spi-topcliff-pch: supports a spi mode setup and bit order setup by IO control
[zen-stable.git] / arch / arm / mm / mmu.c
blob94c5a0c94f5e2e9a19da0509b5717004188ee31a
1 /*
2 * linux/arch/arm/mm/mmu.c
4 * Copyright (C) 1995-2005 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18 #include <linux/vmalloc.h>
20 #include <asm/cputype.h>
21 #include <asm/sections.h>
22 #include <asm/cachetype.h>
23 #include <asm/setup.h>
24 #include <asm/sizes.h>
25 #include <asm/smp_plat.h>
26 #include <asm/tlb.h>
27 #include <asm/highmem.h>
28 #include <asm/traps.h>
30 #include <asm/mach/arch.h>
31 #include <asm/mach/map.h>
33 #include "mm.h"
36 * empty_zero_page is a special page that is used for
37 * zero-initialized data and COW.
39 struct page *empty_zero_page;
40 EXPORT_SYMBOL(empty_zero_page);
43 * The pmd table for the upper-most set of pages.
45 pmd_t *top_pmd;
47 #define CPOLICY_UNCACHED 0
48 #define CPOLICY_BUFFERED 1
49 #define CPOLICY_WRITETHROUGH 2
50 #define CPOLICY_WRITEBACK 3
51 #define CPOLICY_WRITEALLOC 4
53 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
54 static unsigned int ecc_mask __initdata = 0;
55 pgprot_t pgprot_user;
56 pgprot_t pgprot_kernel;
58 EXPORT_SYMBOL(pgprot_user);
59 EXPORT_SYMBOL(pgprot_kernel);
61 struct cachepolicy {
62 const char policy[16];
63 unsigned int cr_mask;
64 pmdval_t pmd;
65 pteval_t pte;
68 static struct cachepolicy cache_policies[] __initdata = {
70 .policy = "uncached",
71 .cr_mask = CR_W|CR_C,
72 .pmd = PMD_SECT_UNCACHED,
73 .pte = L_PTE_MT_UNCACHED,
74 }, {
75 .policy = "buffered",
76 .cr_mask = CR_C,
77 .pmd = PMD_SECT_BUFFERED,
78 .pte = L_PTE_MT_BUFFERABLE,
79 }, {
80 .policy = "writethrough",
81 .cr_mask = 0,
82 .pmd = PMD_SECT_WT,
83 .pte = L_PTE_MT_WRITETHROUGH,
84 }, {
85 .policy = "writeback",
86 .cr_mask = 0,
87 .pmd = PMD_SECT_WB,
88 .pte = L_PTE_MT_WRITEBACK,
89 }, {
90 .policy = "writealloc",
91 .cr_mask = 0,
92 .pmd = PMD_SECT_WBWA,
93 .pte = L_PTE_MT_WRITEALLOC,
98 * These are useful for identifying cache coherency
99 * problems by allowing the cache or the cache and
100 * writebuffer to be turned off. (Note: the write
101 * buffer should not be on and the cache off).
103 static int __init early_cachepolicy(char *p)
105 int i;
107 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
108 int len = strlen(cache_policies[i].policy);
110 if (memcmp(p, cache_policies[i].policy, len) == 0) {
111 cachepolicy = i;
112 cr_alignment &= ~cache_policies[i].cr_mask;
113 cr_no_alignment &= ~cache_policies[i].cr_mask;
114 break;
117 if (i == ARRAY_SIZE(cache_policies))
118 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
120 * This restriction is partly to do with the way we boot; it is
121 * unpredictable to have memory mapped using two different sets of
122 * memory attributes (shared, type, and cache attribs). We can not
123 * change these attributes once the initial assembly has setup the
124 * page tables.
