Staging: merge 2.6.39-rc4 into staging-next
[zen-stable.git] / fs / btrfs / volumes.c
blob309a57b9fc85e3a6f09809da14d0cd9e1df55fb5
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <asm/div64.h>
27 #include "compat.h"
28 #include "ctree.h"
29 #include "extent_map.h"
30 #include "disk-io.h"
31 #include "transaction.h"
32 #include "print-tree.h"
33 #include "volumes.h"
34 #include "async-thread.h"
36 static int init_first_rw_device(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root,
38 struct btrfs_device *device);
39 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
41 #define map_lookup_size(n) (sizeof(struct map_lookup) + \
42 (sizeof(struct btrfs_bio_stripe) * (n)))
44 static DEFINE_MUTEX(uuid_mutex);
45 static LIST_HEAD(fs_uuids);
47 void btrfs_lock_volumes(void)
49 mutex_lock(&uuid_mutex);
52 void btrfs_unlock_volumes(void)
54 mutex_unlock(&uuid_mutex);
57 static void lock_chunks(struct btrfs_root *root)
59 mutex_lock(&root->fs_info->chunk_mutex);
62 static void unlock_chunks(struct btrfs_root *root)
64 mutex_unlock(&root->fs_info->chunk_mutex);
67 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
69 struct btrfs_device *device;
70 WARN_ON(fs_devices->opened);
71 while (!list_empty(&fs_devices->devices)) {
72 device = list_entry(fs_devices->devices.next,
73 struct btrfs_device, dev_list);
74 list_del(&device->dev_list);
75 kfree(device->name);
76 kfree(device);
78 kfree(fs_devices);
81 int btrfs_cleanup_fs_uuids(void)
83 struct btrfs_fs_devices *fs_devices;
85 while (!list_empty(&fs_uuids)) {
86 fs_devices = list_entry(fs_uuids.next,
87 struct btrfs_fs_devices, list);
88 list_del(&fs_devices->list);
89 free_fs_devices(fs_devices);
91 return 0;
94 static noinline struct btrfs_device *__find_device(struct list_head *head,
95 u64 devid, u8 *uuid)
97 struct btrfs_device *dev;
99 list_for_each_entry(dev, head, dev_list) {
100 if (dev->devid == devid &&
101 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
102 return dev;
105 return NULL;
108 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
110 struct btrfs_fs_devices *fs_devices;
112 list_for_each_entry(fs_devices, &fs_uuids, list) {
113 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
114 return fs_devices;
116 return NULL;
119 static void requeue_list(struct btrfs_pending_bios *pending_bios,
120 struct bio *head, struct bio *tail)
123 struct bio *old_head;
125 old_head = pending_bios->head;
126 pending_bios->head = head;
127 if (pending_bios->tail)
128 tail->bi_next = old_head;
129 else
130 pending_bios->tail = tail;
134 * we try to collect pending bios for a device so we don't get a large
135 * number of procs sending bios down to the same device. This greatly
136 * improves the schedulers ability to collect and merge the bios.
138 * But, it also turns into a long list of bios to process and that is sure
139 * to eventually make the worker thread block. The solution here is to
140 * make some progress and then put this work struct back at the end of
141 * the list if the block device is congested. This way, multiple devices
142 * can make progress from a single worker thread.
144 static noinline int run_scheduled_bios(struct btrfs_device *device)
146 struct bio *pending;
147 struct backing_dev_info *bdi;
148 struct btrfs_fs_info *fs_info;
149 struct btrfs_pending_bios *pending_bios;
150 struct bio *tail;
151 struct bio *cur;
152 int again = 0;
153 unsigned long num_run;
154 unsigned long batch_run = 0;
155 unsigned long limit;
156 unsigned long last_waited = 0;
157 int force_reg = 0;
159 bdi = blk_get_backing_dev_info(device->bdev);
160 fs_info = device->dev_root->fs_info;
161 limit = btrfs_async_submit_limit(fs_info);
162 limit = limit * 2 / 3;
164 loop:
165 spin_lock(&device->io_lock);
167 loop_lock:
168 num_run = 0;
170 /* take all the bios off the list at once and process them
171 * later on (without the lock held). But, remember the
172 * tail and other pointers so the bios can be properly reinserted
173 * into the list if we hit congestion
175 if (!force_reg && device->pending_sync_bios.head) {
176 pending_bios = &device->pending_sync_bios;
177 force_reg = 1;
178 } else {
179 pending_bios = &device->pending_bios;
180 force_reg = 0;
183 pending = pending_bios->head;
184 tail = pending_bios->tail;
185 WARN_ON(pending && !tail);
188 * if pending was null this time around, no bios need processing
189 * at all and we can stop. Otherwise it'll loop back up again
190 * and do an additional check so no bios are missed.
192 * device->running_pending is used to synchronize with the
193 * schedule_bio code.
195 if (device->pending_sync_bios.head == NULL &&
196 device->pending_bios.head == NULL) {
197 again = 0;
198 device->running_pending = 0;
199 } else {
200 again = 1;
201 device->running_pending = 1;
204 pending_bios->head = NULL;
205 pending_bios->tail = NULL;
207 spin_unlock(&device->io_lock);
209 while (pending) {
211 rmb();
212 /* we want to work on both lists, but do more bios on the
213 * sync list than the regular list
215 if ((num_run > 32 &&
216 pending_bios != &device->pending_sync_bios &&
217 device->pending_sync_bios.head) ||
218 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
219 device->pending_bios.head)) {
220 spin_lock(&device->io_lock);
221 requeue_list(pending_bios, pending, tail);
222 goto loop_lock;
225 cur = pending;
226 pending = pending->bi_next;
227 cur->bi_next = NULL;
228 atomic_dec(&fs_info->nr_async_bios);
230 if (atomic_read(&fs_info->nr_async_bios) < limit &&
231 waitqueue_active(&fs_info->async_submit_wait))
232 wake_up(&fs_info->async_submit_wait);
234 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
236 submit_bio(cur->bi_rw, cur);
237 num_run++;
238 batch_run++;
239 if (need_resched())
240 cond_resched();
243 * we made progress, there is more work to do and the bdi
244 * is now congested. Back off and let other work structs
245 * run instead
247 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
248 fs_info->fs_devices->open_devices > 1) {
249 struct io_context *ioc;
251 ioc = current->io_context;
254 * the main goal here is that we don't want to
255 * block if we're going to be able to submit
256 * more requests without blocking.
258 * This code does two great things, it pokes into
259 * the elevator code from a filesystem _and_
260 * it makes assumptions about how batching works.
262 if (ioc && ioc->nr_batch_requests > 0 &&
263 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
264 (last_waited == 0 ||
265 ioc->last_waited == last_waited)) {
267 * we want to go through our batch of
268 * requests and stop. So, we copy out
269 * the ioc->last_waited time and test
270 * against it before looping
272 last_waited = ioc->last_waited;
273 if (need_resched())
274 cond_resched();
275 continue;
277 spin_lock(&device->io_lock);
278 requeue_list(pending_bios, pending, tail);
279 device->running_pending = 1;
281 spin_unlock(&device->io_lock);
282 btrfs_requeue_work(&device->work);
283 goto done;
287 cond_resched();
288 if (again)
289 goto loop;
291 spin_lock(&device->io_lock);
292 if (device->pending_bios.head || device->pending_sync_bios.head)
293 goto loop_lock;
294 spin_unlock(&device->io_lock);
296 done:
297 return 0;
300 static void pending_bios_fn(struct btrfs_work *work)
302 struct btrfs_device *device;
304 device = container_of(work, struct btrfs_device, work);
305 run_scheduled_bios(device);
308 static noinline int device_list_add(const char *path,
309 struct btrfs_super_block *disk_super,
310 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
312 struct btrfs_device *device;
313 struct btrfs_fs_devices *fs_devices;
314 u64 found_transid = btrfs_super_generation(disk_super);
315 char *name;
317 fs_devices = find_fsid(disk_super->fsid);
318 if (!fs_devices) {
319 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
320 if (!fs_devices)
321 return -ENOMEM;
322 INIT_LIST_HEAD(&fs_devices->devices);
323 INIT_LIST_HEAD(&fs_devices->alloc_list);
324 list_add(&fs_devices->list, &fs_uuids);
325 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
326 fs_devices->latest_devid = devid;
327 fs_devices->latest_trans = found_transid;
328 mutex_init(&fs_devices->device_list_mutex);
329 device = NULL;
330 } else {
331 device = __find_device(&fs_devices->devices, devid,
332 disk_super->dev_item.uuid);
334 if (!device) {
335 if (fs_devices->opened)
336 return -EBUSY;
338 device = kzalloc(sizeof(*device), GFP_NOFS);
339 if (!device) {
340 /* we can safely leave the fs_devices entry around */
341 return -ENOMEM;
343 device->devid = devid;
344 device->work.func = pending_bios_fn;
345 memcpy(device->uuid, disk_super->dev_item.uuid,
346 BTRFS_UUID_SIZE);
347 spin_lock_init(&device->io_lock);
348 device->name = kstrdup(path, GFP_NOFS);
349 if (!device->name) {
350 kfree(device);
351 return -ENOMEM;
353 INIT_LIST_HEAD(&device->dev_alloc_list);
355 mutex_lock(&fs_devices->device_list_mutex);
356 list_add(&device->dev_list, &fs_devices->devices);
357 mutex_unlock(&fs_devices->device_list_mutex);
359 device->fs_devices = fs_devices;
360 fs_devices->num_devices++;
361 } else if (!device->name || strcmp(device->name, path)) {
362 name = kstrdup(path, GFP_NOFS);
363 if (!name)
364 return -ENOMEM;
365 kfree(device->name);
366 device->name = name;
367 if (device->missing) {
368 fs_devices->missing_devices--;
369 device->missing = 0;
373 if (found_transid > fs_devices->latest_trans) {
374 fs_devices->latest_devid = devid;
375 fs_devices->latest_trans = found_transid;
377 *fs_devices_ret = fs_devices;
378 return 0;
381 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
383 struct btrfs_fs_devices *fs_devices;
384 struct btrfs_device *device;
385 struct btrfs_device *orig_dev;
387 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
388 if (!fs_devices)
389 return ERR_PTR(-ENOMEM);
391 INIT_LIST_HEAD(&fs_devices->devices);
392 INIT_LIST_HEAD(&fs_devices->alloc_list);
393 INIT_LIST_HEAD(&fs_devices->list);
394 mutex_init(&fs_devices->device_list_mutex);
395 fs_devices->latest_devid = orig->latest_devid;
396 fs_devices->latest_trans = orig->latest_trans;
397 memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
399 mutex_lock(&orig->device_list_mutex);
400 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
401 device = kzalloc(sizeof(*device), GFP_NOFS);
402 if (!device)
403 goto error;
405 device->name = kstrdup(orig_dev->name, GFP_NOFS);
406 if (!device->name) {
407 kfree(device);
408 goto error;
411 device->devid = orig_dev->devid;
412 device->work.func = pending_bios_fn;
413 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
414 spin_lock_init(&device->io_lock);
415 INIT_LIST_HEAD(&device->dev_list);
416 INIT_LIST_HEAD(&device->dev_alloc_list);
418 list_add(&device->dev_list, &fs_devices->devices);
419 device->fs_devices = fs_devices;
420 fs_devices->num_devices++;
422 mutex_unlock(&orig->device_list_mutex);
423 return fs_devices;
424 error:
425 mutex_unlock(&orig->device_list_mutex);
426 free_fs_devices(fs_devices);
427 return ERR_PTR(-ENOMEM);
430 int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
