spi-topcliff-pch: supports a spi mode setup and bit order setup by IO control
[zen-stable.git] / drivers / block / cciss.c
blobb0f553b26d0f8d00f86f768f93aad27ebcb0529e
1 /*
2 * Disk Array driver for HP Smart Array controllers.
3 * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17 * 02111-1307, USA.
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/pci-aspm.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/major.h>
32 #include <linux/fs.h>
33 #include <linux/bio.h>
34 #include <linux/blkpg.h>
35 #include <linux/timer.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/init.h>
39 #include <linux/jiffies.h>
40 #include <linux/hdreg.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/mutex.h>
44 #include <asm/uaccess.h>
45 #include <asm/io.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/blkdev.h>
49 #include <linux/genhd.h>
50 #include <linux/completion.h>
51 #include <scsi/scsi.h>
52 #include <scsi/sg.h>
53 #include <scsi/scsi_ioctl.h>
54 #include <linux/cdrom.h>
55 #include <linux/scatterlist.h>
56 #include <linux/kthread.h>
58 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
59 #define DRIVER_NAME "HP CISS Driver (v 3.6.26)"
60 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 26)
62 /* Embedded module documentation macros - see modules.h */
63 MODULE_AUTHOR("Hewlett-Packard Company");
64 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
65 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
66 MODULE_VERSION("3.6.26");
67 MODULE_LICENSE("GPL");
68 static int cciss_tape_cmds = 6;
69 module_param(cciss_tape_cmds, int, 0644);
70 MODULE_PARM_DESC(cciss_tape_cmds,
71 "number of commands to allocate for tape devices (default: 6)");
72 static int cciss_simple_mode;
73 module_param(cciss_simple_mode, int, S_IRUGO|S_IWUSR);
74 MODULE_PARM_DESC(cciss_simple_mode,
75 "Use 'simple mode' rather than 'performant mode'");
77 static DEFINE_MUTEX(cciss_mutex);
78 static struct proc_dir_entry *proc_cciss;
80 #include "cciss_cmd.h"
81 #include "cciss.h"
82 #include <linux/cciss_ioctl.h>
84 /* define the PCI info for the cards we can control */
85 static const struct pci_device_id cciss_pci_device_id[] = {
86 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
87 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
88 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
89 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
90 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
91 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
92 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
93 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
94 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
106 {0,}
109 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
111 /* board_id = Subsystem Device ID & Vendor ID
112 * product = Marketing Name for the board
113 * access = Address of the struct of function pointers
115 static struct board_type products[] = {
116 {0x40700E11, "Smart Array 5300", &SA5_access},
117 {0x40800E11, "Smart Array 5i", &SA5B_access},
118 {0x40820E11, "Smart Array 532", &SA5B_access},
119 {0x40830E11, "Smart Array 5312", &SA5B_access},
120 {0x409A0E11, "Smart Array 641", &SA5_access},
121 {0x409B0E11, "Smart Array 642", &SA5_access},
122 {0x409C0E11, "Smart Array 6400", &SA5_access},
123 {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
124 {0x40910E11, "Smart Array 6i", &SA5_access},
125 {0x3225103C, "Smart Array P600", &SA5_access},
126 {0x3223103C, "Smart Array P800", &SA5_access},
127 {0x3234103C, "Smart Array P400", &SA5_access},
128 {0x3235103C, "Smart Array P400i", &SA5_access},
129 {0x3211103C, "Smart Array E200i", &SA5_access},
130 {0x3212103C, "Smart Array E200", &SA5_access},
131 {0x3213103C, "Smart Array E200i", &SA5_access},
132 {0x3214103C, "Smart Array E200i", &SA5_access},
133 {0x3215103C, "Smart Array E200i", &SA5_access},
134 {0x3237103C, "Smart Array E500", &SA5_access},
135 {0x3223103C, "Smart Array P800", &SA5_access},
136 {0x3234103C, "Smart Array P400", &SA5_access},
137 {0x323D103C, "Smart Array P700m", &SA5_access},
140 /* How long to wait (in milliseconds) for board to go into simple mode */
141 #define MAX_CONFIG_WAIT 30000
142 #define MAX_IOCTL_CONFIG_WAIT 1000
144 /*define how many times we will try a command because of bus resets */
145 #define MAX_CMD_RETRIES 3
147 #define MAX_CTLR 32
149 /* Originally cciss driver only supports 8 major numbers */
150 #define MAX_CTLR_ORIG 8
152 static ctlr_info_t *hba[MAX_CTLR];
154 static struct task_struct *cciss_scan_thread;
155 static DEFINE_MUTEX(scan_mutex);
156 static LIST_HEAD(scan_q);
158 static void do_cciss_request(struct request_queue *q);
159 static irqreturn_t do_cciss_intx(int irq, void *dev_id);
160 static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id);
161 static int cciss_open(struct block_device *bdev, fmode_t mode);
162 static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode);
163 static int cciss_release(struct gendisk *disk, fmode_t mode);
164 static int do_ioctl(struct block_device *bdev, fmode_t mode,
165 unsigned int cmd, unsigned long arg);
166 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
167 unsigned int cmd, unsigned long arg);
168 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
170 static int cciss_revalidate(struct gendisk *disk);
171 static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
172 static int deregister_disk(ctlr_info_t *h, int drv_index,
173 int clear_all, int via_ioctl);
175 static void cciss_read_capacity(ctlr_info_t *h, int logvol,
176 sector_t *total_size, unsigned int *block_size);
177 static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
178 sector_t *total_size, unsigned int *block_size);
179 static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
180 sector_t total_size,
181 unsigned int block_size, InquiryData_struct *inq_buff,
182 drive_info_struct *drv);
183 static void __devinit cciss_interrupt_mode(ctlr_info_t *);
184 static int __devinit cciss_enter_simple_mode(struct ctlr_info *h);
185 static void start_io(ctlr_info_t *h);
186 static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
187 __u8 page_code, unsigned char scsi3addr[],
188 int cmd_type);
189 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
190 int attempt_retry);
191 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
193 static int add_to_scan_list(struct ctlr_info *h);
194 static int scan_thread(void *data);
195 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
196 static void cciss_hba_release(struct device *dev);
197 static void cciss_device_release(struct device *dev);
198 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
199 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
200 static inline u32 next_command(ctlr_info_t *h);
201 static int __devinit cciss_find_cfg_addrs(struct pci_dev *pdev,
202 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
203 u64 *cfg_offset);
204 static int __devinit cciss_pci_find_memory_BAR(struct pci_dev *pdev,
205 unsigned long *memory_bar);
206 static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag);
207 static __devinit int write_driver_ver_to_cfgtable(
208 CfgTable_struct __iomem *cfgtable);
210 /* performant mode helper functions */
211 static void calc_bucket_map(int *bucket, int num_buckets, int nsgs,
212 int *bucket_map);
213 static void cciss_put_controller_into_performant_mode(ctlr_info_t *h);
215 #ifdef CONFIG_PROC_FS
216 static void cciss_procinit(ctlr_info_t *h);
217 #else
218 static void cciss_procinit(ctlr_info_t *h)
221 #endif /* CONFIG_PROC_FS */
223 #ifdef CONFIG_COMPAT
224 static int cciss_compat_ioctl(struct block_device *, fmode_t,
225 unsigned, unsigned long);
226 #endif
228 static const struct block_device_operations cciss_fops = {
229 .owner = THIS_MODULE,
230 .open = cciss_unlocked_open,
231 .release = cciss_release,
232 .ioctl = do_ioctl,
233 .getgeo = cciss_getgeo,
234 #ifdef CONFIG_COMPAT
235 .compat_ioctl = cciss_compat_ioctl,
236 #endif
237 .revalidate_disk = cciss_revalidate,
240 /* set_performant_mode: Modify the tag for cciss performant
241 * set bit 0 for pull model, bits 3-1 for block fetch
242 * register number
244 static void set_performant_mode(ctlr_info_t *h, CommandList_struct *c)
246 if (likely(h->transMethod & CFGTBL_Trans_Performant))
247 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
251 * Enqueuing and dequeuing functions for cmdlists.