126 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
127 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
128 cachepolicy = CPOLICY_WRITEBACK;
130 flush_cache_all();
131 set_cr(cr_alignment);
132 return 0;
134 early_param("cachepolicy", early_cachepolicy);
136 static int __init early_nocache(char *__unused)
138 char *p = "buffered";
139 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
140 early_cachepolicy(p);
141 return 0;
143 early_param("nocache", early_nocache);
145 static int __init early_nowrite(char *__unused)
147 char *p = "uncached";
148 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
149 early_cachepolicy(p);
150 return 0;
152 early_param("nowb", early_nowrite);
154 #ifndef CONFIG_ARM_LPAE
155 static int __init early_ecc(char *p)
157 if (memcmp(p, "on", 2) == 0)
158 ecc_mask = PMD_PROTECTION;
159 else if (memcmp(p, "off", 3) == 0)
160 ecc_mask = 0;
161 return 0;
163 early_param("ecc", early_ecc);
164 #endif
166 static int __init noalign_setup(char *__unused)
168 cr_alignment &= ~CR_A;
169 cr_no_alignment &= ~CR_A;
170 set_cr(cr_alignment);
171 return 1;
173 __setup("noalign", noalign_setup);
175 #ifndef CONFIG_SMP
176 void adjust_cr(unsigned long mask, unsigned long set)
178 unsigned long flags;
180 mask &= ~CR_A;
182 set &= mask;
184 local_irq_save(flags);
186 cr_no_alignment = (cr_no_alignment & ~mask) | set;
187 cr_alignment = (cr_alignment & ~mask) | set;
189 set_cr((get_cr() & ~mask) | set);
191 local_irq_restore(flags);
193 #endif
195 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
196 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
198 static struct mem_type mem_types[] = {
199 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
200 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
201 L_PTE_SHARED,
202 .prot_l1 = PMD_TYPE_TABLE,
203 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
204 .domain = DOMAIN_IO,
206 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
207 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
208 .prot_l1 = PMD_TYPE_TABLE,
209 .prot_sect = PROT_SECT_DEVICE,
210 .domain = DOMAIN_IO,
212 [MT_DEVICE_CACHED] = { /* ioremap_cached */
213 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
214 .prot_l1 = PMD_TYPE_TABLE,
215 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
216 .domain = DOMAIN_IO,
218 [MT_DEVICE_WC] = { /* ioremap_wc */
219 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
220 .prot_l1 = PMD_TYPE_TABLE,
221 .prot_sect = PROT_SECT_DEVICE,
222 .domain = DOMAIN_IO,
224 [MT_UNCACHED] = {
225 .prot_pte = PROT_PTE_DEVICE,
226 .prot_l1 = PMD_TYPE_TABLE,
227 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
228 .domain = DOMAIN_IO,
230 [MT_CACHECLEAN] = {
231 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
232 .domain = DOMAIN_KERNEL,
234 #ifndef CONFIG_ARM_LPAE
235 [MT_MINICLEAN] = {
236 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
237 .domain = DOMAIN_KERNEL,
239 #endif
240 [MT_LOW_VECTORS] = {
241 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
242 L_PTE_RDONLY,
243 .prot_l1 = PMD_TYPE_TABLE,
244 .domain = DOMAIN_USER,
246 [MT_HIGH_VECTORS] = {
247 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
248 L_PTE_USER | L_PTE_RDONLY,
249 .prot_l1 = PMD_TYPE_TABLE,
250 .domain = DOMAIN_USER,
252 [MT_MEMORY] = {
253 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
254 .prot_l1 = PMD_TYPE_TABLE,
255 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
256 .domain = DOMAIN_KERNEL,
258 [MT_ROM] = {
259 .prot_sect = PMD_TYPE_SECT,
260 .domain = DOMAIN_KERNEL,
262 [MT_MEMORY_NONCACHED] = {
263 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
264 L_PTE_MT_BUFFERABLE,
265 .prot_l1 = PMD_TYPE_TABLE,
266 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
267 .domain = DOMAIN_KERNEL,
269 [MT_MEMORY_DTCM] = {
270 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
271 L_PTE_XN,
272 .prot_l1 = PMD_TYPE_TABLE,
273 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
274 .domain = DOMAIN_KERNEL,
276 [MT_MEMORY_ITCM] = {
277 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
278 .prot_l1 = PMD_TYPE_TABLE,
279 .domain = DOMAIN_KERNEL,
281 [MT_MEMORY_SO] = {
282 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
283 L_PTE_MT_UNCACHED,
284 .prot_l1 = PMD_TYPE_TABLE,
285 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
286 PMD_SECT_UNCACHED | PMD_SECT_XN,
287 .domain = DOMAIN_KERNEL,
291 const struct mem_type *get_mem_type(unsigned int type)
293 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
295 EXPORT_SYMBOL(get_mem_type);
298 * Adjust the PMD section entries according to the CPU in use.
