spi-topcliff-pch: supports a spi mode setup and bit order setup by IO control
[zen-stable.git] / arch / arm / mm / fault.c
blob90e366a133e3644a03de0216c841b035a1d1fb10
1 /*
2 * linux/arch/arm/mm/fault.c
4 * Copyright (C) 1995 Linus Torvalds
5 * Modifications for ARM processor (c) 1995-2004 Russell King
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/module.h>
12 #include <linux/signal.h>
13 #include <linux/mm.h>
14 #include <linux/hardirq.h>
15 #include <linux/init.h>
16 #include <linux/kprobes.h>
17 #include <linux/uaccess.h>
18 #include <linux/page-flags.h>
19 #include <linux/sched.h>
20 #include <linux/highmem.h>
21 #include <linux/perf_event.h>
23 #include <asm/exception.h>
24 #include <asm/system.h>
25 #include <asm/pgtable.h>
26 #include <asm/tlbflush.h>
28 #include "fault.h"
30 #ifdef CONFIG_MMU
32 #ifdef CONFIG_KPROBES
33 static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
35 int ret = 0;
37 if (!user_mode(regs)) {
38 /* kprobe_running() needs smp_processor_id() */
39 preempt_disable();
40 if (kprobe_running() && kprobe_fault_handler(regs, fsr))
41 ret = 1;
42 preempt_enable();
45 return ret;
47 #else
48 static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
50 return 0;
52 #endif
55 * This is useful to dump out the page tables associated with
56 * 'addr' in mm 'mm'.
58 void show_pte(struct mm_struct *mm, unsigned long addr)
60 pgd_t *pgd;
62 if (!mm)
63 mm = &init_mm;
65 printk(KERN_ALERT "pgd = %p\n", mm->pgd);
66 pgd = pgd_offset(mm, addr);
67 printk(KERN_ALERT "[%08lx] *pgd=%08llx",
68 addr, (long long)pgd_val(*pgd));
70 do {
71 pud_t *pud;
72 pmd_t *pmd;
73 pte_t *pte;
75 if (pgd_none(*pgd))
76 break;
78 if (pgd_bad(*pgd)) {
79 printk("(bad)");
80 break;
83 pud = pud_offset(pgd, addr);
84 if (PTRS_PER_PUD != 1)
85 printk(", *pud=%08llx", (long long)pud_val(*pud));
87 if (pud_none(*pud))
88 break;
90 if (pud_bad(*pud)) {
91 printk("(bad)");
92 break;
95 pmd = pmd_offset(pud, addr);
96 if (PTRS_PER_PMD != 1)
97 printk(", *pmd=%08llx", (long long)pmd_val(*pmd));
99 if (pmd_none(*pmd))
100 break;
102 if (pmd_bad(*pmd)) {
103 printk("(bad)");
104 break;
107 /* We must not map this if we have highmem enabled */
108 if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
109 break;
111 pte = pte_offset_map(pmd, addr);
112 printk(", *pte=%08llx", (long long)pte_val(*pte));
113 #ifndef CONFIG_ARM_LPAE
114 printk(", *ppte=%08llx",
115 (long long)pte_val(pte[PTE_HWTABLE_PTRS]));
116 #endif
117 pte_unmap(pte);
118 } while(0);
120 printk("\n");
122 #else /* CONFIG_MMU */
123 void show_pte(struct mm_struct *mm, unsigned long addr)
125 #endif /* CONFIG_MMU */
128 * Oops. The kernel tried to access some page that wasn't present.
130 static void
131 __do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
132 struct pt_regs *regs)
135 * Are we prepared to handle this kernel fault?
137 if (fixup_exception(regs))
138 return;
141 * No handler, we'll have to terminate things with extreme prejudice.
143 bust_spinlocks(1);
144 printk(KERN_ALERT
145 "Unable to handle kernel %s at virtual address %08lx\n",
146 (addr < PAGE_SIZE) ? "NULL pointer dereference" :
147 "paging request", addr);
149 show_pte(mm, addr);
150 die("Oops", regs, fsr);
151 bust_spinlocks(0);
152 do_exit(SIGKILL);
156 * Something tried to access memory that isn't in our memory map..