432 struct btrfs_device *device, *next;
434 mutex_lock(&uuid_mutex);
435 again:
436 mutex_lock(&fs_devices->device_list_mutex);
437 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
438 if (device->in_fs_metadata)
439 continue;
441 if (device->bdev) {
442 blkdev_put(device->bdev, device->mode);
443 device->bdev = NULL;
444 fs_devices->open_devices--;
446 if (device->writeable) {
447 list_del_init(&device->dev_alloc_list);
448 device->writeable = 0;
449 fs_devices->rw_devices--;
451 list_del_init(&device->dev_list);
452 fs_devices->num_devices--;
453 kfree(device->name);
454 kfree(device);
456 mutex_unlock(&fs_devices->device_list_mutex);
458 if (fs_devices->seed) {
459 fs_devices = fs_devices->seed;
460 goto again;
463 mutex_unlock(&uuid_mutex);
464 return 0;
467 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
469 struct btrfs_device *device;
471 if (--fs_devices->opened > 0)
472 return 0;
474 list_for_each_entry(device, &fs_devices->devices, dev_list) {
475 if (device->bdev) {
476 blkdev_put(device->bdev, device->mode);
477 fs_devices->open_devices--;
479 if (device->writeable) {
480 list_del_init(&device->dev_alloc_list);
481 fs_devices->rw_devices--;
484 device->bdev = NULL;
485 device->writeable = 0;
486 device->in_fs_metadata = 0;
488 WARN_ON(fs_devices->open_devices);
489 WARN_ON(fs_devices->rw_devices);
490 fs_devices->opened = 0;
491 fs_devices->seeding = 0;
493 return 0;
496 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
498 struct btrfs_fs_devices *seed_devices = NULL;
499 int ret;
501 mutex_lock(&uuid_mutex);
502 ret = __btrfs_close_devices(fs_devices);
503 if (!fs_devices->opened) {
504 seed_devices = fs_devices->seed;
505 fs_devices->seed = NULL;
507 mutex_unlock(&uuid_mutex);
509 while (seed_devices) {
510 fs_devices = seed_devices;
511 seed_devices = fs_devices->seed;
512 __btrfs_close_devices(fs_devices);
513 free_fs_devices(fs_devices);
515 return ret;
518 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
519 fmode_t flags, void *holder)
521 struct block_device *bdev;
522 struct list_head *head = &fs_devices->devices;
523 struct btrfs_device *device;
524 struct block_device *latest_bdev = NULL;
525 struct buffer_head *bh;
526 struct btrfs_super_block *disk_super;
527 u64 latest_devid = 0;
528 u64 latest_transid = 0;
529 u64 devid;
530 int seeding = 1;
531 int ret = 0;
533 flags |= FMODE_EXCL;
535 list_for_each_entry(device, head, dev_list) {
536 if (device->bdev)
537 continue;
538 if (!device->name)
539 continue;
541 bdev = blkdev_get_by_path(device->name, flags, holder);
542 if (IS_ERR(bdev)) {
543 printk(KERN_INFO "open %s failed\n", device->name);
544 goto error;
546 set_blocksize(bdev, 4096);
548 bh = btrfs_read_dev_super(bdev);
549 if (!bh) {
550 ret = -EINVAL;
551 goto error_close;
554 disk_super = (struct btrfs_super_block *)bh->b_data;
555 devid = btrfs_stack_device_id(&disk_super->dev_item);
556 if (devid != device->devid)
557 goto error_brelse;
559 if (memcmp(device->uuid, disk_super->dev_item.uuid,
560 BTRFS_UUID_SIZE))
561 goto error_brelse;
563 device->generation = btrfs_super_generation(disk_super);
564 if (!latest_transid || device->generation > latest_transid) {
565 latest_devid = devid;
566 latest_transid = device->generation;
567 latest_bdev = bdev;
570 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
571 device->writeable = 0;
572 } else {
573 device->writeable = !bdev_read_only(bdev);
574 seeding = 0;
577 device->bdev = bdev;
578 device->in_fs_metadata = 0;
579 device->mode = flags;
581 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
582 fs_devices->rotating = 1;
584 fs_devices->open_devices++;
585 if (device->writeable) {
586 fs_devices->rw_devices++;
587 list_add(&device->dev_alloc_list,
588 &fs_devices->alloc_list);
590 continue;
592 error_brelse:
593 brelse(bh);
594 error_close:
595 blkdev_put(bdev, flags);
596 error:
597 continue;
599 if (fs_devices->open_devices == 0) {
600 ret = -EIO;
601 goto out;
603 fs_devices->seeding = seeding;
604 fs_devices->opened = 1;
605 fs_devices->latest_bdev = latest_bdev;
606 fs_devices->latest_devid = latest_devid;
607 fs_devices->latest_trans = latest_transid;
608 fs_devices->total_rw_bytes = 0;
609 out:
610 return ret;
613 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
614 fmode_t flags, void *holder)
616 int ret;
618 mutex_lock(&uuid_mutex);
619 if (fs_devices->opened) {
620 fs_devices->opened++;
621 ret = 0;
622 } else {
623 ret = __btrfs_open_devices(fs_devices, flags, holder);
625 mutex_unlock(&uuid_mutex);
626 return ret;
629 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
630 struct btrfs_fs_devices **fs_devices_ret)
632 struct btrfs_super_block *disk_super;
633 struct block_device *bdev;
634 struct buffer_head *bh;
635 int ret;
636 u64 devid;
637 u64 transid;
639 mutex_lock(&uuid_mutex);
641 flags |= FMODE_EXCL;
642 bdev = blkdev_get_by_path(path, flags, holder);
644 if (IS_ERR(bdev)) {
645 ret = PTR_ERR(bdev);
646 goto error;
649 ret = set_blocksize(bdev, 4096);
650 if (ret)
651 goto error_close;
652 bh = btrfs_read_dev_super(bdev);
653 if (!bh) {
654 ret = -EINVAL;
655 goto error_close;
657 disk_super = (struct btrfs_super_block *)bh->b_data;
658 devid = btrfs_stack_device_id(&disk_super->dev_item);
659 transid = btrfs_super_generation(disk_super);
660 if (disk_super->label[0])
661 printk(KERN_INFO "device label %s ", disk_super->label);
662 else {
663 /* FIXME, make a readl uuid parser */
664 printk(KERN_INFO "device fsid %llx-%llx ",
665 *(unsigned long long *)disk_super->fsid,
666 *(unsigned long long *)(disk_super->fsid + 8));
668 printk(KERN_CONT "devid %llu transid %llu %s\n",
669 (unsigned long long)devid, (unsigned long long)transid, path);
670 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
672 brelse(bh);
673 error_close:
674 blkdev_put(bdev, flags);
675 error:
676 mutex_unlock(&uuid_mutex);
677 return ret;
680 /* helper to account the used device space in the range */
681 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
682 u64 end, u64 *length)
684 struct btrfs_key key;
685 struct btrfs_root *root = device->dev_root;
686 struct btrfs_dev_extent *dev_extent;
687 struct btrfs_path *path;
688 u64 extent_end;
689 int ret;
690 int slot;
691 struct extent_buffer *l;
693 *length = 0;
695 if (start >= device->total_bytes)
696 return 0;
698 path = btrfs_alloc_path();
699 if (!path)
700 return -ENOMEM;
701 path->reada = 2;
703 key.objectid = device->devid;
704 key.offset = start;
705 key.type = BTRFS_DEV_EXTENT_KEY;
707 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
708 if (ret < 0)
709 goto out;
710 if (ret > 0) {
711 ret = btrfs_previous_item(root, path, key.objectid, key.type);
712 if (ret < 0)
713 goto out;
716 while (1) {
717 l = path->nodes[0];
718 slot = path->slots[0];
719 if (slot >= btrfs_header_nritems(l)) {
720 ret = btrfs_next_leaf(root, path);
721 if (ret == 0)
722 continue;
723 if (ret < 0)
724 goto out;
726 break;
728 btrfs_item_key_to_cpu(l, &key, slot);
730 if (key.objectid < device->devid)
731 goto next;
733 if (key.objectid > device->devid)
734 break;
736 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
737 goto next;
739 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
740 extent_end = key.offset + btrfs_dev_extent_length(l,
741 dev_extent);
742 if (key.offset <= start && extent_end > end) {
743 *length = end - start + 1;
744 break;
745 } else if (key.offset <= start && extent_end > start)
746 *length += extent_end - start;
747 else if (key.offset > start && extent_end <= end)
748 *length += extent_end - key.offset;
749 else if (key.offset > start && key.offset <= end) {
750 *length += end - key.offset + 1;
751 break;
752 } else if (key.offset > end)
753 break;
755 next:
756 path->slots[0]++;
758 ret = 0;
759 out:
760 btrfs_free_path(path);
761 return ret;
765 * find_free_dev_extent - find free space in the specified device
766 * @trans: transaction handler
767 * @device: the device which we search the free space in
768 * @num_bytes: the size of the free space that we need
769 * @start: store the start of the free space.
770 * @len: the size of the free space. that we find, or the size of the max
771 * free space if we don't find suitable free space
773 * this uses a pretty simple search, the expectation is that it is
774 * called very infrequently and that a given device has a small number
775 * of extents
777 * @start is used to store the start of the free space if we find. But if we
778 * don't find suitable free space, it will be used to store the start position
779 * of the max free space.
781 * @len is used to store the size of the free space that we find.
782 * But if we don't find suitable free space, it is used to store the size of
783 * the max free space.
785 int find_free_dev_extent(struct btrfs_trans_handle *trans,
786 struct btrfs_device *device, u64 num_bytes,
787 u64 *start, u64 *len)
789 struct btrfs_key key;
790 struct btrfs_root *root = device->dev_root;
791 struct btrfs_dev_extent *dev_extent;
792 struct btrfs_path *path;
793 u64 hole_size;
794 u64 max_hole_start;
795 u64 max_hole_size;
796 u64 extent_end;
797 u64 search_start;
798 u64 search_end = device->total_bytes;
799 int ret;
800 int slot;
801 struct extent_buffer *l;
803 /* FIXME use last free of some kind */
805 /* we don't want to overwrite the superblock on the drive,
806 * so we make sure to start at an offset of at least 1MB
808 search_start = 1024 * 1024;
810 if (root->fs_info->alloc_start + num_bytes <= search_end)
811 search_start = max(root->fs_info->alloc_start, search_start);
813 max_hole_start = search_start;
814 max_hole_size = 0;
816 if (search_start >= search_end) {
817 ret = -ENOSPC;
818 goto error;
821 path = btrfs_alloc_path();
822 if (!path) {
823 ret = -ENOMEM;
824 goto error;
826 path->reada = 2;
828 key.objectid = device->devid;
829 key.offset = search_start;
830 key.type = BTRFS_DEV_EXTENT_KEY;
832 ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
833 if (ret < 0)
834 goto out;
835 if (ret > 0) {
836 ret = btrfs_previous_item(root, path, key.objectid, key.type);
837 if (ret < 0)
838 goto out;
841 while (1) {
842 l = path->nodes[0];
843 slot = path->slots[0];
844 if (slot >= btrfs_header_nritems(l)) {
845 ret = btrfs_next_leaf(root, path);
846 if (ret == 0)
847 continue;
848 if (ret < 0)
849 goto out;
851 break;
853 btrfs_item_key_to_cpu(l, &key, slot);
855 if (key.objectid < device->devid)
856 goto next;
858 if (key.objectid > device->devid)
859 break;
861 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
862 goto next;
864 if (key.offset > search_start) {
865 hole_size = key.offset - search_start;
867 if (hole_size > max_hole_size) {
868 max_hole_start = search_start;
869 max_hole_size = hole_size;
873 * If this free space is greater than which we need,
874 * it must be the max free space that we have found
875 * until now, so max_hole_start must point to the start
876 * of this free space and the length of this free space
877 * is stored in max_hole_size. Thus, we return
878 * max_hole_start and max_hole_size and go back to the
879 * caller.
