2 * Linux performance counter support for MIPS.
4 * Copyright (C) 2010 MIPS Technologies, Inc.
5 * Copyright (C) 2011 Cavium Networks, Inc.
6 * Author: Deng-Cheng Zhu
8 * This code is based on the implementation for ARM, which is in turn
9 * based on the sparc64 perf event code and the x86 code. Performance
10 * counter access is based on the MIPS Oprofile code. And the callchain
11 * support references the code of MIPS stacktrace.c.
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
18 #include <linux/cpumask.h>
19 #include <linux/interrupt.h>
20 #include <linux/smp.h>
21 #include <linux/kernel.h>
22 #include <linux/perf_event.h>
23 #include <linux/uaccess.h>
26 #include <asm/irq_regs.h>
27 #include <asm/stacktrace.h>
28 #include <asm/time.h> /* For perf_irq */
30 #define MIPS_MAX_HWEVENTS 4
32 struct cpu_hw_events
{
33 /* Array of events on this cpu. */
34 struct perf_event
*events
[MIPS_MAX_HWEVENTS
];
37 * Set the bit (indexed by the counter number) when the counter
38 * is used for an event.
40 unsigned long used_mask
[BITS_TO_LONGS(MIPS_MAX_HWEVENTS
)];
43 * Software copy of the control register for each performance counter.
44 * MIPS CPUs vary in performance counters. They use this differently,
45 * and even may not use it.
47 unsigned int saved_ctrl
[MIPS_MAX_HWEVENTS
];
49 DEFINE_PER_CPU(struct cpu_hw_events
, cpu_hw_events
) = {
53 /* The description of MIPS performance events. */
54 struct mips_perf_event
{
55 unsigned int event_id
;
57 * MIPS performance counters are indexed starting from 0.
58 * CNTR_EVEN indicates the indexes of the counters to be used are
61 unsigned int cntr_mask
;
62 #define CNTR_EVEN 0x55555555
63 #define CNTR_ODD 0xaaaaaaaa
64 #define CNTR_ALL 0xffffffff
65 #ifdef CONFIG_MIPS_MT_SMP
78 static struct mips_perf_event raw_event
;
79 static DEFINE_MUTEX(raw_event_mutex
);
81 #define UNSUPPORTED_PERF_EVENT_ID 0xffffffff
82 #define C(x) PERF_COUNT_HW_CACHE_##x
90 u64 (*read_counter
)(unsigned int idx
);
91 void (*write_counter
)(unsigned int idx
, u64 val
);
92 const struct mips_perf_event
*(*map_raw_event
)(u64 config
);
93 const struct mips_perf_event (*general_event_map
)[PERF_COUNT_HW_MAX
];
94 const struct mips_perf_event (*cache_event_map
)
95 [PERF_COUNT_HW_CACHE_MAX
]
96 [PERF_COUNT_HW_CACHE_OP_MAX
]
97 [PERF_COUNT_HW_CACHE_RESULT_MAX
];
98 unsigned int num_counters
;
101 static struct mips_pmu mipspmu
;
103 #define M_CONFIG1_PC (1 << 4)
105 #define M_PERFCTL_EXL (1 << 0)
106 #define M_PERFCTL_KERNEL (1 << 1)
107 #define M_PERFCTL_SUPERVISOR (1 << 2)
108 #define M_PERFCTL_USER (1 << 3)
109 #define M_PERFCTL_INTERRUPT_ENABLE (1 << 4)
110 #define M_PERFCTL_EVENT(event) (((event) & 0x3ff) << 5)
111 #define M_PERFCTL_VPEID(vpe) ((vpe) << 16)
112 #define M_PERFCTL_MT_EN(filter) ((filter) << 20)
113 #define M_TC_EN_ALL M_PERFCTL_MT_EN(0)
114 #define M_TC_EN_VPE M_PERFCTL_MT_EN(1)
115 #define M_TC_EN_TC M_PERFCTL_MT_EN(2)
116 #define M_PERFCTL_TCID(tcid) ((tcid) << 22)
117 #define M_PERFCTL_WIDE (1 << 30)
118 #define M_PERFCTL_MORE (1 << 31)
120 #define M_PERFCTL_COUNT_EVENT_WHENEVER (M_PERFCTL_EXL | \
123 M_PERFCTL_SUPERVISOR | \
124 M_PERFCTL_INTERRUPT_ENABLE)
126 #ifdef CONFIG_MIPS_MT_SMP
127 #define M_PERFCTL_CONFIG_MASK 0x3fff801f
129 #define M_PERFCTL_CONFIG_MASK 0x1f
131 #define M_PERFCTL_EVENT_MASK 0xfe0
134 #ifdef CONFIG_MIPS_MT_SMP
135 static int cpu_has_mipsmt_pertccounters
;
137 static DEFINE_RWLOCK(pmuint_rwlock
);
140 * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
141 * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
143 #if defined(CONFIG_HW_PERF_EVENTS)
144 #define vpe_id() (cpu_has_mipsmt_pertccounters ? \
145 0 : smp_processor_id())
147 #define vpe_id() (cpu_has_mipsmt_pertccounters ? \
148 0 : cpu_data[smp_processor_id()].vpe_id)
151 /* Copied from op_model_mipsxx.c */
152 static unsigned int vpe_shift(void)
154 if (num_possible_cpus() > 1)
160 static unsigned int counters_total_to_per_cpu(unsigned int counters
)
162 return counters
>> vpe_shift();
165 static unsigned int counters_per_cpu_to_total(unsigned int counters
)
167 return counters
<< vpe_shift();
170 #else /* !CONFIG_MIPS_MT_SMP */
173 #endif /* CONFIG_MIPS_MT_SMP */
175 static void resume_local_counters(void);
176 static void pause_local_counters(void);
177 static irqreturn_t
mipsxx_pmu_handle_irq(int, void *);
178 static int mipsxx_pmu_handle_shared_irq(void);
180 static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx
)
187 static u64
mipsxx_pmu_read_counter(unsigned int idx
)
189 idx
= mipsxx_pmu_swizzle_perf_idx(idx
);
194 * The counters are unsigned, we must cast to truncate
197 return (u32
)read_c0_perfcntr0();
199 return (u32
)read_c0_perfcntr1();
201 return (u32
)read_c0_perfcntr2();
203 return (u32
)read_c0_perfcntr3();
205 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx
);
210 static u64
mipsxx_pmu_read_counter_64(unsigned int idx
)
212 idx
= mipsxx_pmu_swizzle_perf_idx(idx
);
216 return read_c0_perfcntr0_64();
218 return read_c0_perfcntr1_64();
220 return read_c0_perfcntr2_64();
222 return read_c0_perfcntr3_64();
224 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx
);
229 static void mipsxx_pmu_write_counter(unsigned int idx
