2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2000, 01 MIPS Technologies, Inc.
12 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
14 #include <linux/bug.h>
15 #include <linux/compiler.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
19 #include <linux/sched.h>
20 #include <linux/smp.h>
21 #include <linux/spinlock.h>
22 #include <linux/kallsyms.h>
23 #include <linux/bootmem.h>
24 #include <linux/interrupt.h>
25 #include <linux/ptrace.h>
26 #include <linux/kgdb.h>
27 #include <linux/kdebug.h>
28 #include <linux/kprobes.h>
29 #include <linux/notifier.h>
30 #include <linux/kdb.h>
31 #include <linux/irq.h>
32 #include <linux/perf_event.h>
34 #include <asm/bootinfo.h>
35 #include <asm/branch.h>
36 #include <asm/break.h>
41 #include <asm/fpu_emulator.h>
42 #include <asm/mipsregs.h>
43 #include <asm/mipsmtregs.h>
44 #include <asm/module.h>
45 #include <asm/pgtable.h>
46 #include <asm/ptrace.h>
47 #include <asm/sections.h>
48 #include <asm/system.h>
49 #include <asm/tlbdebug.h>
50 #include <asm/traps.h>
51 #include <asm/uaccess.h>
52 #include <asm/watch.h>
53 #include <asm/mmu_context.h>
54 #include <asm/types.h>
55 #include <asm/stacktrace.h>
58 extern void check_wait(void);
59 extern asmlinkage
void r4k_wait(void);
60 extern asmlinkage
void rollback_handle_int(void);
61 extern asmlinkage
void handle_int(void);
62 extern asmlinkage
void handle_tlbm(void);
63 extern asmlinkage
void handle_tlbl(void);
64 extern asmlinkage
void handle_tlbs(void);
65 extern asmlinkage
void handle_adel(void);
66 extern asmlinkage
void handle_ades(void);
67 extern asmlinkage
void handle_ibe(void);
68 extern asmlinkage
void handle_dbe(void);
69 extern asmlinkage
void handle_sys(void);
70 extern asmlinkage
void handle_bp(void);
71 extern asmlinkage
void handle_ri(void);
72 extern asmlinkage
void handle_ri_rdhwr_vivt(void);
73 extern asmlinkage
void handle_ri_rdhwr(void);
74 extern asmlinkage
void handle_cpu(void);
75 extern asmlinkage
void handle_ov(void);
76 extern asmlinkage
void handle_tr(void);
77 extern asmlinkage
void handle_fpe(void);
78 extern asmlinkage
void handle_mdmx(void);
79 extern asmlinkage
void handle_watch(void);
80 extern asmlinkage
void handle_mt(void);
81 extern asmlinkage
void handle_dsp(void);
82 extern asmlinkage
void handle_mcheck(void);
83 extern asmlinkage
void handle_reserved(void);
85 extern int fpu_emulator_cop1Handler(struct pt_regs
*xcp
,
86 struct mips_fpu_struct
*ctx
, int has_fpu
,
87 void *__user
*fault_addr
);
89 void (*board_be_init
)(void);
90 int (*board_be_handler
)(struct pt_regs
*regs
, int is_fixup
);
91 void (*board_nmi_handler_setup
)(void);
92 void (*board_ejtag_handler_setup
)(void);
93 void (*board_bind_eic_interrupt
)(int irq
, int regset
);
94 void (*board_ebase_setup
)(void);
97 static void show_raw_backtrace(unsigned long reg29
)
99 unsigned long *sp
= (unsigned long *)(reg29
& ~3);
102 printk("Call Trace:");
103 #ifdef CONFIG_KALLSYMS
106 while (!kstack_end(sp
)) {
107 unsigned long __user
*p
=
108 (unsigned long __user
*)(unsigned long)sp
++;
109 if (__get_user(addr
, p
)) {
110 printk(" (Bad stack address)");
113 if (__kernel_text_address(addr
))
119 #ifdef CONFIG_KALLSYMS
121 static int __init
set_raw_show_trace(char *str
)
126 __setup("raw_show_trace", set_raw_show_trace
);
129 static void show_backtrace(struct task_struct
*task
, const struct pt_regs
*regs
)
131 unsigned long sp
= regs
->regs
[29];
132 unsigned long ra
= regs
->regs
[31];
133 unsigned long pc
= regs
->cp0_epc
;
135 if (raw_show_trace
|| !__kernel_text_address(pc
)) {
136 show_raw_backtrace(sp
);
139 printk("Call Trace:\n");
142 pc
= unwind_stack(task
, &sp
, pc
, &ra
);
148 * This routine abuses get_user()/put_user() to reference pointers
149 * with at least a bit of error checking ...
151 static void show_stacktrace(struct task_struct
*task
,
152 const struct pt_regs
*regs
)
154 const int field
= 2 * sizeof(unsigned long);
157 unsigned long __user
*sp
= (unsigned long __user
*)regs
->regs
[29];
161 while ((unsigned long) sp
& (PAGE_SIZE
- 1)) {
162 if (i
&& ((i
% (64 / field
)) == 0))
169 if (__get_user(stackdata
, sp
++)) {
170 printk(" (Bad stack address)");
174 printk(" %0*lx", field
, stackdata
);
178 show_backtrace(task
, regs
);
181 void show_stack(struct task_struct
*task
, unsigned long *sp
)
185 regs
.regs
[29] = (unsigned long)sp
;
189 if (task
&& task
!= current
) {
190 regs
.regs
[29] = task
->thread
.reg29
;
192 regs
.cp0_epc
= task
->thread
.reg31
;
193 #ifdef CONFIG_KGDB_KDB
194 } else if (atomic_read(&kgdb_active
) != -1 &&
196 memcpy(®s
, kdb_current_regs
, sizeof(regs
));
197 #endif /* CONFIG_KGDB_KDB */
199 prepare_frametrace(®s
);
202 show_stacktrace(task
, ®s
);
206 * The architecture-independent dump_stack generator
208 void dump_stack(void)
212 prepare_frametrace(®s
);
213 show_backtrace(current
