spi-topcliff-pch: supports a spi mode setup and bit order setup by IO control
[zen-stable.git] / arch / mips / lantiq / xway / clk-xway.c
blob696b1a3e06421d605097535384427ba7632e3396
1 /*
2 * This program is free software; you can redistribute it and/or modify it
3 * under the terms of the GNU General Public License version 2 as published
4 * by the Free Software Foundation.
6 * Copyright (C) 2010 John Crispin <blogic@openwrt.org>
7 */
9 #include <linux/io.h>
10 #include <linux/export.h>
11 #include <linux/init.h>
12 #include <linux/clk.h>
14 #include <asm/time.h>
15 #include <asm/irq.h>
16 #include <asm/div64.h>
18 #include <lantiq_soc.h>
20 static unsigned int ltq_ram_clocks[] = {
21 CLOCK_167M, CLOCK_133M, CLOCK_111M, CLOCK_83M };
22 #define DDR_HZ ltq_ram_clocks[ltq_cgu_r32(LTQ_CGU_SYS) & 0x3]
24 #define BASIC_FREQUENCY_1 35328000
25 #define BASIC_FREQUENCY_2 36000000
26 #define BASIS_REQUENCY_USB 12000000
28 #define GET_BITS(x, msb, lsb) \
29 (((x) & ((1 << ((msb) + 1)) - 1)) >> (lsb))
31 #define LTQ_CGU_PLL0_CFG 0x0004
32 #define LTQ_CGU_PLL1_CFG 0x0008
33 #define LTQ_CGU_PLL2_CFG 0x000C
34 #define LTQ_CGU_SYS 0x0010
35 #define LTQ_CGU_UPDATE 0x0014
36 #define LTQ_CGU_IF_CLK 0x0018
37 #define LTQ_CGU_OSC_CON 0x001C
38 #define LTQ_CGU_SMD 0x0020
39 #define LTQ_CGU_CT1SR 0x0028
40 #define LTQ_CGU_CT2SR 0x002C
41 #define LTQ_CGU_PCMCR 0x0030
42 #define LTQ_CGU_PCI_CR 0x0034
43 #define LTQ_CGU_PD_PC 0x0038
44 #define LTQ_CGU_FMR 0x003C
46 #define CGU_PLL0_PHASE_DIVIDER_ENABLE \
47 (ltq_cgu_r32(LTQ_CGU_PLL0_CFG) & (1 << 31))
48 #define CGU_PLL0_BYPASS \
49 (ltq_cgu_r32(LTQ_CGU_PLL0_CFG) & (1 << 30))
50 #define CGU_PLL0_CFG_DSMSEL \
51 (ltq_cgu_r32(LTQ_CGU_PLL0_CFG) & (1 << 28))
52 #define CGU_PLL0_CFG_FRAC_EN \
53 (ltq_cgu_r32(LTQ_CGU_PLL0_CFG) & (1 << 27))
54 #define CGU_PLL1_SRC \
55 (ltq_cgu_r32(LTQ_CGU_PLL1_CFG) & (1 << 31))
56 #define CGU_PLL2_PHASE_DIVIDER_ENABLE \
57 (ltq_cgu_r32(LTQ_CGU_PLL2_CFG) & (1 << 20))
58 #define CGU_SYS_FPI_SEL (1 << 6)
59 #define CGU_SYS_DDR_SEL 0x3
60 #define CGU_PLL0_SRC (1 << 29)
62 #define CGU_PLL0_CFG_PLLK GET_BITS(ltq_cgu_r32(LTQ_CGU_PLL0_CFG), 26, 17)
63 #define CGU_PLL0_CFG_PLLN GET_BITS(ltq_cgu_r32(LTQ_CGU_PLL0_CFG), 12, 6)
64 #define CGU_PLL0_CFG_PLLM GET_BITS(ltq_cgu_r32(LTQ_CGU_PLL0_CFG), 5, 2)
65 #define CGU_PLL2_SRC GET_BITS(ltq_cgu_r32(LTQ_CGU_PLL2_CFG), 18, 17)
66 #define CGU_PLL2_CFG_INPUT_DIV GET_BITS(ltq_cgu_r32(LTQ_CGU_PLL2_CFG), 16, 13)
68 static unsigned int ltq_get_pll0_fdiv(void);
70 static inline unsigned int get_input_clock(int pll)
72 switch (pll) {
73 case 0:
74 if (ltq_cgu_r32(LTQ_CGU_PLL0_CFG) & CGU_PLL0_SRC)
75 return BASIS_REQUENCY_USB;
76 else if (CGU_PLL0_PHASE_DIVIDER_ENABLE)
77 return BASIC_FREQUENCY_1;
78 else
79 return BASIC_FREQUENCY_2;
80 case 1:
81 if (CGU_PLL1_SRC)
82 return BASIS_REQUENCY_USB;
83 else if (CGU_PLL0_PHASE_DIVIDER_ENABLE)
84 return BASIC_FREQUENCY_1;
85 else
86 return BASIC_FREQUENCY_2;
87 case 2:
88 switch (CGU_PLL2_SRC) {
89 case 0:
90 return ltq_get_pll0_fdiv();
91 case 1:
92 return CGU_PLL2_PHASE_DIVIDER_ENABLE ?
