spi-topcliff-pch: supports a spi mode setup and bit order setup by IO control
[zen-stable.git] / arch / sh / mm / cache.c
blob5a580ea04429801eef9bda7d3301c8311492989e
1 /*
2 * arch/sh/mm/cache.c
4 * Copyright (C) 1999, 2000, 2002 Niibe Yutaka
5 * Copyright (C) 2002 - 2010 Paul Mundt
7 * Released under the terms of the GNU GPL v2.0.
8 */
9 #include <linux/mm.h>
10 #include <linux/init.h>
11 #include <linux/mutex.h>
12 #include <linux/fs.h>
13 #include <linux/smp.h>
14 #include <linux/highmem.h>
15 #include <linux/module.h>
16 #include <asm/mmu_context.h>
17 #include <asm/cacheflush.h>
19 void (*local_flush_cache_all)(void *args) = cache_noop;
20 void (*local_flush_cache_mm)(void *args) = cache_noop;
21 void (*local_flush_cache_dup_mm)(void *args) = cache_noop;
22 void (*local_flush_cache_page)(void *args) = cache_noop;
23 void (*local_flush_cache_range)(void *args) = cache_noop;
24 void (*local_flush_dcache_page)(void *args) = cache_noop;
25 void (*local_flush_icache_range)(void *args) = cache_noop;
26 void (*local_flush_icache_page)(void *args) = cache_noop;
27 void (*local_flush_cache_sigtramp)(void *args) = cache_noop;
29 void (*__flush_wback_region)(void *start, int size);
30 EXPORT_SYMBOL(__flush_wback_region);
31 void (*__flush_purge_region)(void *start, int size);
32 EXPORT_SYMBOL(__flush_purge_region);
33 void (*__flush_invalidate_region)(void *start, int size);
34 EXPORT_SYMBOL(__flush_invalidate_region);
36 static inline void noop__flush_region(void *start, int size)
40 static inline void cacheop_on_each_cpu(void (*func) (void *info), void *info,
41 int wait)
43 preempt_disable();
46 * It's possible that this gets called early on when IRQs are
47 * still disabled due to ioremapping by the boot CPU, so don't
48 * even attempt IPIs unless there are other CPUs online.
50 if (num_online_cpus() > 1)
51 smp_call_function(func, info, wait);
53 func(info);
55 preempt_enable();
58 void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
59 unsigned long vaddr, void *dst, const void *src,
60 unsigned long len)
62 if (boot_cpu_data.dcache.n_aliases && page_mapped(page) &&
63 test_bit(PG_dcache_clean, &page->flags)) {
64 void *vto = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK);
65 memcpy(vto, src, len);
66 kunmap_coherent(vto);
67 } else {
68 memcpy(dst, src, len);
69 if (boot_cpu_data.dcache.n_aliases)
70 clear_bit(PG_dcache_clean, &page->flags);
73 if (vma->vm_flags & VM_EXEC)
74 flush_cache_page(vma, vaddr, page_to_pfn(page));
77 void copy_from_user_page(struct vm_area_struct *vma, struct page *page,
78 unsigned long vaddr, void *dst, const void *src,
79 unsigned long len)
81 if (boot_cpu_data.dcache.n_aliases && page_mapped(page) &&
82 test_bit(PG_dcache_clean, &page->flags)) {
83 void *vfrom = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK);
84 memcpy(dst, vfrom, len);
85 kunmap_coherent(vfrom);
86 } else {
87 memcpy(dst, src, len);
88 if (boot_cpu_data.dcache.n_aliases)
89 clear_bit(PG_dcache_clean, &page->flags);
93 void copy_user_highpage(struct page *to, struct page *from,
94 unsigned long vaddr, struct vm_area_struct *vma)
96 void *vfrom, *vto;
98 vto = kmap_atomic(to, KM_USER1);
100 if (boot_cpu_data.dcache.n_aliases && page_mapped(from) &&
101 test_bit(PG_dcache_clean, &from->flags)) {
