CACHE_FINISHED
;
8696 exclude_super_stripes(root
, cache
);
8698 add_new_free_space(cache
, root
->fs_info
, chunk_offset
,
8699 chunk_offset
+ size
);
8701 free_excluded_extents(root
, cache
);
8703 ret
= update_space_info(root
->fs_info
, cache
->flags
, size
, bytes_used
,
8704 &cache
->space_info
);
8707 spin_lock(&cache
->space_info
->lock
);
8708 cache
->space_info
->bytes_readonly
+= cache
->bytes_super
;
8709 spin_unlock(&cache
->space_info
->lock
);
8711 __link_block_group(cache
->space_info
, cache
);
8713 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
8716 ret
= btrfs_insert_item(trans
, extent_root
, &cache
->key
, &cache
->item
,
8717 sizeof(cache
->item
));
8720 set_avail_alloc_bits(extent_root
->fs_info
, type
);
8725 int btrfs_remove_block_group(struct btrfs_trans_handle
*trans
,
8726 struct btrfs_root
*root
, u64 group_start
)
8728 struct btrfs_path
*path
;
8729 struct btrfs_block_group_cache
*block_group
;
8730 struct btrfs_free_cluster
*cluster
;
8731 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
8732 struct btrfs_key key
;
8733 struct inode
*inode
;
8737 root
= root
->fs_info
->extent_root
;
8739 block_group
= btrfs_lookup_block_group(root
->fs_info
, group_start
);
8740 BUG_ON(!block_group
);
8741 BUG_ON(!block_group
->ro
);
8744 * Free the reserved super bytes from this block group before
8747 free_excluded_extents(root
, block_group
);
8749 memcpy(&key
, &block_group
->key
, sizeof(key
));
8750 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
8751 BTRFS_BLOCK_GROUP_RAID1
|
8752 BTRFS_BLOCK_GROUP_RAID10
))
8757 /* make sure this block group isn't part of an allocation cluster */
8758 cluster
= &root
->fs_info
->data_alloc_cluster
;
8759 spin_lock(&cluster
->refill_lock
);
8760 btrfs_return_cluster_to_free_space(block_group
, cluster
);
8761 spin_unlock(&cluster
->refill_lock
);
8764 * make sure this block group isn't part of a metadata
8765 * allocation cluster
8767 cluster
= &root
->fs_info
->meta_alloc_cluster
;
8768 spin_lock(&cluster
->refill_lock
);
8769 btrfs_return_cluster_to_free_space(block_group
, cluster
);
8770 spin_unlock(&cluster
->refill_lock
);
8772 path
= btrfs_alloc_path();
8775 inode
= lookup_free_space_inode(root
, block_group
, path
);
8776 if (!IS_ERR(inode
)) {
8777 btrfs_orphan_add(trans
, inode
);
8779 /* One for the block groups ref */
8780 spin_lock(&block_group
->lock
);
8781 if (block_group
->iref
) {
8782 block_group
->iref
= 0;
8783 block_group
->inode
= NULL
;
8784 spin_unlock(&block_group
->lock
);
8787 spin_unlock(&block_group
->lock
);
8789 /* One for our lookup ref */
8793 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
8794 key
.offset
= block_group
->key
.objectid
;
8797 ret
= btrfs_search_slot(trans
, tree_root
, &key
, path
, -1, 1);
8801 btrfs_release_path(tree_root
, path
);
8803 ret
= btrfs_del_item(trans
, tree_root
, path
);
8806 btrfs_release_path(tree_root
, path
);
8809 spin_lock(&root
->fs_info
->block_group_cache_lock
);
8810 rb_erase(&block_group
->cache_node
,
8811 &root
->fs_info
->block_group_cache_tree
);
8812 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
8814 down_write(&block_group
->space_info
->groups_sem
);
8816 * we must use list_del_init so people can check to see if they
8817 * are still on the list after taking the semaphore
8819 list_del_init(&block_group
->list
);
8820 up_write(&block_group
->space_info
->groups_sem
);
8822 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
8823 wait_block_group_cache_done(block_group
);
8825 btrfs_remove_free_space_cache(block_group
);
8827 spin_lock(&block_group
->space_info
->lock
);
8828 block_group
->space_info
->total_bytes
-= block_group
->key
.offset
;
8829 block_group
->space_info
->bytes_readonly
-= block_group
->key
.offset
;
8830 block_group
->space_info
->disk_total
-= block_group
->key
.offset
* factor
;
8831 spin_unlock(&block_group
->space_info
->lock
);
8833 memcpy(&key
, &block_group
->key
, sizeof(key
));
8835 btrfs_clear_space_info_full(root
->fs_info
);
8837 btrfs_put_block_group(block_group
);
8838 btrfs_put_block_group(block_group
);
8840 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
8846 ret
= btrfs_del_item(trans
, root
, path
);
8848 btrfs_free_path(path
);
8852 int btrfs_init_space_info(struct btrfs_fs_info
*fs_info
)
8854 struct btrfs_space_info
*space_info
;
8857 ret
= update_space_info(fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
, 0, 0,
8862 ret
= update_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
, 0, 0,
8867 ret
= update_space_info(fs_info
, BTRFS_BLOCK_GROUP_DATA
, 0, 0,
8875 int btrfs_error_unpin_extent_range(struct btrfs_root
*root
, u64 start
, u64 end
)
8877 return unpin_extent_range(root
, start
, end
);
8880 int btrfs_error_discard_extent(struct btrfs_root
*root
, u64 bytenr
,
8881 u64 num_bytes
, u64
*actual_bytes
)
8883 return btrfs_discard_extent(root
, bytenr
, num_bytes
, actual_bytes
);
8886 int btrfs_trim_fs(struct btrfs_root
*root
, struct fstrim_range
*range
)
8888 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8889 struct btrfs_block_group_cache
*cache
= NULL
;
8896 cache
= btrfs_lookup_block_group(fs_info
, range
->start
);
8899 if (cache
->key
.objectid
>= (range
->start
+ range
->len
)) {
8900 btrfs_put_block_group(cache
);
8904 start
= max(range
->start
, cache
->key
.objectid
);
8905 end
= min(range
->start
+ range
->len
,
8906 cache
->key
.objectid
+ cache
->key
.offset
);
8908 if (end
- start
>= range
->minlen
) {
8909 if (!block_group_cache_done(cache
)) {
8910 ret
= cache_block_group(cache
, NULL
, root
, 0);
8912 wait_block_group_cache_done(cache
);
8914 ret
= btrfs_trim_block_group(cache
,
8920 trimmed
+= group_trimmed
;
8922 btrfs_put_block_group(cache
);
8927 cache
= next_block_group(fs_info
->tree_root
, cache
);
8930 range
->len
= trimmed
;