spi-topcliff-pch: supports a spi mode setup and bit order setup by IO control
[zen-stable.git] / arch / mips / kernel / smp-bmips.c
blobd5e950ab852792b15c2226f193f55061719f0e20
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
8 * SMP support for BMIPS
9 */
11 #include <linux/init.h>
12 #include <linux/sched.h>
13 #include <linux/mm.h>
14 #include <linux/delay.h>
15 #include <linux/smp.h>
16 #include <linux/interrupt.h>
17 #include <linux/spinlock.h>
18 #include <linux/init.h>
19 #include <linux/cpu.h>
20 #include <linux/cpumask.h>
21 #include <linux/reboot.h>
22 #include <linux/io.h>
23 #include <linux/compiler.h>
24 #include <linux/linkage.h>
25 #include <linux/bug.h>
26 #include <linux/kernel.h>
28 #include <asm/time.h>
29 #include <asm/pgtable.h>
30 #include <asm/processor.h>
31 #include <asm/system.h>
32 #include <asm/bootinfo.h>
33 #include <asm/pmon.h>
34 #include <asm/cacheflush.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mipsregs.h>
37 #include <asm/bmips.h>
38 #include <asm/traps.h>
39 #include <asm/barrier.h>
41 static int __maybe_unused max_cpus = 1;
43 /* these may be configured by the platform code */
44 int bmips_smp_enabled = 1;
45 int bmips_cpu_offset;
46 cpumask_t bmips_booted_mask;
48 #ifdef CONFIG_SMP
50 /* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
51 unsigned long bmips_smp_boot_sp;
52 unsigned long bmips_smp_boot_gp;
54 static void bmips_send_ipi_single(int cpu, unsigned int action);
55 static irqreturn_t bmips_ipi_interrupt(int irq, void *dev_id);
57 /* SW interrupts 0,1 are used for interprocessor signaling */
58 #define IPI0_IRQ (MIPS_CPU_IRQ_BASE + 0)
59 #define IPI1_IRQ (MIPS_CPU_IRQ_BASE + 1)
61 #define CPUNUM(cpu, shift) (((cpu) + bmips_cpu_offset) << (shift))
62 #define ACTION_CLR_IPI(cpu, ipi) (0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
63 #define ACTION_SET_IPI(cpu, ipi) (0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
64 #define ACTION_BOOT_THREAD(cpu) (0x08 | CPUNUM(cpu, 0))
66 static void __init bmips_smp_setup(void)
68 int i;
70 #if defined(CONFIG_CPU_BMIPS4350) || defined(CONFIG_CPU_BMIPS4380)
71 /* arbitration priority */
72 clear_c0_brcm_cmt_ctrl(0x30);
74 /* NBK and weak order flags */
75 set_c0_brcm_config_0(0x30000);
78 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other thread
79 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
80 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
82 change_c0_brcm_cmt_intr(0xf8018000,
83 (0x02 << 27) | (0x03 << 15));
85 /* single core, 2 threads (2 pipelines) */
86 max_cpus = 2;
87 #elif defined(CONFIG_CPU_BMIPS5000)
88 /* enable raceless SW interrupts */
89 set_c0_brcm_config(0x03 << 22);
91 /* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
92 change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
94 /* N cores, 2 threads per core */
95 max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
97 /* clear any pending SW interrupts */
98 for (i = 0; i < max_cpus; i++) {
99 write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
100 write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
102 #endif
104 if (!bmips_smp_enabled)
105 max_cpus = 1;
107 /* this can be overridden by the BSP */
108 if (!board_ebase_setup)
109 board_ebase_setup = &bmips_ebase_setup;
111 for (i = 0; i < max_cpus; i++) {
112 __cpu_number_map[i] = 1;
113 __cpu_logical_map[i] = 1;
114 set_cpu_possible(i, 1);
115 set_cpu_present(i, 1);
120 * IPI IRQ setup - runs on CPU0
122 static void bmips_prepare_cpus(unsigned int max_cpus)
124 if (request_irq(IPI0_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
125 "smp_ipi0", NULL))
126 panic("Can't request IPI0 interrupt\n");
127 if (request_irq(IPI1_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
128 "smp_ipi1", NULL))
129 panic("Can't request IPI1 interrupt\n");
133 * Tell the hardware to boot CPUx - runs on CPU0
135 static void bmips_boot_secondary(int cpu, struct task_struct *idle)
137 bmips_smp_boot_sp = __KSTK_TOS(idle);
138 bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
139 mb();
142 * Initial boot sequence for secondary CPU:
143 * bmips_reset_nmi_vec @ a000_0000 ->
144 * bmips_smp_entry ->
145 * plat_wired_tlb_setup (cached function call; optional) ->
146 * start_secondary (cached jump)
148 * Warm restart sequence:
149 * play_dead WAIT loop ->
150 * bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
151 * eret to play_dead ->
152 * bmips_secondary_reentry ->
153 * start_secondary
156 pr_info("SMP: Booting CPU%d...\n", cpu);