253 static inline void addQ(struct list_head *list, CommandList_struct *c)
255 list_add_tail(&c->list, list);
258 static inline void removeQ(CommandList_struct *c)
261 * After kexec/dump some commands might still
262 * be in flight, which the firmware will try
263 * to complete. Resetting the firmware doesn't work
264 * with old fw revisions, so we have to mark
265 * them off as 'stale' to prevent the driver from
266 * falling over.
268 if (WARN_ON(list_empty(&c->list))) {
269 c->cmd_type = CMD_MSG_STALE;
270 return;
273 list_del_init(&c->list);
276 static void enqueue_cmd_and_start_io(ctlr_info_t *h,
277 CommandList_struct *c)
279 unsigned long flags;
280 set_performant_mode(h, c);
281 spin_lock_irqsave(&h->lock, flags);
282 addQ(&h->reqQ, c);
283 h->Qdepth++;
284 if (h->Qdepth > h->maxQsinceinit)
285 h->maxQsinceinit = h->Qdepth;
286 start_io(h);
287 spin_unlock_irqrestore(&h->lock, flags);
290 static void cciss_free_sg_chain_blocks(SGDescriptor_struct **cmd_sg_list,
291 int nr_cmds)
293 int i;
295 if (!cmd_sg_list)
296 return;
297 for (i = 0; i < nr_cmds; i++) {
298 kfree(cmd_sg_list[i]);
299 cmd_sg_list[i] = NULL;
301 kfree(cmd_sg_list);
304 static SGDescriptor_struct **cciss_allocate_sg_chain_blocks(
305 ctlr_info_t *h, int chainsize, int nr_cmds)
307 int j;
308 SGDescriptor_struct **cmd_sg_list;
310 if (chainsize <= 0)
311 return NULL;
313 cmd_sg_list = kmalloc(sizeof(*cmd_sg_list) * nr_cmds, GFP_KERNEL);
314 if (!cmd_sg_list)
315 return NULL;
317 /* Build up chain blocks for each command */
318 for (j = 0; j < nr_cmds; j++) {
319 /* Need a block of chainsized s/g elements. */
320 cmd_sg_list[j] = kmalloc((chainsize *
321 sizeof(*cmd_sg_list[j])), GFP_KERNEL);
322 if (!cmd_sg_list[j]) {
323 dev_err(&h->pdev->dev, "Cannot get memory "
324 "for s/g chains.\n");
325 goto clean;
328 return cmd_sg_list;
329 clean:
330 cciss_free_sg_chain_blocks(cmd_sg_list, nr_cmds);
331 return NULL;
334 static void cciss_unmap_sg_chain_block(ctlr_info_t *h, CommandList_struct *c)
336 SGDescriptor_struct *chain_sg;
337 u64bit temp64;
339 if (c->Header.SGTotal <= h->max_cmd_sgentries)
340 return;
342 chain_sg = &c->SG[h->max_cmd_sgentries - 1];
343 temp64.val32.lower = chain_sg->Addr.lower;
344 temp64.val32.upper = chain_sg->Addr.upper;
345 pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
348 static void cciss_map_sg_chain_block(ctlr_info_t *h, CommandList_struct *c,
349 SGDescriptor_struct *chain_block, int len)
351 SGDescriptor_struct *chain_sg;
352 u64bit temp64;
354 chain_sg = &c->SG[h->max_cmd_sgentries - 1];
355 chain_sg->Ext = CCISS_SG_CHAIN;
356 chain_sg->Len = len;
357 temp64.val = pci_map_single(h->pdev, chain_block, len,
358 PCI_DMA_TODEVICE);
359 chain_sg->Addr.lower = temp64.val32.lower;
360 chain_sg->Addr.upper = temp64.val32.upper;
363 #include "cciss_scsi.c" /* For SCSI tape support */
365 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
366 "UNKNOWN"
368 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label)-1)
370 #ifdef CONFIG_PROC_FS
373 * Report information about this controller.
375 #define ENG_GIG 1000000000
376 #define ENG_GIG_FACTOR (ENG_GIG/512)
377 #define ENGAGE_SCSI "engage scsi"
379 static void cciss_seq_show_header(struct seq_file *seq)
381 ctlr_info_t *h = seq->private;
383 seq_printf(seq, "%s: HP %s Controller\n"
384 "Board ID: 0x%08lx\n"
385 "Firmware Version: %c%c%c%c\n"
386 "IRQ: %d\n"
387 "Logical drives: %d\n"
388 "Current Q depth: %d\n"
389 "Current # commands on controller: %d\n"
390 "Max Q depth since init: %d\n"
391 "Max # commands on controller since init: %d\n"
392 "Max SG entries since init: %d\n",
393 h->devname,
394 h->product_name,
395 (unsigned long)h->board_id,
396 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
397 h->firm_ver[3], (unsigned int)h->intr[h->intr_mode],
398 h->num_luns,
399 h->Qdepth, h->commands_outstanding,
400 h->maxQsinceinit, h->max_outstanding, h->maxSG);
402 #ifdef CONFIG_CISS_SCSI_TAPE
403 cciss_seq_tape_report(seq, h);
404 #endif /* CONFIG_CISS_SCSI_TAPE */
407 static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
409 ctlr_info_t *h = seq->private;
410 unsigned long flags;
412 /* prevent displaying bogus info during configuration
413 * or deconfiguration of a logical volume
415 spin_lock_irqsave(&h->lock, flags);
416 if (h->busy_configuring) {
417 spin_unlock_irqrestore(&h->lock, flags);
418 return ERR_PTR(-EBUSY);
420 h->busy_configuring = 1;
421 spin_unlock_irqrestore(&h->lock, flags);
423 if (*pos == 0)
424 cciss_seq_show_header(seq);
426 return pos;
429 static int cciss_seq_show(struct seq_file *seq, void *v)
431 sector_t vol_sz, vol_sz_frac;
432 ctlr_info_t *h = seq->private;
433 unsigned ctlr = h->ctlr;
434 loff_t *pos = v;
435 drive_info_struct *drv = h->drv[*pos];
437 if (*pos > h->highest_lun)
438 return 0;
440 if (drv == NULL) /* it's possible for h->drv[] to have holes. */
441 return 0;
443 if (drv->heads == 0)
444 return 0;
446 vol_sz = drv->nr_blocks;
447 vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
448 vol_sz_frac *= 100;
449 sector_div(vol_sz_frac, ENG_GIG_FACTOR);
451 if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
452 drv->raid_level = RAID_UNKNOWN;
453 seq_printf(seq, "cciss/c%dd%d:"
454 "\t%4u.%02uGB\tRAID %s\n",
455 ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
456 raid_label[drv->raid_level]);
457 return 0;
460 static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
462 ctlr_info_t *h = seq->private;
464 if (*pos > h->highest_lun)
465 return NULL;
466 *pos += 1;
468 return pos;
471 static void cciss_seq_stop(struct seq_file *seq, void *v)
473 ctlr_info_t *h = seq->private;
475 /* Only reset h->busy_configuring if we succeeded in setting
476 * it during cciss_seq_start. */
477 if (v == ERR_PTR(-EBUSY))
478 return;
480 h->busy_configuring = 0;
483 static const struct seq_operations cciss_seq_ops = {
484 .start = cciss_seq_start,
485 .show = cciss_seq_show,
486 .next = cciss_seq_next,
487 .stop = cciss_seq_stop,
490 static int cciss_seq_open(struct inode *inode, struct file *file)
492 int ret = seq_open(file, &cciss_seq_ops);
493 struct seq_file *seq = file->private_data;
495 if (!ret)
496 seq->private = PDE(inode)->data;
498 return ret;
501 static ssize_t
502 cciss_proc_write(struct file *file, const char __user *buf,
503 size_t length, loff_t *ppos)
505 int err;
506 char *buffer;
508 #ifndef CONFIG_CISS_SCSI_TAPE
509 return -EINVAL;
510 #endif
512 if (!buf || length > PAGE_SIZE - 1)
513 return -EINVAL;
515 buffer = (char *)__get_free_page(GFP_KERNEL);
516 if (!buffer)
517 return -ENOMEM;
519 err = -EFAULT;
520 if (copy_from_user(buffer, buf, length))
521 goto out;
522 buffer[length] = '\0';
524 #ifdef CONFIG_CISS_SCSI_TAPE
525 if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
526 struct seq_file *seq = file->private_data;
527 ctlr_info_t *h = seq->private;
529 err = cciss_engage_scsi(h);
530 if (err == 0)
531 err = length;
532 } else
533 #endif /* CONFIG_CISS_SCSI_TAPE */
534 err = -EINVAL;
535 /* might be nice to have "disengage" too, but it's not
536 safely possible. (only 1 module use count, lock issues.) */
538 out:
539 free_page((unsigned long)buffer);
540 return err;
543 static const struct file_operations cciss_proc_fops = {