, ®s
);
216 EXPORT_SYMBOL(dump_stack
);
218 static void show_code(unsigned int __user
*pc
)
221 unsigned short __user
*pc16
= NULL
;
225 if ((unsigned long)pc
& 1)
226 pc16
= (unsigned short __user
*)((unsigned long)pc
& ~1);
227 for(i
= -3 ; i
< 6 ; i
++) {
229 if (pc16
? __get_user(insn
, pc16
+ i
) : __get_user(insn
, pc
+ i
)) {
230 printk(" (Bad address in epc)\n");
233 printk("%c%0*x%c", (i
?' ':'<'), pc16
? 4 : 8, insn
, (i
?' ':'>'));
237 static void __show_regs(const struct pt_regs
*regs
)
239 const int field
= 2 * sizeof(unsigned long);
240 unsigned int cause
= regs
->cp0_cause
;
243 printk("Cpu %d\n", smp_processor_id());
246 * Saved main processor registers
248 for (i
= 0; i
< 32; ) {
252 printk(" %0*lx", field
, 0UL);
253 else if (i
== 26 || i
== 27)
254 printk(" %*s", field
, "");
256 printk(" %0*lx", field
, regs
->regs
[i
]);
263 #ifdef CONFIG_CPU_HAS_SMARTMIPS
264 printk("Acx : %0*lx\n", field
, regs
->acx
);
266 printk("Hi : %0*lx\n", field
, regs
->hi
);
267 printk("Lo : %0*lx\n", field
, regs
->lo
);
270 * Saved cp0 registers
272 printk("epc : %0*lx %pS\n", field
, regs
->cp0_epc
,
273 (void *) regs
->cp0_epc
);
274 printk(" %s\n", print_tainted());
275 printk("ra : %0*lx %pS\n", field
, regs
->regs
[31],
276 (void *) regs
->regs
[31]);
278 printk("Status: %08x ", (uint32_t) regs
->cp0_status
);
280 if (current_cpu_data
.isa_level
== MIPS_CPU_ISA_I
) {
281 if (regs
->cp0_status
& ST0_KUO
)
283 if (regs
->cp0_status
& ST0_IEO
)
285 if (regs
->cp0_status
& ST0_KUP
)
287 if (regs
->cp0_status
& ST0_IEP
)
289 if (regs
->cp0_status
& ST0_KUC
)
291 if (regs
->cp0_status
& ST0_IEC
)
294 if (regs
->cp0_status
& ST0_KX
)
296 if (regs
->cp0_status
& ST0_SX
)
298 if (regs
->cp0_status
& ST0_UX
)
300 switch (regs
->cp0_status
& ST0_KSU
) {
305 printk("SUPERVISOR ");
314 if (regs
->cp0_status
& ST0_ERL
)
316 if (regs
->cp0_status
& ST0_EXL
)
318 if (regs
->cp0_status
& ST0_IE
)
323 printk("Cause : %08x\n", cause
);
325 cause
= (cause
& CAUSEF_EXCCODE
) >> CAUSEB_EXCCODE
;
326 if (1 <= cause
&& cause
<= 5)
327 printk("BadVA : %0*lx\n", field
, regs
->cp0_badvaddr
);
329 printk("PrId : %08x (%s)\n", read_c0_prid(),
334 * FIXME: really the generic show_regs should take a const pointer argument.
336 void show_regs(struct pt_regs
*regs
)
338 __show_regs((struct pt_regs
*)regs
);
341 void show_registers(struct pt_regs
*regs
)
343 const int field
= 2 * sizeof(unsigned long);
347 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
348 current
->comm
, current
->pid
, current_thread_info(), current
,
349 field
, current_thread_info()->tp_value
);
350 if (cpu_has_userlocal
) {
353 tls
= read_c0_userlocal();
354 if (tls
!= current_thread_info()->tp_value
)
355 printk("*HwTLS: %0*lx\n", field
, tls
);
358 show_stacktrace(current
, regs
);
359 show_code((unsigned int __user
*) regs
->cp0_epc
);
363 static int regs_to_trapnr(struct pt_regs
*regs
)
365 return (regs
->cp0_cause
>> 2) & 0x1f;
368 static DEFINE_RAW_SPINLOCK(die_lock
);
370 void __noreturn
die(const char *str
, struct pt_regs
*regs
)
372 static int die_counter
;
374 #ifdef CONFIG_MIPS_MT_SMTC
375 unsigned long dvpret
;
376 #endif /* CONFIG_MIPS_MT_SMTC */
380 if (notify_die(DIE_OOPS
, str
, regs
, 0, regs_to_trapnr(regs
), SIGSEGV
) == NOTIFY_STOP
)
384 raw_spin_lock_irq(&die_lock
);
385 #ifdef CONFIG_MIPS_MT_SMTC
387 #endif /* CONFIG_MIPS_MT_SMTC */
389 #ifdef CONFIG_MIPS_MT_SMTC
390 mips_mt_regdump(dvpret
);
391 #endif /* CONFIG_MIPS_MT_SMTC */
393 printk("%s[#%d]:\n", str
, ++die_counter
);
394 show_registers(regs
);
395 add_taint(TAINT_DIE
);
396 raw_spin_unlock_irq(&die_lock
);
401 panic("Fatal exception in interrupt");
404 printk(KERN_EMERG
"Fatal exception: panic in 5 seconds");
406 panic("Fatal exception");
412 extern struct exception_table_entry __start___dbe_table
[];
413 extern struct exception_table_entry __stop___dbe_table
[];
416 " .section __dbe_table, \"a\"\n"
419 /* Given an address, look for it in the exception tables. */
420 static const struct exception_table_entry
*search_dbe_tables(unsigned long addr
)
422 const struct exception_table_entry
*e
;
424 e
= search_extable(__start___dbe_table
, __stop___dbe_table
- 1, addr
);
426 e
= search_module_dbetables(addr
);
430 asmlinkage
void do_be(struct pt_regs
*regs
)
432 const int field
= 2 * sizeof(unsigned long);
433 const struct exception_table_entry
*fixup
= NULL
;
434 int data
= regs
->cp0_cause
& 4;
435 int action
= MIPS_BE_FATAL
;
437 /* XXX For now. Fixme, this searches the wrong table ... */
438 if (data
&& !user_mode(regs
))
439 fixup
= search_dbe_tables(exception_epc(regs
));
442 action
= MIPS_BE_FIXUP
;
444 if (board_be_handler
)
445 action
= board_be_handler(regs
, fixup
!= NULL
);
448 case MIPS_BE_DISCARD
:
452 regs
->cp0_epc
= fixup
->nextinsn
;
461 * Assume it would be too dangerous to continue ...
