spi-topcliff-pch: supports a spi mode setup and bit order setup by IO control
[zen-stable.git] / arch / ia64 / kernel / time.c
blob43920de425f1efcac92203f84d4a67d8aa596457
1 /*
2 * linux/arch/ia64/kernel/time.c
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * Stephane Eranian <eranian@hpl.hp.com>
6 * David Mosberger <davidm@hpl.hp.com>
7 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
8 * Copyright (C) 1999-2000 VA Linux Systems
9 * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/profile.h>
17 #include <linux/sched.h>
18 #include <linux/time.h>
19 #include <linux/interrupt.h>
20 #include <linux/efi.h>
21 #include <linux/timex.h>
22 #include <linux/clocksource.h>
23 #include <linux/platform_device.h>
25 #include <asm/machvec.h>
26 #include <asm/delay.h>
27 #include <asm/hw_irq.h>
28 #include <asm/paravirt.h>
29 #include <asm/ptrace.h>
30 #include <asm/sal.h>
31 #include <asm/sections.h>
32 #include <asm/system.h>
34 #include "fsyscall_gtod_data.h"
36 static cycle_t itc_get_cycles(struct clocksource *cs);
38 struct fsyscall_gtod_data_t fsyscall_gtod_data = {
39 .lock = __SEQLOCK_UNLOCKED(fsyscall_gtod_data.lock),
42 struct itc_jitter_data_t itc_jitter_data;
44 volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
46 #ifdef CONFIG_IA64_DEBUG_IRQ
48 unsigned long last_cli_ip;
49 EXPORT_SYMBOL(last_cli_ip);
51 #endif
53 #ifdef CONFIG_PARAVIRT
54 /* We need to define a real function for sched_clock, to override the
55 weak default version */
56 unsigned long long sched_clock(void)
58 return paravirt_sched_clock();
60 #endif
62 #ifdef CONFIG_PARAVIRT
63 static void
64 paravirt_clocksource_resume(struct clocksource *cs)
66 if (pv_time_ops.clocksource_resume)
67 pv_time_ops.clocksource_resume();
69 #endif
71 static struct clocksource clocksource_itc = {
72 .name = "itc",
73 .rating = 350,
74 .read = itc_get_cycles,
75 .mask = CLOCKSOURCE_MASK(64),
76 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
77 #ifdef CONFIG_PARAVIRT
78 .resume = paravirt_clocksource_resume,
79 #endif
81 static struct clocksource *itc_clocksource;
83 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
85 #include <linux/kernel_stat.h>
87 extern cputime_t cycle_to_cputime(u64 cyc);
90 * Called from the context switch with interrupts disabled, to charge all
91 * accumulated times to the current process, and to prepare accounting on
92 * the next process.
94 void ia64_account_on_switch(struct task_struct *prev, struct task_struct *next)
96 struct thread_info *pi = task_thread_info(prev);
97 struct thread_info *ni = task_thread_info(next);
98 cputime_t delta_stime, delta_utime;
99 __u64 now;
101 now = ia64_get_itc();
103 delta_stime = cycle_to_cputime(pi->ac_stime + (now - pi->ac_stamp));
104 if (idle_task(smp_processor_id()) != prev)
105 account_system_time(prev, 0, delta_stime, delta_stime);
106 else
107 account_idle_time(delta_stime);
109 if (pi->ac_utime) {
110 delta_utime = cycle_to_cputime(pi->ac_utime);
111 account_user_time(prev, delta_utime, delta_utime);
114 pi->ac_stamp = ni->ac_stamp = now;
115 ni->ac_stime = ni->ac_utime = 0;
119 * Account time for a transition between system, hard irq or soft irq state.
120 * Note that this function is called with interrupts enabled.
122 void account_system_vtime(struct task_struct *tsk)
124 struct thread_info *ti = task_thread_info(tsk);
125 unsigned long flags;
126 cputime_t delta_stime;
127 __u64 now;
129 local_irq_save(flags);
131 now = ia64_get_itc();
133 delta_stime = cycle_to_cputime(ti->ac_stime + (now - ti->ac_stamp));
134 if (irq_count() || idle_task(smp_processor_id()) != tsk)
135 account_system_time(tsk, 0, delta_stime, delta_stime);
136 else
137 account_idle_time(delta_stime);
138 ti->ac_stime = 0;
140 ti->ac_stamp = now;
142 local_irq_restore(flags);
144 EXPORT_SYMBOL_GPL(account_system_vtime);
147 * Called from the timer interrupt handler to charge accumulated user time
148 * to the current process. Must be called with interrupts disabled.