300 static void __init build_mem_type_table(void)
302 struct cachepolicy *cp;
303 unsigned int cr = get_cr();
304 pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
305 int cpu_arch = cpu_architecture();
306 int i;
308 if (cpu_arch < CPU_ARCH_ARMv6) {
309 #if defined(CONFIG_CPU_DCACHE_DISABLE)
310 if (cachepolicy > CPOLICY_BUFFERED)
311 cachepolicy = CPOLICY_BUFFERED;
312 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
313 if (cachepolicy > CPOLICY_WRITETHROUGH)
314 cachepolicy = CPOLICY_WRITETHROUGH;
315 #endif
317 if (cpu_arch < CPU_ARCH_ARMv5) {
318 if (cachepolicy >= CPOLICY_WRITEALLOC)
319 cachepolicy = CPOLICY_WRITEBACK;
320 ecc_mask = 0;
322 if (is_smp())
323 cachepolicy = CPOLICY_WRITEALLOC;
326 * Strip out features not present on earlier architectures.
327 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
328 * without extended page tables don't have the 'Shared' bit.
330 if (cpu_arch < CPU_ARCH_ARMv5)
331 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
332 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
333 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
334 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
335 mem_types[i].prot_sect &= ~PMD_SECT_S;
338 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
339 * "update-able on write" bit on ARM610). However, Xscale and
340 * Xscale3 require this bit to be cleared.
342 if (cpu_is_xscale() || cpu_is_xsc3()) {
343 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
344 mem_types[i].prot_sect &= ~PMD_BIT4;
345 mem_types[i].prot_l1 &= ~PMD_BIT4;
347 } else if (cpu_arch < CPU_ARCH_ARMv6) {
348 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
349 if (mem_types[i].prot_l1)
350 mem_types[i].prot_l1 |= PMD_BIT4;
351 if (mem_types[i].prot_sect)
352 mem_types[i].prot_sect |= PMD_BIT4;
357 * Mark the device areas according to the CPU/architecture.
359 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
360 if (!cpu_is_xsc3()) {
362 * Mark device regions on ARMv6+ as execute-never
363 * to prevent speculative instruction fetches.
365 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
366 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
367 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
368 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
370 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
372 * For ARMv7 with TEX remapping,
373 * - shared device is SXCB=1100
374 * - nonshared device is SXCB=0100
375 * - write combine device mem is SXCB=0001
376 * (Uncached Normal memory)
378 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
379 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
380 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
381 } else if (cpu_is_xsc3()) {
383 * For Xscale3,
384 * - shared device is TEXCB=00101
385 * - nonshared device is TEXCB=01000
386 * - write combine device mem is TEXCB=00100
387 * (Inner/Outer Uncacheable in xsc3 parlance)
389 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
390 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
391 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
392 } else {
394 * For ARMv6 and ARMv7 without TEX remapping,
395 * - shared device is TEXCB=00001
396 * - nonshared device is TEXCB=01000
397 * - write combine device mem is TEXCB=00100
398 * (Uncached Normal in ARMv6 parlance).
