2 * linux/arch/arm/mm/mmu.c
4 * Copyright (C) 1995-2005 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
18 #include <linux/vmalloc.h>
20 #include <asm/cputype.h>
21 #include <asm/sections.h>
22 #include <asm/cachetype.h>
23 #include <asm/setup.h>
24 #include <asm/sizes.h>
25 #include <asm/smp_plat.h>
27 #include <asm/highmem.h>
28 #include <asm/traps.h>
30 #include <asm/mach/arch.h>
31 #include <asm/mach/map.h>
36 * empty_zero_page is a special page that is used for
37 * zero-initialized data and COW.
39 struct page
*empty_zero_page
;
40 EXPORT_SYMBOL(empty_zero_page
);
43 * The pmd table for the upper-most set of pages.
47 #define CPOLICY_UNCACHED 0
48 #define CPOLICY_BUFFERED 1
49 #define CPOLICY_WRITETHROUGH 2
50 #define CPOLICY_WRITEBACK 3
51 #define CPOLICY_WRITEALLOC 4
53 static unsigned int cachepolicy __initdata
= CPOLICY_WRITEBACK
;
54 static unsigned int ecc_mask __initdata
= 0;
56 pgprot_t pgprot_kernel
;
58 EXPORT_SYMBOL(pgprot_user
);
59 EXPORT_SYMBOL(pgprot_kernel
);
62 const char policy
[16];
68 static struct cachepolicy cache_policies
[] __initdata
= {
72 .pmd
= PMD_SECT_UNCACHED
,
73 .pte
= L_PTE_MT_UNCACHED
,
77 .pmd
= PMD_SECT_BUFFERED
,
78 .pte
= L_PTE_MT_BUFFERABLE
,
80 .policy
= "writethrough",
83 .pte
= L_PTE_MT_WRITETHROUGH
,
85 .policy
= "writeback",
88 .pte
= L_PTE_MT_WRITEBACK
,
90 .policy
= "writealloc",
93 .pte
= L_PTE_MT_WRITEALLOC
,
98 * These are useful for identifying cache coherency
99 * problems by allowing the cache or the cache and
100 * writebuffer to be turned off. (Note: the write
101 * buffer should not be on and the cache off).
103 static int __init
early_cachepolicy(char *p
)
107 for (i
= 0; i
< ARRAY_SIZE(cache_policies
); i
++) {
108 int len
= strlen(cache_policies
[i
].policy
);
110 if (memcmp(p
, cache_policies
[i
].policy
, len
) == 0) {
112 cr_alignment
&= ~cache_policies
[i
].cr_mask
;
113 cr_no_alignment
&= ~cache_policies
[i
].cr_mask
;
117 if (i
== ARRAY_SIZE(cache_policies
))
118 printk(KERN_ERR
"ERROR: unknown or unsupported cache policy\n");
120 * This restriction is partly to do with the way we boot; it is
121 * unpredictable to have memory mapped using two different sets of
122 * memory attributes (shared, type, and cache attribs). We can not
123 * change these attributes once the initial assembly has setup the
126 if (cpu_architecture() >= CPU_ARCH_ARMv6
) {
127 printk(KERN_WARNING
"Only cachepolicy=writeback supported on ARMv6 and later\n");
128 cachepolicy
= CPOLICY_WRITEBACK
;
131 set_cr(cr_alignment
);
134 early_param("cachepolicy", early_cachepolicy
);
136 static int __init
early_nocache(char *__unused
)
138 char *p
= "buffered";
139 printk(KERN_WARNING
"nocache is deprecated; use cachepolicy=%s\n", p
);
140 early_cachepolicy(p
);
143 early_param("nocache", early_nocache
);
145 static int __init
early_nowrite(char *__unused
)
147 char *p
= "uncached";
148 printk(KERN_WARNING
"nowb is deprecated; use cachepolicy=%s\n", p
);
149 early_cachepolicy(p
);
152 early_param("nowb", early_nowrite
);
154 #ifndef CONFIG_ARM_LPAE
155 static int __init
early_ecc(char *p
)
157 if (memcmp(p
, "on", 2) == 0)
158 ecc_mask
= PMD_PROTECTION
;
159 else if (memcmp(p
, "off", 3) == 0)
163 early_param("ecc", early_ecc
);
166 static int __init
noalign_setup(char *__unused
)
168 cr_alignment
&= ~CR_A
;
169 cr_no_alignment
&= ~CR_A
;
170 set_cr(cr_alignment
);
173 __setup("noalign", noalign_setup
);
176 void adjust_cr(unsigned long mask
, unsigned long set
)
184 local_irq_save(flags
);
186 cr_no_alignment
= (cr_no_alignment
& ~mask
) | set
;
187 cr_alignment
= (cr_alignment
& ~mask
) | set
;
189 set_cr((get_cr() & ~mask
) | set
);
191 local_irq_restore(flags