881 if (hole_size >= num_bytes) {
882 ret = 0;
883 goto out;
887 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
888 extent_end = key.offset + btrfs_dev_extent_length(l,
889 dev_extent);
890 if (extent_end > search_start)
891 search_start = extent_end;
892 next:
893 path->slots[0]++;
894 cond_resched();
897 hole_size = search_end- search_start;
898 if (hole_size > max_hole_size) {
899 max_hole_start = search_start;
900 max_hole_size = hole_size;
903 /* See above. */
904 if (hole_size < num_bytes)
905 ret = -ENOSPC;
906 else
907 ret = 0;
909 out:
910 btrfs_free_path(path);
911 error:
912 *start = max_hole_start;
913 if (len)
914 *len = max_hole_size;
915 return ret;
918 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
919 struct btrfs_device *device,
920 u64 start)
922 int ret;
923 struct btrfs_path *path;
924 struct btrfs_root *root = device->dev_root;
925 struct btrfs_key key;
926 struct btrfs_key found_key;
927 struct extent_buffer *leaf = NULL;
928 struct btrfs_dev_extent *extent = NULL;
930 path = btrfs_alloc_path();
931 if (!path)
932 return -ENOMEM;
934 key.objectid = device->devid;
935 key.offset = start;
936 key.type = BTRFS_DEV_EXTENT_KEY;
938 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
939 if (ret > 0) {
940 ret = btrfs_previous_item(root, path, key.objectid,
941 BTRFS_DEV_EXTENT_KEY);
942 BUG_ON(ret);
943 leaf = path->nodes[0];
944 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
945 extent = btrfs_item_ptr(leaf, path->slots[0],
946 struct btrfs_dev_extent);
947 BUG_ON(found_key.offset > start || found_key.offset +
948 btrfs_dev_extent_length(leaf, extent) < start);
949 ret = 0;
950 } else if (ret == 0) {
951 leaf = path->nodes[0];
952 extent = btrfs_item_ptr(leaf, path->slots[0],
953 struct btrfs_dev_extent);
955 BUG_ON(ret);
957 if (device->bytes_used > 0)
958 device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
959 ret = btrfs_del_item(trans, root, path);
960 BUG_ON(ret);
962 btrfs_free_path(path);
963 return ret;
966 int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
967 struct btrfs_device *device,
968 u64 chunk_tree, u64 chunk_objectid,
969 u64 chunk_offset, u64 start, u64 num_bytes)
971 int ret;
972 struct btrfs_path *path;
973 struct btrfs_root *root = device->dev_root;
974 struct btrfs_dev_extent *extent;
975 struct extent_buffer *leaf;
976 struct btrfs_key key;
978 WARN_ON(!device->in_fs_metadata);
979 path = btrfs_alloc_path();
980 if (!path)
981 return -ENOMEM;
983 key.objectid = device->devid;
984 key.offset = start;
985 key.type = BTRFS_DEV_EXTENT_KEY;
986 ret = btrfs_insert_empty_item(trans, root, path, &key,
987 sizeof(*extent));
988 BUG_ON(ret);
990 leaf = path->nodes[0];
991 extent = btrfs_item_ptr(leaf, path->slots[0],
992 struct btrfs_dev_extent);
993 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
994 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
995 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
997 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
998 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
999 BTRFS_UUID_SIZE);
1001 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1002 btrfs_mark_buffer_dirty(leaf);
1003 btrfs_free_path(path);
1004 return ret;
1007 static noinline int find_next_chunk(struct btrfs_root *root,
1008 u64 objectid, u64 *offset)
1010 struct btrfs_path *path;
1011 int ret;
1012 struct btrfs_key key;
1013 struct btrfs_chunk *chunk;
1014 struct btrfs_key found_key;
1016 path = btrfs_alloc_path();
1017 BUG_ON(!path);
1019 key.objectid = objectid;
1020 key.offset = (u64)-1;
1021 key.type = BTRFS_CHUNK_ITEM_KEY;
1023 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1024 if (ret < 0)
1025 goto error;
1027 BUG_ON(ret == 0);
1029 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
1030 if (ret) {
1031 *offset = 0;
1032 } else {
1033 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1034 path->slots[0]);
1035 if (found_key.objectid != objectid)
1036 *offset = 0;
1037 else {
1038 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
1039 struct btrfs_chunk);
1040 *offset = found_key.offset +
1041 btrfs_chunk_length(path->nodes[0], chunk);
1044 ret = 0;
1045 error:
1046 btrfs_free_path(path);
1047 return ret;
1050 static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
1052 int ret;
1053 struct btrfs_key key;
1054 struct btrfs_key found_key;
1055 struct btrfs_path *path;
1057 root = root->fs_info->chunk_root;
1059 path = btrfs_alloc_path();
1060 if (!path)
1061 return -ENOMEM;
1063 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1064 key.type = BTRFS_DEV_ITEM_KEY;
1065 key.offset = (u64)-1;
1067 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1068 if (ret < 0)
1069 goto error;
1071 BUG_ON(ret == 0);
1073 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1074 BTRFS_DEV_ITEM_KEY);
1075 if (ret) {
1076 *objectid = 1;
1077 } else {
1078 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1079 path->slots[0]);
1080 *objectid = found_key.offset + 1;
1082 ret = 0;
1083 error:
1084 btrfs_free_path(path);
1085 return ret;
1089 * the device information is stored in the chunk root
1090 * the btrfs_device struct should be fully filled in
1092 int btrfs_add_device(struct btrfs_trans_handle *trans,
1093 struct btrfs_root *root,
1094 struct btrfs_device *device)
1096 int ret;
1097 struct btrfs_path *path;
1098 struct btrfs_dev_item *dev_item;
1099 struct extent_buffer *leaf;
1100 struct btrfs_key key;
1101 unsigned long ptr;
1103 root = root->fs_info->chunk_root;
1105 path = btrfs_alloc_path();
1106 if (!path)
1107 return -ENOMEM;
1109 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1110 key.type = BTRFS_DEV_ITEM_KEY;
1111 key.offset = device->devid;
1113 ret = btrfs_insert_empty_item(trans, root, path, &key,
1114 sizeof(*dev_item));
1115 if (ret)
1116 goto out;
1118 leaf = path->nodes[0];
1119 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1121 btrfs_set_device_id(leaf, dev_item, device->devid);
1122 btrfs_set_device_generation(leaf, dev_item, 0);
1123 btrfs_set_device_type(leaf, dev_item, device->type);
1124 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1125 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1126 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1127 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1128 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1129 btrfs_set_device_group(leaf, dev_item, 0);
1130 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1131 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1132 btrfs_set_device_start_offset(leaf, dev_item, 0);
1134 ptr = (unsigned long)btrfs_device_uuid(dev_item);
1135 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1136 ptr = (unsigned long)btrfs_device_fsid(dev_item);
1137 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1138 btrfs_mark_buffer_dirty(leaf);
1140 ret = 0;
1141 out:
1142 btrfs_free_path(path);
1143 return ret;
1146 static int btrfs_rm_dev_item(struct btrfs_root *root,
1147 struct btrfs_device *device)
1149 int ret;
1150 struct btrfs_path *path;
1151 struct btrfs_key key;
1152 struct btrfs_trans_handle *trans;
1154 root = root->fs_info->chunk_root;
1156 path = btrfs_alloc_path();
1157 if (!path)
1158 return -ENOMEM;
1160 trans = btrfs_start_transaction(root, 0);
1161 if (IS_ERR(trans)) {
1162 btrfs_free_path(path);
1163 return PTR_ERR(trans);
1165 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1166 key.type = BTRFS_DEV_ITEM_KEY;
1167 key.offset = device->devid;
1168 lock_chunks(root);
1170 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1171 if (ret < 0)
1172 goto out;
1174 if (ret > 0) {
1175 ret = -ENOENT;
1176 goto out;
1179 ret = btrfs_del_item(trans, root, path);
1180 if (ret)
1181 goto out;
1182 out:
1183 btrfs_free_path(path);
1184 unlock_chunks(root);
1185 btrfs_commit_transaction(trans, root);
1186 return ret;
1189 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1191 struct btrfs_device *device;
1192 struct btrfs_device *next_device;
1193 struct block_device *bdev;
1194 struct buffer_head *bh = NULL;
1195 struct btrfs_super_block *disk_super;
1196 u64 all_avail;
1197 u64 devid;
1198 u64 num_devices;
1199 u8 *dev_uuid;
1200 int ret = 0;
1202 mutex_lock(&uuid_mutex);
1203 mutex_lock(&root->fs_info->volume_mutex);
1205 all_avail = root->fs_info->avail_data_alloc_bits |
1206 root->fs_info->avail_system_alloc_bits |
1207 root->fs_info->avail_metadata_alloc_bits;
1209 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
1210 root->fs_info->fs_devices->num_devices <= 4) {
1211 printk(KERN_ERR "btrfs: unable to go below four devices "
1212 "on raid10\n");
1213 ret = -EINVAL;
1214 goto out;
1217 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
1218 root->fs_info->fs_devices->num_devices <= 2) {
1219 printk(KERN_ERR "btrfs: unable to go below two "
1220 "devices on raid1\n");
1221 ret = -EINVAL;
1222 goto out;
1225 if (strcmp(device_path, "missing") == 0) {
1226 struct list_head *devices;
1227 struct btrfs_device *tmp;
1229 device = NULL;
1230 devices = &root->fs_info->fs_devices->devices;
1231 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1232 list_for_each_entry(tmp, devices, dev_list) {
1233 if (tmp->in_fs_metadata && !tmp->bdev) {
1234 device = tmp;
1235 break;
1238 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1239 bdev = NULL;
1240 bh = NULL;
1241 disk_super = NULL;
1242 if (!device) {
1243 printk(KERN_ERR "btrfs: no missing devices found to "
1244 "remove\n");
1245 goto out;
1247 } else {
1248 bdev = blkdev_get_by_path(device_path, FMODE_READ | FMODE_EXCL,
1249 root->fs_info->bdev_holder);
1250 if (IS_ERR(bdev)) {
1251 ret = PTR_ERR(bdev);
1252 goto out;
1255 set_blocksize(bdev, 4096);
1256 bh = btrfs_read_dev_super(bdev);
1257 if (!bh) {
1258 ret = -EINVAL;
1259 goto error_close;
1261 disk_super = (struct btrfs_super_block *)bh->b_data;
1262 devid = btrfs_stack_device_id(&disk_super->dev_item);
1263 dev_uuid = disk_super->dev_item.uuid;
1264 device = btrfs_find_device(root, devid, dev_uuid,
1265 disk_super->fsid);
1266 if (!device) {
1267 ret = -ENOENT;
1268 goto error_brelse;
1272 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1273 printk(KERN_ERR "btrfs: unable to remove the only writeable "
1274 "device\n");
1275 ret = -EINVAL;
1276 goto error_brelse;
1279 if (device->writeable) {
1280 list_del_init(&device->dev_alloc_list);
1281 root->fs_info->fs_devices->rw_devices--;
1284 ret = btrfs_shrink_device(device, 0);
1285 if (ret)
1286 goto error_undo;
1288 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1289 if (ret)
1290 goto error_undo;
1292 device->in_fs_metadata = 0;
1295 * the device list mutex makes sure that we don't change
1296 * the device list while someone else is writing out all
1297 * the device supers.
1299 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1300 list_del_init(&device->dev_list);
1301 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1303 device->fs_devices->num_devices--;
1305 if (device->missing)
1306 root->fs_info->fs_devices->missing_devices--;
1308 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1309 struct btrfs_device, dev_list);
1310 if (device->bdev == root->fs_info->sb->s_bdev)
1311 root->fs_info->sb->s_bdev = next_device->bdev;
1312 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1313 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1315 if (device->bdev) {
1316 blkdev_put(device->bdev, device->mode);
1317 device->bdev = NULL;
1318 device->fs_devices->open_devices--;
1321 num_devices = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1322 btrfs_set_super_num_devices(&root->fs_info->super_copy, num_devices);
1324 if (device->fs_devices->open_devices == 0) {
1325 struct btrfs_fs_devices *fs_devices;
1326 fs_devices = root->fs_info->fs_devices;
1327 while (fs_devices) {
1328 if (fs_devices->seed == device->fs_devices)
1329 break;
1330 fs_devices = fs_devices->seed;
1332 fs_devices->seed = device->fs_devices->seed;
1333 device->fs_devices->seed = NULL;
1334 __btrfs_close_devices(device->fs_devices);
1335 free_fs_devices(device->fs_devices);
1339 * at this point, the device is zero sized. We want to
1340 * remove it from the devices list and zero out the old super
1342 if (device->writeable) {
1343 /* make sure this device isn't detected as part of
1344 * the FS anymore
1346 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1347 set_buffer_dirty(bh);
1348 sync_dirty_buffer(bh);
1351 kfree(device->name);
1352 kfree(device);
1353 ret = 0;
1355 error_brelse:
1356 brelse(bh);
1357 error_close:
1358 if (bdev)
1359 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1360 out:
1361 mutex_unlock(&root->fs_info->volume_mutex);
1362 mutex_unlock(&uuid_mutex);
1363 return ret;
1364 error_undo:
1365 if (device->writeable) {
1366 list_add(&device->dev_alloc_list,
1367 &root->fs_info->fs_devices->alloc_list);
1368 root->fs_info->fs_devices->rw_devices++;
1370 goto error_brelse;
1374 * does all the dirty work required for changing file system's UUID.
1376 static int btrfs_prepare_sprout(struct btrfs_trans_handle *trans,
1377 struct btrfs_root *root)
1379 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1380 struct btrfs_fs_devices *old_devices;
1381 struct btrfs_fs_devices *seed_devices;
1382 struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1383 struct btrfs_device *device;
1384 u64 super_flags;
1386 BUG_ON(!mutex_is_locked(&uuid_mutex));
1387 if (!fs_devices->seeding)
1388 return -EINVAL;
1390 seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1391 if (!seed_devices)
1392 return -ENOMEM;
1394 old_devices = clone_fs_devices(fs_devices);
1395 if (IS_ERR(old_devices)) {
1396 kfree(seed_devices);
1397 return PTR_ERR(old_devices);
1400 list_add(&old_devices->list, &fs_uuids);
1402 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1403 seed_devices->opened = 1;
1404 INIT_LIST_HEAD(&seed_devices->devices);
1405 INIT_LIST_HEAD(&seed_devices->alloc_list);
1406 mutex_init(&seed_devices->device_list_mutex);
1407 list_splice_init(&fs_devices->devices, &seed_devices->devices);
1408 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1409 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1410 device->fs_devices = seed_devices;
1413 fs_devices->seeding = 0;
1414 fs_devices->num_devices = 0;
1415 fs_devices->open_devices = 0;
1416 fs_devices->seed = seed_devices;
1418 generate_random_uuid(fs_devices->fsid);
1419 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1420 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1421 super_flags = btrfs_super_flags(disk_super) &
1422 ~BTRFS_SUPER_FLAG_SEEDING;
1423 btrfs_set_super_flags(disk_super, super_flags);
1425 return 0;
1429 * strore the expected generation for seed devices in device items.
1431 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1432 struct btrfs_root *root)
1434 struct btrfs_path *path;
1435 struct extent_buffer *leaf;
1436 struct btrfs_dev_item *dev_item;
1437 struct btrfs_device *device;
1438 struct btrfs_key key;
1439 u8 fs_uuid[BTRFS_UUID_SIZE];
1440 u8 dev_uuid[BTRFS_UUID_SIZE];
1441 u64 devid;
1442 int ret;
1444 path = btrfs_alloc_path();
1445 if (!path)
1446 return -ENOMEM;
1448 root = root->fs_info->chunk_root;
1449 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1450 key.offset = 0;
1451 key.type = BTRFS_DEV_ITEM_KEY;
1453 while (1) {
1454 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1455 if (ret < 0)
1456 goto error;
1458 leaf = path->nodes[0];
1459 next_slot:
1460 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1461 ret = btrfs_next_leaf(root, path);
1462 if (ret > 0)
1463 break;
1464 if (ret < 0)
1465 goto error;
1466 leaf = path->nodes[0];
1467 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1468 btrfs_release_path(root, path);
1469 continue;
1472 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1473 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1474 key.type != BTRFS_DEV_ITEM_KEY)
1475 break;
1477 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1478 struct btrfs_dev_item);
1479 devid = btrfs_device_id(leaf, dev_item);
1480 read_extent_buffer(leaf, dev_uuid,
1481 (unsigned long)btrfs_device_uuid(dev_item),
1482 BTRFS_UUID_SIZE);
1483 read_extent_buffer(leaf, fs_uuid,
1484 (unsigned long)btrfs_device_fsid(dev_item),
1485 BTRFS_UUID_SIZE);
1486 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1487 BUG_ON(!device);
1489 if (device->fs_devices->seeding) {
1490 btrfs_set_device_generation(leaf, dev_item,
1491 device->generation);
1492 btrfs_mark_buffer_dirty(leaf);
1495 path->slots[0]++;
1496 goto next_slot;
1498 ret = 0;
1499 error:
1500 btrfs_free_path(path);
1501 return ret;
1504 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1506 struct btrfs_trans_handle *trans;
1507 struct btrfs_device *device;
1508 struct block_device *bdev;
1509 struct list_head *devices;
1510 struct super_block *sb = root->fs_info->sb;
1511 u64 total_bytes;
1512 int seeding_dev = 0;
1513 int ret = 0;
1515 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1516 return -EINVAL;
1518 bdev = blkdev_get_by_path(device_path, FMODE_EXCL,
1519 root->fs_info->bdev_holder);
1520 if (IS_ERR(bdev))
1521 return PTR_ERR(bdev);
1523 if (root->fs_info->fs_devices->seeding) {
1524 seeding_dev = 1;
1525 down_write(&sb->s_umount);
1526 mutex_lock(&uuid_mutex);
1529 filemap_write_and_wait(bdev->bd_inode->i_mapping);
1530 mutex_lock(&root->fs_info->volume_mutex);
1532 devices = &root->fs_info->fs_devices->devices;
1534 * we have the volume lock, so we don't need the extra
1535 * device list mutex while reading the list here.