400 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
401 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
402 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
404 } else {
406 * On others, write combining is "Uncached/Buffered"
408 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
412 * Now deal with the memory-type mappings
414 cp = &cache_policies[cachepolicy];
415 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
418 * Only use write-through for non-SMP systems
420 if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
421 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
424 * Enable CPU-specific coherency if supported.
425 * (Only available on XSC3 at the moment.)
427 if (arch_is_coherent() && cpu_is_xsc3()) {
428 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
429 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
430 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
431 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
434 * ARMv6 and above have extended page tables.
436 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
437 #ifndef CONFIG_ARM_LPAE
439 * Mark cache clean areas and XIP ROM read only
440 * from SVC mode and no access from userspace.
442 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
443 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
444 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
445 #endif
447 if (is_smp()) {
449 * Mark memory with the "shared" attribute
450 * for SMP systems
452 user_pgprot |= L_PTE_SHARED;
453 kern_pgprot |= L_PTE_SHARED;
454 vecs_pgprot |= L_PTE_SHARED;
455 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
456 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
457 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
458 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
459 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
460 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
461 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
462 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
467 * Non-cacheable Normal - intended for memory areas that must
468 * not cause dirty cache line writebacks when used
470 if (cpu_arch >= CPU_ARCH_ARMv6) {
471 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
472 /* Non-cacheable Normal is XCB = 001 */
473 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
474 PMD_SECT_BUFFERED;
475 } else {
476 /* For both ARMv6 and non-TEX-remapping ARMv7 */
477 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
478 PMD_SECT_TEX(1);
480 } else {
481 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
484 #ifdef CONFIG_ARM_LPAE
486 * Do not generate access flag faults for the kernel mappings.
488 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
489 mem_types[i].prot_pte |= PTE_EXT_AF;
490 mem_types[i].prot_sect |= PMD_SECT_AF;
492 kern_pgprot |= PTE_EXT_AF;
493 vecs_pgprot |= PTE_EXT_AF;
494 #endif
496 for (i = 0; i < 16; i++) {
497 unsigned long v = pgprot_val(protection_map[i]);
498 protection_map[i] = __pgprot(v | user_pgprot);
501 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
502 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
504 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
505 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
506 L_PTE_DIRTY | kern_pgprot);
508 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
509 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
510 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
511 mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
512 mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
513 mem_types[MT_ROM].prot_sect |= cp->pmd;
515 switch (cp->pmd) {
516 case PMD_SECT_WT:
517 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
518 break;
519 case PMD_SECT_WB:
520 case PMD_SECT_WBWA:
521 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
522 break;
524 printk("Memory policy: ECC %sabled, Data cache %s\n",
525 ecc_mask ? "en" : "dis", cp->policy);
527 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
528 struct mem_type *t = &mem_types[i];
529 if (t->prot_l1)
530 t->prot_l1 |= PMD_DOMAIN(t->domain);
531 if (t->prot_sect)
532 t->prot_sect |= PMD_DOMAIN(t->domain);
536 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
537 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
538 unsigned long size, pgprot_t vma_prot)
540 if (!pfn_valid(pfn))
541 return pgprot_noncached(vma_prot);
542 else if (file->f_flags & O_SYNC)
543 return pgprot_writecombine(vma_prot);
544 return vma_prot;
546 EXPORT_SYMBOL(phys_mem_access_prot);
547 #endif
549 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
551 static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
553 void *ptr = __va(memblock_alloc(sz, align));
554 memset(ptr, 0, sz);
555 return ptr;
558 static void __init *early_alloc(unsigned long sz)
560 return early_alloc_aligned(sz, sz);
563 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
565 if (pmd_none(*pmd)) {
566 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
567 __pmd_populate(pmd, __pa(pte), prot);
569 BUG_ON(pmd_bad(*pmd));
570 return pte_offset_kernel(pmd, addr);
573 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
574 unsigned long end, unsigned long pfn,
575 const struct mem_type *type)
577 pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
578 do {
579 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
580 pfn++;
581 } while (pte++, addr += PAGE_SIZE, addr != end);
584 static void __init alloc_init_section(pud_t *pud, unsigned long addr,
585 unsigned long end, phys_addr_t phys,
586 const struct mem_type *type)
588 pmd_t *pmd = pmd_offset(pud, addr);
591 * Try a section mapping - end, addr and phys must all be aligned
592 * to a section boundary. Note that PMDs refer to the individual
593 * L1 entries, whereas PGDs refer to a group of L1 entries making
594 * up one logical pointer to an L2 table.