463 printk(KERN_ALERT
"%s bus error, epc == %0*lx, ra == %0*lx\n",
464 data
? "Data" : "Instruction",
465 field
, regs
->cp0_epc
, field
, regs
->regs
[31]);
466 if (notify_die(DIE_OOPS
, "bus error", regs
, 0, regs_to_trapnr(regs
), SIGBUS
)
470 die_if_kernel("Oops", regs
);
471 force_sig(SIGBUS
, current
);
475 * ll/sc, rdhwr, sync emulation
478 #define OPCODE 0xfc000000
479 #define BASE 0x03e00000
480 #define RT 0x001f0000
481 #define OFFSET 0x0000ffff
482 #define LL 0xc0000000
483 #define SC 0xe0000000
484 #define SPEC0 0x00000000
485 #define SPEC3 0x7c000000
486 #define RD 0x0000f800
487 #define FUNC 0x0000003f
488 #define SYNC 0x0000000f
489 #define RDHWR 0x0000003b
492 * The ll_bit is cleared by r*_switch.S
496 struct task_struct
*ll_task
;
498 static inline int simulate_ll(struct pt_regs
*regs
, unsigned int opcode
)
500 unsigned long value
, __user
*vaddr
;
504 * analyse the ll instruction that just caused a ri exception
505 * and put the referenced address to addr.
508 /* sign extend offset */
509 offset
= opcode
& OFFSET
;
513 vaddr
= (unsigned long __user
*)
514 ((unsigned long)(regs
->regs
[(opcode
& BASE
) >> 21]) + offset
);
516 if ((unsigned long)vaddr
& 3)
518 if (get_user(value
, vaddr
))
523 if (ll_task
== NULL
|| ll_task
== current
) {
532 regs
->regs
[(opcode
& RT
) >> 16] = value
;
537 static inline int simulate_sc(struct pt_regs
*regs
, unsigned int opcode
)
539 unsigned long __user
*vaddr
;
544 * analyse the sc instruction that just caused a ri exception
545 * and put the referenced address to addr.
548 /* sign extend offset */
549 offset
= opcode
& OFFSET
;
553 vaddr
= (unsigned long __user
*)
554 ((unsigned long)(regs
->regs
[(opcode
& BASE
) >> 21]) + offset
);
555 reg
= (opcode
& RT
) >> 16;
557 if ((unsigned long)vaddr
& 3)
562 if (ll_bit
== 0 || ll_task
!= current
) {
570 if (put_user(regs
->regs
[reg
], vaddr
))
579 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
580 * opcodes are supposed to result in coprocessor unusable exceptions if
581 * executed on ll/sc-less processors. That's the theory. In practice a
582 * few processors such as NEC's VR4100 throw reserved instruction exceptions
583 * instead, so we're doing the emulation thing in both exception handlers.
585 static int simulate_llsc(struct pt_regs
*regs
, unsigned int opcode
)
587 if ((opcode
& OPCODE
) == LL
) {
588 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
,
590 return simulate_ll(regs
, opcode
);
592 if ((opcode
& OPCODE
) == SC
) {
593 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
,
595 return simulate_sc(regs
, opcode
);
598 return -1; /* Must be something else ... */
602 * Simulate trapping 'rdhwr' instructions to provide user accessible
603 * registers not implemented in hardware.
605 static int simulate_rdhwr(struct pt_regs
*regs
, unsigned int opcode
)
607 struct thread_info
*ti
= task_thread_info(current
);
609 if ((opcode
& OPCODE
) == SPEC3
&& (opcode
& FUNC
) == RDHWR
) {
610 int rd
= (opcode
& RD
) >> 11;
611 int rt
= (opcode
& RT
) >> 16;
612 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
,
615 case 0: /* CPU number */
616 regs
->regs
[rt
] = smp_processor_id();
618 case 1: /* SYNCI length */
619 regs
->regs
[rt
] = min(current_cpu_data
.dcache
.linesz
,
620 current_cpu_data
.icache
.linesz
);
622 case 2: /* Read count register */
623 regs
->regs
[rt
] = read_c0_count();
625 case 3: /* Count register resolution */
626 switch (current_cpu_data
.cputype
) {
636 regs
->regs
[rt
] = ti
->tp_value
;
647 static int simulate_sync(struct pt_regs
*regs
, unsigned int opcode
)
649 if ((opcode
& OPCODE
) == SPEC0
&& (opcode
& FUNC
) == SYNC
) {
650 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
,
655 return -1; /* Must be something else ... */
658 asmlinkage
void do_ov(struct pt_regs
*regs
)
662 die_if_kernel("Integer overflow", regs
);
664 info
.si_code
= FPE_INTOVF
;
665 info
.si_signo
= SIGFPE
;
667 info
.si_addr
= (void __user
*) regs
->cp0_epc
;
668 force_sig_info(SIGFPE
, &info
, current
);
671 static int process_fpemu_return(int sig
, void __user
*fault_addr
)
673 if (sig
== SIGSEGV
|| sig
== SIGBUS
) {
674 struct siginfo si
= {0};
675 si
.si_addr
= fault_addr
;
677 if (sig
== SIGSEGV
) {
678 if (find_vma(current
->mm
, (unsigned long)fault_addr
))
679 si
.si_code
= SEGV_ACCERR
;
681 si
.si_code
= SEGV_MAPERR
;
683 si
.si_code
= BUS_ADRERR
;
685 force_sig_info(sig
, &si
, current
);
688 force_sig(sig
, current
);
696 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
698 asmlinkage
void do_fpe(struct pt_regs
*regs
, unsigned long fcr31
)
700 siginfo_t info
= {0};
702 if (notify_die(DIE_FP
, "FP exception", regs
, 0, regs_to_trapnr(regs
), SIGFPE
)
705 die_if_kernel("FP exception in kernel code", regs
);
707 if (fcr31
& FPU_CSR_UNI_X
) {
709 void __user
*fault_addr
= NULL
;
712 * Unimplemented operation exception. If we've got the full
713 * software emulator on-board, let's use it...
715 * Force FPU to dump state into task/thread context. We're
716 * moving a lot of data here for what is probably a single
717 * instruction, but the alternative is to pre-decode the FP
718 * register operands before invoking the emulator, which seems
719 * a bit extreme for what should be an infrequent event.
721 /* Ensure 'resume' not overwrite saved fp context again. */
724 /* Run the emulator */
725 sig
= fpu_emulator_cop1Handler(regs
, ¤t
->thread
.fpu
, 1,
729 * We can't allow the emulated instruction to leave any of
730 * the cause bit set in $fcr31.