102 vfrom = kmap_coherent(from, vaddr);
103 copy_page(vto, vfrom);
104 kunmap_coherent(vfrom);
105 } else {
106 vfrom = kmap_atomic(from, KM_USER0);
107 copy_page(vto, vfrom);
108 kunmap_atomic(vfrom, KM_USER0);
111 if (pages_do_alias((unsigned long)vto, vaddr & PAGE_MASK) ||
112 (vma->vm_flags & VM_EXEC))
113 __flush_purge_region(vto, PAGE_SIZE);
115 kunmap_atomic(vto, KM_USER1);
116 /* Make sure this page is cleared on other CPU's too before using it */
117 smp_wmb();
119 EXPORT_SYMBOL(copy_user_highpage);
121 void clear_user_highpage(struct page *page, unsigned long vaddr)
123 void *kaddr = kmap_atomic(page, KM_USER0);
125 clear_page(kaddr);
127 if (pages_do_alias((unsigned long)kaddr, vaddr & PAGE_MASK))
128 __flush_purge_region(kaddr, PAGE_SIZE);
130 kunmap_atomic(kaddr, KM_USER0);
132 EXPORT_SYMBOL(clear_user_highpage);
134 void __update_cache(struct vm_area_struct *vma,
135 unsigned long address, pte_t pte)
137 struct page *page;
138 unsigned long pfn = pte_pfn(pte);
140 if (!boot_cpu_data.dcache.n_aliases)
141 return;
143 page = pfn_to_page(pfn);
144 if (pfn_valid(pfn)) {
145 int dirty = !test_and_set_bit(PG_dcache_clean, &page->flags);
146 if (dirty)
147 __flush_purge_region(page_address(page), PAGE_SIZE);
151 void __flush_anon_page(struct page *page, unsigned long vmaddr)
153 unsigned long addr = (unsigned long) page_address(page);
155 if (pages_do_alias(addr, vmaddr)) {
156 if (boot_cpu_data.dcache.n_aliases && page_mapped(page) &&
157 test_bit(PG_dcache_clean, &page->flags)) {
158 void *kaddr;
160 kaddr = kmap_coherent(page, vmaddr);
161 /* XXX.. For now kunmap_coherent() does a purge */
162 /* __flush_purge_region((void *)kaddr, PAGE_SIZE); */
163 kunmap_coherent(kaddr);
164 } else
165 __flush_purge_region((void *)addr, PAGE_SIZE);
169 void flush_cache_all(void)
171 cacheop_on_each_cpu(local_flush_cache_all, NULL, 1);
173 EXPORT_SYMBOL(flush_cache_all);
175 void flush_cache_mm(struct mm_struct *mm)
177 if (boot_cpu_data.dcache.n_aliases == 0)
178 return;
180 cacheop_on_each_cpu(local_flush_cache_mm, mm, 1);
183 void flush_cache_dup_mm(struct mm_struct *mm)
185 if (boot_cpu_data.dcache.n_aliases == 0)
186 return;
188 cacheop_on_each_cpu(local_flush_cache_dup_mm, mm, 1);
191 void flush_cache_page(struct vm_area_struct *vma, unsigned long addr,
192 unsigned long pfn)
194 struct flusher_data data;
196 data.vma = vma;
197 data.addr1 = addr;
198 data.addr2 = pfn;
200 cacheop_on_each_cpu(local_flush_cache_page, (void *)&data, 1);
203 void flush_cache_range(struct vm_area_struct *vma, unsigned long start,
204 unsigned long end)
206 struct flusher_data data;
208 data.vma = vma;
209 data.addr1 = start;
210 data.addr2 = end;
212 cacheop_on_each_cpu(local_flush_cache_range, (void *)&data, 1);
214 EXPORT_SYMBOL(flush_cache_range);
216 void flush_dcache_page(struct page *page)
218 cacheop_on_each_cpu(local_flush_dcache_page, page, 1);
220 EXPORT_SYMBOL(flush_dcache_page);
222 void flush_icache_range(unsigned long start, unsigned long end)
224 struct flusher_data data;
226 data.vma = NULL;
227 data.addr1 = start;
228 data.addr2 = end;
230 cacheop_on_each_cpu(local_flush_icache_range, (void *)&data, 1);
233 void flush_icache_page(struct vm_area_struct *vma, struct page *page)
235 /* Nothing uses the VMA, so just pass the struct page along */