1537 list_for_each_entry(device, devices, dev_list) {
1538 if (device->bdev == bdev) {
1539 ret = -EEXIST;
1540 goto error;
1544 device = kzalloc(sizeof(*device), GFP_NOFS);
1545 if (!device) {
1546 /* we can safely leave the fs_devices entry around */
1547 ret = -ENOMEM;
1548 goto error;
1551 device->name = kstrdup(device_path, GFP_NOFS);
1552 if (!device->name) {
1553 kfree(device);
1554 ret = -ENOMEM;
1555 goto error;
1558 ret = find_next_devid(root, &device->devid);
1559 if (ret) {
1560 kfree(device->name);
1561 kfree(device);
1562 goto error;
1565 trans = btrfs_start_transaction(root, 0);
1566 if (IS_ERR(trans)) {
1567 kfree(device->name);
1568 kfree(device);
1569 ret = PTR_ERR(trans);
1570 goto error;
1573 lock_chunks(root);
1575 device->writeable = 1;
1576 device->work.func = pending_bios_fn;
1577 generate_random_uuid(device->uuid);
1578 spin_lock_init(&device->io_lock);
1579 device->generation = trans->transid;
1580 device->io_width = root->sectorsize;
1581 device->io_align = root->sectorsize;
1582 device->sector_size = root->sectorsize;
1583 device->total_bytes = i_size_read(bdev->bd_inode);
1584 device->disk_total_bytes = device->total_bytes;
1585 device->dev_root = root->fs_info->dev_root;
1586 device->bdev = bdev;
1587 device->in_fs_metadata = 1;
1588 device->mode = FMODE_EXCL;
1589 set_blocksize(device->bdev, 4096);
1591 if (seeding_dev) {
1592 sb->s_flags &= ~MS_RDONLY;
1593 ret = btrfs_prepare_sprout(trans, root);
1594 BUG_ON(ret);
1597 device->fs_devices = root->fs_info->fs_devices;
1600 * we don't want write_supers to jump in here with our device
1601 * half setup
1603 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1604 list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
1605 list_add(&device->dev_alloc_list,
1606 &root->fs_info->fs_devices->alloc_list);
1607 root->fs_info->fs_devices->num_devices++;
1608 root->fs_info->fs_devices->open_devices++;
1609 root->fs_info->fs_devices->rw_devices++;
1610 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
1612 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1613 root->fs_info->fs_devices->rotating = 1;
1615 total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
1616 btrfs_set_super_total_bytes(&root->fs_info->super_copy,
1617 total_bytes + device->total_bytes);
1619 total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
1620 btrfs_set_super_num_devices(&root->fs_info->super_copy,
1621 total_bytes + 1);
1622 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1624 if (seeding_dev) {
1625 ret = init_first_rw_device(trans, root, device);
1626 BUG_ON(ret);
1627 ret = btrfs_finish_sprout(trans, root);
1628 BUG_ON(ret);
1629 } else {
1630 ret = btrfs_add_device(trans, root, device);
1634 * we've got more storage, clear any full flags on the space
1635 * infos
1637 btrfs_clear_space_info_full(root->fs_info);
1639 unlock_chunks(root);
1640 btrfs_commit_transaction(trans, root);
1642 if (seeding_dev) {
1643 mutex_unlock(&uuid_mutex);
1644 up_write(&sb->s_umount);
1646 ret = btrfs_relocate_sys_chunks(root);
1647 BUG_ON(ret);
1649 out:
1650 mutex_unlock(&root->fs_info->volume_mutex);
1651 return ret;
1652 error:
1653 blkdev_put(bdev, FMODE_EXCL);
1654 if (seeding_dev) {
1655 mutex_unlock(&uuid_mutex);
1656 up_write(&sb->s_umount);
1658 goto out;
1661 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1662 struct btrfs_device *device)
1664 int ret;
1665 struct btrfs_path *path;
1666 struct btrfs_root *root;
1667 struct btrfs_dev_item *dev_item;
1668 struct extent_buffer *leaf;
1669 struct btrfs_key key;
1671 root = device->dev_root->fs_info->chunk_root;
1673 path = btrfs_alloc_path();
1674 if (!path)
1675 return -ENOMEM;
1677 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1678 key.type = BTRFS_DEV_ITEM_KEY;
1679 key.offset = device->devid;
1681 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1682 if (ret < 0)
1683 goto out;
1685 if (ret > 0) {
1686 ret = -ENOENT;
1687 goto out;
1690 leaf = path->nodes[0];
1691 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1693 btrfs_set_device_id(leaf, dev_item, device->devid);
1694 btrfs_set_device_type(leaf, dev_item, device->type);
1695 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1696 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1697 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1698 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
1699 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1700 btrfs_mark_buffer_dirty(leaf);
1702 out:
1703 btrfs_free_path(path);
1704 return ret;
1707 static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
1708 struct btrfs_device *device, u64 new_size)
1710 struct btrfs_super_block *super_copy =
1711 &device->dev_root->fs_info->super_copy;
1712 u64 old_total = btrfs_super_total_bytes(super_copy);
1713 u64 diff = new_size - device->total_bytes;
1715 if (!device->writeable)
1716 return -EACCES;
1717 if (new_size <= device->total_bytes)
1718 return -EINVAL;
1720 btrfs_set_super_total_bytes(super_copy, old_total + diff);
1721 device->fs_devices->total_rw_bytes += diff;
1723 device->total_bytes = new_size;
1724 device->disk_total_bytes = new_size;
1725 btrfs_clear_space_info_full(device->dev_root->fs_info);
1727 return btrfs_update_device(trans, device);
1730 int btrfs_grow_device(struct btrfs_trans_handle *trans,
1731 struct btrfs_device *device, u64 new_size)
1733 int ret;
1734 lock_chunks(device->dev_root);
1735 ret = __btrfs_grow_device(trans, device, new_size);
1736 unlock_chunks(device->dev_root);
1737 return ret;
1740 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1741 struct btrfs_root *root,
1742 u64 chunk_tree, u64 chunk_objectid,
1743 u64 chunk_offset)
1745 int ret;
1746 struct btrfs_path *path;
1747 struct btrfs_key key;
1749 root = root->fs_info->chunk_root;
1750 path = btrfs_alloc_path();
1751 if (!path)
1752 return -ENOMEM;
1754 key.objectid = chunk_objectid;
1755 key.offset = chunk_offset;
1756 key.type = BTRFS_CHUNK_ITEM_KEY;
1758 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1759 BUG_ON(ret);
1761 ret = btrfs_del_item(trans, root, path);
1762 BUG_ON(ret);
1764 btrfs_free_path(path);
1765 return 0;
1768 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
1769 chunk_offset)
1771 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1772 struct btrfs_disk_key *disk_key;
1773 struct btrfs_chunk *chunk;
1774 u8 *ptr;
1775 int ret = 0;
1776 u32 num_stripes;
1777 u32 array_size;
1778 u32 len = 0;
1779 u32 cur;
1780 struct btrfs_key key;
1782 array_size = btrfs_super_sys_array_size(super_copy);
1784 ptr = super_copy->sys_chunk_array;
1785 cur = 0;
1787 while (cur < array_size) {
1788 disk_key = (struct btrfs_disk_key *)ptr;
1789 btrfs_disk_key_to_cpu(&key, disk_key);
1791 len = sizeof(*disk_key);
1793 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1794 chunk = (struct btrfs_chunk *)(ptr + len);
1795 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1796 len += btrfs_chunk_item_size(num_stripes);
1797 } else {
1798 ret = -EIO;
1799 break;
1801 if (key.objectid == chunk_objectid &&
1802 key.offset == chunk_offset) {
1803 memmove(ptr, ptr + len, array_size - (cur + len));
1804 array_size -= len;
1805 btrfs_set_super_sys_array_size(super_copy, array_size);
1806 } else {
1807 ptr += len;
1808 cur += len;
1811 return ret;
1814 static int btrfs_relocate_chunk(struct btrfs_root *root,
1815 u64 chunk_tree, u64 chunk_objectid,
1816 u64 chunk_offset)
1818 struct extent_map_tree *em_tree;
1819 struct btrfs_root *extent_root;
1820 struct btrfs_trans_handle *trans;
1821 struct extent_map *em;
1822 struct map_lookup *map;
1823 int ret;
1824 int i;
1826 root = root->fs_info->chunk_root;
1827 extent_root = root->fs_info->extent_root;
1828 em_tree = &root->fs_info->mapping_tree.map_tree;
1830 ret = btrfs_can_relocate(extent_root, chunk_offset);
1831 if (ret)
1832 return -ENOSPC;
1834 /* step one, relocate all the extents inside this chunk */
1835 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
1836 if (ret)
1837 return ret;
1839 trans = btrfs_start_transaction(root, 0);
1840 BUG_ON(IS_ERR(trans));
1842 lock_chunks(root);
1845 * step two, delete the device extents and the
1846 * chunk tree entries
1848 read_lock(&em_tree->lock);
1849 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1850 read_unlock(&em_tree->lock);
1852 BUG_ON(em->start > chunk_offset ||
1853 em->start + em->len < chunk_offset);
1854 map = (struct map_lookup *)em->bdev;
1856 for (i = 0; i < map->num_stripes; i++) {
1857 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1858 map->stripes[i].physical);
1859 BUG_ON(ret);
1861 if (map->stripes[i].dev) {
1862 ret = btrfs_update_device(trans, map->stripes[i].dev);
1863 BUG_ON(ret);
1866 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1867 chunk_offset);
1869 BUG_ON(ret);
1871 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
1873 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1874 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1875 BUG_ON(ret);
1878 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
1879 BUG_ON(ret);
1881 write_lock(&em_tree->lock);
1882 remove_extent_mapping(em_tree, em);
1883 write_unlock(&em_tree->lock);
1885 kfree(map);
1886 em->bdev = NULL;
1888 /* once for the tree */
1889 free_extent_map(em);
1890 /* once for us */
1891 free_extent_map(em);
1893 unlock_chunks(root);
1894 btrfs_end_transaction(trans, root);
1895 return 0;
1898 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
1900 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
1901 struct btrfs_path *path;
1902 struct extent_buffer *leaf;
1903 struct btrfs_chunk *chunk;
1904 struct btrfs_key key;
1905 struct btrfs_key found_key;
1906 u64 chunk_tree = chunk_root->root_key.objectid;
1907 u64 chunk_type;
1908 bool retried = false;
1909 int failed = 0;
1910 int ret;
1912 path = btrfs_alloc_path();
1913 if (!path)
1914 return -ENOMEM;
1916 again:
1917 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1918 key.offset = (u64)-1;
1919 key.type = BTRFS_CHUNK_ITEM_KEY;
1921 while (1) {
1922 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1923 if (ret < 0)
1924 goto error;
1925 BUG_ON(ret == 0);
1927 ret = btrfs_previous_item(chunk_root, path, key.objectid,
1928 key.type);
1929 if (ret < 0)
1930 goto error;
1931 if (ret > 0)
1932 break;
1934 leaf = path->nodes[0];
1935 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1937 chunk = btrfs_item_ptr(leaf, path->slots[0],
1938 struct btrfs_chunk);
1939 chunk_type = btrfs_chunk_type(leaf, chunk);
1940 btrfs_release_path(chunk_root, path);
1942 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
1943 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
1944 found_key.objectid,
1945 found_key.offset);
1946 if (ret == -ENOSPC)
1947 failed++;
1948 else if (ret)
1949 BUG();
1952 if (found_key.offset == 0)
1953 break;
1954 key.offset = found_key.offset - 1;
1956 ret = 0;
1957 if (failed && !retried) {
1958 failed = 0;
1959 retried = true;
1960 goto again;
1961 } else if (failed && retried) {
1962 WARN_ON(1);
1963 ret = -ENOSPC;
1965 error:
1966 btrfs_free_path(path);
1967 return ret;
1970 static u64 div_factor(u64 num, int factor)
1972 if (factor == 10)
1973 return num;
1974 num *= factor;
1975 do_div(num, 10);
1976 return num;
1979 int btrfs_balance(struct btrfs_root *dev_root)
1981 int ret;
1982 struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
1983 struct btrfs_device *device;
1984 u64 old_size;
1985 u64 size_to_free;
1986 struct btrfs_path *path;
1987 struct btrfs_key key;
1988 struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
1989 struct btrfs_trans_handle *trans;
1990 struct btrfs_key found_key;
1992 if (dev_root->fs_info->sb->s_flags & MS_RDONLY)
1993 return -EROFS;
1995 if (!capable(CAP_SYS_ADMIN))
1996 return -EPERM;
1998 mutex_lock(&dev_root->fs_info->volume_mutex);
1999 dev_root = dev_root->fs_info->dev_root;
2001 /* step one make some room on all the devices */
2002 list_for_each_entry(device, devices, dev_list) {
2003 old_size = device->total_bytes;
2004 size_to_free = div_factor(old_size, 1);
2005 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2006 if (!device->writeable ||
2007 device->total_bytes - device->bytes_used > size_to_free)
2008 continue;
2010 ret = btrfs_shrink_device(device, old_size - size_to_free);
2011 if (ret == -ENOSPC)
2012 break;
2013 BUG_ON(ret);
2015 trans = btrfs_start_transaction(dev_root, 0);
2016 BUG_ON(IS_ERR(trans));
2018 ret = btrfs_grow_device(trans, device, old_size);
2019 BUG_ON(ret);
2021 btrfs_end_transaction(trans, dev_root);
2024 /* step two, relocate all the chunks */
2025 path = btrfs_alloc_path();
2026 BUG_ON(!path);
2028 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2029 key.offset = (u64)-1;
2030 key.type = BTRFS_CHUNK_ITEM_KEY;
2032 while (1) {
2033 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2034 if (ret < 0)
2035 goto error;
2038 * this shouldn't happen, it means the last relocate
2039 * failed
2041 if (ret == 0)
2042 break;
2044 ret = btrfs_previous_item(chunk_root, path, 0,
2045 BTRFS_CHUNK_ITEM_KEY);
2046 if (ret)
2047 break;
2049 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2050 path->slots[0]);
2051 if (found_key.objectid != key.objectid)
2052 break;
2054 /* chunk zero is special */
2055 if (found_key.offset == 0)
2056 break;
2058 btrfs_release_path(chunk_root, path);
2059 ret = btrfs_relocate_chunk(chunk_root,
2060 chunk_root->root_key.objectid,
2061 found_key.objectid,
2062 found_key.offset);
2063 BUG_ON(ret && ret != -ENOSPC);
2064 key.offset = found_key.offset - 1;
2066 ret = 0;
2067 error:
2068 btrfs_free_path(path);
2069 mutex_unlock(&dev_root->fs_info->volume_mutex);
2070 return ret;
2074 * shrinking a device means finding all of the device extents past
2075 * the new size, and then following the back refs to the chunks.