544 .owner = THIS_MODULE,
545 .open = cciss_seq_open,
546 .read = seq_read,
547 .llseek = seq_lseek,
548 .release = seq_release,
549 .write = cciss_proc_write,
552 static void __devinit cciss_procinit(ctlr_info_t *h)
554 struct proc_dir_entry *pde;
556 if (proc_cciss == NULL)
557 proc_cciss = proc_mkdir("driver/cciss", NULL);
558 if (!proc_cciss)
559 return;
560 pde = proc_create_data(h->devname, S_IWUSR | S_IRUSR | S_IRGRP |
561 S_IROTH, proc_cciss,
562 &cciss_proc_fops, h);
564 #endif /* CONFIG_PROC_FS */
566 #define MAX_PRODUCT_NAME_LEN 19
568 #define to_hba(n) container_of(n, struct ctlr_info, dev)
569 #define to_drv(n) container_of(n, drive_info_struct, dev)
571 /* List of controllers which cannot be hard reset on kexec with reset_devices */
572 static u32 unresettable_controller[] = {
573 0x324a103C, /* Smart Array P712m */
574 0x324b103C, /* SmartArray P711m */
575 0x3223103C, /* Smart Array P800 */
576 0x3234103C, /* Smart Array P400 */
577 0x3235103C, /* Smart Array P400i */
578 0x3211103C, /* Smart Array E200i */
579 0x3212103C, /* Smart Array E200 */
580 0x3213103C, /* Smart Array E200i */
581 0x3214103C, /* Smart Array E200i */
582 0x3215103C, /* Smart Array E200i */
583 0x3237103C, /* Smart Array E500 */
584 0x323D103C, /* Smart Array P700m */
585 0x409C0E11, /* Smart Array 6400 */
586 0x409D0E11, /* Smart Array 6400 EM */
589 /* List of controllers which cannot even be soft reset */
590 static u32 soft_unresettable_controller[] = {
591 0x409C0E11, /* Smart Array 6400 */
592 0x409D0E11, /* Smart Array 6400 EM */
595 static int ctlr_is_hard_resettable(u32 board_id)
597 int i;
599 for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
600 if (unresettable_controller[i] == board_id)
601 return 0;
602 return 1;
605 static int ctlr_is_soft_resettable(u32 board_id)
607 int i;
609 for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
610 if (soft_unresettable_controller[i] == board_id)
611 return 0;
612 return 1;
615 static int ctlr_is_resettable(u32 board_id)
617 return ctlr_is_hard_resettable(board_id) ||
618 ctlr_is_soft_resettable(board_id);
621 static ssize_t host_show_resettable(struct device *dev,
622 struct device_attribute *attr,
623 char *buf)
625 struct ctlr_info *h = to_hba(dev);
627 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
629 static DEVICE_ATTR(resettable, S_IRUGO, host_show_resettable, NULL);
631 static ssize_t host_store_rescan(struct device *dev,
632 struct device_attribute *attr,
633 const char *buf, size_t count)
635 struct ctlr_info *h = to_hba(dev);
637 add_to_scan_list(h);
638 wake_up_process(cciss_scan_thread);
639 wait_for_completion_interruptible(&h->scan_wait);
641 return count;
643 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
645 static ssize_t host_show_transport_mode(struct device *dev,
646 struct device_attribute *attr,
647 char *buf)
649 struct ctlr_info *h = to_hba(dev);
651 return snprintf(buf, 20, "%s\n",
652 h->transMethod & CFGTBL_Trans_Performant ?
653 "performant" : "simple");
655 static DEVICE_ATTR(transport_mode, S_IRUGO, host_show_transport_mode, NULL);
657 static ssize_t dev_show_unique_id(struct device *dev,
658 struct device_attribute *attr,
659 char *buf)
661 drive_info_struct *drv = to_drv(dev);
662 struct ctlr_info *h = to_hba(drv->dev.parent);
663 __u8 sn[16];
664 unsigned long flags;
665 int ret = 0;
667 spin_lock_irqsave(&h->lock, flags);
668 if (h->busy_configuring)
669 ret = -EBUSY;
670 else
671 memcpy(sn, drv->serial_no, sizeof(sn));
672 spin_unlock_irqrestore(&h->lock, flags);
674 if (ret)
675 return ret;
676 else
677 return snprintf(buf, 16 * 2 + 2,
678 "%02X%02X%02X%02X%02X%02X%02X%02X"
679 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
680 sn[0], sn[1], sn[2], sn[3],
681 sn[4], sn[5], sn[6], sn[7],
682 sn[8], sn[9], sn[10], sn[11],
683 sn[12], sn[13], sn[14], sn[15]);
685 static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
687 static ssize_t dev_show_vendor(struct device *dev,
688 struct device_attribute *attr,
689 char *buf)
691 drive_info_struct *drv = to_drv(dev);
692 struct ctlr_info *h = to_hba(drv->dev.parent);
693 char vendor[VENDOR_LEN + 1];
694 unsigned long flags;
695 int ret = 0;
697 spin_lock_irqsave(&h->lock, flags);
698 if (h->busy_configuring)
699 ret = -EBUSY;
700 else
701 memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
702 spin_unlock_irqrestore(&h->lock, flags);
704 if (ret)
705 return ret;
706 else
707 return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
709 static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
711 static ssize_t dev_show_model(struct device *dev,
712 struct device_attribute *attr,
713 char *buf)
715 drive_info_struct *drv = to_drv(dev);
716 struct ctlr_info *h = to_hba(drv->dev.parent);
717 char model[MODEL_LEN + 1];
718 unsigned long flags;
719 int ret = 0;
721 spin_lock_irqsave(&h->lock, flags);
722 if (h->busy_configuring)
723 ret = -EBUSY;
724 else
725 memcpy(model, drv->model, MODEL_LEN + 1);
726 spin_unlock_irqrestore(&h->lock, flags);
728 if (ret)
729 return ret;
730 else
731 return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
733 static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
735 static ssize_t dev_show_rev(struct device *dev,
736 struct device_attribute *attr,
737 char *buf)
739 drive_info_struct *drv = to_drv(dev);
740 struct ctlr_info *h = to_hba(drv->dev.parent);
741 char rev[REV_LEN + 1];
742 unsigned long flags;
743 int ret = 0;
745 spin_lock_irqsave(&h->lock, flags);
746 if (h->busy_configuring)
747 ret = -EBUSY;
748 else
749 memcpy(rev, drv->rev, REV_LEN + 1);
750 spin_unlock_irqrestore(&h->lock, flags);
752 if (ret)
753 return ret;
754 else
755 return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
757 static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
759 static ssize_t cciss_show_lunid(struct device *dev,
760 struct device_attribute *attr, char *buf)
762 drive_info_struct *drv = to_drv(dev);
763 struct ctlr_info *h = to_hba(drv->dev.parent);
764 unsigned long flags;
765 unsigned char lunid[8];
767 spin_lock_irqsave(&h->lock, flags);
768 if (h->busy_configuring) {
769 spin_unlock_irqrestore(&h->lock, flags);
770 return -EBUSY;
772 if (!drv->heads) {
773 spin_unlock_irqrestore(&h->lock, flags);
774 return -ENOTTY;
776 memcpy(lunid, drv->LunID, sizeof(lunid));
777 spin_unlock_irqrestore(&h->lock, flags);
778 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
779 lunid[0], lunid[1], lunid[2], lunid[3],
780 lunid[4], lunid[5], lunid[6], lunid[7]);
782 static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
784 static ssize_t cciss_show_raid_level(struct device *dev,
785 struct device_attribute *attr, char *buf)
787 drive_info_struct *drv = to_drv(dev);
788 struct ctlr_info *h = to_hba(drv->dev.parent);
789 int raid;
790 unsigned long flags;
792 spin_lock_irqsave(&h->lock, flags);
793 if (h->busy_configuring) {
794 spin_unlock_irqrestore(&h->lock, flags);
795 return -EBUSY;
797 raid = drv->raid_level;
798 spin_unlock_irqrestore(&h->lock, flags);
799 if (raid < 0 || raid > RAID_UNKNOWN)
800 raid = RAID_UNKNOWN;
802 return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
803 raid_label[raid]);