, u64 val
)
231 idx
= mipsxx_pmu_swizzle_perf_idx(idx
);
235 write_c0_perfcntr0(val
);
238 write_c0_perfcntr1(val
);
241 write_c0_perfcntr2(val
);
244 write_c0_perfcntr3(val
);
249 static void mipsxx_pmu_write_counter_64(unsigned int idx
, u64 val
)
251 idx
= mipsxx_pmu_swizzle_perf_idx(idx
);
255 write_c0_perfcntr0_64(val
);
258 write_c0_perfcntr1_64(val
);
261 write_c0_perfcntr2_64(val
);
264 write_c0_perfcntr3_64(val
);
269 static unsigned int mipsxx_pmu_read_control(unsigned int idx
)
271 idx
= mipsxx_pmu_swizzle_perf_idx(idx
);
275 return read_c0_perfctrl0();
277 return read_c0_perfctrl1();
279 return read_c0_perfctrl2();
281 return read_c0_perfctrl3();
283 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx
);
288 static void mipsxx_pmu_write_control(unsigned int idx
, unsigned int val
)
290 idx
= mipsxx_pmu_swizzle_perf_idx(idx
);
294 write_c0_perfctrl0(val
);
297 write_c0_perfctrl1(val
);
300 write_c0_perfctrl2(val
);
303 write_c0_perfctrl3(val
);
308 static int mipsxx_pmu_alloc_counter(struct cpu_hw_events
*cpuc
,
309 struct hw_perf_event
*hwc
)
314 * We only need to care the counter mask. The range has been
315 * checked definitely.
317 unsigned long cntr_mask
= (hwc
->event_base
>> 8) & 0xffff;
319 for (i
= mipspmu
.num_counters
- 1; i
>= 0; i
--) {
321 * Note that some MIPS perf events can be counted by both
322 * even and odd counters, wheresas many other are only by
323 * even _or_ odd counters. This introduces an issue that
324 * when the former kind of event takes the counter the
325 * latter kind of event wants to use, then the "counter
326 * allocation" for the latter event will fail. In fact if
327 * they can be dynamically swapped, they both feel happy.
328 * But here we leave this issue alone for now.
330 if (test_bit(i
, &cntr_mask
) &&
331 !test_and_set_bit(i
, cpuc
->used_mask
))
338 static void mipsxx_pmu_enable_event(struct hw_perf_event
*evt
, int idx
)
340 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
342 WARN_ON(idx
< 0 || idx
>= mipspmu
.num_counters
);
344 cpuc
->saved_ctrl
[idx
] = M_PERFCTL_EVENT(evt
->event_base
& 0xff) |
345 (evt
->config_base
& M_PERFCTL_CONFIG_MASK
) |
346 /* Make sure interrupt enabled. */
347 M_PERFCTL_INTERRUPT_ENABLE
;
349 * We do not actually let the counter run. Leave it until start().
353 static void mipsxx_pmu_disable_event(int idx
)
355 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
358 WARN_ON(idx
< 0 || idx
>= mipspmu
.num_counters
);
360 local_irq_save(flags
);
361 cpuc
->saved_ctrl
[idx
] = mipsxx_pmu_read_control(idx
) &
362 ~M_PERFCTL_COUNT_EVENT_WHENEVER
;
363 mipsxx_pmu_write_control(idx
, cpuc
->saved_ctrl
[idx
]);
364 local_irq_restore(flags
);
367 static int mipspmu_event_set_period(struct perf_event
*event
,
368 struct hw_perf_event
*hwc
,
371 u64 left
= local64_read(&hwc
->period_left
);
372 u64 period
= hwc
->sample_period
;
375 if (unlikely((left
+ period
) & (1ULL << 63))) {
376 /* left underflowed by more than period. */
378 local64_set(&hwc
->period_left
, left
);
379 hwc
->last_period
= period
;
381 } else if (unlikely((left
+ period
) <= period
)) {
382 /* left underflowed by less than period. */
384 local64_set(&hwc
->period_left
, left
);
385 hwc
->last_period
= period
;
389 if (left
> mipspmu
.max_period
) {
390 left
= mipspmu
.max_period
;
391 local64_set(&hwc
->period_left
, left
);
394 local64_set(&hwc
->prev_count
, mipspmu
.overflow
- left
);
396 mipspmu
.write_counter(idx
, mipspmu
.overflow
- left
);
398 perf_event_update_userpage(event
);
403 static void mipspmu_event_update(struct perf_event
*event
,
404 struct hw_perf_event
*hwc
,
407 u64 prev_raw_count
, new_raw_count
;
411 prev_raw_count
= local64_read(&hwc
->prev_count
);
412 new_raw_count
= mipspmu
.read_counter(idx
);
414 if (local64_cmpxchg(&hwc
->prev_count
, prev_raw_count
,
415 new_raw_count
) != prev_raw_count
)
418 delta
= new_raw_count
- prev_raw_count
;
420 local64_add(delta
, &event
->count
);
421 local64_sub(delta
, &hwc
->period_left
);
424 static void mipspmu_start(struct perf_event
*event
, int flags
)
426 struct hw_perf_event
*hwc
= &event
->hw
;
428 if (flags
& PERF_EF_RELOAD
)
429 WARN_ON_ONCE(!(hwc
->state
& PERF_HES_UPTODATE
));
433 /* Set the period for the event. */
434 mipspmu_event_set_period(event
, hwc
, hwc
->idx
);
436 /* Enable the event. */
437 mipsxx_pmu_enable_event(hwc
, hwc
->idx
);
440 static void mipspmu_stop(struct perf_event
*event
, int flags
)
442 struct hw_perf_event
*hwc
= &event
->hw
;
444 if (!(hwc
->state
& PERF_HES_STOPPED
)) {
445 /* We are working on a local event. */
446 mipsxx_pmu_disable_event(hwc
->idx
);
448 mipspmu_event_update(event
, hwc
, hwc
->idx
);
449 hwc
->state
|= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
453 static int mipspmu_add(struct perf_event
*event
, int flags
)
455 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
456 struct hw_perf_event
*hwc
= &event
->hw
;
460 perf_pmu_disable(event
->pmu
);
462 /* To look for a free counter for this event. */
463 idx
= mipsxx_pmu_alloc_counter(cpuc
, hwc
);
470 * If there is an event in the counter we are going to use then
471 * make sure it is disabled.