2076 * The chunk relocation code actually frees the device extent
2078 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
2080 struct btrfs_trans_handle *trans;
2081 struct btrfs_root *root = device->dev_root;
2082 struct btrfs_dev_extent *dev_extent = NULL;
2083 struct btrfs_path *path;
2084 u64 length;
2085 u64 chunk_tree;
2086 u64 chunk_objectid;
2087 u64 chunk_offset;
2088 int ret;
2089 int slot;
2090 int failed = 0;
2091 bool retried = false;
2092 struct extent_buffer *l;
2093 struct btrfs_key key;
2094 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2095 u64 old_total = btrfs_super_total_bytes(super_copy);
2096 u64 old_size = device->total_bytes;
2097 u64 diff = device->total_bytes - new_size;
2099 if (new_size >= device->total_bytes)
2100 return -EINVAL;
2102 path = btrfs_alloc_path();
2103 if (!path)
2104 return -ENOMEM;
2106 path->reada = 2;
2108 lock_chunks(root);
2110 device->total_bytes = new_size;
2111 if (device->writeable)
2112 device->fs_devices->total_rw_bytes -= diff;
2113 unlock_chunks(root);
2115 again:
2116 key.objectid = device->devid;
2117 key.offset = (u64)-1;
2118 key.type = BTRFS_DEV_EXTENT_KEY;
2120 while (1) {
2121 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2122 if (ret < 0)
2123 goto done;
2125 ret = btrfs_previous_item(root, path, 0, key.type);
2126 if (ret < 0)
2127 goto done;
2128 if (ret) {
2129 ret = 0;
2130 btrfs_release_path(root, path);
2131 break;
2134 l = path->nodes[0];
2135 slot = path->slots[0];
2136 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
2138 if (key.objectid != device->devid) {
2139 btrfs_release_path(root, path);
2140 break;
2143 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2144 length = btrfs_dev_extent_length(l, dev_extent);
2146 if (key.offset + length <= new_size) {
2147 btrfs_release_path(root, path);
2148 break;
2151 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2152 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2153 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2154 btrfs_release_path(root, path);
2156 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
2157 chunk_offset);
2158 if (ret && ret != -ENOSPC)
2159 goto done;
2160 if (ret == -ENOSPC)
2161 failed++;
2162 key.offset -= 1;
2165 if (failed && !retried) {
2166 failed = 0;
2167 retried = true;
2168 goto again;
2169 } else if (failed && retried) {
2170 ret = -ENOSPC;
2171 lock_chunks(root);
2173 device->total_bytes = old_size;
2174 if (device->writeable)
2175 device->fs_devices->total_rw_bytes += diff;
2176 unlock_chunks(root);
2177 goto done;
2180 /* Shrinking succeeded, else we would be at "done". */
2181 trans = btrfs_start_transaction(root, 0);
2182 if (IS_ERR(trans)) {
2183 ret = PTR_ERR(trans);
2184 goto done;
2187 lock_chunks(root);
2189 device->disk_total_bytes = new_size;
2190 /* Now btrfs_update_device() will change the on-disk size. */
2191 ret = btrfs_update_device(trans, device);
2192 if (ret) {
2193 unlock_chunks(root);
2194 btrfs_end_transaction(trans, root);
2195 goto done;
2197 WARN_ON(diff > old_total);
2198 btrfs_set_super_total_bytes(super_copy, old_total - diff);
2199 unlock_chunks(root);
2200 btrfs_end_transaction(trans, root);
2201 done:
2202 btrfs_free_path(path);
2203 return ret;
2206 static int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
2207 struct btrfs_root *root,
2208 struct btrfs_key *key,
2209 struct btrfs_chunk *chunk, int item_size)
2211 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2212 struct btrfs_disk_key disk_key;
2213 u32 array_size;
2214 u8 *ptr;
2216 array_size = btrfs_super_sys_array_size(super_copy);
2217 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
2218 return -EFBIG;
2220 ptr = super_copy->sys_chunk_array + array_size;
2221 btrfs_cpu_key_to_disk(&disk_key, key);
2222 memcpy(ptr, &disk_key, sizeof(disk_key));
2223 ptr += sizeof(disk_key);
2224 memcpy(ptr, chunk, item_size);
2225 item_size += sizeof(disk_key);
2226 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
2227 return 0;
2230 static noinline u64 chunk_bytes_by_type(u64 type, u64 calc_size,
2231 int num_stripes, int sub_stripes)
2233 if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
2234 return calc_size;
2235 else if (type & BTRFS_BLOCK_GROUP_RAID10)
2236 return calc_size * (num_stripes / sub_stripes);
2237 else
2238 return calc_size * num_stripes;
2241 /* Used to sort the devices by max_avail(descending sort) */
2242 int btrfs_cmp_device_free_bytes(const void *dev_info1, const void *dev_info2)
2244 if (((struct btrfs_device_info *)dev_info1)->max_avail >
2245 ((struct btrfs_device_info *)dev_info2)->max_avail)
2246 return -1;
2247 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
2248 ((struct btrfs_device_info *)dev_info2)->max_avail)
2249 return 1;
2250 else
2251 return 0;
2254 static int __btrfs_calc_nstripes(struct btrfs_fs_devices *fs_devices, u64 type,
2255 int *num_stripes, int *min_stripes,
2256 int *sub_stripes)
2258 *num_stripes = 1;
2259 *min_stripes = 1;
2260 *sub_stripes = 0;
2262 if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
2263 *num_stripes = fs_devices->rw_devices;
2264 *min_stripes = 2;
2266 if (type & (BTRFS_BLOCK_GROUP_DUP)) {
2267 *num_stripes = 2;
2268 *min_stripes = 2;
2270 if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
2271 if (fs_devices->rw_devices < 2)
2272 return -ENOSPC;
2273 *num_stripes = 2;
2274 *min_stripes = 2;
2276 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2277 *num_stripes = fs_devices->rw_devices;
2278 if (*num_stripes < 4)
2279 return -ENOSPC;
2280 *num_stripes &= ~(u32)1;
2281 *sub_stripes = 2;
2282 *min_stripes = 4;
2285 return 0;
2288 static u64 __btrfs_calc_stripe_size(struct btrfs_fs_devices *fs_devices,
2289 u64 proposed_size, u64 type,
2290 int num_stripes, int small_stripe)
2292 int min_stripe_size = 1 * 1024 * 1024;
2293 u64 calc_size = proposed_size;
2294 u64 max_chunk_size = calc_size;
2295 int ncopies = 1;
2297 if (type & (BTRFS_BLOCK_GROUP_RAID1 |
2298 BTRFS_BLOCK_GROUP_DUP |
2299 BTRFS_BLOCK_GROUP_RAID10))
2300 ncopies = 2;
2302 if (type & BTRFS_BLOCK_GROUP_DATA) {
2303 max_chunk_size = 10 * calc_size;
2304 min_stripe_size = 64 * 1024 * 1024;
2305 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
2306 max_chunk_size = 256 * 1024 * 1024;
2307 min_stripe_size = 32 * 1024 * 1024;
2308 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
2309 calc_size = 8 * 1024 * 1024;
2310 max_chunk_size = calc_size * 2;
2311 min_stripe_size = 1 * 1024 * 1024;
2314 /* we don't want a chunk larger than 10% of writeable space */
2315 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
2316 max_chunk_size);
2318 if (calc_size * num_stripes > max_chunk_size * ncopies) {
2319 calc_size = max_chunk_size * ncopies;
2320 do_div(calc_size, num_stripes);
2321 do_div(calc_size, BTRFS_STRIPE_LEN);
2322 calc_size *= BTRFS_STRIPE_LEN;
2325 /* we don't want tiny stripes */
2326 if (!small_stripe)
2327 calc_size = max_t(u64, min_stripe_size, calc_size);
2330 * we're about to do_div by the BTRFS_STRIPE_LEN so lets make sure
2331 * we end up with something bigger than a stripe
2333 calc_size = max_t(u64, calc_size, BTRFS_STRIPE_LEN);
2335 do_div(calc_size, BTRFS_STRIPE_LEN);
2336 calc_size *= BTRFS_STRIPE_LEN;
2338 return calc_size;
2341 static struct map_lookup *__shrink_map_lookup_stripes(struct map_lookup *map,
2342 int num_stripes)
2344 struct map_lookup *new;
2345 size_t len = map_lookup_size(num_stripes);
2347 BUG_ON(map->num_stripes < num_stripes);
2349 if (map->num_stripes == num_stripes)
2350 return map;
2352 new = kmalloc(len, GFP_NOFS);
2353 if (!new) {
2354 /* just change map->num_stripes */
2355 map->num_stripes = num_stripes;
2356 return map;
2359 memcpy(new, map, len);
2360 new->num_stripes = num_stripes;
2361 kfree(map);
2362 return new;
2366 * helper to allocate device space from btrfs_device_info, in which we stored
2367 * max free space information of every device. It is used when we can not
2368 * allocate chunks by default size.
2370 * By this helper, we can allocate a new chunk as larger as possible.
2372 static int __btrfs_alloc_tiny_space(struct btrfs_trans_handle *trans,
2373 struct btrfs_fs_devices *fs_devices,
2374 struct btrfs_device_info *devices,
2375 int nr_device, u64 type,
2376 struct map_lookup **map_lookup,
2377 int min_stripes, u64 *stripe_size)
2379 int i, index, sort_again = 0;
2380 int min_devices = min_stripes;
2381 u64 max_avail, min_free;
2382 struct map_lookup *map = *map_lookup;
2383 int ret;
2385 if (nr_device < min_stripes)
2386 return -ENOSPC;
2388 btrfs_descending_sort_devices(devices, nr_device);
2390 max_avail = devices[0].max_avail;
2391 if (!max_avail)
2392 return -ENOSPC;
2394 for (i = 0; i < nr_device; i++) {
2396 * if dev_offset = 0, it means the free space of this device
2397 * is less than what we need, and we didn't search max avail
2398 * extent on this device, so do it now.
