spi-topcliff-pch: supports a spi mode setup and bit order setup by IO control
[zen-stable.git] / arch / arm / kernel / kprobes.h
blob38945f78f9f1cea97a9607d9a1572b9e5184ad81
1 /*
2 * arch/arm/kernel/kprobes.h
4 * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>.
6 * Some contents moved here from arch/arm/include/asm/kprobes.h which is
7 * Copyright (C) 2006, 2007 Motorola Inc.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
19 #ifndef _ARM_KERNEL_KPROBES_H
20 #define _ARM_KERNEL_KPROBES_H
23 * These undefined instructions must be unique and
24 * reserved solely for kprobes' use.
26 #define KPROBE_ARM_BREAKPOINT_INSTRUCTION 0x07f001f8
27 #define KPROBE_THUMB16_BREAKPOINT_INSTRUCTION 0xde18
28 #define KPROBE_THUMB32_BREAKPOINT_INSTRUCTION 0xf7f0a018
31 enum kprobe_insn {
32 INSN_REJECTED,
33 INSN_GOOD,
34 INSN_GOOD_NO_SLOT
37 typedef enum kprobe_insn (kprobe_decode_insn_t)(kprobe_opcode_t,
38 struct arch_specific_insn *);
40 #ifdef CONFIG_THUMB2_KERNEL
42 enum kprobe_insn thumb16_kprobe_decode_insn(kprobe_opcode_t,
43 struct arch_specific_insn *);
44 enum kprobe_insn thumb32_kprobe_decode_insn(kprobe_opcode_t,
45 struct arch_specific_insn *);
47 #else /* !CONFIG_THUMB2_KERNEL */
49 enum kprobe_insn arm_kprobe_decode_insn(kprobe_opcode_t,
50 struct arch_specific_insn *);
51 #endif
53 void __init arm_kprobe_decode_init(void);
55 extern kprobe_check_cc * const kprobe_condition_checks[16];
58 #if __LINUX_ARM_ARCH__ >= 7
60 /* str_pc_offset is architecturally defined from ARMv7 onwards */
61 #define str_pc_offset 8
62 #define find_str_pc_offset()
64 #else /* __LINUX_ARM_ARCH__ < 7 */
66 /* We need a run-time check to determine str_pc_offset */
67 extern int str_pc_offset;
68 void __init find_str_pc_offset(void);
70 #endif
74 * Update ITSTATE after normal execution of an IT block instruction.
76 * The 8 IT state bits are split into two parts in CPSR:
77 * ITSTATE<1:0> are in CPSR<26:25>
78 * ITSTATE<7:2> are in CPSR<15:10>
80 static inline unsigned long it_advance(unsigned long cpsr)
82 if ((cpsr & 0x06000400) == 0) {
83 /* ITSTATE<2:0> == 0 means end of IT block, so clear IT state */
84 cpsr &= ~PSR_IT_MASK;
85 } else {
86 /* We need to shift left ITSTATE<4:0> */
87 const unsigned long mask = 0x06001c00; /* Mask ITSTATE<4:0> */
88 unsigned long it = cpsr & mask;
89 it <<= 1;
90 it |= it >> (27 - 10); /* Carry ITSTATE<2> to correct place */
91 it &= mask;
92 cpsr &= ~mask;
93 cpsr |= it;
95 return cpsr;
98 static inline void __kprobes bx_write_pc(long pcv, struct pt_regs *regs)
100 long cpsr = regs->ARM_cpsr;
101 if (pcv & 0x1) {
102 cpsr |= PSR_T_BIT;
103 pcv &= ~0x1;
104 } else {
105 cpsr &= ~PSR_T_BIT;
106 pcv &= ~0x2; /* Avoid UNPREDICTABLE address allignment */
108 regs->ARM_cpsr = cpsr;
109 regs->ARM_pc = pcv;
113 #if __LINUX_ARM_ARCH__ >= 6
115 /* Kernels built for >= ARMv6 should never run on <= ARMv5 hardware, so... */
116 #define load_write_pc_interworks true
117 #define test_load_write_pc_interworking()
119 #else /* __LINUX_ARM_ARCH__ < 6 */
121 /* We need run-time testing to determine if load_write_pc() should interwork. */
122 extern bool load_write_pc_interworks;
123 void __init test_load_write_pc_interworking(void);
125 #endif
127 static inline void __kprobes load_write_pc(long pcv, struct pt_regs *regs)
129 if (load_write_pc_interworks)