93 BASIC_FREQUENCY_1 :
94 BASIC_FREQUENCY_2;
95 case 2:
96 return BASIS_REQUENCY_USB;
98 default:
99 return 0;
103 static inline unsigned int cal_dsm(int pll, unsigned int num, unsigned int den)
105 u64 res, clock = get_input_clock(pll);
107 res = num * clock;
108 do_div(res, den);
109 return res;
112 static inline unsigned int mash_dsm(int pll, unsigned int M, unsigned int N,
113 unsigned int K)
115 unsigned int num = ((N + 1) << 10) + K;
116 unsigned int den = (M + 1) << 10;
118 return cal_dsm(pll, num, den);
121 static inline unsigned int ssff_dsm_1(int pll, unsigned int M, unsigned int N,
122 unsigned int K)
124 unsigned int num = ((N + 1) << 11) + K + 512;
125 unsigned int den = (M + 1) << 11;
127 return cal_dsm(pll, num, den);
130 static inline unsigned int ssff_dsm_2(int pll, unsigned int M, unsigned int N,
131 unsigned int K)
133 unsigned int num = K >= 512 ?
134 ((N + 1) << 12) + K - 512 : ((N + 1) << 12) + K + 3584;
135 unsigned int den = (M + 1) << 12;
137 return cal_dsm(pll, num, den);
140 static inline unsigned int dsm(int pll, unsigned int M, unsigned int N,
141 unsigned int K, unsigned int dsmsel, unsigned int phase_div_en)
143 if (!dsmsel)
144 return mash_dsm(pll, M, N, K);
145 else if (!phase_div_en)
146 return mash_dsm(pll, M, N, K);
147 else
148 return ssff_dsm_2(pll, M, N, K);
151 static inline unsigned int ltq_get_pll0_fosc(void)
153 if (CGU_PLL0_BYPASS)
154 return get_input_clock(0);
155 else
156 return !CGU_PLL0_CFG_FRAC_EN
157 ? dsm(0, CGU_PLL0_CFG_PLLM, CGU_PLL0_CFG_PLLN, 0,
158 CGU_PLL0_CFG_DSMSEL,
159 CGU_PLL0_PHASE_DIVIDER_ENABLE)
160 : dsm(0, CGU_PLL0_CFG_PLLM, CGU_PLL0_CFG_PLLN,
161 CGU_PLL0_CFG_PLLK, CGU_PLL0_CFG_DSMSEL,
162 CGU_PLL0_PHASE_DIVIDER_ENABLE);
165 static unsigned int ltq_get_pll0_fdiv(void)
167 unsigned int div = CGU_PLL2_CFG_INPUT_DIV + 1;
169 return (ltq_get_pll0_fosc() + (div >> 1)) / div;
172 unsigned int ltq_get_io_region_clock(void)
174 unsigned int ret = ltq_get_pll0_fosc();
176 switch (ltq_cgu_r32(LTQ_CGU_PLL2_CFG) & CGU_SYS_DDR_SEL) {
177 default:
178 case 0:
179 return (ret + 1) / 2;
180 case 1:
181 return (ret * 2 + 2) / 5;
182 case 2:
183 return (ret + 1) / 3;
184 case 3:
185 return (ret + 2) / 4;
188 EXPORT_SYMBOL(ltq_get_io_region_clock);
190 unsigned int ltq_get_fpi_bus_clock(int fpi)
192 unsigned int ret = ltq_get_io_region_clock();
194 if ((fpi == 2) && (ltq_cgu_r32(LTQ_CGU_SYS) & CGU_SYS_FPI_SEL))
195 ret >>= 1;
196 return ret;
198 EXPORT_SYMBOL(ltq_get_fpi_bus_clock);
200 unsigned int ltq_get_cpu_hz(void)
202 switch (ltq_cgu_r32(LTQ_CGU_SYS) & 0xc) {
203 case 0:
204 return CLOCK_333M;
205 case 4:
206 return DDR_HZ;
207 case 8:
208 return DDR_HZ << 1;
209 default:
210 return DDR_HZ >> 1;
213 EXPORT_SYMBOL(ltq_get_cpu_hz);
215 unsigned int ltq_get_fpi_hz(void)
217 unsigned int ddr_clock = DDR_HZ;
219 if (ltq_cgu_r32(LTQ_CGU_SYS) & 0x40)
220 return ddr_clock >> 1;
221 return ddr_clock;
223 EXPORT_SYMBOL(ltq_get_fpi_hz);