732 current
->thread
.fpu
.fcr31
&= ~FPU_CSR_ALL_X
;
734 /* Restore the hardware register state */
735 own_fpu(1); /* Using the FPU again. */
737 /* If something went wrong, signal */
738 process_fpemu_return(sig
, fault_addr
);
741 } else if (fcr31
& FPU_CSR_INV_X
)
742 info
.si_code
= FPE_FLTINV
;
743 else if (fcr31
& FPU_CSR_DIV_X
)
744 info
.si_code
= FPE_FLTDIV
;
745 else if (fcr31
& FPU_CSR_OVF_X
)
746 info
.si_code
= FPE_FLTOVF
;
747 else if (fcr31
& FPU_CSR_UDF_X
)
748 info
.si_code
= FPE_FLTUND
;
749 else if (fcr31
& FPU_CSR_INE_X
)
750 info
.si_code
= FPE_FLTRES
;
752 info
.si_code
= __SI_FAULT
;
753 info
.si_signo
= SIGFPE
;
755 info
.si_addr
= (void __user
*) regs
->cp0_epc
;
756 force_sig_info(SIGFPE
, &info
, current
);
759 static void do_trap_or_bp(struct pt_regs
*regs
, unsigned int code
,
765 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
766 if (kgdb_ll_trap(DIE_TRAP
, str
, regs
, code
, regs_to_trapnr(regs
), SIGTRAP
) == NOTIFY_STOP
)
768 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
770 if (notify_die(DIE_TRAP
, str
, regs
, code
, regs_to_trapnr(regs
), SIGTRAP
) == NOTIFY_STOP
)
774 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
775 * insns, even for trap and break codes that indicate arithmetic
776 * failures. Weird ...
777 * But should we continue the brokenness??? --macro
782 scnprintf(b
, sizeof(b
), "%s instruction in kernel code", str
);
783 die_if_kernel(b
, regs
);
784 if (code
== BRK_DIVZERO
)
785 info
.si_code
= FPE_INTDIV
;
787 info
.si_code
= FPE_INTOVF
;
788 info
.si_signo
= SIGFPE
;
790 info
.si_addr
= (void __user
*) regs
->cp0_epc
;
791 force_sig_info(SIGFPE
, &info
, current
);
794 die_if_kernel("Kernel bug detected", regs
);
795 force_sig(SIGTRAP
, current
);
799 * Address errors may be deliberately induced by the FPU
800 * emulator to retake control of the CPU after executing the
801 * instruction in the delay slot of an emulated branch.
803 * Terminate if exception was recognized as a delay slot return
804 * otherwise handle as normal.
806 if (do_dsemulret(regs
))
809 die_if_kernel("Math emu break/trap", regs
);
810 force_sig(SIGTRAP
, current
);
813 scnprintf(b
, sizeof(b
), "%s instruction in kernel code", str
);
814 die_if_kernel(b
, regs
);
815 force_sig(SIGTRAP
, current
);
819 asmlinkage
void do_bp(struct pt_regs
*regs
)
821 unsigned int opcode
, bcode
;
823 if (__get_user(opcode
, (unsigned int __user
*) exception_epc(regs
)))
827 * There is the ancient bug in the MIPS assemblers that the break
828 * code starts left to bit 16 instead to bit 6 in the opcode.
829 * Gas is bug-compatible, but not always, grrr...
830 * We handle both cases with a simple heuristics. --macro
832 bcode
= ((opcode
>> 6) & ((1 << 20) - 1));
833 if (bcode
>= (1 << 10))
837 * notify the kprobe handlers, if instruction is likely to
842 if (notify_die(DIE_BREAK
, "debug", regs
, bcode
, regs_to_trapnr(regs
), SIGTRAP
) == NOTIFY_STOP
)
846 case BRK_KPROBE_SSTEPBP
:
847 if (notify_die(DIE_SSTEPBP
, "single_step", regs
, bcode
, regs_to_trapnr(regs
), SIGTRAP
) == NOTIFY_STOP
)
855 do_trap_or_bp(regs
, bcode
, "Break");
859 force_sig(SIGSEGV
, current
);
862 asmlinkage
void do_tr(struct pt_regs
*regs
)
864 unsigned int opcode
, tcode
= 0;
866 if (__get_user(opcode
, (unsigned int __user
*) exception_epc(regs
)))
869 /* Immediate versions don't provide a code. */
870 if (!(opcode
& OPCODE
))
871 tcode
= ((opcode
>> 6) & ((1 << 10) - 1));
873 do_trap_or_bp(regs
, tcode
, "Trap");
877 force_sig(SIGSEGV
, current
);
880 asmlinkage
void do_ri(struct pt_regs
*regs
)
882 unsigned int __user
*epc
= (unsigned int __user
*)exception_epc(regs
);
883 unsigned long old_epc
= regs
->cp0_epc
;
884 unsigned int opcode
= 0;
887 if (notify_die(DIE_RI
, "RI Fault", regs
, 0, regs_to_trapnr(regs
), SIGILL
)
891 die_if_kernel("Reserved instruction in kernel code", regs
);
893 if (unlikely(compute_return_epc(regs
) < 0))
896 if (unlikely(get_user(opcode
, epc
) < 0))
899 if (!cpu_has_llsc
&& status
< 0)
900 status
= simulate_llsc(regs
, opcode
);
903 status
= simulate_rdhwr(regs
, opcode
);
906 status
= simulate_sync(regs
, opcode
);
911 if (unlikely(status
> 0)) {
912 regs
->cp0_epc
= old_epc
; /* Undo skip-over. */
913 force_sig(status
, current
);
918 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
919 * emulated more than some threshold number of instructions, force migration to
920 * a "CPU" that has FP support.
922 static void mt_ase_fp_affinity(void)
924 #ifdef CONFIG_MIPS_MT_FPAFF
925 if (mt_fpemul_threshold
> 0 &&
926 ((current
->thread
.emulated_fp
++ > mt_fpemul_threshold
))) {
928 * If there's no FPU present, or if the application has already
929 * restricted the allowed set to exclude any CPUs with FPUs,
930 * we'll skip the procedure.
932 if (cpus_intersects(current
->cpus_allowed
, mt_fpu_cpumask
)) {
935 current
->thread
.user_cpus_allowed
936 = current
->cpus_allowed
;
937 cpus_and(tmask
, current
->cpus_allowed
,
939 set_cpus_allowed_ptr(current
, &tmask
);
940 set_thread_flag(TIF_FPUBOUND
);
943 #endif /* CONFIG_MIPS_MT_FPAFF */
947 * No lock; only written during early bootup by CPU 0.