);
195 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
196 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
198 static struct mem_type mem_types
[] = {
199 [MT_DEVICE
] = { /* Strongly ordered / ARMv6 shared device */
200 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_SHARED
|
202 .prot_l1
= PMD_TYPE_TABLE
,
203 .prot_sect
= PROT_SECT_DEVICE
| PMD_SECT_S
,
206 [MT_DEVICE_NONSHARED
] = { /* ARMv6 non-shared device */
207 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_NONSHARED
,
208 .prot_l1
= PMD_TYPE_TABLE
,
209 .prot_sect
= PROT_SECT_DEVICE
,
212 [MT_DEVICE_CACHED
] = { /* ioremap_cached */
213 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_CACHED
,
214 .prot_l1
= PMD_TYPE_TABLE
,
215 .prot_sect
= PROT_SECT_DEVICE
| PMD_SECT_WB
,
218 [MT_DEVICE_WC
] = { /* ioremap_wc */
219 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_WC
,
220 .prot_l1
= PMD_TYPE_TABLE
,
221 .prot_sect
= PROT_SECT_DEVICE
,
225 .prot_pte
= PROT_PTE_DEVICE
,
226 .prot_l1
= PMD_TYPE_TABLE
,
227 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
,
231 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
,
232 .domain
= DOMAIN_KERNEL
,
234 #ifndef CONFIG_ARM_LPAE
236 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
| PMD_SECT_MINICACHE
,
237 .domain
= DOMAIN_KERNEL
,
241 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
243 .prot_l1
= PMD_TYPE_TABLE
,
244 .domain
= DOMAIN_USER
,
246 [MT_HIGH_VECTORS
] = {
247 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
248 L_PTE_USER
| L_PTE_RDONLY
,
249 .prot_l1
= PMD_TYPE_TABLE
,
250 .domain
= DOMAIN_USER
,
253 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
,
254 .prot_l1
= PMD_TYPE_TABLE
,
255 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
,
256 .domain
= DOMAIN_KERNEL
,
259 .prot_sect
= PMD_TYPE_SECT
,
260 .domain
= DOMAIN_KERNEL
,
262 [MT_MEMORY_NONCACHED
] = {
263 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
265 .prot_l1
= PMD_TYPE_TABLE
,
266 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
,
267 .domain
= DOMAIN_KERNEL
,
270 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
272 .prot_l1
= PMD_TYPE_TABLE
,
273 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
,
274 .domain
= DOMAIN_KERNEL
,
277 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
,
278 .prot_l1
= PMD_TYPE_TABLE
,
279 .domain
= DOMAIN_KERNEL
,
282 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
284 .prot_l1
= PMD_TYPE_TABLE
,
285 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
| PMD_SECT_S
|
286 PMD_SECT_UNCACHED
| PMD_SECT_XN
,
287 .domain
= DOMAIN_KERNEL
,
291 const struct mem_type
*get_mem_type(unsigned int type
)
293 return type
< ARRAY_SIZE(mem_types
) ? &mem_types
[type
] : NULL
;
295 EXPORT_SYMBOL(get_mem_type
);
298 * Adjust the PMD section entries according to the CPU in use.
300 static void __init
build_mem_type_table(void)
302 struct cachepolicy
*cp
;
303 unsigned int cr
= get_cr();
304 pteval_t user_pgprot
, kern_pgprot
, vecs_pgprot
;
305 int cpu_arch
= cpu_architecture();
308 if (cpu_arch
< CPU_ARCH_ARMv6
) {
309 #if defined(CONFIG_CPU_DCACHE_DISABLE)
310 if (cachepolicy
> CPOLICY_BUFFERED
)
311 cachepolicy
= CPOLICY_BUFFERED
;
312 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
313 if (cachepolicy
> CPOLICY_WRITETHROUGH
)
314 cachepolicy
= CPOLICY_WRITETHROUGH
;
317 if (cpu_arch
< CPU_ARCH_ARMv5
) {
318 if (cachepolicy
>= CPOLICY_WRITEALLOC
)
319 cachepolicy
= CPOLICY_WRITEBACK
;
323 cachepolicy
= CPOLICY_WRITEALLOC
;
326 * Strip out features not present on earlier architectures.
327 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
328 * without extended page tables don't have the 'Shared' bit.