2400 if (!devices[i].dev_offset) {
2401 ret = find_free_dev_extent(trans, devices[i].dev,
2402 max_avail,
2403 &devices[i].dev_offset,
2404 &devices[i].max_avail);
2405 if (ret != 0 && ret != -ENOSPC)
2406 return ret;
2407 sort_again = 1;
2411 /* we update the max avail free extent of each devices, sort again */
2412 if (sort_again)
2413 btrfs_descending_sort_devices(devices, nr_device);
2415 if (type & BTRFS_BLOCK_GROUP_DUP)
2416 min_devices = 1;
2418 if (!devices[min_devices - 1].max_avail)
2419 return -ENOSPC;
2421 max_avail = devices[min_devices - 1].max_avail;
2422 if (type & BTRFS_BLOCK_GROUP_DUP)
2423 do_div(max_avail, 2);
2425 max_avail = __btrfs_calc_stripe_size(fs_devices, max_avail, type,
2426 min_stripes, 1);
2427 if (type & BTRFS_BLOCK_GROUP_DUP)
2428 min_free = max_avail * 2;
2429 else
2430 min_free = max_avail;
2432 if (min_free > devices[min_devices - 1].max_avail)
2433 return -ENOSPC;
2435 map = __shrink_map_lookup_stripes(map, min_stripes);
2436 *stripe_size = max_avail;
2438 index = 0;
2439 for (i = 0; i < min_stripes; i++) {
2440 map->stripes[i].dev = devices[index].dev;
2441 map->stripes[i].physical = devices[index].dev_offset;
2442 if (type & BTRFS_BLOCK_GROUP_DUP) {
2443 i++;
2444 map->stripes[i].dev = devices[index].dev;
2445 map->stripes[i].physical = devices[index].dev_offset +
2446 max_avail;
2448 index++;
2450 *map_lookup = map;
2452 return 0;
2455 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2456 struct btrfs_root *extent_root,
2457 struct map_lookup **map_ret,
2458 u64 *num_bytes, u64 *stripe_size,
2459 u64 start, u64 type)
2461 struct btrfs_fs_info *info = extent_root->fs_info;
2462 struct btrfs_device *device = NULL;
2463 struct btrfs_fs_devices *fs_devices = info->fs_devices;
2464 struct list_head *cur;
2465 struct map_lookup *map;
2466 struct extent_map_tree *em_tree;
2467 struct extent_map *em;
2468 struct btrfs_device_info *devices_info;
2469 struct list_head private_devs;
2470 u64 calc_size = 1024 * 1024 * 1024;
2471 u64 min_free;
2472 u64 avail;
2473 u64 dev_offset;
2474 int num_stripes;
2475 int min_stripes;
2476 int sub_stripes;
2477 int min_devices; /* the min number of devices we need */
2478 int i;
2479 int ret;
2480 int index;
2482 if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
2483 (type & BTRFS_BLOCK_GROUP_DUP)) {
2484 WARN_ON(1);
2485 type &= ~BTRFS_BLOCK_GROUP_DUP;
2487 if (list_empty(&fs_devices->alloc_list))
2488 return -ENOSPC;
2490 ret = __btrfs_calc_nstripes(fs_devices, type, &num_stripes,
2491 &min_stripes, &sub_stripes);
2492 if (ret)
2493 return ret;
2495 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
2496 GFP_NOFS);
2497 if (!devices_info)
2498 return -ENOMEM;
2500 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
2501 if (!map) {
2502 ret = -ENOMEM;
2503 goto error;
2505 map->num_stripes = num_stripes;
2507 cur = fs_devices->alloc_list.next;
2508 index = 0;
2509 i = 0;
2511 calc_size = __btrfs_calc_stripe_size(fs_devices, calc_size, type,
2512 num_stripes, 0);
2514 if (type & BTRFS_BLOCK_GROUP_DUP) {
2515 min_free = calc_size * 2;
2516 min_devices = 1;
2517 } else {
2518 min_free = calc_size;
2519 min_devices = min_stripes;
2522 INIT_LIST_HEAD(&private_devs);
2523 while (index < num_stripes) {
2524 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
2525 BUG_ON(!device->writeable);
2526 if (device->total_bytes > device->bytes_used)
2527 avail = device->total_bytes - device->bytes_used;
2528 else
2529 avail = 0;
2530 cur = cur->next;
2532 if (device->in_fs_metadata && avail >= min_free) {
2533 ret = find_free_dev_extent(trans, device, min_free,
2534 &devices_info[i].dev_offset,
2535 &devices_info[i].max_avail);
2536 if (ret == 0) {
2537 list_move_tail(&device->dev_alloc_list,
2538 &private_devs);
2539 map->stripes[index].dev = device;
2540 map->stripes[index].physical =
2541 devices_info[i].dev_offset;
2542 index++;
2543 if (type & BTRFS_BLOCK_GROUP_DUP) {
2544 map->stripes[index].dev = device;
2545 map->stripes[index].physical =
2546 devices_info[i].dev_offset +
2547 calc_size;
2548 index++;
2550 } else if (ret != -ENOSPC)
2551 goto error;
2553 devices_info[i].dev = device;
2554 i++;
2555 } else if (device->in_fs_metadata &&
2556 avail >= BTRFS_STRIPE_LEN) {
2557 devices_info[i].dev = device;
2558 devices_info[i].max_avail = avail;
2559 i++;
2562 if (cur == &fs_devices->alloc_list)
2563 break;
2566 list_splice(&private_devs, &fs_devices->alloc_list);
2567 if (index < num_stripes) {
2568 if (index >= min_stripes) {
2569 num_stripes = index;
2570 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2571 num_stripes /= sub_stripes;
2572 num_stripes *= sub_stripes;
2575 map = __shrink_map_lookup_stripes(map, num_stripes);
2576 } else if (i >= min_devices) {
2577 ret = __btrfs_alloc_tiny_space(trans, fs_devices,
2578 devices_info, i, type,
2579 &map, min_stripes,
2580 &calc_size);
2581 if (ret)
2582 goto error;
2583 } else {
2584 ret = -ENOSPC;
2585 goto error;
2588 map->sector_size = extent_root->sectorsize;
2589 map->stripe_len = BTRFS_STRIPE_LEN;
2590 map->io_align = BTRFS_STRIPE_LEN;
2591 map->io_width = BTRFS_STRIPE_LEN;
2592 map->type = type;
2593 map->sub_stripes = sub_stripes;
2595 *map_ret = map;
2596 *stripe_size = calc_size;
2597 *num_bytes = chunk_bytes_by_type(type, calc_size,
2598 map->num_stripes, sub_stripes);
2600 trace_btrfs_chunk_alloc(info->chunk_root, map, start, *num_bytes);
2602 em = alloc_extent_map(GFP_NOFS);
2603 if (!em) {
2604 ret = -ENOMEM;
2605 goto error;
2607 em->bdev = (struct block_device *)map;
2608 em->start = start;
2609 em->len = *num_bytes;
2610 em->block_start = 0;
2611 em->block_len = em->len;
2613 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
2614 write_lock(&em_tree->lock);
2615 ret = add_extent_mapping(em_tree, em);
2616 write_unlock(&em_tree->lock);
2617 BUG_ON(ret);
2618 free_extent_map(em);
2620 ret = btrfs_make_block_group(trans, extent_root, 0, type,
2621 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2622 start, *num_bytes);
2623 BUG_ON(ret);
2625 index = 0;
2626 while (index < map->num_stripes) {
2627 device = map->stripes[index].dev;
2628 dev_offset = map->stripes[index].physical;
2630 ret = btrfs_alloc_dev_extent(trans, device,
2631 info->chunk_root->root_key.objectid,
2632 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2633 start, dev_offset, calc_size);
2634 BUG_ON(ret);
2635 index++;
2638 kfree(devices_info);
2639 return 0;
2641 error:
2642 kfree(map);
2643 kfree(devices_info);
2644 return ret;
2647 static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
2648 struct btrfs_root *extent_root,
2649 struct map_lookup *map, u64 chunk_offset,
2650 u64 chunk_size, u64 stripe_size)
2652 u64 dev_offset;
2653 struct btrfs_key key;
2654 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2655 struct btrfs_device *device;
2656 struct btrfs_chunk *chunk;
2657 struct btrfs_stripe *stripe;
2658 size_t item_size = btrfs_chunk_item_size(map->num_stripes);
2659 int index = 0;
2660 int ret;
2662 chunk = kzalloc(item_size, GFP_NOFS);
2663 if (!chunk)
2664 return -ENOMEM;
2666 index = 0;
2667 while (index < map->num_stripes) {
2668 device = map->stripes[index].dev;
2669 device->bytes_used += stripe_size;
2670 ret = btrfs_update_device(trans, device);
2671 BUG_ON(ret);
2672 index++;
2675 index = 0;
2676 stripe = &chunk->stripe;
2677 while (index < map->num_stripes) {
2678 device = map->stripes[index].dev;
2679 dev_offset = map->stripes[index].physical;
2681 btrfs_set_stack_stripe_devid(stripe, device->devid);
2682 btrfs_set_stack_stripe_offset(stripe, dev_offset);
2683 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2684 stripe++;
2685 index++;
2688 btrfs_set_stack_chunk_length(chunk, chunk_size);
2689 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2690 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
2691 btrfs_set_stack_chunk_type(chunk, map->type);
2692 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
2693 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
2694 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
2695 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2696 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
2698 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2699 key.type = BTRFS_CHUNK_ITEM_KEY;
2700 key.offset = chunk_offset;
2702 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
2703 BUG_ON(ret);
2705 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2706 ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk,
2707 item_size);
2708 BUG_ON(ret);
2711 kfree(chunk);
2712 return 0;
2716 * Chunk allocation falls into two parts. The first part does works
2717 * that make the new allocated chunk useable, but not do any operation
2718 * that modifies the chunk tree. The second part does the works that
2719 * require modifying the chunk tree. This division is important for the
2720 * bootstrap process of adding storage to a seed btrfs.
2722 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2723 struct btrfs_root *extent_root, u64 type)
2725 u64 chunk_offset;
2726 u64 chunk_size;
2727 u64 stripe_size;
2728 struct map_lookup *map;
2729 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2730 int ret;
2732 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2733 &chunk_offset);
2734 if (ret)
2735 return ret;
2737 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2738 &stripe_size, chunk_offset, type);
2739 if (ret)
2740 return ret;
2742 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2743 chunk_size, stripe_size);
2744 BUG_ON(ret);
2745 return 0;
2748 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2749 struct btrfs_root *root,
2750 struct btrfs_device *device)
2752 u64 chunk_offset;
2753 u64 sys_chunk_offset;
2754 u64 chunk_size;
2755 u64 sys_chunk_size;
2756 u64 stripe_size;
2757 u64 sys_stripe_size;
2758 u64 alloc_profile;
2759 struct map_lookup *map;
2760 struct map_lookup *sys_map;
2761 struct btrfs_fs_info *fs_info = root->fs_info;
2762 struct btrfs_root *extent_root = fs_info->extent_root;
2763 int ret;
2765 ret = find_next_chunk(fs_info->chunk_root,
2766 BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
2767 BUG_ON(ret);
2769 alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
2770 (fs_info->metadata_alloc_profile &
2771 fs_info->avail_metadata_alloc_bits);
2772 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2774 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2775 &stripe_size, chunk_offset, alloc_profile);
2776 BUG_ON(ret);
2778 sys_chunk_offset = chunk_offset + chunk_size;
2780 alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
2781 (fs_info->system_alloc_profile &
2782 fs_info->avail_system_alloc_bits);
2783 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2785 ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
2786 &sys_chunk_size, &sys_stripe_size,
2787 sys_chunk_offset, alloc_profile);
2788 BUG_ON(ret);
2790 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
2791 BUG_ON(ret);
2794 * Modifying chunk tree needs allocating new blocks from both
2795 * system block group and metadata block group. So we only can
2796 * do operations require modifying the chunk tree after both
2797 * block groups were created.