474 mipsxx_pmu_disable_event(idx
);
475 cpuc
->events
[idx
] = event
;
477 hwc
->state
= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
478 if (flags
& PERF_EF_START
)
479 mipspmu_start(event
, PERF_EF_RELOAD
);
481 /* Propagate our changes to the userspace mapping. */
482 perf_event_update_userpage(event
);
485 perf_pmu_enable(event
->pmu
);
489 static void mipspmu_del(struct perf_event
*event
, int flags
)
491 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
492 struct hw_perf_event
*hwc
= &event
->hw
;
495 WARN_ON(idx
< 0 || idx
>= mipspmu
.num_counters
);
497 mipspmu_stop(event
, PERF_EF_UPDATE
);
498 cpuc
->events
[idx
] = NULL
;
499 clear_bit(idx
, cpuc
->used_mask
);
501 perf_event_update_userpage(event
);
504 static void mipspmu_read(struct perf_event
*event
)
506 struct hw_perf_event
*hwc
= &event
->hw
;
508 /* Don't read disabled counters! */
512 mipspmu_event_update(event
, hwc
, hwc
->idx
);
515 static void mipspmu_enable(struct pmu
*pmu
)
517 #ifdef CONFIG_MIPS_MT_SMP
518 write_unlock(&pmuint_rwlock
);
520 resume_local_counters();
524 * MIPS performance counters can be per-TC. The control registers can
525 * not be directly accessed accross CPUs. Hence if we want to do global
526 * control, we need cross CPU calls. on_each_cpu() can help us, but we
527 * can not make sure this function is called with interrupts enabled. So
528 * here we pause local counters and then grab a rwlock and leave the
529 * counters on other CPUs alone. If any counter interrupt raises while
530 * we own the write lock, simply pause local counters on that CPU and
531 * spin in the handler. Also we know we won't be switched to another
532 * CPU after pausing local counters and before grabbing the lock.
534 static void mipspmu_disable(struct pmu
*pmu
)
536 pause_local_counters();
537 #ifdef CONFIG_MIPS_MT_SMP
538 write_lock(&pmuint_rwlock
);
542 static atomic_t active_events
= ATOMIC_INIT(0);
543 static DEFINE_MUTEX(pmu_reserve_mutex
);
544 static int (*save_perf_irq
)(void);
546 static int mipspmu_get_irq(void)
550 if (mipspmu
.irq
>= 0) {
551 /* Request my own irq handler. */
552 err
= request_irq(mipspmu
.irq
, mipsxx_pmu_handle_irq
,
553 IRQF_PERCPU
| IRQF_NOBALANCING
,
554 "mips_perf_pmu", NULL
);
556 pr_warning("Unable to request IRQ%d for MIPS "
557 "performance counters!\n", mipspmu
.irq
);
559 } else if (cp0_perfcount_irq
< 0) {
561 * We are sharing the irq number with the timer interrupt.
563 save_perf_irq
= perf_irq
;
564 perf_irq
= mipsxx_pmu_handle_shared_irq
;
567 pr_warning("The platform hasn't properly defined its "
568 "interrupt controller.\n");
575 static void mipspmu_free_irq(void)
577 if (mipspmu
.irq
>= 0)
578 free_irq(mipspmu
.irq
, NULL
);
579 else if (cp0_perfcount_irq
< 0)
580 perf_irq
= save_perf_irq
;
584 * mipsxx/rm9000/loongson2 have different performance counters, they have
585 * specific low-level init routines.