330 if (cpu_arch
< CPU_ARCH_ARMv5
)
331 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++)
332 mem_types
[i
].prot_sect
&= ~PMD_SECT_TEX(7);
333 if ((cpu_arch
< CPU_ARCH_ARMv6
|| !(cr
& CR_XP
)) && !cpu_is_xsc3())
334 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++)
335 mem_types
[i
].prot_sect
&= ~PMD_SECT_S
;
338 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
339 * "update-able on write" bit on ARM610). However, Xscale and
340 * Xscale3 require this bit to be cleared.
342 if (cpu_is_xscale() || cpu_is_xsc3()) {
343 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
344 mem_types
[i
].prot_sect
&= ~PMD_BIT4
;
345 mem_types
[i
].prot_l1
&= ~PMD_BIT4
;
347 } else if (cpu_arch
< CPU_ARCH_ARMv6
) {
348 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
349 if (mem_types
[i
].prot_l1
)
350 mem_types
[i
].prot_l1
|= PMD_BIT4
;
351 if (mem_types
[i
].prot_sect
)
352 mem_types
[i
].prot_sect
|= PMD_BIT4
;
357 * Mark the device areas according to the CPU/architecture.
359 if (cpu_is_xsc3() || (cpu_arch
>= CPU_ARCH_ARMv6
&& (cr
& CR_XP
))) {
360 if (!cpu_is_xsc3()) {
362 * Mark device regions on ARMv6+ as execute-never
363 * to prevent speculative instruction fetches.
365 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_XN
;
366 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_XN
;
367 mem_types
[MT_DEVICE_CACHED
].prot_sect
|= PMD_SECT_XN
;
368 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_XN
;
370 if (cpu_arch
>= CPU_ARCH_ARMv7
&& (cr
& CR_TRE
)) {
372 * For ARMv7 with TEX remapping,
373 * - shared device is SXCB=1100
374 * - nonshared device is SXCB=0100
375 * - write combine device mem is SXCB=0001
376 * (Uncached Normal memory)
378 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_TEX(1);
379 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_TEX(1);
380 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_BUFFERABLE
;
381 } else if (cpu_is_xsc3()) {
384 * - shared device is TEXCB=00101
385 * - nonshared device is TEXCB=01000
386 * - write combine device mem is TEXCB=00100
387 * (Inner/Outer Uncacheable in xsc3 parlance)
389 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED
;
390 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_TEX(2);
391 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_TEX(1);
394 * For ARMv6 and ARMv7 without TEX remapping,
395 * - shared device is TEXCB=00001
396 * - nonshared device is TEXCB=01000
397 * - write combine device mem is TEXCB=00100
398 * (Uncached Normal in ARMv6 parlance).
400 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_BUFFERED
;
401 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_TEX(2);
402 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_TEX(1);
406 * On others, write combining is "Uncached/Buffered"
408 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_BUFFERABLE
;
412 * Now deal with the memory-type mappings
414 cp
= &cache_policies
[cachepolicy
];
415 vecs_pgprot
= kern_pgprot
= user_pgprot
= cp
->pte
;
418 * Only use write-through for non-SMP systems
420 if (!is_smp() && cpu_arch
>= CPU_ARCH_ARMv5
&& cachepolicy
> CPOLICY_WRITETHROUGH
)
421 vecs_pgprot
= cache_policies
[CPOLICY_WRITETHROUGH
].pte
;
424 * Enable CPU-specific coherency if supported.
425 * (Only available on XSC3 at the moment.)
427 if (arch_is_coherent() && cpu_is_xsc3()) {
428 mem_types
[MT_MEMORY
].prot_sect
|= PMD_SECT_S
;
429 mem_types
[MT_MEMORY
].prot_pte
|= L_PTE_SHARED
;
430 mem_types
[MT_MEMORY_NONCACHED
].prot_sect
|= PMD_SECT_S
;
431 mem_types
[MT_MEMORY_NONCACHED
].prot_pte
|= L_PTE_SHARED
;
434 * ARMv6 and above have extended page tables.
436 if (cpu_arch
>= CPU_ARCH_ARMv6
&& (cr
& CR_XP
)) {
437 #ifndef CONFIG_ARM_LPAE
439 * Mark cache clean areas and XIP ROM read only
440 * from SVC mode and no access from userspace.