158 if (cpumask_test_cpu(cpu, &bmips_booted_mask))
159 bmips_send_ipi_single(cpu, 0);
160 else {
161 #if defined(CONFIG_CPU_BMIPS4350) || defined(CONFIG_CPU_BMIPS4380)
162 set_c0_brcm_cmt_ctrl(0x01);
163 #elif defined(CONFIG_CPU_BMIPS5000)
164 if (cpu & 0x01)
165 write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
166 else {
168 * core N thread 0 was already booted; just
169 * pulse the NMI line
171 bmips_write_zscm_reg(0x210, 0xc0000000);
172 udelay(10);
173 bmips_write_zscm_reg(0x210, 0x00);
175 #endif
176 cpumask_set_cpu(cpu, &bmips_booted_mask);
181 * Early setup - runs on secondary CPU after cache probe
183 static void bmips_init_secondary(void)
185 /* move NMI vector to kseg0, in case XKS01 is enabled */
187 #if defined(CONFIG_CPU_BMIPS4350) || defined(CONFIG_CPU_BMIPS4380)
188 void __iomem *cbr = BMIPS_GET_CBR();
189 unsigned long old_vec;
191 old_vec = __raw_readl(cbr + BMIPS_RELO_VECTOR_CONTROL_1);
192 __raw_writel(old_vec & ~0x20000000, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
194 clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
195 #elif defined(CONFIG_CPU_BMIPS5000)
196 write_c0_brcm_bootvec(read_c0_brcm_bootvec() &
197 (smp_processor_id() & 0x01 ? ~0x20000000 : ~0x2000));
199 write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
200 #endif
202 /* make sure there won't be a timer interrupt for a little while */
203 write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
205 irq_enable_hazard();
206 set_c0_status(IE_SW0 | IE_SW1 | IE_IRQ1 | IE_IRQ5 | ST0_IE);
207 irq_enable_hazard();
211 * Late setup - runs on secondary CPU before entering the idle loop
213 static void bmips_smp_finish(void)
215 pr_info("SMP: CPU%d is running\n", smp_processor_id());
219 * Runs on CPU0 after all CPUs have been booted
221 static void bmips_cpus_done(void)
225 #if defined(CONFIG_CPU_BMIPS5000)
228 * BMIPS5000 raceless IPIs
230 * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
231 * IPI0 is used for SMP_RESCHEDULE_YOURSELF
232 * IPI1 is used for SMP_CALL_FUNCTION
235 static void bmips_send_ipi_single(int cpu, unsigned int action)
237 write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
240 static irqreturn_t bmips_ipi_interrupt(int irq, void *dev_id)
242 int action = irq - IPI0_IRQ;
244 write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
246 if (action == 0)
247 scheduler_ipi();
248 else
249 smp_call_function_interrupt();
251 return IRQ_HANDLED;
254 #else
257 * BMIPS43xx racey IPIs
259 * We use one inbound SW IRQ for each CPU.
261 * A spinlock must be held in order to keep CPUx from accidentally clearing
262 * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy. The
263 * same spinlock is used to protect the action masks.
266 static DEFINE_SPINLOCK(ipi_lock);
267 static DEFINE_PER_CPU(int, ipi_action_mask);
269 static void bmips_send_ipi_single(int cpu, unsigned int action)
271 unsigned long flags;
273 spin_lock_irqsave(&ipi_lock, flags);
274 set_c0_cause(cpu ? C_SW1 : C_SW0);
275 per_cpu(ipi_action_mask, cpu) |= action;
276 irq_enable_hazard();
277 spin_unlock_irqrestore(&ipi_lock, flags);
280 static irqreturn_t bmips_ipi_interrupt(int irq, void *dev_id)
282 unsigned long flags;
283 int action, cpu = irq - IPI0_IRQ;
285 spin_lock_irqsave(&ipi_lock, flags);
286 action = __get_cpu_var(ipi_action_mask);
287 per_cpu(ipi_action_mask, cpu) = 0;
288 clear_c0_cause(cpu ? C_SW1 : C_SW0);
289 spin_unlock_irqrestore(&ipi_lock, flags);
291 if (action & SMP_RESCHEDULE_YOURSELF)
292 scheduler_ipi();
293 if (action & SMP_CALL_FUNCTION)
294 smp_call_function_interrupt();
296 return IRQ_HANDLED;
299 #endif /* BMIPS type */
301 static void bmips_send_ipi_mask(const struct cpumask *mask,
302 unsigned int action)
304 unsigned int i;
306 for_each_cpu(i, mask)
307 bmips_send_ipi_single(i, action);
310 #ifdef CONFIG_HOTPLUG_CPU
312 static int bmips_cpu_disable(void)
314 unsigned int cpu = smp_processor_id();
316 if (cpu == 0)
317 return -EBUSY;
319 pr_info("SMP: CPU%d is offline\n", cpu);
321 cpu_clear(cpu, cpu_online_map);
322 cpu_clear(cpu, cpu_callin_map);
324 local_flush_tlb_all();
325 local_flush_icache_range(0, ~0);
327 return 0;
330 static void bmips_cpu_die(unsigned int cpu)
334 void __ref play_dead(void)
336 idle_task_exit();
338 /* flush data cache */
339 _dma_cache_wback_inv(0, ~0);
342 * Wakeup is on SW0 or SW1; disable everything else
343 * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
344 * IRQ handlers; this clears ST0_IE and returns immediately.