2799 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2800 chunk_size, stripe_size);
2801 BUG_ON(ret);
2803 ret = __finish_chunk_alloc(trans, extent_root, sys_map,
2804 sys_chunk_offset, sys_chunk_size,
2805 sys_stripe_size);
2806 BUG_ON(ret);
2807 return 0;
2810 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
2812 struct extent_map *em;
2813 struct map_lookup *map;
2814 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
2815 int readonly = 0;
2816 int i;
2818 read_lock(&map_tree->map_tree.lock);
2819 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2820 read_unlock(&map_tree->map_tree.lock);
2821 if (!em)
2822 return 1;
2824 if (btrfs_test_opt(root, DEGRADED)) {
2825 free_extent_map(em);
2826 return 0;
2829 map = (struct map_lookup *)em->bdev;
2830 for (i = 0; i < map->num_stripes; i++) {
2831 if (!map->stripes[i].dev->writeable) {
2832 readonly = 1;
2833 break;
2836 free_extent_map(em);
2837 return readonly;
2840 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
2842 extent_map_tree_init(&tree->map_tree, GFP_NOFS);
2845 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
2847 struct extent_map *em;
2849 while (1) {
2850 write_lock(&tree->map_tree.lock);
2851 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
2852 if (em)
2853 remove_extent_mapping(&tree->map_tree, em);
2854 write_unlock(&tree->map_tree.lock);
2855 if (!em)
2856 break;
2857 kfree(em->bdev);
2858 /* once for us */
2859 free_extent_map(em);
2860 /* once for the tree */
2861 free_extent_map(em);
2865 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
2867 struct extent_map *em;
2868 struct map_lookup *map;
2869 struct extent_map_tree *em_tree = &map_tree->map_tree;
2870 int ret;
2872 read_lock(&em_tree->lock);
2873 em = lookup_extent_mapping(em_tree, logical, len);
2874 read_unlock(&em_tree->lock);
2875 BUG_ON(!em);
2877 BUG_ON(em->start > logical || em->start + em->len < logical);
2878 map = (struct map_lookup *)em->bdev;
2879 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
2880 ret = map->num_stripes;
2881 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2882 ret = map->sub_stripes;
2883 else
2884 ret = 1;
2885 free_extent_map(em);
2886 return ret;
2889 static int find_live_mirror(struct map_lookup *map, int first, int num,
2890 int optimal)
2892 int i;
2893 if (map->stripes[optimal].dev->bdev)
2894 return optimal;
2895 for (i = first; i < first + num; i++) {
2896 if (map->stripes[i].dev->bdev)
2897 return i;
2899 /* we couldn't find one that doesn't fail. Just return something
2900 * and the io error handling code will clean up eventually
2902 return optimal;
2905 static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2906 u64 logical, u64 *length,
2907 struct btrfs_multi_bio **multi_ret,
2908 int mirror_num)
2910 struct extent_map *em;
2911 struct map_lookup *map;
2912 struct extent_map_tree *em_tree = &map_tree->map_tree;
2913 u64 offset;
2914 u64 stripe_offset;
2915 u64 stripe_end_offset;
2916 u64 stripe_nr;
2917 u64 stripe_nr_orig;
2918 u64 stripe_nr_end;
2919 int stripes_allocated = 8;
2920 int stripes_required = 1;
2921 int stripe_index;
2922 int i;
2923 int num_stripes;
2924 int max_errors = 0;
2925 struct btrfs_multi_bio *multi = NULL;
2927 if (multi_ret && !(rw & (REQ_WRITE | REQ_DISCARD)))
2928 stripes_allocated = 1;
2929 again:
2930 if (multi_ret) {
2931 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
2932 GFP_NOFS);
2933 if (!multi)
2934 return -ENOMEM;
2936 atomic_set(&multi->error, 0);
2939 read_lock(&em_tree->lock);
2940 em = lookup_extent_mapping(em_tree, logical, *length);
2941 read_unlock(&em_tree->lock);
2943 if (!em) {
2944 printk(KERN_CRIT "unable to find logical %llu len %llu\n",
2945 (unsigned long long)logical,
2946 (unsigned long long)*length);
2947 BUG();
2950 BUG_ON(em->start > logical || em->start + em->len < logical);
2951 map = (struct map_lookup *)em->bdev;
2952 offset = logical - em->start;
2954 if (mirror_num > map->num_stripes)
2955 mirror_num = 0;
2957 /* if our multi bio struct is too small, back off and try again */
2958 if (rw & REQ_WRITE) {
2959 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
2960 BTRFS_BLOCK_GROUP_DUP)) {
2961 stripes_required = map->num_stripes;
2962 max_errors = 1;
2963 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2964 stripes_required = map->sub_stripes;
2965 max_errors = 1;
2968 if (rw & REQ_DISCARD) {
2969 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2970 BTRFS_BLOCK_GROUP_RAID1 |
2971 BTRFS_BLOCK_GROUP_DUP |
2972 BTRFS_BLOCK_GROUP_RAID10)) {
2973 stripes_required = map->num_stripes;
2976 if (multi_ret && (rw & (REQ_WRITE | REQ_DISCARD)) &&
2977 stripes_allocated < stripes_required) {
2978 stripes_allocated = map->num_stripes;
2979 free_extent_map(em);
2980 kfree(multi);
2981 goto again;
2983 stripe_nr = offset;
2985 * stripe_nr counts the total number of stripes we have to stride
2986 * to get to this block
2988 do_div(stripe_nr, map->stripe_len);
2990 stripe_offset = stripe_nr * map->stripe_len;
2991 BUG_ON(offset < stripe_offset);
2993 /* stripe_offset is the offset of this block in its stripe*/
2994 stripe_offset = offset - stripe_offset;
2996 if (rw & REQ_DISCARD)
2997 *length = min_t(u64, em->len - offset, *length);
2998 else if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2999 BTRFS_BLOCK_GROUP_RAID1 |
3000 BTRFS_BLOCK_GROUP_RAID10 |
3001 BTRFS_BLOCK_GROUP_DUP)) {
3002 /* we limit the length of each bio to what fits in a stripe */
3003 *length = min_t(u64, em->len - offset,
3004 map->stripe_len - stripe_offset);
3005 } else {
3006 *length = em->len - offset;
3009 if (!multi_ret)
3010 goto out;
3012 num_stripes = 1;
3013 stripe_index = 0;
3014 stripe_nr_orig = stripe_nr;
3015 stripe_nr_end = (offset + *length + map->stripe_len - 1) &
3016 (~(map->stripe_len - 1));
3017 do_div(stripe_nr_end, map->stripe_len);
3018 stripe_end_offset = stripe_nr_end * map->stripe_len -
3019 (offset + *length);
3020 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3021 if (rw & REQ_DISCARD)
3022 num_stripes = min_t(u64, map->num_stripes,
3023 stripe_nr_end - stripe_nr_orig);
3024 stripe_index = do_div(stripe_nr, map->num_stripes);
3025 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3026 if (rw & (REQ_WRITE | REQ_DISCARD))
3027 num_stripes = map->num_stripes;
3028 else if (mirror_num)
3029 stripe_index = mirror_num - 1;
3030 else {
3031 stripe_index = find_live_mirror(map, 0,
3032 map->num_stripes,
3033 current->pid % map->num_stripes);
3036 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3037 if (rw & (REQ_WRITE | REQ_DISCARD))
3038 num_stripes = map->num_stripes;
3039 else if (mirror_num)
3040 stripe_index = mirror_num - 1;
3042 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3043 int factor = map->num_stripes / map->sub_stripes;
3045 stripe_index = do_div(stripe_nr, factor);
3046 stripe_index *= map->sub_stripes;
3048 if (rw & REQ_WRITE)
3049 num_stripes = map->sub_stripes;
3050 else if (rw & REQ_DISCARD)
3051 num_stripes = min_t(u64, map->sub_stripes *
3052 (stripe_nr_end - stripe_nr_orig),
3053 map->num_stripes);
3054 else if (mirror_num)
3055 stripe_index += mirror_num - 1;
3056 else {
3057 stripe_index = find_live_mirror(map, stripe_index,
3058 map->sub_stripes, stripe_index +
3059 current->pid % map->sub_stripes);
3061 } else {
3063 * after this do_div call, stripe_nr is the number of stripes
3064 * on this device we have to walk to find the data, and
3065 * stripe_index is the number of our device in the stripe array
3067 stripe_index = do_div(stripe_nr, map->num_stripes);
3069 BUG_ON(stripe_index >= map->num_stripes);
3071 if (rw & REQ_DISCARD) {
3072 for (i = 0; i < num_stripes; i++) {
3073 multi->stripes[i].physical =
3074 map->stripes[stripe_index].physical +
3075 stripe_offset + stripe_nr * map->stripe_len;
3076 multi->stripes[i].dev = map->stripes[stripe_index].dev;
3078 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3079 u64 stripes;
3080 u32 last_stripe = 0;
3081 int j;
3083 div_u64_rem(stripe_nr_end - 1,
3084 map->num_stripes,
3085 &last_stripe);
3087 for (j = 0; j < map->num_stripes; j++) {
3088 u32 test;
3090 div_u64_rem(stripe_nr_end - 1 - j,
3091 map->num_stripes, &test);
3092 if (test == stripe_index)
3093 break;
3095 stripes = stripe_nr_end - 1 - j;
3096 do_div(stripes, map->num_stripes);
3097 multi->stripes[i].length = map->stripe_len *
3098 (stripes - stripe_nr + 1);
3100 if (i == 0) {
3101 multi->stripes[i].length -=
3102 stripe_offset;
3103 stripe_offset = 0;
3105 if (stripe_index == last_stripe)
3106 multi->stripes[i].length -=
3107 stripe_end_offset;
3108 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3109 u64 stripes;
3110 int j;
3111 int factor = map->num_stripes /
3112 map->sub_stripes;
3113 u32 last_stripe = 0;
3115 div_u64_rem(stripe_nr_end - 1,
3116 factor, &last_stripe);
3117 last_stripe *= map->sub_stripes;
3119 for (j = 0; j < factor; j++) {
3120 u32 test;
3122 div_u64_rem(stripe_nr_end - 1 - j,
3123 factor, &test);
3125 if (test ==
3126 stripe_index / map->sub_stripes)
3127 break;
3129 stripes = stripe_nr_end - 1 - j;
3130 do_div(stripes, factor);
3131 multi->stripes[i].length = map->stripe_len *
3132 (stripes - stripe_nr + 1);
3134 if (i < map->sub_stripes) {
3135 multi->stripes[i].length -=
3136 stripe_offset;
3137 if (i == map->sub_stripes - 1)
3138 stripe_offset = 0;
3140 if (stripe_index >= last_stripe &&
3141 stripe_index <= (last_stripe +
3142 map->sub_stripes - 1)) {
3143 multi->stripes[i].length -=
3144 stripe_end_offset;
3146 } else
3147 multi->stripes[i].length = *length;
3149 stripe_index++;
3150 if (stripe_index == map->num_stripes) {
3151 /* This could only happen for RAID0/10 */
3152 stripe_index = 0;
3153 stripe_nr++;
3156 } else {
3157 for (i = 0; i < num_stripes; i++) {
3158 multi->stripes[i].physical =
3159 map->stripes[stripe_index].physical +
3160 stripe_offset +
3161 stripe_nr * map->stripe_len;
3162 multi->stripes[i].dev =
3163 map->stripes[stripe_index].dev;
3164 stripe_index++;
3167 if (multi_ret) {
3168 *multi_ret = multi;
3169 multi->num_stripes = num_stripes;
3170 multi->max_errors = max_errors;
3172 out:
3173 free_extent_map(em);
3174 return 0;
3177 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3178 u64 logical, u64 *length,
3179 struct btrfs_multi_bio **multi_ret, int mirror_num)
3181 return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
3182 mirror_num);
3185 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
3186 u64 chunk_start, u64 physical, u64 devid,
3187 u64 **logical, int *naddrs, int *stripe_len)
3189 struct extent_map_tree *em_tree = &map_tree->map_tree;
3190 struct extent_map *em;
3191 struct map_lookup *map;
3192 u64 *buf;
3193 u64 bytenr;
3194 u64 length;
3195 u64 stripe_nr;
3196 int i, j, nr = 0;
3198 read_lock(&em_tree->lock);
3199 em = lookup_extent_mapping(em_tree, chunk_start, 1);
3200 read_unlock(&em_tree->lock);
3202 BUG_ON(!em || em->start != chunk_start);
3203 map = (struct map_lookup *)em->bdev;
3205 length = em->len;
3206 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3207 do_div(length, map->num_stripes / map->sub_stripes);
3208 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3209 do_div(length, map->num_stripes);
3211 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
3212 BUG_ON(!buf);
3214 for (i = 0; i < map->num_stripes; i++) {
3215 if (devid && map->stripes[i].dev->devid != devid)
3216 continue;
3217 if (map->stripes[i].physical > physical ||
3218 map->stripes[i].physical + length <= physical)
3219 continue;
3221 stripe_nr = physical - map->stripes[i].physical;
3222 do_div(stripe_nr, map->stripe_len);
3224 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3225 stripe_nr = stripe_nr * map->num_stripes + i;
3226 do_div(stripe_nr, map->sub_stripes);
3227 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3228 stripe_nr = stripe_nr * map->num_stripes + i;
3230 bytenr = chunk_start + stripe_nr * map->stripe_len;
3231 WARN_ON(nr >= map->num_stripes);
3232 for (j = 0; j < nr; j++) {
3233 if (buf[j] == bytenr)
3234 break;
3236 if (j == nr) {
3237 WARN_ON(nr >= map->num_stripes);
3238 buf[nr++] = bytenr;
3242 *logical = buf;
3243 *naddrs = nr;
3244 *stripe_len = map->stripe_len;
3246 free_extent_map(em);
3247 return 0;
3250 static void end_bio_multi_stripe(struct bio *bio, int err)
3252 struct btrfs_multi_bio *multi = bio->bi_private;
3253 int is_orig_bio = 0;
3255 if (err)
3256 atomic_inc(&multi->error);
3258 if (bio == multi->orig_bio)
3259 is_orig_bio = 1;
3261 if (atomic_dec_and_test(&multi->stripes_pending)) {
3262 if (!is_orig_bio) {
3263 bio_put(bio);
3264 bio = multi->orig_bio;
3266 bio->bi_private = multi->private;
3267 bio->bi_end_io = multi->end_io;
3268 /* only send an error to the higher layers if it is
3269 * beyond the tolerance of the multi-bio
3271 if (atomic_read(&multi->error) > multi->max_errors) {
3272 err = -EIO;
3273 } else if (err) {
3275 * this bio is actually up to date, we didn't
3276 * go over the max number of errors
3278 set_bit(BIO_UPTODATE, &bio->bi_flags);
3279 err = 0;
3281 kfree(multi);
3283 bio_endio(bio, err);
3284 } else if (!is_orig_bio) {
3285 bio_put(bio);
3289 struct async_sched {
3290 struct bio *bio;
3291 int rw;
3292 struct btrfs_fs_info *info;
3293 struct btrfs_work work;
3297 * see run_scheduled_bios for a description of why bios are collected for
3298 * async submit.
3300 * This will add one bio to the pending list for a device and make sure
3301 * the work struct is scheduled.