442 mem_types
[MT_ROM
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
443 mem_types
[MT_MINICLEAN
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
444 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
449 * Mark memory with the "shared" attribute
452 user_pgprot
|= L_PTE_SHARED
;
453 kern_pgprot
|= L_PTE_SHARED
;
454 vecs_pgprot
|= L_PTE_SHARED
;
455 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_S
;
456 mem_types
[MT_DEVICE_WC
].prot_pte
|= L_PTE_SHARED
;
457 mem_types
[MT_DEVICE_CACHED
].prot_sect
|= PMD_SECT_S
;
458 mem_types
[MT_DEVICE_CACHED
].prot_pte
|= L_PTE_SHARED
;
459 mem_types
[MT_MEMORY
].prot_sect
|= PMD_SECT_S
;
460 mem_types
[MT_MEMORY
].prot_pte
|= L_PTE_SHARED
;
461 mem_types
[MT_MEMORY_NONCACHED
].prot_sect
|= PMD_SECT_S
;
462 mem_types
[MT_MEMORY_NONCACHED
].prot_pte
|= L_PTE_SHARED
;
467 * Non-cacheable Normal - intended for memory areas that must
468 * not cause dirty cache line writebacks when used
470 if (cpu_arch
>= CPU_ARCH_ARMv6
) {
471 if (cpu_arch
>= CPU_ARCH_ARMv7
&& (cr
& CR_TRE
)) {
472 /* Non-cacheable Normal is XCB = 001 */
473 mem_types
[MT_MEMORY_NONCACHED
].prot_sect
|=
476 /* For both ARMv6 and non-TEX-remapping ARMv7 */
477 mem_types
[MT_MEMORY_NONCACHED
].prot_sect
|=
481 mem_types
[MT_MEMORY_NONCACHED
].prot_sect
|= PMD_SECT_BUFFERABLE
;
484 #ifdef CONFIG_ARM_LPAE
486 * Do not generate access flag faults for the kernel mappings.
488 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
489 mem_types
[i
].prot_pte
|= PTE_EXT_AF
;
490 mem_types
[i
].prot_sect
|= PMD_SECT_AF
;
492 kern_pgprot
|= PTE_EXT_AF
;
493 vecs_pgprot
|= PTE_EXT_AF
;
496 for (i
= 0; i
< 16; i
++) {
497 unsigned long v
= pgprot_val(protection_map
[i
]);
498 protection_map
[i
] = __pgprot(v
| user_pgprot
);
501 mem_types
[MT_LOW_VECTORS
].prot_pte
|= vecs_pgprot
;
502 mem_types
[MT_HIGH_VECTORS
].prot_pte
|= vecs_pgprot
;
504 pgprot_user
= __pgprot(L_PTE_PRESENT
| L_PTE_YOUNG
| user_pgprot
);
505 pgprot_kernel
= __pgprot(L_PTE_PRESENT
| L_PTE_YOUNG
|
506 L_PTE_DIRTY
| kern_pgprot
);
508 mem_types
[MT_LOW_VECTORS
].prot_l1
|= ecc_mask
;
509 mem_types
[MT_HIGH_VECTORS
].prot_l1
|= ecc_mask
;
510 mem_types
[MT_MEMORY
].prot_sect
|= ecc_mask
| cp
->pmd
;
511 mem_types
[MT_MEMORY
].prot_pte
|= kern_pgprot
;
512 mem_types
[MT_MEMORY_NONCACHED
].prot_sect
|= ecc_mask
;
513 mem_types
[MT_ROM
].prot_sect
|= cp
->pmd
;
517 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_WT
;
521 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_WB
;
524 printk("Memory policy: ECC %sabled, Data cache %s\n",
525 ecc_mask
? "en" : "dis", cp
->policy
);
527 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
528 struct mem_type
*t
= &mem_types
[i
];
530 t
->prot_l1
|= PMD_DOMAIN(t
->domain
);
532 t
->prot_sect
|= PMD_DOMAIN(t
->domain
);
536 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
537 pgprot_t
phys_mem_access_prot(struct file
*file
, unsigned long pfn
,
538 unsigned long size
, pgprot_t vma_prot
)
541 return pgprot_noncached(vma_prot
);
542 else if (file
->f_flags
& O_SYNC
)
543 return pgprot_writecombine(vma_prot
);
546 EXPORT_SYMBOL(phys_mem_access_prot
);
549 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
551 static void __init
*early_alloc_aligned(unsigned long sz
, unsigned long align
)
553 void *ptr
= __va(memblock_alloc(sz
, align
));
558 static void __init
*early_alloc(unsigned long sz
)
560 return early_alloc_aligned(sz
, sz
);
563 static pte_t
* __init
early_pte_alloc(pmd_t
*pmd
, unsigned long addr
, unsigned long prot
)
565 if (pmd_none(*pmd
)) {
566 pte_t
*pte
= early_alloc(PTE_HWTABLE_OFF
+ PTE_HWTABLE_SIZE
);
567 __pmd_populate(pmd
, __pa(pte
), prot
);
569 BUG_ON(pmd_bad(*pmd
));
570 return pte_offset_kernel(pmd
, addr
);
573 static void __init
alloc_init_pte(pmd_t
*pmd
, unsigned long addr
,
574 unsigned long end
, unsigned long pfn
,
575 const struct mem_type
*type
)
577 pte_t
*pte
= early_pte_alloc(pmd
, addr
, type
->prot_l1
);
579 set_pte_ext(pte
, pfn_pte(pfn
, __pgprot(type
->prot_pte
)), 0);
581 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
584 static void __init
alloc_init_section(pud_t
*pud
, unsigned long addr
,
585 unsigned long end
, phys_addr_t phys
,
586 const struct mem_type
*type
)
588 pmd_t
*pmd
= pmd_offset(pud
, addr
);
591 * Try a section mapping - end, addr and phys must all be aligned
592 * to a section boundary. Note that PMDs refer to the individual
593 * L1 entries, whereas PGDs refer to a group of L1 entries making
594 * up one logical pointer to an L2 table.