157 * User mode accesses just cause a SIGSEGV
159 static void
160 __do_user_fault(struct task_struct *tsk, unsigned long addr,
161 unsigned int fsr, unsigned int sig, int code,
162 struct pt_regs *regs)
164 struct siginfo si;
166 #ifdef CONFIG_DEBUG_USER
167 if (user_debug & UDBG_SEGV) {
168 printk(KERN_DEBUG "%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
169 tsk->comm, sig, addr, fsr);
170 show_pte(tsk->mm, addr);
171 show_regs(regs);
173 #endif
175 tsk->thread.address = addr;
176 tsk->thread.error_code = fsr;
177 tsk->thread.trap_no = 14;
178 si.si_signo = sig;
179 si.si_errno = 0;
180 si.si_code = code;
181 si.si_addr = (void __user *)addr;
182 force_sig_info(sig, &si, tsk);
185 void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
187 struct task_struct *tsk = current;
188 struct mm_struct *mm = tsk->active_mm;
191 * If we are in kernel mode at this point, we
192 * have no context to handle this fault with.
194 if (user_mode(regs))
195 __do_user_fault(tsk, addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
196 else
197 __do_kernel_fault(mm, addr, fsr, regs);
200 #ifdef CONFIG_MMU
201 #define VM_FAULT_BADMAP 0x010000
202 #define VM_FAULT_BADACCESS 0x020000
205 * Check that the permissions on the VMA allow for the fault which occurred.
206 * If we encountered a write fault, we must have write permission, otherwise
207 * we allow any permission.
209 static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma)
211 unsigned int mask = VM_READ | VM_WRITE | VM_EXEC;
213 if (fsr & FSR_WRITE)
214 mask = VM_WRITE;
215 if (fsr & FSR_LNX_PF)
216 mask = VM_EXEC;
218 return vma->vm_flags & mask ? false : true;
221 static int __kprobes
222 __do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
223 unsigned int flags, struct task_struct *tsk)
225 struct vm_area_struct *vma;
226 int fault;
228 vma = find_vma(mm, addr);
229 fault = VM_FAULT_BADMAP;
230 if (unlikely(!vma))
231 goto out;
232 if (unlikely(vma->vm_start > addr))
233 goto check_stack;
236 * Ok, we have a good vm_area for this
237 * memory access, so we can handle it.
239 good_area:
240 if (access_error(fsr, vma)) {
241 fault = VM_FAULT_BADACCESS;
242 goto out;
245 return handle_mm_fault(mm, vma, addr & PAGE_MASK, flags);
247 check_stack:
248 /* Don't allow expansion below FIRST_USER_ADDRESS */
249 if (vma->vm_flags & VM_GROWSDOWN &&
250 addr >= FIRST_USER_ADDRESS && !expand_stack(vma, addr))
251 goto good_area;
252 out:
253 return fault;
256 static int __kprobes
257 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
259 struct task_struct *tsk;
260 struct mm_struct *mm;
261 int fault, sig, code;
262 int write = fsr & FSR_WRITE;
263 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE |
264 (write ? FAULT_FLAG_WRITE : 0);
266 if (notify_page_fault(regs, fsr))
267 return 0;
269 tsk = current;
270 mm = tsk->mm;
272 /* Enable interrupts if they were enabled in the parent context. */
273 if (interrupts_enabled(regs))
274 local_irq_enable();
277 * If we're in an interrupt or have no user
278 * context, we must not take the fault..
280 if (in_atomic() || !mm)
281 goto no_context;
284 * As per x86, we may deadlock here. However, since the kernel only
285 * validly references user space from well defined areas of the code,
286 * we can bug out early if this is from code which shouldn't.