3303 static noinline int schedule_bio(struct btrfs_root *root,
3304 struct btrfs_device *device,
3305 int rw, struct bio *bio)
3307 int should_queue = 1;
3308 struct btrfs_pending_bios *pending_bios;
3310 /* don't bother with additional async steps for reads, right now */
3311 if (!(rw & REQ_WRITE)) {
3312 bio_get(bio);
3313 submit_bio(rw, bio);
3314 bio_put(bio);
3315 return 0;
3319 * nr_async_bios allows us to reliably return congestion to the
3320 * higher layers. Otherwise, the async bio makes it appear we have
3321 * made progress against dirty pages when we've really just put it
3322 * on a queue for later
3324 atomic_inc(&root->fs_info->nr_async_bios);
3325 WARN_ON(bio->bi_next);
3326 bio->bi_next = NULL;
3327 bio->bi_rw |= rw;
3329 spin_lock(&device->io_lock);
3330 if (bio->bi_rw & REQ_SYNC)
3331 pending_bios = &device->pending_sync_bios;
3332 else
3333 pending_bios = &device->pending_bios;
3335 if (pending_bios->tail)
3336 pending_bios->tail->bi_next = bio;
3338 pending_bios->tail = bio;
3339 if (!pending_bios->head)
3340 pending_bios->head = bio;
3341 if (device->running_pending)
3342 should_queue = 0;
3344 spin_unlock(&device->io_lock);
3346 if (should_queue)
3347 btrfs_queue_worker(&root->fs_info->submit_workers,
3348 &device->work);
3349 return 0;
3352 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
3353 int mirror_num, int async_submit)
3355 struct btrfs_mapping_tree *map_tree;
3356 struct btrfs_device *dev;
3357 struct bio *first_bio = bio;
3358 u64 logical = (u64)bio->bi_sector << 9;
3359 u64 length = 0;
3360 u64 map_length;
3361 struct btrfs_multi_bio *multi = NULL;
3362 int ret;
3363 int dev_nr = 0;
3364 int total_devs = 1;
3366 length = bio->bi_size;
3367 map_tree = &root->fs_info->mapping_tree;
3368 map_length = length;
3370 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
3371 mirror_num);
3372 BUG_ON(ret);
3374 total_devs = multi->num_stripes;
3375 if (map_length < length) {
3376 printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
3377 "len %llu\n", (unsigned long long)logical,
3378 (unsigned long long)length,
3379 (unsigned long long)map_length);
3380 BUG();
3382 multi->end_io = first_bio->bi_end_io;
3383 multi->private = first_bio->bi_private;
3384 multi->orig_bio = first_bio;
3385 atomic_set(&multi->stripes_pending, multi->num_stripes);
3387 while (dev_nr < total_devs) {
3388 if (total_devs > 1) {
3389 if (dev_nr < total_devs - 1) {
3390 bio = bio_clone(first_bio, GFP_NOFS);
3391 BUG_ON(!bio);
3392 } else {
3393 bio = first_bio;
3395 bio->bi_private = multi;
3396 bio->bi_end_io = end_bio_multi_stripe;
3398 bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
3399 dev = multi->stripes[dev_nr].dev;
3400 if (dev && dev->bdev && (rw != WRITE || dev->writeable)) {
3401 bio->bi_bdev = dev->bdev;
3402 if (async_submit)
3403 schedule_bio(root, dev, rw, bio);
3404 else
3405 submit_bio(rw, bio);
3406 } else {
3407 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
3408 bio->bi_sector = logical >> 9;
3409 bio_endio(bio, -EIO);
3411 dev_nr++;
3413 if (total_devs == 1)
3414 kfree(multi);
3415 return 0;
3418 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
3419 u8 *uuid, u8 *fsid)
3421 struct btrfs_device *device;
3422 struct btrfs_fs_devices *cur_devices;
3424 cur_devices = root->fs_info->fs_devices;
3425 while (cur_devices) {
3426 if (!fsid ||
3427 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3428 device = __find_device(&cur_devices->devices,
3429 devid, uuid);
3430 if (device)
3431 return device;
3433 cur_devices = cur_devices->seed;
3435 return NULL;
3438 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
3439 u64 devid, u8 *dev_uuid)
3441 struct btrfs_device *device;
3442 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
3444 device = kzalloc(sizeof(*device), GFP_NOFS);
3445 if (!device)
3446 return NULL;
3447 list_add(&device->dev_list,
3448 &fs_devices->devices);
3449 device->dev_root = root->fs_info->dev_root;
3450 device->devid = devid;
3451 device->work.func = pending_bios_fn;
3452 device->fs_devices = fs_devices;
3453 device->missing = 1;
3454 fs_devices->num_devices++;
3455 fs_devices->missing_devices++;
3456 spin_lock_init(&device->io_lock);
3457 INIT_LIST_HEAD(&device->dev_alloc_list);
3458 memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
3459 return device;
3462 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
3463 struct extent_buffer *leaf,
3464 struct btrfs_chunk *chunk)
3466 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3467 struct map_lookup *map;
3468 struct extent_map *em;
3469 u64 logical;
3470 u64 length;
3471 u64 devid;
3472 u8 uuid[BTRFS_UUID_SIZE];
3473 int num_stripes;
3474 int ret;
3475 int i;
3477 logical = key->offset;
3478 length = btrfs_chunk_length(leaf, chunk);
3480 read_lock(&map_tree->map_tree.lock);
3481 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
3482 read_unlock(&map_tree->map_tree.lock);
3484 /* already mapped? */
3485 if (em && em->start <= logical && em->start + em->len > logical) {
3486 free_extent_map(em);
3487 return 0;
3488 } else if (em) {
3489 free_extent_map(em);
3492 em = alloc_extent_map(GFP_NOFS);
3493 if (!em)
3494 return -ENOMEM;
3495 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3496 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
3497 if (!map) {
3498 free_extent_map(em);
3499 return -ENOMEM;
3502 em->bdev = (struct block_device *)map;
3503 em->start = logical;
3504 em->len = length;
3505 em->block_start = 0;
3506 em->block_len = em->len;
3508 map->num_stripes = num_stripes;
3509 map->io_width = btrfs_chunk_io_width(leaf, chunk);
3510 map->io_align = btrfs_chunk_io_align(leaf, chunk);
3511 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
3512 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
3513 map->type = btrfs_chunk_type(leaf, chunk);
3514 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
3515 for (i = 0; i < num_stripes; i++) {
3516 map->stripes[i].physical =
3517 btrfs_stripe_offset_nr(leaf, chunk, i);
3518 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
3519 read_extent_buffer(leaf, uuid, (unsigned long)
3520 btrfs_stripe_dev_uuid_nr(chunk, i),
3521 BTRFS_UUID_SIZE);
3522 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
3523 NULL);
3524 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
3525 kfree(map);
3526 free_extent_map(em);
3527 return -EIO;
3529 if (!map->stripes[i].dev) {
3530 map->stripes[i].dev =
3531 add_missing_dev(root, devid, uuid);
3532 if (!map->stripes[i].dev) {
3533 kfree(map);
3534 free_extent_map(em);
3535 return -EIO;
3538 map->stripes[i].dev->in_fs_metadata = 1;
3541 write_lock(&map_tree->map_tree.lock);
3542 ret = add_extent_mapping(&map_tree->map_tree, em);
3543 write_unlock(&map_tree->map_tree.lock);
3544 BUG_ON(ret);
3545 free_extent_map(em);
3547 return 0;
3550 static int fill_device_from_item(struct extent_buffer *leaf,
3551 struct btrfs_dev_item *dev_item,
3552 struct btrfs_device *device)
3554 unsigned long ptr;
3556 device->devid = btrfs_device_id(leaf, dev_item);
3557 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
3558 device->total_bytes = device->disk_total_bytes;
3559 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
3560 device->type = btrfs_device_type(leaf, dev_item);
3561 device->io_align = btrfs_device_io_align(leaf, dev_item);
3562 device->io_width = btrfs_device_io_width(leaf, dev_item);
3563 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
3565 ptr = (unsigned long)btrfs_device_uuid(dev_item);
3566 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
3568 return 0;
3571 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
3573 struct btrfs_fs_devices *fs_devices;
3574 int ret;
3576 mutex_lock(&uuid_mutex);
3578 fs_devices = root->fs_info->fs_devices->seed;
3579 while (fs_devices) {
3580 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3581 ret = 0;
3582 goto out;
3584 fs_devices = fs_devices->seed;
3587 fs_devices = find_fsid(fsid);
3588 if (!fs_devices) {
3589 ret = -ENOENT;
3590 goto out;
3593 fs_devices = clone_fs_devices(fs_devices);
3594 if (IS_ERR(fs_devices)) {
3595 ret = PTR_ERR(fs_devices);
3596 goto out;
3599 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
3600 root->fs_info->bdev_holder);
3601 if (ret)
3602 goto out;
3604 if (!fs_devices->seeding) {
3605 __btrfs_close_devices(fs_devices);
3606 free_fs_devices(fs_devices);
3607 ret = -EINVAL;
3608 goto out;
3611 fs_devices->seed = root->fs_info->fs_devices->seed;
3612 root->fs_info->fs_devices->seed = fs_devices;
3613 out:
3614 mutex_unlock(&uuid_mutex);
3615 return ret;
3618 static int read_one_dev(struct btrfs_root *root,
3619 struct extent_buffer *leaf,
3620 struct btrfs_dev_item *dev_item)
3622 struct btrfs_device *device;
3623 u64 devid;
3624 int ret;
3625 u8 fs_uuid[BTRFS_UUID_SIZE];
3626 u8 dev_uuid[BTRFS_UUID_SIZE];
3628 devid = btrfs_device_id(leaf, dev_item);
3629 read_extent_buffer(leaf, dev_uuid,
3630 (unsigned long)btrfs_device_uuid(dev_item),
3631 BTRFS_UUID_SIZE);
3632 read_extent_buffer(leaf, fs_uuid,
3633 (unsigned long)btrfs_device_fsid(dev_item),
3634 BTRFS_UUID_SIZE);
3636 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
3637 ret = open_seed_devices(root, fs_uuid);
3638 if (ret && !btrfs_test_opt(root, DEGRADED))
3639 return ret;
3642 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
3643 if (!device || !device->bdev) {
3644 if (!btrfs_test_opt(root, DEGRADED))
3645 return -EIO;
3647 if (!device) {
3648 printk(KERN_WARNING "warning devid %llu missing\n",
3649 (unsigned long long)devid);
3650 device = add_missing_dev(root, devid, dev_uuid);
3651 if (!device)
3652 return -ENOMEM;
3653 } else if (!device->missing) {
3655 * this happens when a device that was properly setup
3656 * in the device info lists suddenly goes bad.
3657 * device->bdev is NULL, and so we have to set
3658 * device->missing to one here
3660 root->fs_info->fs_devices->missing_devices++;
3661 device->missing = 1;
3665 if (device->fs_devices != root->fs_info->fs_devices) {
3666 BUG_ON(device->writeable);
3667 if (device->generation !=
3668 btrfs_device_generation(leaf, dev_item))
3669 return -EINVAL;
3672 fill_device_from_item(leaf, dev_item, device);
3673 device->dev_root = root->fs_info->dev_root;
3674 device->in_fs_metadata = 1;
3675 if (device->writeable)
3676 device->fs_devices->total_rw_bytes += device->total_bytes;
3677 ret = 0;
3678 return ret;
3681 int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
3683 struct btrfs_dev_item *dev_item;
3685 dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
3686 dev_item);
3687 return read_one_dev(root, buf, dev_item);
3690 int btrfs_read_sys_array(struct btrfs_root *root)
3692 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
3693 struct extent_buffer *sb;
3694 struct btrfs_disk_key *disk_key;
3695 struct btrfs_chunk *chunk;
3696 u8 *ptr;
3697 unsigned long sb_ptr;
3698 int ret = 0;
3699 u32 num_stripes;
3700 u32 array_size;
3701 u32 len = 0;
3702 u32 cur;
3703 struct btrfs_key key;
3705 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
3706 BTRFS_SUPER_INFO_SIZE);
3707 if (!sb)
3708 return -ENOMEM;
3709 btrfs_set_buffer_uptodate(sb);
3710 btrfs_set_buffer_lockdep_class(sb, 0);
3712 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
3713 array_size = btrfs_super_sys_array_size(super_copy);
3715 ptr = super_copy->sys_chunk_array;
3716 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
3717 cur = 0;
3719 while (cur < array_size) {
3720 disk_key = (struct btrfs_disk_key *)ptr;
3721 btrfs_disk_key_to_cpu(&key, disk_key);
3723 len = sizeof(*disk_key); ptr += len;
3724 sb_ptr += len;
3725 cur += len;
3727 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3728 chunk = (struct btrfs_chunk *)sb_ptr;
3729 ret = read_one_chunk(root, &key, sb, chunk);
3730 if (ret)
3731 break;
3732 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
3733 len = btrfs_chunk_item_size(num_stripes);
3734 } else {
3735 ret = -EIO;
3736 break;
3738 ptr += len;
3739 sb_ptr += len;
3740 cur += len;
3742 free_extent_buffer(sb);
3743 return ret;
3746 int btrfs_read_chunk_tree(struct btrfs_root *root)
3748 struct btrfs_path *path;
3749 struct extent_buffer *leaf;
3750 struct btrfs_key key;
3751 struct btrfs_key found_key;
3752 int ret;
3753 int slot;
3755 root = root->fs_info->chunk_root;
3757 path = btrfs_alloc_path();
3758 if (!path)
3759 return -ENOMEM;
3761 /* first we search for all of the device items, and then we
3762 * read in all of the chunk items. This way we can create chunk
3763 * mappings that reference all of the devices that are afound
3765 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
3766 key.offset = 0;
3767 key.type = 0;
3768 again:
3769 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3770 if (ret < 0)
3771 goto error;
3772 while (1) {
3773 leaf = path->nodes[0];
3774 slot = path->slots[0];
3775 if (slot >= btrfs_header_nritems(leaf)) {
3776 ret = btrfs_next_leaf(root, path);
3777 if (ret == 0)
3778 continue;
3779 if (ret < 0)
3780 goto error;
3781 break;
3783 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3784 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3785 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
3786 break;
3787 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
3788 struct btrfs_dev_item *dev_item;
3789 dev_item = btrfs_item_ptr(leaf, slot,
3790 struct btrfs_dev_item);
3791 ret = read_one_dev(root, leaf, dev_item);
3792 if (ret)
3793 goto error;
3795 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
3796 struct btrfs_chunk *chunk;
3797 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3798 ret = read_one_chunk(root, &found_key, leaf, chunk);
3799 if (ret)
3800 goto error;
3802 path->slots[0]++;
3804 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3805 key.objectid = 0;
3806 btrfs_release_path(root, path);
3807 goto again;
3809 ret = 0;
3810 error:
3811 btrfs_free_path(path);
3812 return ret;