596 if (((addr
| end
| phys
) & ~SECTION_MASK
) == 0) {
599 #ifndef CONFIG_ARM_LPAE
600 if (addr
& SECTION_SIZE
)
605 *pmd
= __pmd(phys
| type
->prot_sect
);
606 phys
+= SECTION_SIZE
;
607 } while (pmd
++, addr
+= SECTION_SIZE
, addr
!= end
);
612 * No need to loop; pte's aren't interested in the
613 * individual L1 entries.
615 alloc_init_pte(pmd
, addr
, end
, __phys_to_pfn(phys
), type
);
619 static void alloc_init_pud(pgd_t
*pgd
, unsigned long addr
, unsigned long end
,
620 unsigned long phys
, const struct mem_type
*type
)
622 pud_t
*pud
= pud_offset(pgd
, addr
);
626 next
= pud_addr_end(addr
, end
);
627 alloc_init_section(pud
, addr
, next
, phys
, type
);
629 } while (pud
++, addr
= next
, addr
!= end
);
632 #ifndef CONFIG_ARM_LPAE
633 static void __init
create_36bit_mapping(struct map_desc
*md
,
634 const struct mem_type
*type
)
636 unsigned long addr
, length
, end
;
641 phys
= __pfn_to_phys(md
->pfn
);
642 length
= PAGE_ALIGN(md
->length
);
644 if (!(cpu_architecture() >= CPU_ARCH_ARMv6
|| cpu_is_xsc3())) {
645 printk(KERN_ERR
"MM: CPU does not support supersection "
646 "mapping for 0x%08llx at 0x%08lx\n",
647 (long long)__pfn_to_phys((u64
)md
->pfn
), addr
);
651 /* N.B. ARMv6 supersections are only defined to work with domain 0.
652 * Since domain assignments can in fact be arbitrary, the
653 * 'domain == 0' check below is required to insure that ARMv6
654 * supersections are only allocated for domain 0 regardless
655 * of the actual domain assignments in use.
658 printk(KERN_ERR
"MM: invalid domain in supersection "
659 "mapping for 0x%08llx at 0x%08lx\n",
660 (long long)__pfn_to_phys((u64
)md
->pfn
), addr
);
664 if ((addr
| length
| __pfn_to_phys(md
->pfn
)) & ~SUPERSECTION_MASK
) {
665 printk(KERN_ERR
"MM: cannot create mapping for 0x%08llx"
666 " at 0x%08lx invalid alignment\n",
667 (long long)__pfn_to_phys((u64
)md
->pfn
), addr
);
672 * Shift bits [35:32] of address into bits [23:20] of PMD
675 phys
|= (((md
->pfn
>> (32 - PAGE_SHIFT
)) & 0xF) << 20);
677 pgd
= pgd_offset_k(addr
);
680 pud_t
*pud
= pud_offset(pgd
, addr
);
681 pmd_t
*pmd
= pmd_offset(pud
, addr
);
684 for (i
= 0; i
< 16; i
++)
685 *pmd
++ = __pmd(phys
| type
->prot_sect
| PMD_SECT_SUPER
);
687 addr
+= SUPERSECTION_SIZE
;
688 phys
+= SUPERSECTION_SIZE
;
689 pgd
+= SUPERSECTION_SIZE
>> PGDIR_SHIFT
;
690 } while (addr
!= end
);
692 #endif /* !CONFIG_ARM_LPAE */
695 * Create the page directory entries and any necessary
696 * page tables for the mapping specified by `md'. We
697 * are able to cope here with varying sizes and address
698 * offsets, and we take full advantage of sections and
701 static void __init
create_mapping(struct map_desc
*md
)
703 unsigned long addr
, length
, end
;
705 const struct mem_type
*type
;
708 if (md
->virtual != vectors_base() && md
->virtual < TASK_SIZE
) {
709 printk(KERN_WARNING
"BUG: not creating mapping for 0x%08llx"
710 " at 0x%08lx in user region\n",
711 (long long)__pfn_to_phys((u64
)md
->pfn
), md
->virtual);
715 if ((md
->type