587 static void reset_counters(void *arg
);
588 static int __hw_perf_event_init(struct perf_event
*event
);
590 static void hw_perf_event_destroy(struct perf_event
*event
)
592 if (atomic_dec_and_mutex_lock(&active_events
,
593 &pmu_reserve_mutex
)) {
595 * We must not call the destroy function with interrupts
598 on_each_cpu(reset_counters
,
599 (void *)(long)mipspmu
.num_counters
, 1);
601 mutex_unlock(&pmu_reserve_mutex
);
605 static int mipspmu_event_init(struct perf_event
*event
)
609 switch (event
->attr
.type
) {
611 case PERF_TYPE_HARDWARE
:
612 case PERF_TYPE_HW_CACHE
:
619 if (event
->cpu
>= nr_cpumask_bits
||
620 (event
->cpu
>= 0 && !cpu_online(event
->cpu
)))
623 if (!atomic_inc_not_zero(&active_events
)) {
624 mutex_lock(&pmu_reserve_mutex
);
625 if (atomic_read(&active_events
) == 0)
626 err
= mipspmu_get_irq();
629 atomic_inc(&active_events
);
630 mutex_unlock(&pmu_reserve_mutex
);
636 return __hw_perf_event_init(event
);
639 static struct pmu pmu
= {
640 .pmu_enable
= mipspmu_enable
,
641 .pmu_disable
= mipspmu_disable
,
642 .event_init
= mipspmu_event_init
,
645 .start
= mipspmu_start
,
646 .stop
= mipspmu_stop
,
647 .read
= mipspmu_read
,
650 static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event
*pev
)
653 * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
656 #ifdef CONFIG_MIPS_MT_SMP
657 return ((unsigned int)pev
->range
<< 24) |
658 (pev
->cntr_mask
& 0xffff00) |
659 (pev
->event_id
& 0xff);
661 return (pev
->cntr_mask
& 0xffff00) |
662 (pev
->event_id
& 0xff);
666 static const struct mips_perf_event
*mipspmu_map_general_event(int idx
)
668 const struct mips_perf_event
*pev
;
670 pev
= ((*mipspmu
.general_event_map
)[idx
].event_id
==
671 UNSUPPORTED_PERF_EVENT_ID
? ERR_PTR(-EOPNOTSUPP
) :
672 &(*mipspmu
.general_event_map
)[idx
]);
677 static const struct mips_perf_event
*mipspmu_map_cache_event(u64 config
)
679 unsigned int cache_type
, cache_op
, cache_result
;
680 const struct mips_perf_event
*pev
;
682 cache_type
= (config
>> 0) & 0xff;
683 if (cache_type
>= PERF_COUNT_HW_CACHE_MAX
)
684 return ERR_PTR(-EINVAL
);
686 cache_op
= (config
>> 8) & 0xff;
687 if (cache_op
>= PERF_COUNT_HW_CACHE_OP_MAX
)
688 return ERR_PTR(-EINVAL
);
690 cache_result
= (config
>> 16) & 0xff;
691 if (cache_result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
692 return ERR_PTR(-EINVAL
);
694 pev
= &((*mipspmu
.cache_event_map
)
699 if (pev
->event_id
== UNSUPPORTED_PERF_EVENT_ID
)
700 return ERR_PTR(-EOPNOTSUPP
);
706 static int validate_group(struct perf_event
*event
)
708 struct perf_event
*sibling
, *leader
= event
->group_leader
;
709 struct cpu_hw_events fake_cpuc
;
711 memset(&fake_cpuc
, 0, sizeof(fake_cpuc
));
713 if (mipsxx_pmu_alloc_counter(&fake_cpuc
, &leader
->hw
) < 0)
716 list_for_each_entry(sibling
, &leader
->sibling_list
, group_entry
) {
717 if (mipsxx_pmu_alloc_counter(&fake_cpuc
, &sibling
->hw
) < 0)
721 if (mipsxx_pmu_alloc_counter(&fake_cpuc
, &event
->hw
) < 0)
727 /* This is needed by specific irq handlers in perf_event_*.c */
728 static void handle_associated_event(struct cpu_hw_events
*cpuc
,
729 int idx
, struct perf_sample_data
*data
,
730 struct pt_regs
*regs
)
732 struct perf_event
*event
= cpuc
->events
[idx
];
733 struct hw_perf_event
*hwc
= &event
->hw
;
735 mipspmu_event_update(event
, hwc
, idx
);
736 data
->period
= event
->hw
.last_period
;
737 if (!mipspmu_event_set_period(event
, hwc
, idx
))
740 if (perf_event_overflow(event
, data
, regs
))
741 mipsxx_pmu_disable_event(idx
);
745 static int __n_counters(void)
747 if (!(read_c0_config1() & M_CONFIG1_PC
))
749 if (!(read_c0_perfctrl0() & M_PERFCTL_MORE
))
751 if (!(read_c0_perfctrl1() & M_PERFCTL_MORE
))
753 if (!(read_c0_perfctrl2() & M_PERFCTL_MORE
))
759 static int n_counters(void)
763 switch (current_cpu_type()) {
774 counters
= __n_counters();
780 static void reset_counters(void *arg
)
782 int counters
= (int)(long)arg
;
785 mipsxx_pmu_write_control(3, 0);
786 mipspmu
.write_counter(3, 0);
788 mipsxx_pmu_write_control(2, 0);
789 mipspmu
.write_counter(2, 0);
791 mipsxx_pmu_write_control(1, 0);
792 mipspmu
.write_counter(1, 0);
794 mipsxx_pmu_write_control(0, 0);
795 mipspmu
.write_counter(0, 0);
799 /* 24K/34K/1004K cores can share the same event map. */
800 static const struct mips_perf_event mipsxxcore_event_map
801 [PERF_COUNT_HW_MAX
] = {
802 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x00, CNTR_EVEN
| CNTR_ODD
, P
},
803 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x01, CNTR_EVEN
| CNTR_ODD
, T
},
804 [PERF_COUNT_HW_CACHE_REFERENCES
] = { UNSUPPORTED_PERF_EVENT_ID
},
805 [PERF_COUNT_HW_CACHE_MISSES
] = { UNSUPPORTED_PERF_EVENT_ID
},
806 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = { 0x02, CNTR_EVEN
, T
},
807 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x02, CNTR_ODD
, T
},
808 [PERF_COUNT_HW_BUS_CYCLES
] = { UNSUPPORTED_PERF_EVENT_ID
},
811 /* 74K core has different branch event code. */
812 static const struct mips_perf_event mipsxx74Kcore_event_map
813 [PERF_COUNT_HW_MAX
] = {
814 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x00, CNTR_EVEN
| CNTR_ODD
, P
},
815 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x01, CNTR_EVEN
| CNTR_ODD
, T
},
816 [PERF_COUNT_HW_CACHE_REFERENCES
] = { UNSUPPORTED_PERF_EVENT_ID
},
817 [PERF_COUNT_HW_CACHE_MISSES
] = { UNSUPPORTED_PERF_EVENT_ID
},
818 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = { 0x27, CNTR_EVEN
, T
},
819 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x27, CNTR_ODD
, T
},
820 [PERF_COUNT_HW_BUS_CYCLES
] = { UNSUPPORTED_PERF_EVENT_ID
},
823 static const struct mips_perf_event octeon_event_map
[PERF_COUNT_HW_MAX
] = {
824 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x01, CNTR_ALL
},
825 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x03, CNTR_ALL
},
826 [PERF_COUNT_HW_CACHE_REFERENCES
] = { 0x2b, CNTR_ALL
},
827 [PERF_COUNT_HW_CACHE_MISSES
] = { 0x2e, CNTR_ALL
},
828 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = { 0x08, CNTR_ALL
},
829 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x09, CNTR_ALL
},
830 [PERF_COUNT_HW_BUS_CYCLES
] = { 0x25, CNTR_ALL
},
833 /* 24K/34K/1004K cores can share the same cache event map. */
834 static const struct mips_perf_event mipsxxcore_cache_map
835 [PERF_COUNT_HW_CACHE_MAX
]
836 [PERF_COUNT_HW_CACHE_OP_MAX
]
837 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
840 * Like some other architectures (e.g. ARM), the performance
841 * counters don't differentiate between read and write
842 * accesses/misses, so this isn't strictly correct, but it's the
843 * best we can do. Writes and reads get combined.