949 static RAW_NOTIFIER_HEAD(cu2_chain
);
951 int __ref
register_cu2_notifier(struct notifier_block
*nb
)
953 return raw_notifier_chain_register(&cu2_chain
, nb
);
956 int cu2_notifier_call_chain(unsigned long val
, void *v
)
958 return raw_notifier_call_chain(&cu2_chain
, val
, v
);
961 static int default_cu2_call(struct notifier_block
*nfb
, unsigned long action
,
964 struct pt_regs
*regs
= data
;
968 die_if_kernel("Unhandled kernel unaligned access or invalid "
969 "instruction", regs
);
973 force_sig(SIGILL
, current
);
979 asmlinkage
void do_cpu(struct pt_regs
*regs
)
981 unsigned int __user
*epc
;
982 unsigned long old_epc
;
986 unsigned long __maybe_unused flags
;
988 die_if_kernel("do_cpu invoked from kernel context!", regs
);
990 cpid
= (regs
->cp0_cause
>> CAUSEB_CE
) & 3;
994 epc
= (unsigned int __user
*)exception_epc(regs
);
995 old_epc
= regs
->cp0_epc
;
999 if (unlikely(compute_return_epc(regs
) < 0))
1002 if (unlikely(get_user(opcode
, epc
) < 0))
1005 if (!cpu_has_llsc
&& status
< 0)
1006 status
= simulate_llsc(regs
, opcode
);
1009 status
= simulate_rdhwr(regs
, opcode
);
1014 if (unlikely(status
> 0)) {
1015 regs
->cp0_epc
= old_epc
; /* Undo skip-over. */
1016 force_sig(status
, current
);
1022 if (used_math()) /* Using the FPU again. */
1024 else { /* First time FPU user. */
1029 if (!raw_cpu_has_fpu
) {
1031 void __user
*fault_addr
= NULL
;
1032 sig
= fpu_emulator_cop1Handler(regs
,
1033 ¤t
->thread
.fpu
,
1035 if (!process_fpemu_return(sig
, fault_addr
))
1036 mt_ase_fp_affinity();
1042 raw_notifier_call_chain(&cu2_chain
, CU2_EXCEPTION
, regs
);
1049 force_sig(SIGILL
, current
);
1052 asmlinkage
void do_mdmx(struct pt_regs
*regs
)
1054 force_sig(SIGILL
, current
);
1058 * Called with interrupts disabled.
1060 asmlinkage
void do_watch(struct pt_regs
*regs
)
1065 * Clear WP (bit 22) bit of cause register so we don't loop
1068 cause
= read_c0_cause();
1069 cause
&= ~(1 << 22);
1070 write_c0_cause(cause
);
1073 * If the current thread has the watch registers loaded, save
1074 * their values and send SIGTRAP. Otherwise another thread
1075 * left the registers set, clear them and continue.
1077 if (test_tsk_thread_flag(current
, TIF_LOAD_WATCH
)) {
1078 mips_read_watch_registers();
1080 force_sig(SIGTRAP
, current
);
1082 mips_clear_watch_registers();
1087 asmlinkage
void do_mcheck(struct pt_regs
*regs
)
1089 const int field
= 2 * sizeof(unsigned long);
1090 int multi_match
= regs
->cp0_status
& ST0_TS
;
1095 printk("Index : %0x\n", read_c0_index());
1096 printk("Pagemask: %0x\n", read_c0_pagemask());
1097 printk("EntryHi : %0*lx\n", field
, read_c0_entryhi());
1098 printk("EntryLo0: %0*lx\n", field
, read_c0_entrylo0());
1099 printk("EntryLo1: %0*lx\n", field
, read_c0_entrylo1());
1104 show_code((unsigned int __user
*) regs
->cp0_epc
);
1107 * Some chips may have other causes of machine check (e.g. SB1
1110 panic("Caught Machine Check exception - %scaused by multiple "
1111 "matching entries in the TLB.",
1112 (multi_match
) ? "" : "not ");
1115 asmlinkage
void do_mt(struct pt_regs
*regs
)
1119 subcode
= (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT
)
1120 >> VPECONTROL_EXCPT_SHIFT
;
1123 printk(KERN_DEBUG
"Thread Underflow\n");
1126 printk(KERN_DEBUG
"Thread Overflow\n");
1129 printk(KERN_DEBUG
"Invalid YIELD Qualifier\n");
1132 printk(KERN_DEBUG
"Gating Storage Exception\n");
1135 printk(KERN_DEBUG
"YIELD Scheduler Exception\n");
1138 printk(KERN_DEBUG
"Gating Storage Scheduler Exception\n");
1141 printk(KERN_DEBUG
"*** UNKNOWN THREAD EXCEPTION %d ***\n",
1145 die_if_kernel("MIPS MT Thread exception in kernel", regs
);
1147 force_sig(SIGILL
, current
);
1151 asmlinkage
void do_dsp(struct pt_regs
*regs
)
1154 panic("Unexpected DSP exception");
1156 force_sig(SIGILL
, current
);
1159 asmlinkage
void do_reserved(struct pt_regs
*regs
)
1162 * Game over - no way to handle this if it ever occurs. Most probably
1163 * caused by a new unknown cpu type or after another deadly
1164 * hard/software error.
1167 panic("Caught reserved exception %ld - should not happen.",
1168 (regs
->cp0_cause
& 0x7f) >> 2);
1171 static int __initdata l1parity
= 1;
1172 static int __init
nol1parity(char *s
)
1177 __setup("nol1par", nol1parity
);
1178 static int __initdata l2parity
= 1;
1179 static int __init
nol2parity(char *s
)
1184 __setup("nol2par", nol2parity
);
1187 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1188 * it different ways.
