spi-topcliff-pch: supports a spi mode setup and bit order setup by IO control
[zen-stable.git] / arch / ia64 / kernel / topology.c
blob9deb21dbf62965740f2b6c34c1630dbf80d1f4aa
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * This file contains NUMA specific variables and functions which can
7 * be split away from DISCONTIGMEM and are used on NUMA machines with
8 * contiguous memory.
9 * 2002/08/07 Erich Focht <efocht@ess.nec.de>
10 * Populate cpu entries in sysfs for non-numa systems as well
11 * Intel Corporation - Ashok Raj
12 * 02/27/2006 Zhang, Yanmin
13 * Populate cpu cache entries in sysfs for cpu cache info
16 #include <linux/cpu.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/node.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/bootmem.h>
23 #include <linux/nodemask.h>
24 #include <linux/notifier.h>
25 #include <linux/export.h>
26 #include <asm/mmzone.h>
27 #include <asm/numa.h>
28 #include <asm/cpu.h>
30 static struct ia64_cpu *sysfs_cpus;
32 void arch_fix_phys_package_id(int num, u32 slot)
34 #ifdef CONFIG_SMP
35 if (cpu_data(num)->socket_id == -1)
36 cpu_data(num)->socket_id = slot;
37 #endif
39 EXPORT_SYMBOL_GPL(arch_fix_phys_package_id);
42 #ifdef CONFIG_HOTPLUG_CPU
43 int __ref arch_register_cpu(int num)
45 #ifdef CONFIG_ACPI
47 * If CPEI can be re-targeted or if this is not
48 * CPEI target, then it is hotpluggable
50 if (can_cpei_retarget() || !is_cpu_cpei_target(num))
51 sysfs_cpus[num].cpu.hotpluggable = 1;
52 map_cpu_to_node(num, node_cpuid[num].nid);
53 #endif
54 return register_cpu(&sysfs_cpus[num].cpu, num);
56 EXPORT_SYMBOL(arch_register_cpu);
58 void __ref arch_unregister_cpu(int num)
60 unregister_cpu(&sysfs_cpus[num].cpu);
61 #ifdef CONFIG_ACPI
62 unmap_cpu_from_node(num, cpu_to_node(num));
63 #endif
65 EXPORT_SYMBOL(arch_unregister_cpu);
66 #else
67 static int __init arch_register_cpu(int num)
69 return register_cpu(&sysfs_cpus[num].cpu, num);
71 #endif /*CONFIG_HOTPLUG_CPU*/
74 static int __init topology_init(void)
76 int i, err = 0;
78 #ifdef CONFIG_NUMA
80 * MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes?
82 for_each_online_node(i) {
83 if ((err = register_one_node(i)))
84 goto out;
86 #endif
88 sysfs_cpus = kzalloc(sizeof(struct ia64_cpu) * NR_CPUS, GFP_KERNEL);
89 if (!sysfs_cpus)
90 panic("kzalloc in topology_init failed - NR_CPUS too big?");
92 for_each_present_cpu(i) {
93 if((err = arch_register_cpu(i)))
94 goto out;
96 out:
97 return err;
100 subsys_initcall(topology_init);
104 * Export cpu cache information through sysfs
108 * A bunch of string array to get pretty printing
110 static const char *cache_types[] = {
111 "", /* not used */
112 "Instruction",
113 "Data",
114 "Unified" /* unified */
117 static const char *cache_mattrib[]={
118 "WriteThrough",
119 "WriteBack",
120 "", /* reserved */
121 "" /* reserved */
124 struct cache_info {
125 pal_cache_config_info_t cci;
126 cpumask_t shared_cpu_map;
127 int level;
128 int type;
129 struct kobject kobj;
132 struct cpu_cache_info {
133 struct cache_info *cache_leaves;
134 int num_cache_leaves;
135 struct kobject kobj;
138 static struct cpu_cache_info all_cpu_cache_info[NR_CPUS] __cpuinitdata;
139 #define LEAF_KOBJECT_PTR(x,y) (&all_cpu_cache_info[x].cache_leaves[y])
141 #ifdef CONFIG_SMP
142 static void __cpuinit cache_shared_cpu_map_setup( unsigned int cpu,
143 struct cache_info * this_leaf)
145 pal_cache_shared_info_t csi;
146 int num_shared, i = 0;
147 unsigned int j;
149 if (cpu_data(cpu)->threads_per_core <= 1 &&
150 cpu_data(cpu)->cores_per_socket <= 1) {
151 cpu_set(cpu, this_leaf->shared_cpu_map);
152 return;
155 if (ia64_pal_cache_shared_info(this_leaf->level,
156 this_leaf->type,
158 &csi) != PAL_STATUS_SUCCESS)
159 return;
161 num_shared = (int) csi.num_shared;
162 do {
163 for_each_possible_cpu(j)
164 if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id