846 [C(RESULT_ACCESS
)] = { 0x0a, CNTR_EVEN
, T
},
847 [C(RESULT_MISS
)] = { 0x0b, CNTR_EVEN
| CNTR_ODD
, T
},
850 [C(RESULT_ACCESS
)] = { 0x0a, CNTR_EVEN
, T
},
851 [C(RESULT_MISS
)] = { 0x0b, CNTR_EVEN
| CNTR_ODD
, T
},
854 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
855 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
860 [C(RESULT_ACCESS
)] = { 0x09, CNTR_EVEN
, T
},
861 [C(RESULT_MISS
)] = { 0x09, CNTR_ODD
, T
},
864 [C(RESULT_ACCESS
)] = { 0x09, CNTR_EVEN
, T
},
865 [C(RESULT_MISS
)] = { 0x09, CNTR_ODD
, T
},
868 [C(RESULT_ACCESS
)] = { 0x14, CNTR_EVEN
, T
},
870 * Note that MIPS has only "hit" events countable for
871 * the prefetch operation.
873 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
878 [C(RESULT_ACCESS
)] = { 0x15, CNTR_ODD
, P
},
879 [C(RESULT_MISS
)] = { 0x16, CNTR_EVEN
, P
},
882 [C(RESULT_ACCESS
)] = { 0x15, CNTR_ODD
, P
},
883 [C(RESULT_MISS
)] = { 0x16, CNTR_EVEN
, P
},
886 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
887 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
892 [C(RESULT_ACCESS
)] = { 0x06, CNTR_EVEN
, T
},
893 [C(RESULT_MISS
)] = { 0x06, CNTR_ODD
, T
},
896 [C(RESULT_ACCESS
)] = { 0x06, CNTR_EVEN
, T
},
897 [C(RESULT_MISS
)] = { 0x06, CNTR_ODD
, T
},
900 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
901 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
906 [C(RESULT_ACCESS
)] = { 0x05, CNTR_EVEN
, T
},
907 [C(RESULT_MISS
)] = { 0x05, CNTR_ODD
, T
},
910 [C(RESULT_ACCESS
)] = { 0x05, CNTR_EVEN
, T
},
911 [C(RESULT_MISS
)] = { 0x05, CNTR_ODD
, T
},
914 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
915 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
919 /* Using the same code for *HW_BRANCH* */
921 [C(RESULT_ACCESS
)] = { 0x02, CNTR_EVEN
, T
},
922 [C(RESULT_MISS
)] = { 0x02, CNTR_ODD
, T
},
925 [C(RESULT_ACCESS
)] = { 0x02, CNTR_EVEN
, T
},
926 [C(RESULT_MISS
)] = { 0x02, CNTR_ODD
, T
},
929 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
930 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
935 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
936 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
939 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
940 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
943 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
944 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
949 /* 74K core has completely different cache event map. */
950 static const struct mips_perf_event mipsxx74Kcore_cache_map
951 [PERF_COUNT_HW_CACHE_MAX
]
952 [PERF_COUNT_HW_CACHE_OP_MAX
]
953 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
956 * Like some other architectures (e.g. ARM), the performance
957 * counters don't differentiate between read and write
958 * accesses/misses, so this isn't strictly correct, but it's the
959 * best we can do. Writes and reads get combined.
962 [C(RESULT_ACCESS
)] = { 0x17, CNTR_ODD
, T
},
963 [C(RESULT_MISS
)] = { 0x18, CNTR_ODD
, T
},
966 [C(RESULT_ACCESS
)] = { 0x17, CNTR_ODD
, T
},
967 [C(RESULT_MISS
)] = { 0x18, CNTR_ODD
, T
},
970 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
971 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
976 [C(RESULT_ACCESS
)] = { 0x06, CNTR_EVEN
, T
},
977 [C(RESULT_MISS
)] = { 0x06, CNTR_ODD
, T
},
980 [C(RESULT_ACCESS
)] = { 0x06, CNTR_EVEN
, T
},
981 [C(RESULT_MISS
)] = { 0x06, CNTR_ODD
, T
},
984 [C(RESULT_ACCESS
)] = { 0x34, CNTR_EVEN
, T
},
986 * Note that MIPS has only "hit" events countable for
987 * the prefetch operation.