596 if (((addr | end | phys) & ~SECTION_MASK) == 0) {
597 pmd_t *p = pmd;
599 #ifndef CONFIG_ARM_LPAE
600 if (addr & SECTION_SIZE)
601 pmd++;
602 #endif
604 do {
605 *pmd = __pmd(phys | type->prot_sect);
606 phys += SECTION_SIZE;
607 } while (pmd++, addr += SECTION_SIZE, addr != end);
609 flush_pmd_entry(p);
610 } else {
612 * No need to loop; pte's aren't interested in the
613 * individual L1 entries.
615 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
619 static void alloc_init_pud(pgd_t *pgd, unsigned long addr, unsigned long end,
620 unsigned long phys, const struct mem_type *type)
622 pud_t *pud = pud_offset(pgd, addr);
623 unsigned long next;
625 do {
626 next = pud_addr_end(addr, end);
627 alloc_init_section(pud, addr, next, phys, type);
628 phys += next - addr;
629 } while (pud++, addr = next, addr != end);
632 #ifndef CONFIG_ARM_LPAE
633 static void __init create_36bit_mapping(struct map_desc *md,
634 const struct mem_type *type)
636 unsigned long addr, length, end;
637 phys_addr_t phys;
638 pgd_t *pgd;
640 addr = md->virtual;
641 phys = __pfn_to_phys(md->pfn);
642 length = PAGE_ALIGN(md->length);
644 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
645 printk(KERN_ERR "MM: CPU does not support supersection "
646 "mapping for 0x%08llx at 0x%08lx\n",
647 (long long)__pfn_to_phys((u64)md->pfn), addr);
648 return;
651 /* N.B. ARMv6 supersections are only defined to work with domain 0.
652 * Since domain assignments can in fact be arbitrary, the
653 * 'domain == 0' check below is required to insure that ARMv6
654 * supersections are only allocated for domain 0 regardless
655 * of the actual domain assignments in use.
657 if (type->domain) {
658 printk(KERN_ERR "MM: invalid domain in supersection "
659 "mapping for 0x%08llx at 0x%08lx\n",
660 (long long)__pfn_to_phys((u64)md->pfn), addr);
661 return;
664 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
665 printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
666 " at 0x%08lx invalid alignment\n",
667 (long long)__pfn_to_phys((u64)md->pfn), addr);
668 return;
672 * Shift bits [35:32] of address into bits [23:20] of PMD
673 * (See ARMv6 spec).
675 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
677 pgd = pgd_offset_k(addr);
678 end = addr + length;
679 do {
680 pud_t *pud = pud_offset(pgd, addr);
681 pmd_t *pmd = pmd_offset(pud, addr);
682 int i;
684 for (i = 0; i < 16; i++)
685 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
687 addr += SUPERSECTION_SIZE;
688 phys += SUPERSECTION_SIZE;
689 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
690 } while (addr != end);
692 #endif /* !CONFIG_ARM_LPAE */
695 * Create the page directory entries and any necessary
696 * page tables for the mapping specified by `md'. We
697 * are able to cope here with varying sizes and address
698 * offsets, and we take full advantage of sections and
699 * supersections.