1190 static inline void parity_protection_init(void)
1192 switch (current_cpu_type()) {
1198 #define ERRCTL_PE 0x80000000
1199 #define ERRCTL_L2P 0x00800000
1200 unsigned long errctl
;
1201 unsigned int l1parity_present
, l2parity_present
;
1203 errctl
= read_c0_ecc();
1204 errctl
&= ~(ERRCTL_PE
|ERRCTL_L2P
);
1206 /* probe L1 parity support */
1207 write_c0_ecc(errctl
| ERRCTL_PE
);
1208 back_to_back_c0_hazard();
1209 l1parity_present
= (read_c0_ecc() & ERRCTL_PE
);
1211 /* probe L2 parity support */
1212 write_c0_ecc(errctl
|ERRCTL_L2P
);
1213 back_to_back_c0_hazard();
1214 l2parity_present
= (read_c0_ecc() & ERRCTL_L2P
);
1216 if (l1parity_present
&& l2parity_present
) {
1218 errctl
|= ERRCTL_PE
;
1219 if (l1parity
^ l2parity
)
1220 errctl
|= ERRCTL_L2P
;
1221 } else if (l1parity_present
) {
1223 errctl
|= ERRCTL_PE
;
1224 } else if (l2parity_present
) {
1226 errctl
|= ERRCTL_L2P
;
1228 /* No parity available */
1231 printk(KERN_INFO
"Writing ErrCtl register=%08lx\n", errctl
);
1233 write_c0_ecc(errctl
);
1234 back_to_back_c0_hazard();
1235 errctl
= read_c0_ecc();
1236 printk(KERN_INFO
"Readback ErrCtl register=%08lx\n", errctl
);
1238 if (l1parity_present
)
1239 printk(KERN_INFO
"Cache parity protection %sabled\n",
1240 (errctl
& ERRCTL_PE
) ? "en" : "dis");
1242 if (l2parity_present
) {
1243 if (l1parity_present
&& l1parity
)
1244 errctl
^= ERRCTL_L2P
;
1245 printk(KERN_INFO
"L2 cache parity protection %sabled\n",
1246 (errctl
& ERRCTL_L2P
) ? "en" : "dis");
1252 write_c0_ecc(0x80000000);
1253 back_to_back_c0_hazard();
1254 /* Set the PE bit (bit 31) in the c0_errctl register. */
1255 printk(KERN_INFO
"Cache parity protection %sabled\n",
1256 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1260 /* Clear the DE bit (bit 16) in the c0_status register. */
1261 printk(KERN_INFO
"Enable cache parity protection for "
1262 "MIPS 20KC/25KF CPUs.\n");
1263 clear_c0_status(ST0_DE
);
1270 asmlinkage
void cache_parity_error(void)
1272 const int field
= 2 * sizeof(unsigned long);
1273 unsigned int reg_val
;
1275 /* For the moment, report the problem and hang. */
1276 printk("Cache error exception:\n");
1277 printk("cp0_errorepc == %0*lx\n", field
, read_c0_errorepc());
1278 reg_val
= read_c0_cacheerr();
1279 printk("c0_cacheerr == %08x\n", reg_val
);
1281 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1282 reg_val
& (1<<30) ? "secondary" : "primary",
1283 reg_val
& (1<<31) ? "data" : "insn");
1284 printk("Error bits: %s%s%s%s%s%s%s\n",
1285 reg_val
& (1<<29) ? "ED " : "",
1286 reg_val
& (1<<28) ? "ET " : "",
1287 reg_val
& (1<<26) ? "EE " : "",
1288 reg_val
& (1<<25) ? "EB " : "",
1289 reg_val
& (1<<24) ? "EI " : "",
1290 reg_val
& (1<<23) ? "E1 " : "",
1291 reg_val
& (1<<22) ? "E0 " : "");
1292 printk("IDX: 0x%08x\n", reg_val
& ((1<<22)-1));
1294 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1295 if (reg_val
& (1<<22))
1296 printk("DErrAddr0: 0x%0*lx\n", field
, read_c0_derraddr0());
1298 if (reg_val
& (1<<23))
1299 printk("DErrAddr1: 0x%0*lx\n", field
, read_c0_derraddr1());
1302 panic("Can't handle the cache error!");
1306 * SDBBP EJTAG debug exception handler.
1307 * We skip the instruction and return to the next instruction.
1309 void ejtag_exception_handler(struct pt_regs
*regs
)
1311 const int field
= 2 * sizeof(unsigned long);
1312 unsigned long depc
, old_epc
;
1315 printk(KERN_DEBUG
"SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1316 depc
= read_c0_depc();
1317 debug
= read_c0_debug();
1318 printk(KERN_DEBUG
"c0_depc = %0*lx, DEBUG = %08x\n", field
, depc
, debug
);
1319 if (debug
& 0x80000000) {
1321 * In branch delay slot.
1322 * We cheat a little bit here and use EPC to calculate the
1323 * debug return address (DEPC). EPC is restored after the
1326 old_epc
= regs
->cp0_epc
;
1327 regs
->cp0_epc
= depc
;
1328 __compute_return_epc(regs
);
1329 depc
= regs
->cp0_epc
;
1330 regs
->cp0_epc
= old_epc
;
1333 write_c0_depc(depc
);
1336 printk(KERN_DEBUG
"\n\n----- Enable EJTAG single stepping ----\n\n");
1337 write_c0_debug(debug
| 0x100);
1342 * NMI exception handler.
1343 * No lock; only written during early bootup by CPU 0.
1345 static RAW_NOTIFIER_HEAD(nmi_chain
);
1347 int register_nmi_notifier(struct notifier_block
*nb
)
1349 return raw_notifier_chain_register(&nmi_chain
, nb
);
1352 void __noreturn
nmi_exception_handler(struct pt_regs
*regs
)
1354 raw_notifier_call_chain(&nmi_chain
, 0, regs
);
1356 printk("NMI taken!!!!\n");
1360 #define VECTORSPACING 0x100 /* for EI/VI mode */
1362 unsigned long ebase
;
1363 unsigned long exception_handlers
[32];
1364 unsigned long vi_handlers
[64];
1366 void __init
*set_except_vector(int n
, void *addr
)
1368 unsigned long handler
= (unsigned long) addr
;
1369 unsigned long old_handler
= exception_handlers
[n
];
1371 exception_handlers
[n
] = handler
;
1372 if (n
== 0 && cpu_has_divec
) {
1373 unsigned long jump_mask
= ~((1 << 28) - 1);
1374 u32
*buf
= (u32
*)(ebase
+ 0x200);
1375 unsigned int k0
= 26;
1376 if ((handler
& jump_mask
) == ((ebase
+ 0x200) & jump_mask
)) {
1377 uasm_i_j(&buf
, handler
& ~jump_mask
);
1380 UASM_i_LA(&buf
, k0
, handler
);
1381 uasm_i_jr(&buf
, k0
);
1384 local_flush_icache_range(ebase
+ 0x200, (unsigned long)buf
);
1386 return (void *)old_handler
;
1389 static asmlinkage
void do_default_vi(void)
1391 show_regs(get_irq_regs());
1392 panic("Caught unexpected vectored interrupt.");
1395 static void *set_vi_srs_handler(int n
, vi_handler_t addr
, int srs
)
1397 unsigned long handler
;
1398 unsigned long old_handler
= vi_handlers
[n
];
1399 int srssets
= current_cpu_data
.srsets
;
1403 BUG_ON(!cpu_has_veic
&& !cpu_has_vint
);
1406 handler
= (unsigned long) do_default_vi
;
1409 handler
= (unsigned long) addr
;
1410 vi_handlers
[n
] = (unsigned long) addr
;
1412 b
= (unsigned char *)(ebase
+ 0x200 + n
*VECTORSPACING
);
1415 panic("Shadow register set %d not supported", srs
);
1418 if (board_bind_eic_interrupt
)
1419 board_bind_eic_interrupt(n
, srs
);
1420 } else if (cpu_has_vint
) {
1421 /* SRSMap is only defined if shadow sets are implemented */
1423 change_c0_srsmap(0xf << n
*4, srs
<< n
*4);
1428 * If no shadow set is selected then use the default handler
1429 * that does normal register saving and a standard interrupt exit
1432 extern char except_vec_vi
, except_vec_vi_lui
;
1433 extern char except_vec_vi_ori
, except_vec_vi_end
;
1434 extern char rollback_except_vec_vi
;
1435 char *vec_start
= (cpu_wait
== r4k_wait
) ?