989 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
994 [C(RESULT_ACCESS
)] = { 0x1c, CNTR_ODD
, P
},
995 [C(RESULT_MISS
)] = { 0x1d, CNTR_EVEN
| CNTR_ODD
, P
},
998 [C(RESULT_ACCESS
)] = { 0x1c, CNTR_ODD
, P
},
999 [C(RESULT_MISS
)] = { 0x1d, CNTR_EVEN
| CNTR_ODD
, P
},
1001 [C(OP_PREFETCH
)] = {
1002 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1003 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1007 /* 74K core does not have specific DTLB events. */
1009 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1010 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1013 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1014 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1016 [C(OP_PREFETCH
)] = {
1017 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1018 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1023 [C(RESULT_ACCESS
)] = { 0x04, CNTR_EVEN
, T
},
1024 [C(RESULT_MISS
)] = { 0x04, CNTR_ODD
, T
},
1027 [C(RESULT_ACCESS
)] = { 0x04, CNTR_EVEN
, T
},
1028 [C(RESULT_MISS
)] = { 0x04, CNTR_ODD
, T
},
1030 [C(OP_PREFETCH
)] = {
1031 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1032 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1036 /* Using the same code for *HW_BRANCH* */
1038 [C(RESULT_ACCESS
)] = { 0x27, CNTR_EVEN
, T
},
1039 [C(RESULT_MISS
)] = { 0x27, CNTR_ODD
, T
},
1042 [C(RESULT_ACCESS
)] = { 0x27, CNTR_EVEN
, T
},
1043 [C(RESULT_MISS
)] = { 0x27, CNTR_ODD
, T
},
1045 [C(OP_PREFETCH
)] = {
1046 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1047 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1052 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1053 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1056 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1057 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1059 [C(OP_PREFETCH
)] = {
1060 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1061 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1067 static const struct mips_perf_event octeon_cache_map
1068 [PERF_COUNT_HW_CACHE_MAX
]
1069 [PERF_COUNT_HW_CACHE_OP_MAX
]
1070 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1073 [C(RESULT_ACCESS
)] = { 0x2b, CNTR_ALL
},
1074 [C(RESULT_MISS
)] = { 0x2e, CNTR_ALL
},
1077 [C(RESULT_ACCESS
)] = { 0x30, CNTR_ALL
},
1078 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1080 [C(OP_PREFETCH
)] = {
1081 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1082 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1087 [C(RESULT_ACCESS
)] = { 0x18, CNTR_ALL
},
1088 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1091 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1092 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1094 [C(OP_PREFETCH
)] = {
1095 [C(RESULT_ACCESS
)] = { 0x19, CNTR_ALL
},
1096 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1101 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1102 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1105 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1106 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1108 [C(OP_PREFETCH
)] = {
1109 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1110 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1115 * Only general DTLB misses are counted use the same event for
1119 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1120 [C(RESULT_MISS
)] = { 0x35, CNTR_ALL
},
1123 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1124 [C(RESULT_MISS
)] = { 0x35, CNTR_ALL
},
1126 [C(OP_PREFETCH
)] = {
1127 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1128 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1133 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1134 [C(RESULT_MISS
)] = { 0x37, CNTR_ALL
},
1137 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1138 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1140 [C(OP_PREFETCH
)] = {
1141 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1142 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1146 /* Using the same code for *HW_BRANCH* */
1148 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1149 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1152 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1153 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1155 [C(OP_PREFETCH
)] = {
1156 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1157 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1162 #ifdef CONFIG_MIPS_MT_SMP
1163 static void check_and_calc_range(struct perf_event
*event
,
1164 const struct mips_perf_event
*pev
)
1166 struct hw_perf_event
*hwc
= &event
->hw
;
1168 if (event
->cpu
>= 0) {
1169 if (pev
->range
> V
) {
1171 * The user selected an event that is processor
1172 * wide, while expecting it to be VPE wide.
1174 hwc
->config_base
|= M_TC_EN_ALL
;
1177 * FIXME: cpu_data[event->cpu].vpe_id reports 0
1180 hwc
->config_base
|= M_PERFCTL_VPEID(event
->cpu
);
1181 hwc
->config_base
|= M_TC_EN_VPE
;
1184 hwc
->config_base
|= M_TC_EN_ALL
;
1187 static void check_and_calc_range(struct perf_event
*event
,
1188 const struct mips_perf_event
*pev
)
1193 static int __hw_perf_event_init(struct perf_event
*event
)
1195 struct perf_event_attr
*attr
= &event
->attr
;
1196 struct hw_perf_event
*hwc
= &event
->hw
;
1197 const struct mips_perf_event
*pev
;
1200 /* Returning MIPS event descriptor for generic perf event. */
1201 if (PERF_TYPE_HARDWARE
== event
->attr
.type
) {
1202 if (event
->attr
.config
>= PERF_COUNT_HW_MAX
)
1204 pev
= mipspmu_map_general_event(event
->attr
.config
);
1205 } else if (PERF_TYPE_HW_CACHE
== event
->attr
.type
) {
1206 pev
= mipspmu_map_cache_event(event
->attr
.config
);
1207 } else if (PERF_TYPE_RAW
== event
->attr
.type
) {
1208 /* We are working on the global raw event. */
1209 mutex_lock(&raw_event_mutex
);
1210 pev
= mipspmu
.map_raw_event(event
->attr
.config
);
1212 /* The event type is not (yet) supported. */
1217 if (PERF_TYPE_RAW
== event
->attr
.type
)
1218 mutex_unlock(&raw_event_mutex
);
1219 return PTR_ERR(pev
);
1223 * We allow max flexibility on how each individual counter shared
1224 * by the single CPU operates (the mode exclusion and the range).