346 clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
347 change_c0_status(IE_IRQ5 | IE_IRQ1 | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
348 IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
349 irq_disable_hazard();
352 * wait for SW interrupt from bmips_boot_secondary(), then jump
353 * back to start_secondary()
355 __asm__ __volatile__(
356 " wait\n"
357 " j bmips_secondary_reentry\n"
358 : : : "memory");
361 #endif /* CONFIG_HOTPLUG_CPU */
363 struct plat_smp_ops bmips_smp_ops = {
364 .smp_setup = bmips_smp_setup,
365 .prepare_cpus = bmips_prepare_cpus,
366 .boot_secondary = bmips_boot_secondary,
367 .smp_finish = bmips_smp_finish,
368 .init_secondary = bmips_init_secondary,
369 .cpus_done = bmips_cpus_done,
370 .send_ipi_single = bmips_send_ipi_single,
371 .send_ipi_mask = bmips_send_ipi_mask,
372 #ifdef CONFIG_HOTPLUG_CPU
373 .cpu_disable = bmips_cpu_disable,
374 .cpu_die = bmips_cpu_die,
375 #endif
378 #endif /* CONFIG_SMP */
380 /***********************************************************************
381 * BMIPS vector relocation
382 * This is primarily used for SMP boot, but it is applicable to some
383 * UP BMIPS systems as well.
384 ***********************************************************************/
386 static void __cpuinit bmips_wr_vec(unsigned long dst, char *start, char *end)
388 memcpy((void *)dst, start, end - start);
389 dma_cache_wback((unsigned long)start, end - start);
390 local_flush_icache_range(dst, dst + (end - start));
391 instruction_hazard();
394 static inline void __cpuinit bmips_nmi_handler_setup(void)
396 bmips_wr_vec(BMIPS_NMI_RESET_VEC, &bmips_reset_nmi_vec,
397 &bmips_reset_nmi_vec_end);
398 bmips_wr_vec(BMIPS_WARM_RESTART_VEC, &bmips_smp_int_vec,
399 &bmips_smp_int_vec_end);
402 void __cpuinit bmips_ebase_setup(void)
404 unsigned long new_ebase = ebase;
405 void __iomem __maybe_unused *cbr;
407 BUG_ON(ebase != CKSEG0);
409 #if defined(CONFIG_CPU_BMIPS4350)
411 * BMIPS4350 cannot relocate the normal vectors, but it
412 * can relocate the BEV=1 vectors. So CPU1 starts up at
413 * the relocated BEV=1, IV=0 general exception vector @
414 * 0xa000_0380.
416 * set_uncached_handler() is used here because:
417 * - CPU1 will run this from uncached space
418 * - None of the cacheflush functions are set up yet
420 set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
421 &bmips_smp_int_vec, 0x80);
422 __sync();
423 return;
424 #elif defined(CONFIG_CPU_BMIPS4380)
426 * 0x8000_0000: reset/NMI (initially in kseg1)
427 * 0x8000_0400: normal vectors
429 new_ebase = 0x80000400;
430 cbr = BMIPS_GET_CBR();
431 __raw_writel(0x80080800, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
432 __raw_writel(0xa0080800, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
433 #elif defined(CONFIG_CPU_BMIPS5000)
435 * 0x8000_0000: reset/NMI (initially in kseg1)
436 * 0x8000_1000: normal vectors
438 new_ebase = 0x80001000;
439 write_c0_brcm_bootvec(0xa0088008);
440 write_c0_ebase(new_ebase);
441 if (max_cpus > 2)
442 bmips_write_zscm_reg(0xa0, 0xa008a008);
443 #else
444 return;
445 #endif
446 board_nmi_handler_setup = &bmips_nmi_handler_setup;
447 ebase = new_ebase;
450 asmlinkage void __weak plat_wired_tlb_setup(void)
453 * Called when starting/restarting a secondary CPU.
454 * Kernel stacks and other important data might only be accessible
455 * once the wired entries are present.