1436 &rollback_except_vec_vi
: &except_vec_vi
;
1437 #ifdef CONFIG_MIPS_MT_SMTC
1439 * We need to provide the SMTC vectored interrupt handler
1440 * not only with the address of the handler, but with the
1441 * Status.IM bit to be masked before going there.
1443 extern char except_vec_vi_mori
;
1444 const int mori_offset
= &except_vec_vi_mori
- vec_start
;
1445 #endif /* CONFIG_MIPS_MT_SMTC */
1446 const int handler_len
= &except_vec_vi_end
- vec_start
;
1447 const int lui_offset
= &except_vec_vi_lui
- vec_start
;
1448 const int ori_offset
= &except_vec_vi_ori
- vec_start
;
1450 if (handler_len
> VECTORSPACING
) {
1452 * Sigh... panicing won't help as the console
1453 * is probably not configured :(
1455 panic("VECTORSPACING too small");
1458 memcpy(b
, vec_start
, handler_len
);
1459 #ifdef CONFIG_MIPS_MT_SMTC
1460 BUG_ON(n
> 7); /* Vector index %d exceeds SMTC maximum. */
1462 w
= (u32
*)(b
+ mori_offset
);
1463 *w
= (*w
& 0xffff0000) | (0x100 << n
);
1464 #endif /* CONFIG_MIPS_MT_SMTC */
1465 w
= (u32
*)(b
+ lui_offset
);
1466 *w
= (*w
& 0xffff0000) | (((u32
)handler
>> 16) & 0xffff);
1467 w
= (u32
*)(b
+ ori_offset
);
1468 *w
= (*w
& 0xffff0000) | ((u32
)handler
& 0xffff);
1469 local_flush_icache_range((unsigned long)b
,
1470 (unsigned long)(b
+handler_len
));
1474 * In other cases jump directly to the interrupt handler
1476 * It is the handlers responsibility to save registers if required
1477 * (eg hi/lo) and return from the exception using "eret"
1480 *w
++ = 0x08000000 | (((u32
)handler
>> 2) & 0x03fffff); /* j handler */
1482 local_flush_icache_range((unsigned long)b
,
1483 (unsigned long)(b
+8));
1486 return (void *)old_handler
;
1489 void *set_vi_handler(int n
, vi_handler_t addr
)
1491 return set_vi_srs_handler(n
, addr
, 0);
1494 extern void cpu_cache_init(void);
1495 extern void tlb_init(void);
1496 extern void flush_tlb_handlers(void);
1501 int cp0_compare_irq
;
1502 int cp0_compare_irq_shift
;
1505 * Performance counter IRQ or -1 if shared with timer
1507 int cp0_perfcount_irq
;
1508 EXPORT_SYMBOL_GPL(cp0_perfcount_irq
);
1510 static int __cpuinitdata noulri
;
1512 static int __init
ulri_disable(char *s
)
1514 pr_info("Disabling ulri\n");
1519 __setup("noulri", ulri_disable
);
1521 void __cpuinit
per_cpu_trap_init(void)
1523 unsigned int cpu
= smp_processor_id();
1524 unsigned int status_set
= ST0_CU0
;
1525 unsigned int hwrena
= cpu_hwrena_impl_bits
;
1526 #ifdef CONFIG_MIPS_MT_SMTC
1527 int secondaryTC
= 0;
1528 int bootTC
= (cpu
== 0);
1531 * Only do per_cpu_trap_init() for first TC of Each VPE.
1532 * Note that this hack assumes that the SMTC init code
1533 * assigns TCs consecutively and in ascending order.
1536 if (((read_c0_tcbind() & TCBIND_CURTC
) != 0) &&
1537 ((read_c0_tcbind() & TCBIND_CURVPE
) == cpu_data
[cpu
- 1].vpe_id
))
1539 #endif /* CONFIG_MIPS_MT_SMTC */
1542 * Disable coprocessors and select 32-bit or 64-bit addressing
1543 * and the 16/32 or 32/32 FPR register model. Reset the BEV
1544 * flag that some firmware may have left set and the TS bit (for
1545 * IP27). Set XX for ISA IV code to work.
1548 status_set
|= ST0_FR
|ST0_KX
|ST0_SX
|ST0_UX
;
1550 if (current_cpu_data
.isa_level
== MIPS_CPU_ISA_IV
)
1551 status_set
|= ST0_XX
;
1553 status_set
|= ST0_MX
;
1555 change_c0_status(ST0_CU
|ST0_MX
|ST0_RE
|ST0_FR
|ST0_BEV
|ST0_TS
|ST0_KX
|ST0_SX
|ST0_UX
,
1558 if (cpu_has_mips_r2
)
1559 hwrena
|= 0x0000000f;
1561 if (!noulri
&& cpu_has_userlocal
)
1562 hwrena
|= (1 << 29);
1565 write_c0_hwrena(hwrena
);
1567 #ifdef CONFIG_MIPS_MT_SMTC
1569 #endif /* CONFIG_MIPS_MT_SMTC */
1571 if (cpu_has_veic
|| cpu_has_vint
) {
1572 unsigned long sr
= set_c0_status(ST0_BEV
);
1573 write_c0_ebase(ebase
);
1574 write_c0_status(sr
);
1575 /* Setting vector spacing enables EI/VI mode */
1576 change_c0_intctl(0x3e0, VECTORSPACING
);
1578 if (cpu_has_divec
) {
1579 if (cpu_has_mipsmt
) {
1580 unsigned int vpflags
= dvpe();
1581 set_c0_cause(CAUSEF_IV
);
1584 set_c0_cause(CAUSEF_IV
);
1588 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1590 * o read IntCtl.IPTI to determine the timer interrupt
1591 * o read IntCtl.IPPCI to determine the performance counter interrupt
1593 if (cpu_has_mips_r2
) {
1594 cp0_compare_irq_shift
= CAUSEB_TI
- CAUSEB_IP
;
1595 cp0_compare_irq
= (read_c0_intctl() >> INTCTLB_IPTI
) & 7;
1596 cp0_perfcount_irq
= (read_c0_intctl() >> INTCTLB_IPPCI
) & 7;
1597 if (cp0_perfcount_irq
== cp0_compare_irq
)
1598 cp0_perfcount_irq
= -1;
1600 cp0_compare_irq
= CP0_LEGACY_COMPARE_IRQ
;
1601 cp0_compare_irq_shift
= cp0_compare_irq
;
1602 cp0_perfcount_irq
= -1;
1605 #ifdef CONFIG_MIPS_MT_SMTC
1607 #endif /* CONFIG_MIPS_MT_SMTC */
1609 if (!cpu_data
[cpu
].asid_cache
)
1610 cpu_data
[cpu
].asid_cache
= ASID_FIRST_VERSION
;
1612 atomic_inc(&init_mm
.mm_count
);
1613 current
->active_mm
= &init_mm
;
1614 BUG_ON(current
->mm
);
1615 enter_lazy_tlb(&init_mm
, current
);
1617 #ifdef CONFIG_MIPS_MT_SMTC
1619 #endif /* CONFIG_MIPS_MT_SMTC */
1622 #ifdef CONFIG_MIPS_MT_SMTC
1623 } else if (!secondaryTC
) {
1625 * First TC in non-boot VPE must do subset of tlb_init()
1626 * for MMU countrol registers.