150 void account_process_tick(struct task_struct *p, int user_tick)
152 struct thread_info *ti = task_thread_info(p);
153 cputime_t delta_utime;
155 if (ti->ac_utime) {
156 delta_utime = cycle_to_cputime(ti->ac_utime);
157 account_user_time(p, delta_utime, delta_utime);
158 ti->ac_utime = 0;
162 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
164 static irqreturn_t
165 timer_interrupt (int irq, void *dev_id)
167 unsigned long new_itm;
169 if (cpu_is_offline(smp_processor_id())) {
170 return IRQ_HANDLED;
173 platform_timer_interrupt(irq, dev_id);
175 new_itm = local_cpu_data->itm_next;
177 if (!time_after(ia64_get_itc(), new_itm))
178 printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
179 ia64_get_itc(), new_itm);
181 profile_tick(CPU_PROFILING);
183 if (paravirt_do_steal_accounting(&new_itm))
184 goto skip_process_time_accounting;
186 while (1) {
187 update_process_times(user_mode(get_irq_regs()));
189 new_itm += local_cpu_data->itm_delta;
191 if (smp_processor_id() == time_keeper_id)
192 xtime_update(1);
194 local_cpu_data->itm_next = new_itm;
196 if (time_after(new_itm, ia64_get_itc()))
197 break;
200 * Allow IPIs to interrupt the timer loop.
202 local_irq_enable();
203 local_irq_disable();
206 skip_process_time_accounting:
208 do {
210 * If we're too close to the next clock tick for
211 * comfort, we increase the safety margin by
212 * intentionally dropping the next tick(s). We do NOT
213 * update itm.next because that would force us to call
214 * xtime_update() which in turn would let our clock run
215 * too fast (with the potentially devastating effect
216 * of losing monotony of time).
218 while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
219 new_itm += local_cpu_data->itm_delta;
220 ia64_set_itm(new_itm);
221 /* double check, in case we got hit by a (slow) PMI: */
222 } while (time_after_eq(ia64_get_itc(), new_itm));
223 return IRQ_HANDLED;
227 * Encapsulate access to the itm structure for SMP.
229 void
230 ia64_cpu_local_tick (void)
232 int cpu = smp_processor_id();
233 unsigned long shift = 0, delta;
235 /* arrange for the cycle counter to generate a timer interrupt: */
236 ia64_set_itv(IA64_TIMER_VECTOR);
238 delta = local_cpu_data->itm_delta;
240 * Stagger the timer tick for each CPU so they don't occur all at (almost) the
241 * same time:
243 if (cpu) {
244 unsigned long hi = 1UL << ia64_fls(cpu);
245 shift = (2*(cpu - hi) + 1) * delta/hi/2;
247 local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
248 ia64_set_itm(local_cpu_data->itm_next);
251 static int nojitter;
253 static int __init nojitter_setup(char *str)
255 nojitter = 1;
256 printk("Jitter checking for ITC timers disabled\n");
257 return 1;
260 __setup("nojitter", nojitter_setup);
263 void __devinit
264 ia64_init_itm (void)
266 unsigned long platform_base_freq, itc_freq;
267 struct pal_freq_ratio itc_ratio, proc_ratio;
268 long status, platform_base_drift, itc_drift;
271 * According to SAL v2.6, we need to use a SAL call to determine the platform base
272 * frequency and then a PAL call to determine the frequency ratio between the ITC
273 * and the base frequency.
275 status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
276 &platform_base_freq, &platform_base_drift);
277 if (status != 0) {
278 printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
279 } else {
280 status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
281 if (status != 0)
282 printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
284 if (status != 0) {
285 /* invent "random" values */
286 printk(KERN_ERR
287 "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
288 platform_base_freq = 100000000;
289 platform_base_drift = -1; /* no drift info */
290 itc_ratio.num = 3;
291 itc_ratio.den = 1;
293 if (platform_base_freq < 40000000) {
294 printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
295 platform_base_freq);
296 platform_base_freq = 75000000;
297 platform_base_drift = -1;
299 if (!proc_ratio.den)
300 proc_ratio.den = 1; /* avoid division by zero */
301 if (!itc_ratio.den)
302 itc_ratio.den = 1; /* avoid division by zero */
304 itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
306 local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
307 printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
308 "ITC freq=%lu.%03luMHz", smp_processor_id(),
309 platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
310 itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
312 if (platform_base_drift != -1) {
313 itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
314 printk("+/-%ldppm\n", itc_drift);
315 } else {
316 itc_drift = -1;
317 printk("\n");
320 local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
321 local_cpu_data->itc_freq = itc_freq;
322 local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
323 local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
324 + itc_freq/2)/itc_freq;
326 if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
327 #ifdef CONFIG_SMP
328 /* On IA64 in an SMP configuration ITCs are never accurately synchronized.
329 * Jitter compensation requires a cmpxchg which may limit
330 * the scalability of the syscalls for retrieving time.