165 && cpu_data(j)->core_id == csi.log1_cid
166 && cpu_data(j)->thread_id == csi.log1_tid)
167 cpu_set(j, this_leaf->shared_cpu_map);
169 i++;
170 } while (i < num_shared &&
171 ia64_pal_cache_shared_info(this_leaf->level,
172 this_leaf->type,
174 &csi) == PAL_STATUS_SUCCESS);
176 #else
177 static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu,
178 struct cache_info * this_leaf)
180 cpu_set(cpu, this_leaf->shared_cpu_map);
181 return;
183 #endif
185 static ssize_t show_coherency_line_size(struct cache_info *this_leaf,
186 char *buf)
188 return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size);
191 static ssize_t show_ways_of_associativity(struct cache_info *this_leaf,
192 char *buf)
194 return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc);
197 static ssize_t show_attributes(struct cache_info *this_leaf, char *buf)
199 return sprintf(buf,
200 "%s\n",
201 cache_mattrib[this_leaf->cci.pcci_cache_attr]);
204 static ssize_t show_size(struct cache_info *this_leaf, char *buf)
206 return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024);
209 static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf)
211 unsigned number_of_sets = this_leaf->cci.pcci_cache_size;
212 number_of_sets /= this_leaf->cci.pcci_assoc;
213 number_of_sets /= 1 << this_leaf->cci.pcci_line_size;
215 return sprintf(buf, "%u\n", number_of_sets);
218 static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf)
220 ssize_t len;
221 cpumask_t shared_cpu_map;
223 cpus_and(shared_cpu_map, this_leaf->shared_cpu_map, cpu_online_map);
224 len = cpumask_scnprintf(buf, NR_CPUS+1, &shared_cpu_map);
225 len += sprintf(buf+len, "\n");
226 return len;
229 static ssize_t show_type(struct cache_info *this_leaf, char *buf)
231 int type = this_leaf->type + this_leaf->cci.pcci_unified;
232 return sprintf(buf, "%s\n", cache_types[type]);
235 static ssize_t show_level(struct cache_info *this_leaf, char *buf)
237 return sprintf(buf, "%u\n", this_leaf->level);
240 struct cache_attr {
241 struct attribute attr;
242 ssize_t (*show)(struct cache_info *, char *);
243 ssize_t (*store)(struct cache_info *, const char *, size_t count);
246 #ifdef define_one_ro
247 #undef define_one_ro
248 #endif
249 #define define_one_ro(_name) \
250 static struct cache_attr _name = \
251 __ATTR(_name, 0444, show_##_name, NULL)
253 define_one_ro(level);
254 define_one_ro(type);
255 define_one_ro(coherency_line_size);
256 define_one_ro(ways_of_associativity);
257 define_one_ro(size);
258 define_one_ro(number_of_sets);
259 define_one_ro(shared_cpu_map);
260 define_one_ro(attributes);
262 static struct attribute * cache_default_attrs[] = {
263 &type.attr,
264 &level.attr,
265 &coherency_line_size.attr,
266 &ways_of_associativity.attr,
267 &attributes.attr,
268 &size.attr,
269 &number_of_sets.attr,
270 &shared_cpu_map.attr,
271 NULL
274 #define to_object(k) container_of(k, struct cache_info, kobj)
275 #define to_attr(a) container_of(a, struct cache_attr, attr)
277 static ssize_t cache_show(struct kobject * kobj, struct attribute * attr, char * buf)
279 struct cache_attr *fattr = to_attr(attr);
280 struct cache_info *this_leaf = to_object(kobj);
281 ssize_t ret;
283 ret = fattr->show ? fattr->show(this_leaf, buf) : 0;
284 return ret;
287 static const struct sysfs_ops cache_sysfs_ops = {
288 .show = cache_show
291 static struct kobj_type cache_ktype = {
292 .sysfs_ops = &cache_sysfs_ops,
293 .default_attrs = cache_default_attrs,
296 static struct kobj_type cache_ktype_percpu_entry = {
297 .sysfs_ops = &cache_sysfs_ops,
300 static void __cpuinit cpu_cache_sysfs_exit(unsigned int cpu)
302 kfree(all_cpu_cache_info[cpu].cache_leaves);
303 all_cpu_cache_info[cpu].cache_leaves = NULL;
304 all_cpu_cache_info[cpu].num_cache_leaves = 0;
305 memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
306 return;