130 bx_write_pc(pcv, regs);
131 else
132 regs->ARM_pc = pcv;
136 #if __LINUX_ARM_ARCH__ >= 7
138 #define alu_write_pc_interworks true
139 #define test_alu_write_pc_interworking()
141 #elif __LINUX_ARM_ARCH__ <= 5
143 /* Kernels built for <= ARMv5 should never run on >= ARMv6 hardware, so... */
144 #define alu_write_pc_interworks false
145 #define test_alu_write_pc_interworking()
147 #else /* __LINUX_ARM_ARCH__ == 6 */
149 /* We could be an ARMv6 binary on ARMv7 hardware so we need a run-time check. */
150 extern bool alu_write_pc_interworks;
151 void __init test_alu_write_pc_interworking(void);
153 #endif /* __LINUX_ARM_ARCH__ == 6 */
155 static inline void __kprobes alu_write_pc(long pcv, struct pt_regs *regs)
157 if (alu_write_pc_interworks)
158 bx_write_pc(pcv, regs);
159 else
160 regs->ARM_pc = pcv;
164 void __kprobes kprobe_simulate_nop(struct kprobe *p, struct pt_regs *regs);
165 void __kprobes kprobe_emulate_none(struct kprobe *p, struct pt_regs *regs);
167 enum kprobe_insn __kprobes
168 kprobe_decode_ldmstm(kprobe_opcode_t insn, struct arch_specific_insn *asi);
171 * Test if load/store instructions writeback the address register.
172 * if P (bit 24) == 0 or W (bit 21) == 1
174 #define is_writeback(insn) ((insn ^ 0x01000000) & 0x01200000)
177 * The following definitions and macros are used to build instruction
178 * decoding tables for use by kprobe_decode_insn.
180 * These tables are a concatenation of entries each of which consist of one of
181 * the decode_* structs. All of the fields in every type of decode structure
182 * are of the union type decode_item, therefore the entire decode table can be
183 * viewed as an array of these and declared like:
185 * static const union decode_item table_name[] = {};
187 * In order to construct each entry in the table, macros are used to
188 * initialise a number of sequential decode_item values in a layout which
189 * matches the relevant struct. E.g. DECODE_SIMULATE initialise a struct
190 * decode_simulate by initialising four decode_item objects like this...
192 * {.bits = _type},
193 * {.bits = _mask},
194 * {.bits = _value},
195 * {.handler = _handler},
197 * Initialising a specified member of the union means that the compiler
198 * will produce a warning if the argument is of an incorrect type.
200 * Below is a list of each of the macros used to initialise entries and a
201 * description of the action performed when that entry is matched to an
202 * instruction. A match is found when (instruction & mask) == value.
204 * DECODE_TABLE(mask, value, table)
205 * Instruction decoding jumps to parsing the new sub-table 'table'.
207 * DECODE_CUSTOM(mask, value, decoder)
208 * The custom function 'decoder' is called to the complete decoding
209 * of an instruction.
211 * DECODE_SIMULATE(mask, value, handler)
212 * Set the probes instruction handler to 'handler', this will be used
213 * to simulate the instruction when the probe is hit. Decoding returns
214 * with INSN_GOOD_NO_SLOT.
216 * DECODE_EMULATE(mask, value, handler)
217 * Set the probes instruction handler to 'handler', this will be used
218 * to emulate the instruction when the probe is hit. The modified
219 * instruction (see below) is placed in the probes instruction slot so it
220 * may be called by the emulation code. Decoding returns with INSN_GOOD.