331 * The ITC synchronization is usually successful to within a few
332 * ITC ticks but this is not a sure thing. If you need to improve
333 * timer performance in SMP situations then boot the kernel with the
334 * "nojitter" option. However, doing so may result in time fluctuating (maybe
335 * even going backward) if the ITC offsets between the individual CPUs
336 * are too large.
338 if (!nojitter)
339 itc_jitter_data.itc_jitter = 1;
340 #endif
341 } else
343 * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
344 * ITC values may fluctuate significantly between processors.
345 * Clock should not be used for hrtimers. Mark itc as only
346 * useful for boot and testing.
348 * Note that jitter compensation is off! There is no point of
349 * synchronizing ITCs since they may be large differentials
350 * that change over time.
352 * The only way to fix this would be to repeatedly sync the
353 * ITCs. Until that time we have to avoid ITC.
355 clocksource_itc.rating = 50;
357 paravirt_init_missing_ticks_accounting(smp_processor_id());
359 /* avoid softlock up message when cpu is unplug and plugged again. */
360 touch_softlockup_watchdog();
362 /* Setup the CPU local timer tick */
363 ia64_cpu_local_tick();
365 if (!itc_clocksource) {
366 clocksource_register_hz(&clocksource_itc,
367 local_cpu_data->itc_freq);
368 itc_clocksource = &clocksource_itc;
372 static cycle_t itc_get_cycles(struct clocksource *cs)
374 unsigned long lcycle, now, ret;
376 if (!itc_jitter_data.itc_jitter)
377 return get_cycles();
379 lcycle = itc_jitter_data.itc_lastcycle;
380 now = get_cycles();
381 if (lcycle && time_after(lcycle, now))
382 return lcycle;
385 * Keep track of the last timer value returned.
386 * In an SMP environment, you could lose out in contention of
387 * cmpxchg. If so, your cmpxchg returns new value which the
388 * winner of contention updated to. Use the new value instead.
390 ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
391 if (unlikely(ret != lcycle))
392 return ret;
394 return now;
398 static struct irqaction timer_irqaction = {
399 .handler = timer_interrupt,
400 .flags = IRQF_DISABLED | IRQF_IRQPOLL,
401 .name = "timer"
404 static struct platform_device rtc_efi_dev = {
405 .name = "rtc-efi",
406 .id = -1,
409 static int __init rtc_init(void)
411 if (platform_device_register(&rtc_efi_dev) < 0)
412 printk(KERN_ERR "unable to register rtc device...\n");
414 /* not necessarily an error */
415 return 0;
417 module_init(rtc_init);
419 void read_persistent_clock(struct timespec *ts)
421 efi_gettimeofday(ts);
424 void __init
425 time_init (void)
427 register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
428 ia64_init_itm();
432 * Generic udelay assumes that if preemption is allowed and the thread
433 * migrates to another CPU, that the ITC values are synchronized across
434 * all CPUs.
436 static void
437 ia64_itc_udelay (unsigned long usecs)
439 unsigned long start = ia64_get_itc();
440 unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
442 while (time_before(ia64_get_itc(), end))
443 cpu_relax();
446 void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
448 void
449 udelay (unsigned long usecs)
451 (*ia64_udelay)(usecs);
453 EXPORT_SYMBOL(udelay);
455 /* IA64 doesn't cache the timezone */
456 void update_vsyscall_tz(void)
460 void update_vsyscall(struct timespec *wall, struct timespec *wtm,
461 struct clocksource *c, u32 mult)
463 unsigned long flags;
465 write_seqlock_irqsave(&fsyscall_gtod_data.lock, flags);
467 /* copy fsyscall clock data */
468 fsyscall_gtod_data.clk_mask = c->mask;
469 fsyscall_gtod_data.clk_mult = mult;
470 fsyscall_gtod_data.clk_shift = c->shift;
471 fsyscall_gtod_data.clk_fsys_mmio = c->archdata.fsys_mmio;
472 fsyscall_gtod_data.clk_cycle_last = c->cycle_last;
474 /* copy kernel time structures */
475 fsyscall_gtod_data.wall_time.tv_sec = wall->tv_sec;
476 fsyscall_gtod_data.wall_time.tv_nsec = wall->tv_nsec;
477 fsyscall_gtod_data.monotonic_time.tv_sec = wtm->tv_sec
478 + wall->tv_sec;
479 fsyscall_gtod_data.monotonic_time.tv_nsec = wtm->tv_nsec
480 + wall->tv_nsec;
482 /* normalize */
483 while (fsyscall_gtod_data.monotonic_time.tv_nsec >= NSEC_PER_SEC) {
484 fsyscall_gtod_data.monotonic_time.tv_nsec -= NSEC_PER_SEC;
485 fsyscall_gtod_data.monotonic_time.tv_sec++;
488 write_sequnlock_irqrestore(&fsyscall_gtod_data.lock, flags);