spi-topcliff-pch: supports a spi mode setup and bit order setup by IO control
[zen-stable.git] / drivers / base / dma-mapping.c
blob6f3676f1559f173b7767a2bdda577df2292ef461
1 /*
2 * drivers/base/dma-mapping.c - arch-independent dma-mapping routines
4 * Copyright (c) 2006 SUSE Linux Products GmbH
5 * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
7 * This file is released under the GPLv2.
8 */
10 #include <linux/dma-mapping.h>
11 #include <linux/export.h>
12 #include <linux/gfp.h>
15 * Managed DMA API
17 struct dma_devres {
18 size_t size;
19 void *vaddr;
20 dma_addr_t dma_handle;
23 static void dmam_coherent_release(struct device *dev, void *res)
25 struct dma_devres *this = res;
27 dma_free_coherent(dev, this->size, this->vaddr, this->dma_handle);
30 static void dmam_noncoherent_release(struct device *dev, void *res)
32 struct dma_devres *this = res;
34 dma_free_noncoherent(dev, this->size, this->vaddr, this->dma_handle);
37 static int dmam_match(struct device *dev, void *res, void *match_data)
39 struct dma_devres *this = res, *match = match_data;
41 if (this->vaddr == match->vaddr) {
42 WARN_ON(this->size != match->size ||
43 this->dma_handle != match->dma_handle);
44 return 1;
46 return 0;
49 /**
50 * dmam_alloc_coherent - Managed dma_alloc_coherent()
51 * @dev: Device to allocate coherent memory for
52 * @size: Size of allocation
53 * @dma_handle: Out argument for allocated DMA handle
54 * @gfp: Allocation flags
56 * Managed dma_alloc_coherent(). Memory allocated using this function
57 * will be automatically released on driver detach.
59 * RETURNS:
60 * Pointer to allocated memory on success, NULL on failure.
62 void * dmam_alloc_coherent(struct device *dev, size_t size,
63 dma_addr_t *dma_handle, gfp_t gfp)
65 struct dma_devres *dr;
66 void *vaddr;
68 dr = devres_alloc(dmam_coherent_release, sizeof(*dr), gfp);
69 if (!dr)
70 return NULL;
72 vaddr = dma_alloc_coherent(dev, size, dma_handle, gfp);
73 if (!vaddr) {
74 devres_free(dr);
75 return NULL;
78 dr->vaddr = vaddr;
79 dr->dma_handle = *dma_handle;
80 dr->size = size;
82 devres_add(dev, dr);
84 return vaddr;
86 EXPORT_SYMBOL(dmam_alloc_coherent);
88 /**
89 * dmam_free_coherent - Managed dma_free_coherent()
90 * @dev: Device to free coherent memory for
91 * @size: Size of allocation
92 * @vaddr: Virtual address of the memory to free
93 * @dma_handle: DMA handle of the memory to free
95 * Managed dma_free_coherent().
97 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
98 dma_addr_t dma_handle)
100 struct dma_devres match_data = { size, vaddr, dma_handle };
102 dma_free_coherent(dev, size, vaddr, dma_handle);
103 WARN_ON(devres_destroy(dev, dmam_coherent_release, dmam_match,
104 &match_data));
106 EXPORT_SYMBOL(dmam_free_coherent);
109 * dmam_alloc_non_coherent - Managed dma_alloc_non_coherent()
110 * @dev: Device to allocate non_coherent memory for
111 * @size: Size of allocation
112 * @dma_handle: Out argument for allocated DMA handle
113 * @gfp: Allocation flags
115 * Managed dma_alloc_non_coherent(). Memory allocated using this
116 * function will be automatically released on driver detach.
118 * RETURNS:
119 * Pointer to allocated memory on success, NULL on failure.
121 void *dmam_alloc_noncoherent(struct device *dev, size_t size,
122 dma_addr_t *dma_handle, gfp_t gfp)
124 struct dma_devres *dr;
125 void *vaddr;
127 dr = devres_alloc(dmam_noncoherent_release, sizeof(*dr), gfp);
128 if (!dr)
129 return NULL;
131 vaddr = dma_alloc_noncoherent(dev, size, dma_handle, gfp);
132 if (!vaddr) {
133 devres_free(dr);
134 return NULL;
137 dr->vaddr = vaddr;
138 dr->dma_handle = *dma_handle;
139 dr->size = size;
141 devres_add(dev, dr);
143 return vaddr;
145 EXPORT_SYMBOL(dmam_alloc_noncoherent);
148 * dmam_free_coherent - Managed dma_free_noncoherent()
149 * @dev: Device to free noncoherent memory for
150 * @size: Size of allocation
151 * @vaddr: Virtual address of the memory to free
152 * @dma_handle: DMA handle of the memory to free
154 * Managed dma_free_noncoherent().
156 void dmam_free_noncoherent(struct device *dev, size_t size, void *vaddr,
157 dma_addr_t dma_handle)
159 struct dma_devres match_data = { size, vaddr, dma_handle };
161 dma_free_noncoherent(dev, size, vaddr, dma_handle);
162 WARN_ON(!devres_destroy(dev, dmam_noncoherent_release, dmam_match,
163 &match_data));
165 EXPORT_SYMBOL(dmam_free_noncoherent);
167 #ifdef ARCH_HAS_DMA_DECLARE_COHERENT_MEMORY
169 static void dmam_coherent_decl_release(struct device *dev, void *res)
171 dma_release_declared_memory(dev);
175 * dmam_declare_coherent_memory - Managed dma_declare_coherent_memory()
176 * @dev: Device to declare coherent memory for
177 * @bus_addr: Bus address of coherent memory to be declared
178 * @device_addr: Device address of coherent memory to be declared
179 * @size: Size of coherent memory to be declared
180 * @flags: Flags
182 * Managed dma_declare_coherent_memory().
184 * RETURNS:
185 * 0 on success, -errno on failure.
187 int dmam_declare_coherent_memory(struct device *dev, dma_addr_t bus_addr,
188 dma_addr_t device_addr, size_t size, int flags)
190 void *res;
191 int rc;
193 res = devres_alloc(dmam_coherent_decl_release, 0, GFP_KERNEL);
194 if (!res)
195 return -ENOMEM;
197 rc = dma_declare_coherent_memory(dev, bus_addr, device_addr, size,
198 flags);
199 if (rc == 0)
200 devres_add(dev, res);
201 else
202 devres_free(res);
204 return rc;
206 EXPORT_SYMBOL(dmam_declare_coherent_memory);
209 * dmam_release_declared_memory - Managed dma_release_declared_memory().
210 * @dev: Device to release declared coherent memory for
212 * Managed dmam_release_declared_memory().
214 void dmam_release_declared_memory(struct device *dev)
216 WARN_ON(devres_destroy(dev, dmam_coherent_decl_release, NULL, NULL));
218 EXPORT_SYMBOL(dmam_release_declared_memory);
220 #endif