1628 write_c0_pagemask(PM_DEFAULT_MASK
);
1631 #endif /* CONFIG_MIPS_MT_SMTC */
1632 TLBMISS_HANDLER_SETUP();
1635 /* Install CPU exception handler */
1636 void __init
set_handler(unsigned long offset
, void *addr
, unsigned long size
)
1638 memcpy((void *)(ebase
+ offset
), addr
, size
);
1639 local_flush_icache_range(ebase
+ offset
, ebase
+ offset
+ size
);
1642 static char panic_null_cerr
[] __cpuinitdata
=
1643 "Trying to set NULL cache error exception handler";
1646 * Install uncached CPU exception handler.
1647 * This is suitable only for the cache error exception which is the only
1648 * exception handler that is being run uncached.
1650 void __cpuinit
set_uncached_handler(unsigned long offset
, void *addr
,
1653 unsigned long uncached_ebase
= CKSEG1ADDR(ebase
);
1656 panic(panic_null_cerr
);
1658 memcpy((void *)(uncached_ebase
+ offset
), addr
, size
);
1661 static int __initdata rdhwr_noopt
;
1662 static int __init
set_rdhwr_noopt(char *str
)
1668 __setup("rdhwr_noopt", set_rdhwr_noopt
);
1670 void __init
trap_init(void)
1672 extern char except_vec3_generic
, except_vec3_r4000
;
1673 extern char except_vec4
;
1678 rollback
= (cpu_wait
== r4k_wait
);
1680 #if defined(CONFIG_KGDB)
1681 if (kgdb_early_setup
)
1682 return; /* Already done */
1685 if (cpu_has_veic
|| cpu_has_vint
) {
1686 unsigned long size
= 0x200 + VECTORSPACING
*64;
1687 ebase
= (unsigned long)
1688 __alloc_bootmem(size
, 1 << fls(size
), 0);
1691 if (cpu_has_mips_r2
)
1692 ebase
+= (read_c0_ebase() & 0x3ffff000);
1695 if (board_ebase_setup
)
1696 board_ebase_setup();
1697 per_cpu_trap_init();
1700 * Copy the generic exception handlers to their final destination.
1701 * This will be overriden later as suitable for a particular
1704 set_handler(0x180, &except_vec3_generic
, 0x80);
1707 * Setup default vectors
1709 for (i
= 0; i
<= 31; i
++)
1710 set_except_vector(i
, handle_reserved
);
1713 * Copy the EJTAG debug exception vector handler code to it's final
1716 if (cpu_has_ejtag
&& board_ejtag_handler_setup
)
1717 board_ejtag_handler_setup();
1720 * Only some CPUs have the watch exceptions.
1723 set_except_vector(23, handle_watch
);
1726 * Initialise interrupt handlers
1728 if (cpu_has_veic
|| cpu_has_vint
) {
1729 int nvec
= cpu_has_veic
? 64 : 8;
1730 for (i
= 0; i
< nvec
; i
++)
1731 set_vi_handler(i
, NULL
);
1733 else if (cpu_has_divec
)
1734 set_handler(0x200, &except_vec4
, 0x8);
1737 * Some CPUs can enable/disable for cache parity detection, but does
1738 * it different ways.
1740 parity_protection_init();
1743 * The Data Bus Errors / Instruction Bus Errors are signaled
1744 * by external hardware. Therefore these two exceptions
1745 * may have board specific handlers.
1750 set_except_vector(0, rollback
? rollback_handle_int
: handle_int
);
1751 set_except_vector(1, handle_tlbm
);
1752 set_except_vector(2, handle_tlbl
);
1753 set_except_vector(3, handle_tlbs
);
1755 set_except_vector(4, handle_adel
);
1756 set_except_vector(5, handle_ades
);
1758 set_except_vector(6, handle_ibe
);
1759 set_except_vector(7, handle_dbe
);
1761 set_except_vector(8, handle_sys
);
1762 set_except_vector(9, handle_bp
);
1763 set_except_vector(10, rdhwr_noopt
? handle_ri
:
1764 (cpu_has_vtag_icache
?
1765 handle_ri_rdhwr_vivt
: handle_ri_rdhwr
));
1766 set_except_vector(11, handle_cpu
);
1767 set_except_vector(12, handle_ov
);
1768 set_except_vector(13, handle_tr
);
1770 if (current_cpu_type() == CPU_R6000
||
1771 current_cpu_type() == CPU_R6000A
) {
1773 * The R6000 is the only R-series CPU that features a machine
1774 * check exception (similar to the R4000 cache error) and
1775 * unaligned ldc1/sdc1 exception. The handlers have not been
1776 * written yet. Well, anyway there is no R6000 machine on the
1777 * current list of targets for Linux/MIPS.
1778 * (Duh, crap, there is someone with a triple R6k machine)
1780 //set_except_vector(14, handle_mc);
1781 //set_except_vector(15, handle_ndc);
1785 if (board_nmi_handler_setup
)
1786 board_nmi_handler_setup();
1788 if (cpu_has_fpu
&& !cpu_has_nofpuex
)
1789 set_except_vector(15, handle_fpe
);
1791 set_except_vector(22, handle_mdmx
);
1794 set_except_vector(24, handle_mcheck
);
1797 set_except_vector(25, handle_mt
);
1799 set_except_vector(26, handle_dsp
);
1802 /* Special exception: R4[04]00 uses also the divec space. */
1803 memcpy((void *)(ebase
+ 0x180), &except_vec3_r4000
, 0x100);
1804 else if (cpu_has_4kex
)
1805 memcpy((void *)(ebase
+ 0x180), &except_vec3_generic
, 0x80);
1807 memcpy((void *)(ebase
+ 0x080), &except_vec3_generic
, 0x80);
1809 local_flush_icache_range(ebase
, ebase
+ 0x400);
1810 flush_tlb_handlers();
1812 sort_extable(__start___dbe_table
, __stop___dbe_table
);
1814 cu2_notifier(default_cu2_call
, 0x80000000); /* Run last */