309 static int __cpuinit cpu_cache_sysfs_init(unsigned int cpu)
311 unsigned long i, levels, unique_caches;
312 pal_cache_config_info_t cci;
313 int j;
314 long status;
315 struct cache_info *this_cache;
316 int num_cache_leaves = 0;
318 if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) {
319 printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status);
320 return -1;
323 this_cache=kzalloc(sizeof(struct cache_info)*unique_caches,
324 GFP_KERNEL);
325 if (this_cache == NULL)
326 return -ENOMEM;
328 for (i=0; i < levels; i++) {
329 for (j=2; j >0 ; j--) {
330 if ((status=ia64_pal_cache_config_info(i,j, &cci)) !=
331 PAL_STATUS_SUCCESS)
332 continue;
334 this_cache[num_cache_leaves].cci = cci;
335 this_cache[num_cache_leaves].level = i + 1;
336 this_cache[num_cache_leaves].type = j;
338 cache_shared_cpu_map_setup(cpu,
339 &this_cache[num_cache_leaves]);
340 num_cache_leaves ++;
344 all_cpu_cache_info[cpu].cache_leaves = this_cache;
345 all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves;
347 memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
349 return 0;
352 /* Add cache interface for CPU device */
353 static int __cpuinit cache_add_dev(struct device * sys_dev)
355 unsigned int cpu = sys_dev->id;
356 unsigned long i, j;
357 struct cache_info *this_object;
358 int retval = 0;
359 cpumask_t oldmask;
361 if (all_cpu_cache_info[cpu].kobj.parent)
362 return 0;
364 oldmask = current->cpus_allowed;
365 retval = set_cpus_allowed_ptr(current, cpumask_of(cpu));
366 if (unlikely(retval))
367 return retval;
369 retval = cpu_cache_sysfs_init(cpu);
370 set_cpus_allowed_ptr(current, &oldmask);
371 if (unlikely(retval < 0))
372 return retval;
374 retval = kobject_init_and_add(&all_cpu_cache_info[cpu].kobj,
375 &cache_ktype_percpu_entry, &sys_dev->kobj,
376 "%s", "cache");
377 if (unlikely(retval < 0)) {
378 cpu_cache_sysfs_exit(cpu);
379 return retval;
382 for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) {
383 this_object = LEAF_KOBJECT_PTR(cpu,i);
384 retval = kobject_init_and_add(&(this_object->kobj),
385 &cache_ktype,
386 &all_cpu_cache_info[cpu].kobj,
387 "index%1lu", i);
388 if (unlikely(retval)) {
389 for (j = 0; j < i; j++) {
390 kobject_put(&(LEAF_KOBJECT_PTR(cpu,j)->kobj));
392 kobject_put(&all_cpu_cache_info[cpu].kobj);
393 cpu_cache_sysfs_exit(cpu);
394 return retval;
396 kobject_uevent(&(this_object->kobj), KOBJ_ADD);
398 kobject_uevent(&all_cpu_cache_info[cpu].kobj, KOBJ_ADD);
399 return retval;
402 /* Remove cache interface for CPU device */
403 static int __cpuinit cache_remove_dev(struct device * sys_dev)
405 unsigned int cpu = sys_dev->id;
406 unsigned long i;
408 for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++)
409 kobject_put(&(LEAF_KOBJECT_PTR(cpu,i)->kobj));
411 if (all_cpu_cache_info[cpu].kobj.parent) {
412 kobject_put(&all_cpu_cache_info[cpu].kobj);
413 memset(&all_cpu_cache_info[cpu].kobj,
415 sizeof(struct kobject));
418 cpu_cache_sysfs_exit(cpu);
420 return 0;
424 * When a cpu is hot-plugged, do a check and initiate
425 * cache kobject if necessary
427 static int __cpuinit cache_cpu_callback(struct notifier_block *nfb,
428 unsigned long action, void *hcpu)
430 unsigned int cpu = (unsigned long)hcpu;
431 struct device *sys_dev;
433 sys_dev = get_cpu_device(cpu);
434 switch (action) {
435 case CPU_ONLINE:
436 case CPU_ONLINE_FROZEN:
437 cache_add_dev(sys_dev);
438 break;
439 case CPU_DEAD:
440 case CPU_DEAD_FROZEN:
441 cache_remove_dev(sys_dev);
442 break;
444 return NOTIFY_OK;
447 static struct notifier_block __cpuinitdata cache_cpu_notifier =
449 .notifier_call = cache_cpu_callback
452 static int __init cache_sysfs_init(void)
454 int i;
456 for_each_online_cpu(i) {
457 struct device *sys_dev = get_cpu_device((unsigned int)i);
458 cache_add_dev(sys_dev);
461 register_hotcpu_notifier(&cache_cpu_notifier);
463 return 0;
466 device_initcall(cache_sysfs_init);