288 if (!down_read_trylock(&mm->mmap_sem)) {
289 if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc))
290 goto no_context;
291 retry:
292 down_read(&mm->mmap_sem);
293 } else {
295 * The above down_read_trylock() might have succeeded in
296 * which case, we'll have missed the might_sleep() from
297 * down_read()
299 might_sleep();
300 #ifdef CONFIG_DEBUG_VM
301 if (!user_mode(regs) &&
302 !search_exception_tables(regs->ARM_pc))
303 goto no_context;
304 #endif
307 fault = __do_page_fault(mm, addr, fsr, flags, tsk);
309 /* If we need to retry but a fatal signal is pending, handle the
310 * signal first. We do not need to release the mmap_sem because
311 * it would already be released in __lock_page_or_retry in
312 * mm/filemap.c. */
313 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
314 return 0;
317 * Major/minor page fault accounting is only done on the
318 * initial attempt. If we go through a retry, it is extremely
319 * likely that the page will be found in page cache at that point.
322 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
323 if (flags & FAULT_FLAG_ALLOW_RETRY) {
324 if (fault & VM_FAULT_MAJOR) {
325 tsk->maj_flt++;
326 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
327 regs, addr);
328 } else {
329 tsk->min_flt++;
330 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
331 regs, addr);
333 if (fault & VM_FAULT_RETRY) {
334 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
335 * of starvation. */
336 flags &= ~FAULT_FLAG_ALLOW_RETRY;
337 goto retry;
341 up_read(&mm->mmap_sem);
344 * Handle the "normal" case first - VM_FAULT_MAJOR / VM_FAULT_MINOR
346 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
347 return 0;
349 if (fault & VM_FAULT_OOM) {
351 * We ran out of memory, call the OOM killer, and return to
352 * userspace (which will retry the fault, or kill us if we
353 * got oom-killed)
355 pagefault_out_of_memory();
356 return 0;
360 * If we are in kernel mode at this point, we
361 * have no context to handle this fault with.
363 if (!user_mode(regs))
364 goto no_context;
366 if (fault & VM_FAULT_SIGBUS) {
368 * We had some memory, but were unable to
369 * successfully fix up this page fault.
371 sig = SIGBUS;
372 code = BUS_ADRERR;
373 } else {
375 * Something tried to access memory that
376 * isn't in our memory map..
378 sig = SIGSEGV;
379 code = fault == VM_FAULT_BADACCESS ?
380 SEGV_ACCERR : SEGV_MAPERR;
383 __do_user_fault(tsk, addr, fsr, sig, code, regs);
384 return 0;
386 no_context:
387 __do_kernel_fault(mm, addr, fsr, regs);
388 return 0;
390 #else /* CONFIG_MMU */
391 static int
392 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
394 return 0;
396 #endif /* CONFIG_MMU */
399 * First Level Translation Fault Handler
401 * We enter here because the first level page table doesn't contain
402 * a valid entry for the address.
404 * If the address is in kernel space (>= TASK_SIZE), then we are
405 * probably faulting in the vmalloc() area.
407 * If the init_task's first level page tables contains the relevant
408 * entry, we copy the it to this task. If not, we send the process
409 * a signal, fixup the exception, or oops the kernel.
411 * NOTE! We MUST NOT take any locks for this case. We may be in an
412 * interrupt or a critical region, and should only copy the information
413 * from the master page table, nothing more.
415 #ifdef CONFIG_MMU
416 static int __kprobes
417 do_translation_fault(unsigned long addr, unsigned int fsr,
418 struct pt_regs *regs)
420 unsigned int index;
421 pgd_t *pgd, *pgd_k;
422 pud_t *pud, *pud_k;
423 pmd_t *pmd, *pmd_k;
425 if (addr < TASK_SIZE)
426 return do_page_fault(addr, fsr, regs);
428 if (user_mode(regs))
429 goto bad_area;
431 index = pgd_index(addr);
434 * FIXME: CP15 C1 is write only on ARMv3 architectures.