701 static void __init create_mapping(struct map_desc *md)
703 unsigned long addr, length, end;
704 phys_addr_t phys;
705 const struct mem_type *type;
706 pgd_t *pgd;
708 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
709 printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
710 " at 0x%08lx in user region\n",
711 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
712 return;
715 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
716 md->virtual >= PAGE_OFFSET &&
717 (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
718 printk(KERN_WARNING "BUG: mapping for 0x%08llx"
719 " at 0x%08lx out of vmalloc space\n",
720 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
723 type = &mem_types[md->type];
725 #ifndef CONFIG_ARM_LPAE
727 * Catch 36-bit addresses
729 if (md->pfn >= 0x100000) {
730 create_36bit_mapping(md, type);
731 return;
733 #endif
735 addr = md->virtual & PAGE_MASK;
736 phys = __pfn_to_phys(md->pfn);
737 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
739 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
740 printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
741 "be mapped using pages, ignoring.\n",
742 (long long)__pfn_to_phys(md->pfn), addr);
743 return;
746 pgd = pgd_offset_k(addr);
747 end = addr + length;
748 do {
749 unsigned long next = pgd_addr_end(addr, end);
751 alloc_init_pud(pgd, addr, next, phys, type);
753 phys += next - addr;
754 addr = next;
755 } while (pgd++, addr != end);
759 * Create the architecture specific mappings
761 void __init iotable_init(struct map_desc *io_desc, int nr)
763 struct map_desc *md;
764 struct vm_struct *vm;
766 if (!nr)
767 return;
769 vm = early_alloc_aligned(sizeof(*vm) * nr, __alignof__(*vm));
771 for (md = io_desc; nr; md++, nr--) {
772 create_mapping(md);
773 vm->addr = (void *)(md->virtual & PAGE_MASK);
774 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
775 vm->phys_addr = __pfn_to_phys(md->pfn);
776 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
777 vm->flags |= VM_ARM_MTYPE(md->type);
778 vm->caller = iotable_init;
779 vm_area_add_early(vm++);
783 static void * __initdata vmalloc_min =
784 (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
787 * vmalloc=size forces the vmalloc area to be exactly 'size'
788 * bytes. This can be used to increase (or decrease) the vmalloc
789 * area - the default is 240m.
791 static int __init early_vmalloc(char *arg)
793 unsigned long vmalloc_reserve = memparse(arg, NULL);
795 if (vmalloc_reserve < SZ_16M) {
796 vmalloc_reserve = SZ_16M;
797 printk(KERN_WARNING
798 "vmalloc area too small, limiting to %luMB\n",
799 vmalloc_reserve >> 20);
802 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
803 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
804 printk(KERN_WARNING
805 "vmalloc area is too big, limiting to %luMB\n",
806 vmalloc_reserve >> 20);
809 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
810 return 0;
812 early_param("vmalloc", early_vmalloc);
814 static phys_addr_t lowmem_limit __initdata = 0;
816 void __init sanity_check_meminfo(void)
818 int i, j, highmem = 0;
820 for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
821 struct membank *bank = &meminfo.bank[j];
822 *bank = meminfo.bank[i];
824 if (bank->start > ULONG_MAX)
825 highmem = 1;
827 #ifdef CONFIG_HIGHMEM
828 if (__va(bank->start) >= vmalloc_min ||
829 __va(bank->start) < (void *)PAGE_OFFSET)
830 highmem = 1;
832 bank->highmem = highmem;
835 * Split those memory banks which are partially overlapping
836 * the vmalloc area greatly simplifying things later.
838 if (!highmem && __va(bank->start) < vmalloc_min &&
839 bank->size > vmalloc_min - __va(bank->start)) {
840 if (meminfo.nr_banks >= NR_BANKS) {
841 printk(KERN_CRIT "NR_BANKS too low, "
842 "ignoring high memory\n");
843 } else {
844 memmove(bank + 1, bank,
845 (meminfo.nr_banks - i) * sizeof(*bank));
846 meminfo.nr_banks++;
847 i++;
848 bank[1].size -= vmalloc_min - __va(bank->start);
849 bank[1].start = __pa(vmalloc_min - 1) + 1;
850 bank[1].highmem = highmem = 1;
851 j++;
853 bank->size = vmalloc_min - __va(bank->start);
855 #else
856 bank->highmem = highmem;
859 * Highmem banks not allowed with !CONFIG_HIGHMEM.