805 static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
807 static ssize_t cciss_show_usage_count(struct device *dev,
808 struct device_attribute *attr, char *buf)
810 drive_info_struct *drv = to_drv(dev);
811 struct ctlr_info *h = to_hba(drv->dev.parent);
812 unsigned long flags;
813 int count;
815 spin_lock_irqsave(&h->lock, flags);
816 if (h->busy_configuring) {
817 spin_unlock_irqrestore(&h->lock, flags);
818 return -EBUSY;
820 count = drv->usage_count;
821 spin_unlock_irqrestore(&h->lock, flags);
822 return snprintf(buf, 20, "%d\n", count);
824 static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
826 static struct attribute *cciss_host_attrs[] = {
827 &dev_attr_rescan.attr,
828 &dev_attr_resettable.attr,
829 &dev_attr_transport_mode.attr,
830 NULL
833 static struct attribute_group cciss_host_attr_group = {
834 .attrs = cciss_host_attrs,
837 static const struct attribute_group *cciss_host_attr_groups[] = {
838 &cciss_host_attr_group,
839 NULL
842 static struct device_type cciss_host_type = {
843 .name = "cciss_host",
844 .groups = cciss_host_attr_groups,
845 .release = cciss_hba_release,
848 static struct attribute *cciss_dev_attrs[] = {
849 &dev_attr_unique_id.attr,
850 &dev_attr_model.attr,
851 &dev_attr_vendor.attr,
852 &dev_attr_rev.attr,
853 &dev_attr_lunid.attr,
854 &dev_attr_raid_level.attr,
855 &dev_attr_usage_count.attr,
856 NULL
859 static struct attribute_group cciss_dev_attr_group = {
860 .attrs = cciss_dev_attrs,
863 static const struct attribute_group *cciss_dev_attr_groups[] = {
864 &cciss_dev_attr_group,
865 NULL
868 static struct device_type cciss_dev_type = {
869 .name = "cciss_device",
870 .groups = cciss_dev_attr_groups,
871 .release = cciss_device_release,
874 static struct bus_type cciss_bus_type = {
875 .name = "cciss",
879 * cciss_hba_release is called when the reference count
880 * of h->dev goes to zero.
882 static void cciss_hba_release(struct device *dev)
885 * nothing to do, but need this to avoid a warning
886 * about not having a release handler from lib/kref.c.
891 * Initialize sysfs entry for each controller. This sets up and registers
892 * the 'cciss#' directory for each individual controller under
893 * /sys/bus/pci/devices/<dev>/.
895 static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
897 device_initialize(&h->dev);
898 h->dev.type = &cciss_host_type;
899 h->dev.bus = &cciss_bus_type;
900 dev_set_name(&h->dev, "%s", h->devname);
901 h->dev.parent = &h->pdev->dev;
903 return device_add(&h->dev);
907 * Remove sysfs entries for an hba.
909 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
911 device_del(&h->dev);
912 put_device(&h->dev); /* final put. */
915 /* cciss_device_release is called when the reference count
916 * of h->drv[x]dev goes to zero.
918 static void cciss_device_release(struct device *dev)
920 drive_info_struct *drv = to_drv(dev);
921 kfree(drv);
925 * Initialize sysfs for each logical drive. This sets up and registers
926 * the 'c#d#' directory for each individual logical drive under
927 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
928 * /sys/block/cciss!c#d# to this entry.
930 static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
931 int drv_index)
933 struct device *dev;
935 if (h->drv[drv_index]->device_initialized)
936 return 0;
938 dev = &h->drv[drv_index]->dev;
939 device_initialize(dev);
940 dev->type = &cciss_dev_type;
941 dev->bus = &cciss_bus_type;
942 dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
943 dev->parent = &h->dev;
944 h->drv[drv_index]->device_initialized = 1;
945 return device_add(dev);
949 * Remove sysfs entries for a logical drive.
951 static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
952 int ctlr_exiting)
954 struct device *dev = &h->drv[drv_index]->dev;
956 /* special case for c*d0, we only destroy it on controller exit */
957 if (drv_index == 0 && !ctlr_exiting)
958 return;
960 device_del(dev);
961 put_device(dev); /* the "final" put. */
962 h->drv[drv_index] = NULL;
966 * For operations that cannot sleep, a command block is allocated at init,
967 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
968 * which ones are free or in use.
970 static CommandList_struct *cmd_alloc(ctlr_info_t *h)
972 CommandList_struct *c;
973 int i;
974 u64bit temp64;
975 dma_addr_t cmd_dma_handle, err_dma_handle;
977 do {
978 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
979 if (i == h->nr_cmds)
980 return NULL;
981 } while (test_and_set_bit(i & (BITS_PER_LONG - 1),
982 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
983 c = h->cmd_pool + i;
984 memset(c, 0, sizeof(CommandList_struct));
985 cmd_dma_handle = h->cmd_pool_dhandle + i * sizeof(CommandList_struct);
986 c->err_info = h->errinfo_pool + i;
987 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
988 err_dma_handle = h->errinfo_pool_dhandle
989 + i * sizeof(ErrorInfo_struct);
990 h->nr_allocs++;
992 c->cmdindex = i;
994 INIT_LIST_HEAD(&c->list);
995 c->busaddr = (__u32) cmd_dma_handle;
996 temp64.val = (__u64) err_dma_handle;
997 c->ErrDesc.Addr.lower = temp64.val32.lower;
998 c->ErrDesc.Addr.upper = temp64.val32.upper;
999 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
1001 c->ctlr = h->ctlr;
1002 return c;
1005 /* allocate a command using pci_alloc_consistent, used for ioctls,
1006 * etc., not for the main i/o path.
1008 static CommandList_struct *cmd_special_alloc(ctlr_info_t *h)
1010 CommandList_struct *c;
1011 u64bit temp64;
1012 dma_addr_t cmd_dma_handle, err_dma_handle;
1014 c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
1015 sizeof(CommandList_struct), &cmd_dma_handle);
1016 if (c == NULL)
1017 return NULL;
1018 memset(c, 0, sizeof(CommandList_struct));
1020 c->cmdindex = -1;
1022 c->err_info = (ErrorInfo_struct *)
1023 pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
1024 &err_dma_handle);
1026 if (c->err_info == NULL) {
1027 pci_free_consistent(h->pdev,
1028 sizeof(CommandList_struct), c, cmd_dma_handle);
1029 return NULL;
1031 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
1033 INIT_LIST_HEAD(&c->list);
1034 c->busaddr = (__u32) cmd_dma_handle;
1035 temp64.val = (__u64) err_dma_handle;
1036 c->ErrDesc.Addr.lower = temp64.val32.lower;
1037 c->ErrDesc.Addr.upper = temp64.val32.upper;
1038 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
1040 c->ctlr = h->ctlr;
1041 return c;
1044 static void cmd_free(ctlr_info_t *h, CommandList_struct *c)
1046 int i;
1048 i = c - h->cmd_pool;
1049 clear_bit(i & (BITS_PER_LONG - 1),
1050 h->cmd_pool_bits + (i / BITS_PER_LONG));
1051 h->nr_frees++;
1054 static void cmd_special_free(ctlr_info_t *h, CommandList_struct *c)
1056 u64bit temp64;
1058 temp64.val32.lower = c->ErrDesc.Addr.lower;
1059 temp64.val32.upper = c->ErrDesc.Addr.upper;
1060 pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
1061 c->err_info, (dma_addr_t) temp64.val);
1062 pci_free_consistent(h->pdev, sizeof(CommandList_struct), c,
1063 (dma_addr_t) cciss_tag_discard_error_bits(h, (u32) c->busaddr));
1066 static inline ctlr_info_t *get_host(struct gendisk *disk)
1068 return disk->queue->queuedata;
1071 static inline drive_info_struct *get_drv(struct gendisk *disk)
1073 return disk->private_data;
1077 * Open. Make sure the device is really there.