1226 hwc
->config_base
= M_PERFCTL_INTERRUPT_ENABLE
;
1228 /* Calculate range bits and validate it. */
1229 if (num_possible_cpus() > 1)
1230 check_and_calc_range(event
, pev
);
1232 hwc
->event_base
= mipspmu_perf_event_encode(pev
);
1233 if (PERF_TYPE_RAW
== event
->attr
.type
)
1234 mutex_unlock(&raw_event_mutex
);
1236 if (!attr
->exclude_user
)
1237 hwc
->config_base
|= M_PERFCTL_USER
;
1238 if (!attr
->exclude_kernel
) {
1239 hwc
->config_base
|= M_PERFCTL_KERNEL
;
1240 /* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1241 hwc
->config_base
|= M_PERFCTL_EXL
;
1243 if (!attr
->exclude_hv
)
1244 hwc
->config_base
|= M_PERFCTL_SUPERVISOR
;
1246 hwc
->config_base
&= M_PERFCTL_CONFIG_MASK
;
1248 * The event can belong to another cpu. We do not assign a local
1249 * counter for it for now.
1254 if (!hwc
->sample_period
) {
1255 hwc
->sample_period
= mipspmu
.max_period
;
1256 hwc
->last_period
= hwc
->sample_period
;
1257 local64_set(&hwc
->period_left
, hwc
->sample_period
);
1261 if (event
->group_leader
!= event
)
1262 err
= validate_group(event
);
1264 event
->destroy
= hw_perf_event_destroy
;
1267 event
->destroy(event
);
1272 static void pause_local_counters(void)
1274 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1275 int ctr
= mipspmu
.num_counters
;
1276 unsigned long flags
;
1278 local_irq_save(flags
);
1281 cpuc
->saved_ctrl
[ctr
] = mipsxx_pmu_read_control(ctr
);
1282 mipsxx_pmu_write_control(ctr
, cpuc
->saved_ctrl
[ctr
] &
1283 ~M_PERFCTL_COUNT_EVENT_WHENEVER
);
1285 local_irq_restore(flags
);
1288 static void resume_local_counters(void)
1290 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1291 int ctr
= mipspmu
.num_counters
;
1295 mipsxx_pmu_write_control(ctr
, cpuc
->saved_ctrl
[ctr
]);
1299 static int mipsxx_pmu_handle_shared_irq(void)
1301 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1302 struct perf_sample_data data
;
1303 unsigned int counters
= mipspmu
.num_counters
;
1305 int handled
= IRQ_NONE
;
1306 struct pt_regs
*regs
;
1308 if (cpu_has_mips_r2
&& !(read_c0_cause() & (1 << 26)))
1311 * First we pause the local counters, so that when we are locked
1312 * here, the counters are all paused. When it gets locked due to
1313 * perf_disable(), the timer interrupt handler will be delayed.
1315 * See also mipsxx_pmu_start().
1317 pause_local_counters();
1318 #ifdef CONFIG_MIPS_MT_SMP
1319 read_lock(&pmuint_rwlock
);
1322 regs
= get_irq_regs();
1324 perf_sample_data_init(&data
, 0);
1327 #define HANDLE_COUNTER(n) \
1329 if (test_bit(n, cpuc->used_mask)) { \
1330 counter = mipspmu.read_counter(n); \
1331 if (counter & mipspmu.overflow) { \
1332 handle_associated_event(cpuc, n, &data, regs); \
1333 handled = IRQ_HANDLED; \
1343 * Do all the work for the pending perf events. We can do this
1344 * in here because the performance counter interrupt is a regular
1345 * interrupt, not NMI.
1347 if (handled
== IRQ_HANDLED
)
1350 #ifdef CONFIG_MIPS_MT_SMP
1351 read_unlock(&pmuint_rwlock
);
1353 resume_local_counters();
1357 static irqreturn_t
mipsxx_pmu_handle_irq(int irq
, void *dev
)
1359 return mipsxx_pmu_handle_shared_irq();
1363 #define IS_BOTH_COUNTERS_24K_EVENT(b) \
1364 ((b) == 0 || (b) == 1 || (b) == 11)
1367 #define IS_BOTH_COUNTERS_34K_EVENT(b) \
1368 ((b) == 0 || (b) == 1 || (b) == 11)
1369 #ifdef CONFIG_MIPS_MT_SMP
1370 #define IS_RANGE_P_34K_EVENT(r, b) \
1371 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1372 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 || \
1373 (r) == 176 || ((b) >= 50 && (b) <= 55) || \
1374 ((b) >= 64 && (b) <= 67))
1375 #define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
1379 #define IS_BOTH_COUNTERS_74K_EVENT(b) \
1380 ((b) == 0 || (b) == 1)
1383 #define IS_BOTH_COUNTERS_1004K_EVENT(b) \
1384 ((b) == 0 || (b) == 1 || (b) == 11)
1385 #ifdef CONFIG_MIPS_MT_SMP
1386 #define IS_RANGE_P_1004K_EVENT(r, b) \
1387 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1388 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 || \
1389 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) || \
1390 (r) == 188 || (b) == 61 || (b) == 62 || \
1391 ((b) >= 64 && (b) <= 67))
1392 #define IS_RANGE_V_1004K_EVENT(r) ((r) == 47)
1396 * User can use 0-255 raw events, where 0-127 for the events of even
1397 * counters, and 128-255 for odd counters. Note that bit 7 is used to
1398 * indicate the parity. So, for example, when user wants to take the
1399 * Event Num of 15 for odd counters (by referring to the user manual),
1400 * then 128 needs to be added to 15 as the input for the event config,
1401 * i.e., 143 (0x8F) to be used.
1403 static const struct mips_perf_event
*mipsxx_pmu_map_raw_event(u64 config
)
1405 unsigned int raw_id
= config
& 0xff;
1406 unsigned int base_id
= raw_id
& 0x7f;
1408 raw_event
.event_id
= base_id
;
1410 switch (current_cpu_type()) {
1412 if (IS_BOTH_COUNTERS_24K_EVENT(base_id
))
1413 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1415 raw_event
.cntr_mask
=
1416 raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1417 #ifdef CONFIG_MIPS_MT_SMP
1419 * This is actually doing nothing. Non-multithreading
1420 * CPUs will not check and calculate the range.