861 if (highmem) {
862 printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
863 "(!CONFIG_HIGHMEM).\n",
864 (unsigned long long)bank->start,
865 (unsigned long long)bank->start + bank->size - 1);
866 continue;
870 * Check whether this memory bank would entirely overlap
871 * the vmalloc area.
873 if (__va(bank->start) >= vmalloc_min ||
874 __va(bank->start) < (void *)PAGE_OFFSET) {
875 printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
876 "(vmalloc region overlap).\n",
877 (unsigned long long)bank->start,
878 (unsigned long long)bank->start + bank->size - 1);
879 continue;
883 * Check whether this memory bank would partially overlap
884 * the vmalloc area.
886 if (__va(bank->start + bank->size) > vmalloc_min ||
887 __va(bank->start + bank->size) < __va(bank->start)) {
888 unsigned long newsize = vmalloc_min - __va(bank->start);
889 printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
890 "to -%.8llx (vmalloc region overlap).\n",
891 (unsigned long long)bank->start,
892 (unsigned long long)bank->start + bank->size - 1,
893 (unsigned long long)bank->start + newsize - 1);
894 bank->size = newsize;
896 #endif
897 if (!bank->highmem && bank->start + bank->size > lowmem_limit)
898 lowmem_limit = bank->start + bank->size;
900 j++;
902 #ifdef CONFIG_HIGHMEM
903 if (highmem) {
904 const char *reason = NULL;
906 if (cache_is_vipt_aliasing()) {
908 * Interactions between kmap and other mappings
909 * make highmem support with aliasing VIPT caches
910 * rather difficult.
912 reason = "with VIPT aliasing cache";
914 if (reason) {
915 printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
916 reason);
917 while (j > 0 && meminfo.bank[j - 1].highmem)
918 j--;
921 #endif
922 meminfo.nr_banks = j;
923 high_memory = __va(lowmem_limit - 1) + 1;
924 memblock_set_current_limit(lowmem_limit);
927 static inline void prepare_page_table(void)
929 unsigned long addr;
930 phys_addr_t end;
933 * Clear out all the mappings below the kernel image.
935 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
936 pmd_clear(pmd_off_k(addr));
938 #ifdef CONFIG_XIP_KERNEL
939 /* The XIP kernel is mapped in the module area -- skip over it */
940 addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
941 #endif
942 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
943 pmd_clear(pmd_off_k(addr));
946 * Find the end of the first block of lowmem.
948 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
949 if (end >= lowmem_limit)
950 end = lowmem_limit;
953 * Clear out all the kernel space mappings, except for the first
954 * memory bank, up to the vmalloc region.
956 for (addr = __phys_to_virt(end);
957 addr < VMALLOC_START; addr += PMD_SIZE)
958 pmd_clear(pmd_off_k(addr));
961 #ifdef CONFIG_ARM_LPAE
962 /* the first page is reserved for pgd */
963 #define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
964 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
965 #else
966 #define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
967 #endif
970 * Reserve the special regions of memory
972 void __init arm_mm_memblock_reserve(void)
975 * Reserve the page tables. These are already in use,
976 * and can only be in node 0.
978 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
980 #ifdef CONFIG_SA1111
982 * Because of the SA1111 DMA bug, we want to preserve our
983 * precious DMA-able memory...
985 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
986 #endif
990 * Set up the device mappings. Since we clear out the page tables for all
991 * mappings above VMALLOC_START, we will remove any debug device mappings.