== MT_DEVICE
|| md
->type
== MT_ROM
) &&
716 md
->virtual >= PAGE_OFFSET
&&
717 (md
->virtual < VMALLOC_START
|| md
->virtual >= VMALLOC_END
)) {
718 printk(KERN_WARNING
"BUG: mapping for 0x%08llx"
719 " at 0x%08lx out of vmalloc space\n",
720 (long long)__pfn_to_phys((u64
)md
->pfn
), md
->virtual);
723 type
= &mem_types
[md
->type
];
725 #ifndef CONFIG_ARM_LPAE
727 * Catch 36-bit addresses
729 if (md
->pfn
>= 0x100000) {
730 create_36bit_mapping(md
, type
);
735 addr
= md
->virtual & PAGE_MASK
;
736 phys
= __pfn_to_phys(md
->pfn
);
737 length
= PAGE_ALIGN(md
->length
+ (md
->virtual & ~PAGE_MASK
));
739 if (type
->prot_l1
== 0 && ((addr
| phys
| length
) & ~SECTION_MASK
)) {
740 printk(KERN_WARNING
"BUG: map for 0x%08llx at 0x%08lx can not "
741 "be mapped using pages, ignoring.\n",
742 (long long)__pfn_to_phys(md
->pfn
), addr
);
746 pgd
= pgd_offset_k(addr
);
749 unsigned long next
= pgd_addr_end(addr
, end
);
751 alloc_init_pud(pgd
, addr
, next
, phys
, type
);
755 } while (pgd
++, addr
!= end
);
759 * Create the architecture specific mappings
761 void __init
iotable_init(struct map_desc
*io_desc
, int nr
)
764 struct vm_struct
*vm
;
769 vm
= early_alloc_aligned(sizeof(*vm
) * nr
, __alignof__(*vm
));
771 for (md
= io_desc
; nr
; md
++, nr
--) {
773 vm
->addr
= (void *)(md
->virtual & PAGE_MASK
);
774 vm
->size
= PAGE_ALIGN(md
->length
+ (md
->virtual & ~PAGE_MASK
));
775 vm
->phys_addr
= __pfn_to_phys(md
->pfn
);
776 vm
->flags
= VM_IOREMAP
| VM_ARM_STATIC_MAPPING
;
777 vm
->flags
|= VM_ARM_MTYPE(md
->type
);
778 vm
->caller
= iotable_init
;
779 vm_area_add_early(vm
++);
783 static void * __initdata vmalloc_min
=
784 (void *)(VMALLOC_END
- (240 << 20) - VMALLOC_OFFSET
);
787 * vmalloc=size forces the vmalloc area to be exactly 'size'
788 * bytes. This can be used to increase (or decrease) the vmalloc
789 * area - the default is 240m.
791 static int __init
early_vmalloc(char *arg
)
793 unsigned long vmalloc_reserve
= memparse(arg
, NULL
);
795 if (vmalloc_reserve
< SZ_16M
) {
796 vmalloc_reserve
= SZ_16M
;
798 "vmalloc area too small, limiting to %luMB\n",
799 vmalloc_reserve
>> 20);
802 if (vmalloc_reserve
> VMALLOC_END
- (PAGE_OFFSET
+ SZ_32M
)) {
803 vmalloc_reserve
= VMALLOC_END
- (PAGE_OFFSET
+ SZ_32M
);
805 "vmalloc area is too big, limiting to %luMB\n",
806 vmalloc_reserve
>> 20);
809 vmalloc_min
= (void *)(VMALLOC_END
- vmalloc_reserve
);
812 early_param("vmalloc", early_vmalloc
);
814 static phys_addr_t lowmem_limit __initdata
= 0;
816 void __init
sanity_check_meminfo(void)
818 int i
, j
, highmem
= 0;
820 for (i
= 0, j
= 0; i
< meminfo
.nr_banks
; i
++) {
821 struct membank
*bank
= &meminfo
.bank
[j
];
822 *bank
= meminfo
.bank
[i
];
824 if (bank
->start
> ULONG_MAX
)
827 #ifdef CONFIG_HIGHMEM
828 if (__va(bank
->start
) >= vmalloc_min
||
829 __va(bank
->start
) < (void *)PAGE_OFFSET
)
832 bank
->highmem
= highmem
;
835 * Split those memory banks which are partially overlapping
836 * the vmalloc area greatly simplifying things later.