1422 raw_event
.range
= P
;
1426 if (IS_BOTH_COUNTERS_34K_EVENT(base_id
))
1427 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1429 raw_event
.cntr_mask
=
1430 raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1431 #ifdef CONFIG_MIPS_MT_SMP
1432 if (IS_RANGE_P_34K_EVENT(raw_id
, base_id
))
1433 raw_event
.range
= P
;
1434 else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id
)))
1435 raw_event
.range
= V
;
1437 raw_event
.range
= T
;
1441 if (IS_BOTH_COUNTERS_74K_EVENT(base_id
))
1442 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1444 raw_event
.cntr_mask
=
1445 raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1446 #ifdef CONFIG_MIPS_MT_SMP
1447 raw_event
.range
= P
;
1451 if (IS_BOTH_COUNTERS_1004K_EVENT(base_id
))
1452 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1454 raw_event
.cntr_mask
=
1455 raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1456 #ifdef CONFIG_MIPS_MT_SMP
1457 if (IS_RANGE_P_1004K_EVENT(raw_id
, base_id
))
1458 raw_event
.range
= P
;
1459 else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id
)))
1460 raw_event
.range
= V
;
1462 raw_event
.range
= T
;
1470 static const struct mips_perf_event
*octeon_pmu_map_raw_event(u64 config
)
1472 unsigned int raw_id
= config
& 0xff;
1473 unsigned int base_id
= raw_id
& 0x7f;
1476 raw_event
.cntr_mask
= CNTR_ALL
;
1477 raw_event
.event_id
= base_id
;
1479 if (current_cpu_type() == CPU_CAVIUM_OCTEON2
) {
1481 return ERR_PTR(-EOPNOTSUPP
);
1484 return ERR_PTR(-EOPNOTSUPP
);
1495 return ERR_PTR(-EOPNOTSUPP
);
1504 init_hw_perf_events(void)
1509 pr_info("Performance counters: ");
1511 counters
= n_counters();
1512 if (counters
== 0) {
1513 pr_cont("No available PMU.\n");
1517 #ifdef CONFIG_MIPS_MT_SMP
1518 cpu_has_mipsmt_pertccounters
= read_c0_config7() & (1<<19);
1519 if (!cpu_has_mipsmt_pertccounters
)
1520 counters
= counters_total_to_per_cpu(counters
);
1523 #ifdef MSC01E_INT_BASE
1526 * Using platform specific interrupt controller defines.
1528 irq
= MSC01E_INT_BASE
+ MSC01E_INT_PERFCTR
;
1531 if (cp0_perfcount_irq
>= 0)
1532 irq
= MIPS_CPU_IRQ_BASE
+ cp0_perfcount_irq
;
1535 #ifdef MSC01E_INT_BASE
1539 mipspmu
.map_raw_event
= mipsxx_pmu_map_raw_event
;
1541 switch (current_cpu_type()) {
1543 mipspmu
.name
= "mips/24K";
1544 mipspmu
.general_event_map
= &mipsxxcore_event_map
;
1545 mipspmu
.cache_event_map
= &mipsxxcore_cache_map
;
1548 mipspmu
.name
= "mips/34K";
1549 mipspmu
.general_event_map
= &mipsxxcore_event_map
;
1550 mipspmu
.cache_event_map
= &mipsxxcore_cache_map
;
1553 mipspmu
.name
= "mips/74K";
1554 mipspmu
.general_event_map
= &mipsxx74Kcore_event_map
;
1555 mipspmu
.cache_event_map
= &mipsxx74Kcore_cache_map
;
1558 mipspmu
.name
= "mips/1004K";
1559 mipspmu
.general_event_map
= &mipsxxcore_event_map
;
1560 mipspmu
.cache_event_map
= &mipsxxcore_cache_map
;
1562 case CPU_CAVIUM_OCTEON
:
1563 case CPU_CAVIUM_OCTEON_PLUS
:
1564 case CPU_CAVIUM_OCTEON2
:
1565 mipspmu
.name
= "octeon";
1566 mipspmu
.general_event_map
= &octeon_event_map
;
1567 mipspmu
.cache_event_map
= &octeon_cache_map
;
1568 mipspmu
.map_raw_event
= octeon_pmu_map_raw_event
;
1571 pr_cont("Either hardware does not support performance "
1572 "counters, or not yet implemented.\n");
1576 mipspmu
.num_counters
= counters
;
1579 if (read_c0_perfctrl0() & M_PERFCTL_WIDE
) {
1580 mipspmu
.max_period
= (1ULL << 63) - 1;
1581 mipspmu
.valid_count
= (1ULL << 63) - 1;
1582 mipspmu
.overflow
= 1ULL << 63;
1583 mipspmu
.read_counter
= mipsxx_pmu_read_counter_64
;
1584 mipspmu
.write_counter
= mipsxx_pmu_write_counter_64
;
1587 mipspmu
.max_period
= (1ULL << 31) - 1;
1588 mipspmu
.valid_count
= (1ULL << 31) - 1;
1589 mipspmu
.overflow
= 1ULL << 31;
1590 mipspmu
.read_counter
= mipsxx_pmu_read_counter
;
1591 mipspmu
.write_counter
= mipsxx_pmu_write_counter
;
1595 on_each_cpu(reset_counters
, (void *)(long)counters
, 1);
1597 pr_cont("%s PMU enabled, %d %d-bit counters available to each "
1598 "CPU, irq %d%s\n", mipspmu
.name
, counters
, counter_bits
, irq
,
1599 irq
< 0 ? " (share with timer interrupt)" : "");
1601 perf_pmu_register(&pmu
, "cpu", PERF_TYPE_RAW
);
1605 early_initcall(init_hw_perf_events
);