436 pgd = cpu_get_pgd() + index;
437 pgd_k = init_mm.pgd + index;
439 if (pgd_none(*pgd_k))
440 goto bad_area;
441 if (!pgd_present(*pgd))
442 set_pgd(pgd, *pgd_k);
444 pud = pud_offset(pgd, addr);
445 pud_k = pud_offset(pgd_k, addr);
447 if (pud_none(*pud_k))
448 goto bad_area;
449 if (!pud_present(*pud))
450 set_pud(pud, *pud_k);
452 pmd = pmd_offset(pud, addr);
453 pmd_k = pmd_offset(pud_k, addr);
455 #ifdef CONFIG_ARM_LPAE
457 * Only one hardware entry per PMD with LPAE.
459 index = 0;
460 #else
462 * On ARM one Linux PGD entry contains two hardware entries (see page
463 * tables layout in pgtable.h). We normally guarantee that we always
464 * fill both L1 entries. But create_mapping() doesn't follow the rule.
465 * It can create inidividual L1 entries, so here we have to call
466 * pmd_none() check for the entry really corresponded to address, not
467 * for the first of pair.
469 index = (addr >> SECTION_SHIFT) & 1;
470 #endif
471 if (pmd_none(pmd_k[index]))
472 goto bad_area;
474 copy_pmd(pmd, pmd_k);
475 return 0;
477 bad_area:
478 do_bad_area(addr, fsr, regs);
479 return 0;
481 #else /* CONFIG_MMU */
482 static int
483 do_translation_fault(unsigned long addr, unsigned int fsr,
484 struct pt_regs *regs)
486 return 0;
488 #endif /* CONFIG_MMU */
491 * Some section permission faults need to be handled gracefully.
492 * They can happen due to a __{get,put}_user during an oops.
494 static int
495 do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
497 do_bad_area(addr, fsr, regs);
498 return 0;
502 * This abort handler always returns "fault".
504 static int
505 do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
507 return 1;
510 struct fsr_info {
511 int (*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs);
512 int sig;
513 int code;
514 const char *name;
517 /* FSR definition */
518 #ifdef CONFIG_ARM_LPAE
519 #include "fsr-3level.c"
520 #else
521 #include "fsr-2level.c"
522 #endif
524 void __init
525 hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
526 int sig, int code, const char *name)
528 if (nr < 0 || nr >= ARRAY_SIZE(fsr_info))
529 BUG();
531 fsr_info[nr].fn = fn;
532 fsr_info[nr].sig = sig;
533 fsr_info[nr].code = code;
534 fsr_info[nr].name = name;
538 * Dispatch a data abort to the relevant handler.
540 asmlinkage void __exception
541 do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
543 const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
544 struct siginfo info;
546 if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
547 return;
549 printk(KERN_ALERT "Unhandled fault: %s (0x%03x) at 0x%08lx\n",
550 inf->name, fsr, addr);
552 info.si_signo = inf->sig;
553 info.si_errno = 0;
554 info.si_code = inf->code;
555 info.si_addr = (void __user *)addr;
556 arm_notify_die("", regs, &info, fsr, 0);
559 void __init
560 hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
561 int sig, int code, const char *name)
563 if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info))
564 BUG();
566 ifsr_info[nr].fn = fn;
567 ifsr_info[nr].sig = sig;
568 ifsr_info[nr].code = code;
569 ifsr_info[nr].name = name;
572 asmlinkage void __exception
573 do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs)
575 const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr);
576 struct siginfo info;
578 if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs))
579 return;
581 printk(KERN_ALERT "Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n",
582 inf->name, ifsr, addr);
584 info.si_signo = inf->sig;
585 info.si_errno = 0;
586 info.si_code = inf->code;
587 info.si_addr = (void __user *)addr;
588 arm_notify_die("", regs, &info, ifsr, 0);
591 #ifndef CONFIG_ARM_LPAE
592 static int __init exceptions_init(void)
594 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
595 hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR,
596 "I-cache maintenance fault");
599 if (cpu_architecture() >= CPU_ARCH_ARMv7) {
601 * TODO: Access flag faults introduced in ARMv6K.
602 * Runtime check for 'K' extension is needed
604 hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR,
605 "section access flag fault");
606 hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR,
607 "section access flag fault");
610 return 0;
613 arch_initcall(exceptions_init);
614 #endif