838 if (!highmem
&& __va(bank
->start
) < vmalloc_min
&&
839 bank
->size
> vmalloc_min
- __va(bank
->start
)) {
840 if (meminfo
.nr_banks
>= NR_BANKS
) {
841 printk(KERN_CRIT
"NR_BANKS too low, "
842 "ignoring high memory\n");
844 memmove(bank
+ 1, bank
,
845 (meminfo
.nr_banks
- i
) * sizeof(*bank
));
848 bank
[1].size
-= vmalloc_min
- __va(bank
->start
);
849 bank
[1].start
= __pa(vmalloc_min
- 1) + 1;
850 bank
[1].highmem
= highmem
= 1;
853 bank
->size
= vmalloc_min
- __va(bank
->start
);
856 bank
->highmem
= highmem
;
859 * Highmem banks not allowed with !CONFIG_HIGHMEM.
862 printk(KERN_NOTICE
"Ignoring RAM at %.8llx-%.8llx "
863 "(!CONFIG_HIGHMEM).\n",
864 (unsigned long long)bank
->start
,
865 (unsigned long long)bank
->start
+ bank
->size
- 1);
870 * Check whether this memory bank would entirely overlap
873 if (__va(bank
->start
) >= vmalloc_min
||
874 __va(bank
->start
) < (void *)PAGE_OFFSET
) {
875 printk(KERN_NOTICE
"Ignoring RAM at %.8llx-%.8llx "
876 "(vmalloc region overlap).\n",
877 (unsigned long long)bank
->start
,
878 (unsigned long long)bank
->start
+ bank
->size
- 1);
883 * Check whether this memory bank would partially overlap
886 if (__va(bank
->start
+ bank
->size
) > vmalloc_min
||
887 __va(bank
->start
+ bank
->size
) < __va(bank
->start
)) {
888 unsigned long newsize
= vmalloc_min
- __va(bank
->start
);
889 printk(KERN_NOTICE
"Truncating RAM at %.8llx-%.8llx "
890 "to -%.8llx (vmalloc region overlap).\n",
891 (unsigned long long)bank
->start
,
892 (unsigned long long)bank
->start
+ bank
->size
- 1,
893 (unsigned long long)bank
->start
+ newsize
- 1);
894 bank
->size
= newsize
;
897 if (!bank
->highmem
&& bank
->start
+ bank
->size
> lowmem_limit
)
898 lowmem_limit
= bank
->start
+ bank
->size
;
902 #ifdef CONFIG_HIGHMEM
904 const char *reason
= NULL
;
906 if (cache_is_vipt_aliasing()) {
908 * Interactions between kmap and other mappings
909 * make highmem support with aliasing VIPT caches
912 reason
= "with VIPT aliasing cache";
915 printk(KERN_CRIT
"HIGHMEM is not supported %s, ignoring high memory\n",
917 while (j
> 0 && meminfo
.bank
[j
- 1].highmem
)
922 meminfo
.nr_banks
= j
;
923 high_memory
= __va(lowmem_limit
- 1) + 1;
924 memblock_set_current_limit(lowmem_limit
);
927 static inline void prepare_page_table(void)
933 * Clear out all the mappings below the kernel image.
935 for (addr
= 0; addr
< MODULES_VADDR
; addr
+= PMD_SIZE
)
936 pmd_clear(pmd_off_k(addr
));
938 #ifdef CONFIG_XIP_KERNEL
939 /* The XIP kernel is mapped in the module area -- skip over it */
940 addr
= ((unsigned long)_etext
+ PMD_SIZE
- 1) & PMD_MASK
;
942 for ( ; addr
< PAGE_OFFSET
; addr
+= PMD_SIZE
)
943 pmd_clear(pmd_off_k(addr
));
946 * Find the end of the first block of lowmem.
948 end
= memblock
.memory
.regions
[0].base
+ memblock
.memory
.regions
[0].size
;
949 if (end
>= lowmem_limit
)
953 * Clear out all the kernel space mappings, except for the first
954 * memory bank, up to the vmalloc region.
956 for (addr
= __phys_to_virt(end
);
957 addr
< VMALLOC_START
; addr
+= PMD_SIZE
)
958 pmd_clear(pmd_off_k(addr
));
961 #ifdef CONFIG_ARM_LPAE
962 /* the first page is reserved for pgd */
963 #define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
964 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
966 #define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
970 * Reserve the special regions of memory
972 void __init
arm_mm_memblock_reserve(void)
975 * Reserve the page tables. These are already in use,
976 * and can only be in node 0.