236 cacheop_on_each_cpu(local_flush_icache_page, page, 1);
239 void flush_cache_sigtramp(unsigned long address)
241 cacheop_on_each_cpu(local_flush_cache_sigtramp, (void *)address, 1);
244 static void compute_alias(struct cache_info *c)
246 c->alias_mask = ((c->sets - 1) << c->entry_shift) & ~(PAGE_SIZE - 1);
247 c->n_aliases = c->alias_mask ? (c->alias_mask >> PAGE_SHIFT) + 1 : 0;
250 static void __init emit_cache_params(void)
252 printk(KERN_NOTICE "I-cache : n_ways=%d n_sets=%d way_incr=%d\n",
253 boot_cpu_data.icache.ways,
254 boot_cpu_data.icache.sets,
255 boot_cpu_data.icache.way_incr);
256 printk(KERN_NOTICE "I-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n",
257 boot_cpu_data.icache.entry_mask,
258 boot_cpu_data.icache.alias_mask,
259 boot_cpu_data.icache.n_aliases);
260 printk(KERN_NOTICE "D-cache : n_ways=%d n_sets=%d way_incr=%d\n",
261 boot_cpu_data.dcache.ways,
262 boot_cpu_data.dcache.sets,
263 boot_cpu_data.dcache.way_incr);
264 printk(KERN_NOTICE "D-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n",
265 boot_cpu_data.dcache.entry_mask,
266 boot_cpu_data.dcache.alias_mask,
267 boot_cpu_data.dcache.n_aliases);
270 * Emit Secondary Cache parameters if the CPU has a probed L2.
272 if (boot_cpu_data.flags & CPU_HAS_L2_CACHE) {
273 printk(KERN_NOTICE "S-cache : n_ways=%d n_sets=%d way_incr=%d\n",
274 boot_cpu_data.scache.ways,
275 boot_cpu_data.scache.sets,
276 boot_cpu_data.scache.way_incr);
277 printk(KERN_NOTICE "S-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n",
278 boot_cpu_data.scache.entry_mask,
279 boot_cpu_data.scache.alias_mask,
280 boot_cpu_data.scache.n_aliases);
284 void __init cpu_cache_init(void)
286 unsigned int cache_disabled = 0;
288 #ifdef CCR
289 cache_disabled = !(__raw_readl(CCR) & CCR_CACHE_ENABLE);
290 #endif
292 compute_alias(&boot_cpu_data.icache);
293 compute_alias(&boot_cpu_data.dcache);
294 compute_alias(&boot_cpu_data.scache);
296 __flush_wback_region = noop__flush_region;
297 __flush_purge_region = noop__flush_region;
298 __flush_invalidate_region = noop__flush_region;
301 * No flushing is necessary in the disabled cache case so we can
302 * just keep the noop functions in local_flush_..() and __flush_..()
304 if (unlikely(cache_disabled))
305 goto skip;
307 if (boot_cpu_data.family == CPU_FAMILY_SH2) {
308 extern void __weak sh2_cache_init(void);
310 sh2_cache_init();
313 if (boot_cpu_data.family == CPU_FAMILY_SH2A) {
314 extern void __weak sh2a_cache_init(void);
316 sh2a_cache_init();
319 if (boot_cpu_data.family == CPU_FAMILY_SH3) {
320 extern void __weak sh3_cache_init(void);
322 sh3_cache_init();
324 if ((boot_cpu_data.type == CPU_SH7705) &&
325 (boot_cpu_data.dcache.sets == 512)) {
326 extern void __weak sh7705_cache_init(void);
328 sh7705_cache_init();
332 if ((boot_cpu_data.family == CPU_FAMILY_SH4) ||
333 (boot_cpu_data.family == CPU_FAMILY_SH4A) ||
334 (boot_cpu_data.family == CPU_FAMILY_SH4AL_DSP)) {
335 extern void __weak sh4_cache_init(void);
337 sh4_cache_init();
339 if ((boot_cpu_data.type == CPU_SH7786) ||
340 (boot_cpu_data.type == CPU_SHX3)) {
341 extern void __weak shx3_cache_init(void);
343 shx3_cache_init();
347 if (boot_cpu_data.family == CPU_FAMILY_SH5) {
348 extern void __weak sh5_cache_init(void);
350 sh5_cache_init();
353 skip:
354 emit_cache_params();