992 * This means you have to be careful how you debug this function, or any
993 * called function. This means you can't use any function or debugging
994 * method which may touch any device, otherwise the kernel _will_ crash.
996 static void __init devicemaps_init(struct machine_desc *mdesc)
998 struct map_desc map;
999 unsigned long addr;
1002 * Allocate the vector page early.
1004 vectors_page = early_alloc(PAGE_SIZE);
1006 for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1007 pmd_clear(pmd_off_k(addr));
1010 * Map the kernel if it is XIP.
1011 * It is always first in the modulearea.
1013 #ifdef CONFIG_XIP_KERNEL
1014 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1015 map.virtual = MODULES_VADDR;
1016 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1017 map.type = MT_ROM;
1018 create_mapping(&map);
1019 #endif
1022 * Map the cache flushing regions.
1024 #ifdef FLUSH_BASE
1025 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1026 map.virtual = FLUSH_BASE;
1027 map.length = SZ_1M;
1028 map.type = MT_CACHECLEAN;
1029 create_mapping(&map);
1030 #endif
1031 #ifdef FLUSH_BASE_MINICACHE
1032 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1033 map.virtual = FLUSH_BASE_MINICACHE;
1034 map.length = SZ_1M;
1035 map.type = MT_MINICLEAN;
1036 create_mapping(&map);
1037 #endif
1040 * Create a mapping for the machine vectors at the high-vectors
1041 * location (0xffff0000). If we aren't using high-vectors, also
1042 * create a mapping at the low-vectors virtual address.
1044 map.pfn = __phys_to_pfn(virt_to_phys(vectors_page));
1045 map.virtual = 0xffff0000;
1046 map.length = PAGE_SIZE;
1047 map.type = MT_HIGH_VECTORS;
1048 create_mapping(&map);
1050 if (!vectors_high()) {
1051 map.virtual = 0;
1052 map.type = MT_LOW_VECTORS;
1053 create_mapping(&map);
1057 * Ask the machine support to map in the statically mapped devices.
1059 if (mdesc->map_io)
1060 mdesc->map_io();
1063 * Finally flush the caches and tlb to ensure that we're in a
1064 * consistent state wrt the writebuffer. This also ensures that
1065 * any write-allocated cache lines in the vector page are written
1066 * back. After this point, we can start to touch devices again.
1068 local_flush_tlb_all();
1069 flush_cache_all();
1072 static void __init kmap_init(void)
1074 #ifdef CONFIG_HIGHMEM
1075 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1076 PKMAP_BASE, _PAGE_KERNEL_TABLE);
1077 #endif
1080 static void __init map_lowmem(void)
1082 struct memblock_region *reg;
1084 /* Map all the lowmem memory banks. */
1085 for_each_memblock(memory, reg) {
1086 phys_addr_t start = reg->base;
1087 phys_addr_t end = start + reg->size;
1088 struct map_desc map;
1090 if (end > lowmem_limit)
1091 end = lowmem_limit;
1092 if (start >= end)
1093 break;
1095 map.pfn = __phys_to_pfn(start);
1096 map.virtual = __phys_to_virt(start);
1097 map.length = end - start;
1098 map.type = MT_MEMORY;
1100 create_mapping(&map);
1105 * paging_init() sets up the page tables, initialises the zone memory
1106 * maps, and sets up the zero page, bad page and bad page tables.
1108 void __init paging_init(struct machine_desc *mdesc)
1110 void *zero_page;
1112 memblock_set_current_limit(lowmem_limit);
1114 build_mem_type_table();
1115 prepare_page_table();
1116 map_lowmem();
1117 devicemaps_init(mdesc);
1118 kmap_init();
1120 top_pmd = pmd_off_k(0xffff0000);
1122 /* allocate the zero page. */
1123 zero_page = early_alloc(PAGE_SIZE);
1125 bootmem_init();
1127 empty_zero_page = virt_to_page(zero_page);
1128 __flush_dcache_page(NULL, empty_zero_page);