222 * DECODE_REJECT(mask, value)
223 * Instruction decoding fails with INSN_REJECTED
225 * DECODE_OR(mask, value)
226 * This allows the mask/value test of multiple table entries to be
227 * logically ORed. Once an 'or' entry is matched the decoding action to
228 * be performed is that of the next entry which isn't an 'or'. E.g.
230 * DECODE_OR (mask1, value1)
231 * DECODE_OR (mask2, value2)
232 * DECODE_SIMULATE (mask3, value3, simulation_handler)
234 * This means that if any of the three mask/value pairs match the
235 * instruction being decoded, then 'simulation_handler' will be used
236 * for it.
238 * Both the SIMULATE and EMULATE macros have a second form which take an
239 * additional 'regs' argument.
241 * DECODE_SIMULATEX(mask, value, handler, regs)
242 * DECODE_EMULATEX (mask, value, handler, regs)
244 * These are used to specify what kind of CPU register is encoded in each of the
245 * least significant 5 nibbles of the instruction being decoded. The regs value
246 * is specified using the REGS macro, this takes any of the REG_TYPE_* values
247 * from enum decode_reg_type as arguments; only the '*' part of the name is
248 * given. E.g.
250 * REGS(0, ANY, NOPC, 0, ANY)
252 * This indicates an instruction is encoded like:
254 * bits 19..16 ignore
255 * bits 15..12 any register allowed here
256 * bits 11.. 8 any register except PC allowed here
257 * bits 7.. 4 ignore
258 * bits 3.. 0 any register allowed here
260 * This register specification is checked after a decode table entry is found to
261 * match an instruction (through the mask/value test). Any invalid register then
262 * found in the instruction will cause decoding to fail with INSN_REJECTED. In
263 * the above example this would happen if bits 11..8 of the instruction were
264 * 1111, indicating R15 or PC.
266 * As well as checking for legal combinations of registers, this data is also
267 * used to modify the registers encoded in the instructions so that an
268 * emulation routines can use it. (See decode_regs() and INSN_NEW_BITS.)
270 * Here is a real example which matches ARM instructions of the form
271 * "AND <Rd>,<Rn>,<Rm>,<shift> <Rs>"
273 * DECODE_EMULATEX (0x0e000090, 0x00000010, emulate_rd12rn16rm0rs8_rwflags,
274 * REGS(ANY, ANY, NOPC, 0, ANY)),
275 * ^ ^ ^ ^
276 * Rn Rd Rs Rm
278 * Decoding the instruction "AND R4, R5, R6, ASL R15" will be rejected because
279 * Rs == R15
281 * Decoding the instruction "AND R4, R5, R6, ASL R7" will be accepted and the
282 * instruction will be modified to "AND R0, R2, R3, ASL R1" and then placed into
283 * the kprobes instruction slot. This can then be called later by the handler
284 * function emulate_rd12rn16rm0rs8_rwflags in order to simulate the instruction.
287 enum decode_type {
288 DECODE_TYPE_END,
289 DECODE_TYPE_TABLE,
290 DECODE_TYPE_CUSTOM,
291 DECODE_TYPE_SIMULATE,
292 DECODE_TYPE_EMULATE,
293 DECODE_TYPE_OR,
294 DECODE_TYPE_REJECT,
295 NUM_DECODE_TYPES /* Must be last enum */
298 #define DECODE_TYPE_BITS 4
299 #define DECODE_TYPE_MASK ((1 << DECODE_TYPE_BITS) - 1)
301 enum decode_reg_type {
302 REG_TYPE_NONE = 0, /* Not a register, ignore */
303 REG_TYPE_ANY, /* Any register allowed */
304 REG_TYPE_SAMEAS16, /* Register should be same as that at bits 19..16 */
305 REG_TYPE_SP, /* Register must be SP */
306 REG_TYPE_PC, /* Register must be PC */
307 REG_TYPE_NOSP, /* Register must not be SP */
308 REG_TYPE_NOSPPC, /* Register must not be SP or PC */
309 REG_TYPE_NOPC, /* Register must not be PC */
310 REG_TYPE_NOPCWB, /* No PC if load/store write-back flag also set */
312 /* The following types are used when the encoding for PC indicates
313 * another instruction form. This distiction only matters for test
314 * case coverage checks.