1079 static int cciss_open(struct block_device *bdev, fmode_t mode)
1081 ctlr_info_t *h = get_host(bdev->bd_disk);
1082 drive_info_struct *drv = get_drv(bdev->bd_disk);
1084 dev_dbg(&h->pdev->dev, "cciss_open %s\n", bdev->bd_disk->disk_name);
1085 if (drv->busy_configuring)
1086 return -EBUSY;
1088 * Root is allowed to open raw volume zero even if it's not configured
1089 * so array config can still work. Root is also allowed to open any
1090 * volume that has a LUN ID, so it can issue IOCTL to reread the
1091 * disk information. I don't think I really like this
1092 * but I'm already using way to many device nodes to claim another one
1093 * for "raw controller".
1095 if (drv->heads == 0) {
1096 if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
1097 /* if not node 0 make sure it is a partition = 0 */
1098 if (MINOR(bdev->bd_dev) & 0x0f) {
1099 return -ENXIO;
1100 /* if it is, make sure we have a LUN ID */
1101 } else if (memcmp(drv->LunID, CTLR_LUNID,
1102 sizeof(drv->LunID))) {
1103 return -ENXIO;
1106 if (!capable(CAP_SYS_ADMIN))
1107 return -EPERM;
1109 drv->usage_count++;
1110 h->usage_count++;
1111 return 0;
1114 static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode)
1116 int ret;
1118 mutex_lock(&cciss_mutex);
1119 ret = cciss_open(bdev, mode);
1120 mutex_unlock(&cciss_mutex);
1122 return ret;
1126 * Close. Sync first.
1128 static int cciss_release(struct gendisk *disk, fmode_t mode)
1130 ctlr_info_t *h;
1131 drive_info_struct *drv;
1133 mutex_lock(&cciss_mutex);
1134 h = get_host(disk);
1135 drv = get_drv(disk);
1136 dev_dbg(&h->pdev->dev, "cciss_release %s\n", disk->disk_name);
1137 drv->usage_count--;
1138 h->usage_count--;
1139 mutex_unlock(&cciss_mutex);
1140 return 0;
1143 static int do_ioctl(struct block_device *bdev, fmode_t mode,
1144 unsigned cmd, unsigned long arg)
1146 int ret;
1147 mutex_lock(&cciss_mutex);
1148 ret = cciss_ioctl(bdev, mode, cmd, arg);
1149 mutex_unlock(&cciss_mutex);
1150 return ret;
1153 #ifdef CONFIG_COMPAT
1155 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1156 unsigned cmd, unsigned long arg);
1157 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1158 unsigned cmd, unsigned long arg);
1160 static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
1161 unsigned cmd, unsigned long arg)
1163 switch (cmd) {
1164 case CCISS_GETPCIINFO:
1165 case CCISS_GETINTINFO:
1166 case CCISS_SETINTINFO:
1167 case CCISS_GETNODENAME:
1168 case CCISS_SETNODENAME:
1169 case CCISS_GETHEARTBEAT:
1170 case CCISS_GETBUSTYPES:
1171 case CCISS_GETFIRMVER:
1172 case CCISS_GETDRIVVER:
1173 case CCISS_REVALIDVOLS:
1174 case CCISS_DEREGDISK:
1175 case CCISS_REGNEWDISK:
1176 case CCISS_REGNEWD:
1177 case CCISS_RESCANDISK:
1178 case CCISS_GETLUNINFO:
1179 return do_ioctl(bdev, mode, cmd, arg);
1181 case CCISS_PASSTHRU32:
1182 return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
1183 case CCISS_BIG_PASSTHRU32:
1184 return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
1186 default:
1187 return -ENOIOCTLCMD;
1191 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1192 unsigned cmd, unsigned long arg)
1194 IOCTL32_Command_struct __user *arg32 =
1195 (IOCTL32_Command_struct __user *) arg;
1196 IOCTL_Command_struct arg64;
1197 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
1198 int err;
1199 u32 cp;
1201 err = 0;
1202 err |=
1203 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1204 sizeof(arg64.LUN_info));
1205 err |=
1206 copy_from_user(&arg64.Request, &arg32->Request,
1207 sizeof(arg64.Request));
1208 err |=
1209 copy_from_user(&arg64.error_info, &arg32->error_info,
1210 sizeof(arg64.error_info));
1211 err |= get_user(arg64.buf_size, &arg32->buf_size);
1212 err |= get_user(cp, &arg32->buf);
1213 arg64.buf = compat_ptr(cp);
1214 err |= copy_to_user(p, &arg64, sizeof(arg64));
1216 if (err)
1217 return -EFAULT;
1219 err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
1220 if (err)
1221 return err;
1222 err |=
1223 copy_in_user(&arg32->error_info, &p->error_info,
1224 sizeof(arg32->error_info));
1225 if (err)
1226 return -EFAULT;
1227 return err;
1230 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1231 unsigned cmd, unsigned long arg)
1233 BIG_IOCTL32_Command_struct __user *arg32 =
1234 (BIG_IOCTL32_Command_struct __user *) arg;
1235 BIG_IOCTL_Command_struct arg64;
1236 BIG_IOCTL_Command_struct __user *p =
1237 compat_alloc_user_space(sizeof(arg64));
1238 int err;
1239 u32 cp;
1241 memset(&arg64, 0, sizeof(arg64));
1242 err = 0;
1243 err |=
1244 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1245 sizeof(arg64.LUN_info));
1246 err |=
1247 copy_from_user(&arg64.Request, &arg32->Request,
1248 sizeof(arg64.Request));
1249 err |=
1250 copy_from_user(&arg64.error_info, &arg32->error_info,
1251 sizeof(arg64.error_info));
1252 err |= get_user(arg64.buf_size, &arg32->buf_size);
1253 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
1254 err |= get_user(cp, &arg32->buf);
1255 arg64.buf = compat_ptr(cp);
1256 err |= copy_to_user(p, &arg64, sizeof(arg64));
1258 if (err)
1259 return -EFAULT;
1261 err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
1262 if (err)
1263 return err;
1264 err |=
1265 copy_in_user(&arg32->error_info, &p->error_info,
1266 sizeof(arg32->error_info));
1267 if (err)
1268 return -EFAULT;
1269 return err;
1271 #endif
1273 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1275 drive_info_struct *drv = get_drv(bdev->bd_disk);
1277 if (!drv->cylinders)
1278 return -ENXIO;
1280 geo->heads = drv->heads;
1281 geo->sectors = drv->sectors;
1282 geo->cylinders = drv->cylinders;
1283 return 0;
1286 static void check_ioctl_unit_attention(ctlr_info_t *h, CommandList_struct *c)
1288 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1289 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
1290 (void)check_for_unit_attention(h, c);
1293 static int cciss_getpciinfo(ctlr_info_t *h, void __user *argp)
1295 cciss_pci_info_struct pciinfo;
1297 if (!argp)
1298 return -EINVAL;
1299 pciinfo.domain = pci_domain_nr(h->pdev->bus);
1300 pciinfo.bus = h->pdev->bus->number;
1301 pciinfo.dev_fn = h->pdev->devfn;
1302 pciinfo.board_id = h->board_id;
1303 if (copy_to_user(argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1304 return -EFAULT;
1305 return 0;
1308 static int cciss_getintinfo(ctlr_info_t *h, void __user *argp)
1310 cciss_coalint_struct intinfo;
1312 if (!argp)
1313 return -EINVAL;
1314 intinfo.delay = readl(&h->cfgtable->HostWrite.CoalIntDelay);
1315 intinfo.count = readl(&h->cfgtable->HostWrite.CoalIntCount);
1316 if (copy_to_user
1317 (argp, &intinfo, sizeof(cciss_coalint_struct)))
1318 return -EFAULT;
1319 return 0;
1322 static int cciss_setintinfo(ctlr_info_t *h, void __user *argp)