978 memblock_reserve(__pa(swapper_pg_dir
), SWAPPER_PG_DIR_SIZE
);
982 * Because of the SA1111 DMA bug, we want to preserve our
983 * precious DMA-able memory...
985 memblock_reserve(PHYS_OFFSET
, __pa(swapper_pg_dir
) - PHYS_OFFSET
);
990 * Set up the device mappings. Since we clear out the page tables for all
991 * mappings above VMALLOC_START, we will remove any debug device mappings.
992 * This means you have to be careful how you debug this function, or any
993 * called function. This means you can't use any function or debugging
994 * method which may touch any device, otherwise the kernel _will_ crash.
996 static void __init
devicemaps_init(struct machine_desc
*mdesc
)
1002 * Allocate the vector page early.
1004 vectors_page
= early_alloc(PAGE_SIZE
);
1006 for (addr
= VMALLOC_START
; addr
; addr
+= PMD_SIZE
)
1007 pmd_clear(pmd_off_k(addr
));
1010 * Map the kernel if it is XIP.
1011 * It is always first in the modulearea.
1013 #ifdef CONFIG_XIP_KERNEL
1014 map
.pfn
= __phys_to_pfn(CONFIG_XIP_PHYS_ADDR
& SECTION_MASK
);
1015 map
.virtual = MODULES_VADDR
;
1016 map
.length
= ((unsigned long)_etext
- map
.virtual + ~SECTION_MASK
) & SECTION_MASK
;
1018 create_mapping(&map
);
1022 * Map the cache flushing regions.
1025 map
.pfn
= __phys_to_pfn(FLUSH_BASE_PHYS
);
1026 map
.virtual = FLUSH_BASE
;
1028 map
.type
= MT_CACHECLEAN
;
1029 create_mapping(&map
);
1031 #ifdef FLUSH_BASE_MINICACHE
1032 map
.pfn
= __phys_to_pfn(FLUSH_BASE_PHYS
+ SZ_1M
);
1033 map
.virtual = FLUSH_BASE_MINICACHE
;
1035 map
.type
= MT_MINICLEAN
;
1036 create_mapping(&map
);
1040 * Create a mapping for the machine vectors at the high-vectors
1041 * location (0xffff0000). If we aren't using high-vectors, also
1042 * create a mapping at the low-vectors virtual address.
1044 map
.pfn
= __phys_to_pfn(virt_to_phys(vectors_page
));
1045 map
.virtual = 0xffff0000;
1046 map
.length
= PAGE_SIZE
;
1047 map
.type
= MT_HIGH_VECTORS
;
1048 create_mapping(&map
);
1050 if (!vectors_high()) {
1052 map
.type
= MT_LOW_VECTORS
;
1053 create_mapping(&map
);
1057 * Ask the machine support to map in the statically mapped devices.
1063 * Finally flush the caches and tlb to ensure that we're in a
1064 * consistent state wrt the writebuffer. This also ensures that
1065 * any write-allocated cache lines in the vector page are written
1066 * back. After this point, we can start to touch devices again.
1068 local_flush_tlb_all();
1072 static void __init
kmap_init(void)
1074 #ifdef CONFIG_HIGHMEM
1075 pkmap_page_table
= early_pte_alloc(pmd_off_k(PKMAP_BASE
),
1076 PKMAP_BASE
, _PAGE_KERNEL_TABLE
);
1080 static void __init
map_lowmem(void)
1082 struct memblock_region
*reg
;
1084 /* Map all the lowmem memory banks. */
1085 for_each_memblock(memory
, reg
) {
1086 phys_addr_t start
= reg
->base
;
1087 phys_addr_t end
= start
+ reg
->size
;
1088 struct map_desc map
;
1090 if (end
> lowmem_limit
)
1095 map
.pfn
= __phys_to_pfn(start
);
1096 map
.virtual = __phys_to_virt(start
);
1097 map
.length
= end
- start
;
1098 map
.type
= MT_MEMORY
;
1100 create_mapping(&map
);
1105 * paging_init() sets up the page tables, initialises the zone memory
1106 * maps, and sets up the zero page, bad page and bad page tables.
1108 void __init
paging_init(struct machine_desc
*mdesc
)
1112 memblock_set_current_limit(lowmem_limit
);
1114 build_mem_type_table();
1115 prepare_page_table();
1117 devicemaps_init(mdesc
);
1120 top_pmd
= pmd_off_k(0xffff0000);
1122 /* allocate the zero page. */
1123 zero_page
= early_alloc(PAGE_SIZE
);
1127 empty_zero_page
= virt_to_page(zero_page
);
1128 __flush_dcache_page(NULL
, empty_zero_page
);