316 REG_TYPE_NOPCX, /* Register must not be PC */
317 REG_TYPE_NOSPPCX, /* Register must not be SP or PC */
319 /* Alias to allow '0' arg to be used in REGS macro. */
320 REG_TYPE_0 = REG_TYPE_NONE
323 #define REGS(r16, r12, r8, r4, r0) \
324 ((REG_TYPE_##r16) << 16) + \
325 ((REG_TYPE_##r12) << 12) + \
326 ((REG_TYPE_##r8) << 8) + \
327 ((REG_TYPE_##r4) << 4) + \
328 (REG_TYPE_##r0)
330 union decode_item {
331 u32 bits;
332 const union decode_item *table;
333 kprobe_insn_handler_t *handler;
334 kprobe_decode_insn_t *decoder;
338 #define DECODE_END \
339 {.bits = DECODE_TYPE_END}
342 struct decode_header {
343 union decode_item type_regs;
344 union decode_item mask;
345 union decode_item value;
348 #define DECODE_HEADER(_type, _mask, _value, _regs) \
349 {.bits = (_type) | ((_regs) << DECODE_TYPE_BITS)}, \
350 {.bits = (_mask)}, \
351 {.bits = (_value)}
354 struct decode_table {
355 struct decode_header header;
356 union decode_item table;
359 #define DECODE_TABLE(_mask, _value, _table) \
360 DECODE_HEADER(DECODE_TYPE_TABLE, _mask, _value, 0), \
361 {.table = (_table)}
364 struct decode_custom {
365 struct decode_header header;
366 union decode_item decoder;
369 #define DECODE_CUSTOM(_mask, _value, _decoder) \
370 DECODE_HEADER(DECODE_TYPE_CUSTOM, _mask, _value, 0), \
371 {.decoder = (_decoder)}
374 struct decode_simulate {
375 struct decode_header header;
376 union decode_item handler;
379 #define DECODE_SIMULATEX(_mask, _value, _handler, _regs) \
380 DECODE_HEADER(DECODE_TYPE_SIMULATE, _mask, _value, _regs), \
381 {.handler = (_handler)}
383 #define DECODE_SIMULATE(_mask, _value, _handler) \
384 DECODE_SIMULATEX(_mask, _value, _handler, 0)
387 struct decode_emulate {
388 struct decode_header header;
389 union decode_item handler;
392 #define DECODE_EMULATEX(_mask, _value, _handler, _regs) \
393 DECODE_HEADER(DECODE_TYPE_EMULATE, _mask, _value, _regs), \
394 {.handler = (_handler)}
396 #define DECODE_EMULATE(_mask, _value, _handler) \
397 DECODE_EMULATEX(_mask, _value, _handler, 0)
400 struct decode_or {
401 struct decode_header header;
404 #define DECODE_OR(_mask, _value) \
405 DECODE_HEADER(DECODE_TYPE_OR, _mask, _value, 0)
408 struct decode_reject {
409 struct decode_header header;
412 #define DECODE_REJECT(_mask, _value) \
413 DECODE_HEADER(DECODE_TYPE_REJECT, _mask, _value, 0)
416 #ifdef CONFIG_THUMB2_KERNEL
417 extern const union decode_item kprobe_decode_thumb16_table[];
418 extern const union decode_item kprobe_decode_thumb32_table[];
419 #else
420 extern const union decode_item kprobe_decode_arm_table[];
421 #endif
424 int kprobe_decode_insn(kprobe_opcode_t insn, struct arch_specific_insn *asi,
425 const union decode_item *table, bool thumb16);
428 #endif /* _ARM_KERNEL_KPROBES_H */