1324 cciss_coalint_struct intinfo;
1325 unsigned long flags;
1326 int i;
1328 if (!argp)
1329 return -EINVAL;
1330 if (!capable(CAP_SYS_ADMIN))
1331 return -EPERM;
1332 if (copy_from_user(&intinfo, argp, sizeof(intinfo)))
1333 return -EFAULT;
1334 if ((intinfo.delay == 0) && (intinfo.count == 0))
1335 return -EINVAL;
1336 spin_lock_irqsave(&h->lock, flags);
1337 /* Update the field, and then ring the doorbell */
1338 writel(intinfo.delay, &(h->cfgtable->HostWrite.CoalIntDelay));
1339 writel(intinfo.count, &(h->cfgtable->HostWrite.CoalIntCount));
1340 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1342 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1343 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1344 break;
1345 udelay(1000); /* delay and try again */
1347 spin_unlock_irqrestore(&h->lock, flags);
1348 if (i >= MAX_IOCTL_CONFIG_WAIT)
1349 return -EAGAIN;
1350 return 0;
1353 static int cciss_getnodename(ctlr_info_t *h, void __user *argp)
1355 NodeName_type NodeName;
1356 int i;
1358 if (!argp)
1359 return -EINVAL;
1360 for (i = 0; i < 16; i++)
1361 NodeName[i] = readb(&h->cfgtable->ServerName[i]);
1362 if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1363 return -EFAULT;
1364 return 0;
1367 static int cciss_setnodename(ctlr_info_t *h, void __user *argp)
1369 NodeName_type NodeName;
1370 unsigned long flags;
1371 int i;
1373 if (!argp)
1374 return -EINVAL;
1375 if (!capable(CAP_SYS_ADMIN))
1376 return -EPERM;
1377 if (copy_from_user(NodeName, argp, sizeof(NodeName_type)))
1378 return -EFAULT;
1379 spin_lock_irqsave(&h->lock, flags);
1380 /* Update the field, and then ring the doorbell */
1381 for (i = 0; i < 16; i++)
1382 writeb(NodeName[i], &h->cfgtable->ServerName[i]);
1383 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1384 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1385 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1386 break;
1387 udelay(1000); /* delay and try again */
1389 spin_unlock_irqrestore(&h->lock, flags);
1390 if (i >= MAX_IOCTL_CONFIG_WAIT)
1391 return -EAGAIN;
1392 return 0;
1395 static int cciss_getheartbeat(ctlr_info_t *h, void __user *argp)
1397 Heartbeat_type heartbeat;
1399 if (!argp)
1400 return -EINVAL;
1401 heartbeat = readl(&h->cfgtable->HeartBeat);
1402 if (copy_to_user(argp, &heartbeat, sizeof(Heartbeat_type)))
1403 return -EFAULT;
1404 return 0;
1407 static int cciss_getbustypes(ctlr_info_t *h, void __user *argp)
1409 BusTypes_type BusTypes;
1411 if (!argp)
1412 return -EINVAL;
1413 BusTypes = readl(&h->cfgtable->BusTypes);
1414 if (copy_to_user(argp, &BusTypes, sizeof(BusTypes_type)))
1415 return -EFAULT;
1416 return 0;
1419 static int cciss_getfirmver(ctlr_info_t *h, void __user *argp)
1421 FirmwareVer_type firmware;
1423 if (!argp)
1424 return -EINVAL;
1425 memcpy(firmware, h->firm_ver, 4);
1427 if (copy_to_user
1428 (argp, firmware, sizeof(FirmwareVer_type)))
1429 return -EFAULT;
1430 return 0;
1433 static int cciss_getdrivver(ctlr_info_t *h, void __user *argp)
1435 DriverVer_type DriverVer = DRIVER_VERSION;
1437 if (!argp)
1438 return -EINVAL;
1439 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
1440 return -EFAULT;
1441 return 0;
1444 static int cciss_getluninfo(ctlr_info_t *h,
1445 struct gendisk *disk, void __user *argp)
1447 LogvolInfo_struct luninfo;
1448 drive_info_struct *drv = get_drv(disk);
1450 if (!argp)
1451 return -EINVAL;
1452 memcpy(&luninfo.LunID, drv->LunID, sizeof(luninfo.LunID));
1453 luninfo.num_opens = drv->usage_count;
1454 luninfo.num_parts = 0;
1455 if (copy_to_user(argp, &luninfo, sizeof(LogvolInfo_struct)))
1456 return -EFAULT;
1457 return 0;
1460 static int cciss_passthru(ctlr_info_t *h, void __user *argp)
1462 IOCTL_Command_struct iocommand;
1463 CommandList_struct *c;
1464 char *buff = NULL;
1465 u64bit temp64;
1466 DECLARE_COMPLETION_ONSTACK(wait);
1468 if (!argp)
1469 return -EINVAL;
1471 if (!capable(CAP_SYS_RAWIO))
1472 return -EPERM;
1474 if (copy_from_user
1475 (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1476 return -EFAULT;
1477 if ((iocommand.buf_size < 1) &&
1478 (iocommand.Request.Type.Direction != XFER_NONE)) {
1479 return -EINVAL;
1481 if (iocommand.buf_size > 0) {
1482 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1483 if (buff == NULL)
1484 return -EFAULT;
1486 if (iocommand.Request.Type.Direction == XFER_WRITE) {
1487 /* Copy the data into the buffer we created */
1488 if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
1489 kfree(buff);
1490 return -EFAULT;
1492 } else {
1493 memset(buff, 0, iocommand.buf_size);
1495 c = cmd_special_alloc(h);
1496 if (!c) {
1497 kfree(buff);
1498 return -ENOMEM;
1500 /* Fill in the command type */
1501 c->cmd_type = CMD_IOCTL_PEND;
1502 /* Fill in Command Header */
1503 c->Header.ReplyQueue = 0; /* unused in simple mode */
1504 if (iocommand.buf_size > 0) { /* buffer to fill */
1505 c->Header.SGList = 1;
1506 c->Header.SGTotal = 1;
1507 } else { /* no buffers to fill */
1508 c->Header.SGList = 0;
1509 c->Header.SGTotal = 0;
1511 c->Header.LUN = iocommand.LUN_info;
1512 /* use the kernel address the cmd block for tag */
1513 c->Header.Tag.lower = c->busaddr;
1515 /* Fill in Request block */
1516 c->Request = iocommand.Request;
1518 /* Fill in the scatter gather information */
1519 if (iocommand.buf_size > 0) {
1520 temp64.val = pci_map_single(h->pdev, buff,
1521 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
1522 c->SG[0].Addr.lower = temp64.val32.lower;
1523 c->SG[0].Addr.upper = temp64.val32.upper;
1524 c->SG[0].Len = iocommand.buf_size;
1525 c->SG[0].Ext = 0; /* we are not chaining */
1527 c->waiting = &wait;
1529 enqueue_cmd_and_start_io(h, c);
1530 wait_for_completion(&wait);
1532 /* unlock the buffers from DMA */
1533 temp64.val32.lower = c->SG[0].Addr.lower;
1534 temp64.val32.upper = c->SG[0].Addr.upper;
1535 pci_unmap_single(h->pdev, (dma_addr_t) temp64.val, iocommand.buf_size,
1536 PCI_DMA_BIDIRECTIONAL);
1537 check_ioctl_unit_attention(h, c);
1539 /* Copy the error information out */
1540 iocommand.error_info = *(c->err_info);
1541 if (copy_to_user(argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1542 kfree(buff);
1543 cmd_special_free(h, c);
1544 return -EFAULT;
1547 if (iocommand.Request.Type.Direction == XFER_READ) {
1548 /* Copy the data out of the buffer we created */
1549 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
1550 kfree(buff);
1551 cmd_special_free(h, c);
1552 return -EFAULT;
1555 kfree(buff);
1556 cmd_special_free(h, c);
1557 return 0;
1560 static int cciss_bigpassthru(ctlr_info_t *h, void __user *argp)
1562 BIG_IOCTL_Command_struct *ioc;
1563 CommandList_struct *c;
1564 unsigned char **buff = NULL;
1565 int *buff_size = NULL;
1566 u64bit temp64;
1567 BYTE sg_used = 0;
1568 int status = 0;
1569 int i;
1570 DECLARE_COMPLETION_ONSTACK(wait);
1571 __u32 left;
1572 __u32 sz;
1573 BYTE __user *data_ptr;
1575 if (!argp)
1576 return -EINVAL;
1577 if (!capable(CAP_SYS_RAWIO))
1578 return -EPERM;
1579 ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
1580 if (!ioc) {
1581 status = -ENOMEM;
1582 goto cleanup1;
1584 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1585 status = -EFAULT;
1586 goto cleanup1;
1588 if ((ioc->buf_size < 1) &&
1589 (ioc->Request.Type.Direction != XFER_NONE)) {
1590 status = -EINVAL;
1591 goto cleanup1;
1593 /* Check kmalloc limits using all SGs */
1594 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1595 status = -EINVAL;
1596 goto cleanup1;
1598 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1599 status = -EINVAL;
1600 goto cleanup1;
1602 buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1603 if (!buff) {
1604 status = -ENOMEM;
1605 goto cleanup1;
1607 buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
1608 if (!buff_size) {
1609 status = -ENOMEM;
1610 goto cleanup1;
1612 left = ioc->buf_size;
1613 data_ptr = ioc->buf;
1614 while (left) {
1615 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
1616 buff_size[sg_used] = sz;
1617 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1618 if (buff[sg_used] == NULL) {
1619 status = -ENOMEM;
1620 goto cleanup1;
1622 if (ioc->Request.Type.Direction == XFER_WRITE) {
1623 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
1624 status = -EFAULT;
1625 goto cleanup1;
1627 } else {
1628 memset(buff[sg_used], 0, sz);
1630 left -= sz;
1631 data_ptr += sz;
1632 sg_used++;
1634 c = cmd_special_alloc(h);
1635 if (!c) {
1636 status = -ENOMEM;
1637 goto cleanup1;
1639 c->cmd_type = CMD_IOCTL_PEND;
1640 c->Header.ReplyQueue = 0;
1641 c->Header.SGList = sg_used;
1642 c->Header.SGTotal = sg_used;
1643 c->Header.LUN = ioc->LUN_info;
1644 c->Header.Tag.lower = c->busaddr;
1646 c->Request = ioc->Request;
1647 for (i = 0; i < sg_used; i++) {
1648 temp64.val = pci_map_single(h->pdev, buff[i], buff_size[i],
1649 PCI_DMA_BIDIRECTIONAL);
1650 c->SG[i].Addr.lower = temp64.val32.lower;
1651 c->SG[i].Addr.upper = temp64.val32.upper;
1652 c->SG[i].Len = buff_size[i];
1653 c->SG[i].Ext = 0; /* we are not chaining */
1655 c->waiting = &wait;
1656 enqueue_cmd_and_start_io(h, c);
1657 wait_for_completion(&wait);
1658 /* unlock the buffers from DMA */
1659 for (i = 0; i < sg_used; i++) {
1660 temp64.val32.lower = c->SG[i].Addr.lower;
1661 temp64.val32.upper = c->SG[i].Addr.upper;
1662 pci_unmap_single(h->pdev,
1663 (dma_addr_t) temp64.val, buff_size[i],
1664 PCI_DMA_BIDIRECTIONAL);
1666 check_ioctl_unit_attention(h, c);
1667 /* Copy the error information out */
1668 ioc->error_info = *(c->err_info);
1669 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1670 cmd_special_free(h, c);
1671 status = -EFAULT;
1672 goto cleanup1;
1674 if (ioc->Request.Type.Direction == XFER_READ) {
1675 /* Copy the data out of the buffer we created */
1676 BYTE __user *ptr = ioc->buf;
1677 for (i = 0; i < sg_used; i++) {
1678 if (copy_to_user(ptr, buff[i], buff_size[i])) {
1679 cmd_special_free(h, c);
1680 status = -EFAULT;
1681 goto cleanup1;
1683 ptr += buff_size[i];
1686 cmd_special_free(h, c);
1687 status = 0;
1688 cleanup1:
1689 if (buff) {
1690 for (i = 0; i < sg_used; i++)
1691 kfree(buff[i]);
1692 kfree(buff);
1694 kfree(buff_size);
1695 kfree(ioc);
1696 return status;
1699 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
1700 unsigned int cmd, unsigned long arg)
1702 struct gendisk *disk = bdev->bd_disk;
1703 ctlr_info_t *h = get_host(disk);
1704 void __user *argp = (void __user *)arg;
1706 dev_dbg(&h->pdev->dev, "cciss_ioctl: Called with cmd=%x %lx\n",
1707 cmd, arg);
1708 switch (cmd) {
1709 case CCISS_GETPCIINFO:
1710 return cciss_getpciinfo(h, argp);
1711 case CCISS_GETINTINFO:
1712 return cciss_getintinfo(h, argp);
1713 case CCISS_SETINTINFO:
1714 return cciss_setintinfo(h, argp);
1715 case CCISS_GETNODENAME:
1716 return cciss_getnodename(h, argp);
1717 case CCISS_SETNODENAME:
1718 return cciss_setnodename(h, argp);
1719 case CCISS_GETHEARTBEAT:
1720 return cciss_getheartbeat(h, argp);
1721 case CCISS_GETBUSTYPES:
1722 return cciss_getbustypes(h, argp);
1723 case CCISS_GETFIRMVER:
1724 return cciss_getfirmver(h, argp);
1725 case CCISS_GETDRIVVER:
1726 return cciss_getdrivver(h, argp);
1727 case CCISS_DEREGDISK:
1728 case CCISS_REGNEWD:
1729 case CCISS_REVALIDVOLS:
1730 return rebuild_lun_table(h, 0, 1);
1731 case CCISS_GETLUNINFO:
1732 return cciss_getluninfo(h, disk, argp);
1733 case CCISS_PASSTHRU:
1734 return cciss_passthru(h, argp);
1735 case CCISS_BIG_PASSTHRU:
1736 return cciss_bigpassthru(h, argp);
1738 /* scsi_cmd_blk_ioctl handles these, below, though some are not */
1739 /* very meaningful for cciss. SG_IO is the main one people want. */
1741 case SG_GET_VERSION_NUM:
1742 case SG_SET_TIMEOUT:
1743 case SG_GET_TIMEOUT:
1744 case SG_GET_RESERVED_SIZE:
1745 case SG_SET_RESERVED_SIZE:
1746 case SG_EMULATED_HOST:
1747 case SG_IO:
1748 case SCSI_IOCTL_SEND_COMMAND:
1749 return scsi_cmd_blk_ioctl(bdev, mode, cmd, argp);
1751 /* scsi_cmd_blk_ioctl would normally handle these, below, but */
1752 /* they aren't a good fit for cciss, as CD-ROMs are */
1753 /* not supported, and we don't have any bus/target/lun */
1754 /* which we present to the kernel. */
1756 case CDROM_SEND_PACKET:
1757 case CDROMCLOSETRAY:
1758 case CDROMEJECT:
1759 case SCSI_IOCTL_GET_IDLUN:
1760 case SCSI_IOCTL_GET_BUS_NUMBER:
1761 default:
1762 return -ENOTTY;
1766 static void cciss_check_queues(ctlr_info_t *h)
1768 int start_queue = h->next_to_run;
1769 int i;
1771 /* check to see if we have maxed out the number of commands that can
1772 * be placed on the queue. If so then exit. We do this check here
1773 * in case the interrupt we serviced was from an ioctl and did not
1774 * free any new commands.
1776 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1777 return;
1779 /* We have room on the queue for more commands. Now we need to queue
1780 * them up. We will also keep track of the next queue to run so
1781 * that every queue gets a chance to be started first.
1783 for (i = 0; i < h->highest_lun + 1; i++) {
1784 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1785 /* make sure the disk has been added and the drive is real
1786 * because this can be called from the middle of init_one.
1788 if (!h->drv[curr_queue])
1789 continue;
1790 if (!(h->drv[curr_queue]->queue) ||
1791 !(h->drv[curr_queue]->heads))
1792 continue;
1793 blk_start_queue(h->gendisk[curr_queue]->queue);
1795 /* check to see if we have maxed out the number of commands
1796 * that can be placed on the queue.
1798 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1799 if (curr_queue == start_queue) {
1800 h->next_to_run =
1801 (start_queue + 1) % (h->highest_lun + 1);
1802 break;
1803 } else {
1804 h->next_to_run = curr_queue;
1805 break;
1811 static void cciss_softirq_done(struct request *rq)
1813 CommandList_struct *c = rq->completion_data;
1814 ctlr_info_t *h = hba[c->ctlr];
1815 SGDescriptor_struct *curr_sg = c->SG;
1816 u64bit temp64;
1817 unsigned long flags;
1818 int i, ddir;
1819 int sg_index = 0;
1821 if (c->Request.Type.Direction == XFER_READ)
1822 ddir = PCI_DMA_FROMDEVICE;
1823 else
1824 ddir = PCI_DMA_TODEVICE;
1826 /* command did not need to be retried */
1827 /* unmap the DMA mapping for all the scatter gather elements */
1828 for (i = 0; i < c->Header.SGList; i++) {
1829 if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) {
1830 cciss_unmap_sg_chain_block(h, c);
1831 /* Point to the next block */
1832 curr_sg = h->cmd_sg_list[c->cmdindex];
1833 sg_index = 0;
1835 temp64.val32.lower = curr_sg[sg_index].Addr.lower;
1836 temp64.val32.upper = curr_sg[sg_index].Addr.upper;
1837 pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len,
1838 ddir);
1839 ++sg_index;
1842 dev_dbg(&h->pdev->dev, "Done with %p\n", rq);
1844 /* set the residual count for pc requests */
1845 if (rq->cmd_type == REQ_TYPE_BLOCK_PC)
1846 rq->resid_len = c->err_info->ResidualCnt;
1848 blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1850 spin_lock_irqsave(&h->lock, flags);
1851 cmd_free(h, c);
1852 cciss_check_queues(h);
1853 spin_unlock_irqrestore(&h->lock, flags);
1856 static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
1857 unsigned char scsi3addr[], uint32_t log_unit)
1859 memcpy(scsi3addr, h->drv[log_unit]->LunID,
1860 sizeof(h->drv[log_unit]->LunID));
1863 /* This function gets the SCSI vendor, model, and revision of a logical drive
1864 * via the inquiry page 0. Model, vendor, and rev are set to empty strings if
1865 * they cannot be read.
1867 static void cciss_get_device_descr(ctlr_info_t *h, int logvol,
1868 char *vendor, char *model, char *rev)
1870 int rc;
1871 InquiryData_struct *inq_buf;
1872 unsigned char scsi3addr[8];
1874 *vendor = '\0';
1875 *model = '\0';
1876 *rev = '\0';
1878 inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1879 if (!inq_buf)
1880 return;
1882 log_unit_to_scsi3addr(h, scsi3addr, logvol);
1883 rc = sendcmd_withirq(h, CISS_INQUIRY, inq_buf, sizeof(*inq_buf), 0,
1884 scsi3addr, TYPE_CMD);
1885 if (rc == IO_OK) {
1886 memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1887 vendor[VENDOR_LEN] = '\0';
1888 memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1889 model[MODEL_LEN] = '\0';
1890 memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1891 rev[REV_LEN] = '\0';
1894 kfree(inq_buf);
1895 return;
1898 /* This function gets the serial number of a logical drive via
1899 * inquiry page 0x83. Serial no. is 16 bytes. If the serial
1900 * number cannot be had, for whatever reason, 16 bytes of 0xff
1901 * are returned instead.
1903 static void cciss_get_serial_no(ctlr_info_t *h, int logvol,
1904 unsigned char *serial_no, int buflen)
1906 #define PAGE_83_INQ_BYTES 64
1907 int rc;
1908 unsigned char *buf;
1909 unsigned char scsi3addr[8];
1911 if (buflen > 16)
1912 buflen = 16;
1913 memset(serial_no, 0xff, buflen);
1914 buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1915 if (!buf)
1916 return;
1917 memset(serial_no, 0, buflen);
1918 log_unit_to_scsi3addr(h, scsi3addr, logvol);
1919 rc = sendcmd_withirq(h, CISS_INQUIRY, buf,
1920 PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1921 if (rc == IO_OK)
1922 memcpy(serial_no, &buf[8], buflen);
1923 kfree(buf);
1924 return;
1928 * cciss_add_disk sets up the block device queue for a logical drive
1930 static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1931 int drv_index)
1933 disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1934 if (!disk->queue)
1935 goto init_queue_failure;
1936 sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1937 disk->major = h->major;
1938 disk->first_minor = drv_index << NWD_SHIFT;
1939 disk->fops = &cciss_fops;
1940 if (cciss_create_ld_sysfs_entry(h, drv_index))
1941 goto cleanup_queue;
1942 disk->private_data = h->drv[drv_index];
1943 disk->driverfs_dev = &h->drv[drv_index]->dev;
1945 /* Set up queue information */
1946 blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1948 /* This is a hardware imposed limit. */
1949 blk_queue_max_segments(disk->queue, h->maxsgentries);
1951 blk_queue_max_hw_sectors(disk->queue, h->cciss_max_sectors);
1953 blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1955 disk->queue->queuedata = h;
1957 blk_queue_logical_block_size(disk->queue,
1958 h->drv[drv_index]->block_size);
1960 /* Make sure all queue data is written out before */
1961 /* setting h->drv[drv_index]->queue, as setting this */
1962 /* allows the interrupt handler to start the queue */
1963 wmb();
1964 h->drv[drv_index]->queue = disk->queue;
1965 add_disk(disk);
1966 return 0;
1968 cleanup_queue:
1969 blk_cleanup_queue(disk->queue);
1970 disk->queue = NULL;
1971 init_queue_failure:
1972 return -1;
1975 /* This function will check the usage_count of the drive to be updated/added.
1976 * If the usage_count is zero and it is a heretofore unknown drive, or,
1977 * the drive's capacity, geometry, or serial number has changed,
1978 * then the drive information will be updated and the disk will be
1979 * re-registered with the kernel. If these conditions don't hold,
1980 * then it will be left alone for the next reboot. The exception to this
1981 * is disk 0 which will always be left registered with the kernel since it
1982 * is also the controller node. Any changes to disk 0 will show up on
1983 * the next reboot.
1985 static void cciss_update_drive_info(ctlr_info_t *h, int drv_index,
1986 int first_time, int via_ioctl)
1988 struct gendisk *disk;
1989 InquiryData_struct *inq_buff = NULL;
1990 unsigned int block_size;
1991 sector_t total_size;
1992 unsigned long flags = 0;
1993 int ret = 0;
1994 drive_info_struct *drvinfo;
1996 /* Get information about the disk and modify the driver structure */
1997 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1998 drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
1999 if (inq_buff == NULL || drvinfo == NULL)
2000 goto mem_msg;
2002 /* testing to see if 16-byte CDBs are already being used */
2003 if (h->cciss_read == CCISS_READ_16) {
2004 cciss_read_capacity_16(h, drv_index,
2005 &total_size, &block_size);
2007 } else {
2008 cciss_read_capacity(h, drv_index, &total_size, &block_size);
2009 /* if read_capacity returns all F's this volume is >2TB */
2010 /* in size so we switch to 16-byte CDB's for all */
2011 /* read/write ops */
2012 if (total_size == 0xFFFFFFFFULL) {
2013 cciss_read_capacity_16(h, drv_index,
2014 &total_size, &block_size);
2015 h->cciss_read = CCISS_READ_16;
2016 h->cciss_write = CCISS_WRITE_16;
2017 } else {
2018 h->cciss_read = CCISS_READ_10;
2019 h->cciss_write = CCISS_WRITE_10;
2023 cciss_geometry_inquiry(h, drv_index, total_size, block_size,
2024 inq_buff, drvinfo);
2025 drvinfo->block_size = block_size;
2026 drvinfo->nr_blocks = total_size + 1;
2028 cciss_get_device_descr(h, drv_index, drvinfo->vendor,
2029 drvinfo->model, drvinfo->rev);
2030 cciss_get_serial_no(h, drv_index, drvinfo->serial_no,
2031 sizeof(drvinfo->serial_no));
2032 /* Save the lunid in case we deregister the disk, below. */
2033 memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
2034 sizeof(drvinfo->LunID));
2036 /* Is it the same disk we already know, and nothing's changed? */
2037 if (h->drv[drv_index]->raid_level != -1 &&
2038 ((memcmp(drvinfo->serial_no,
2039 h->drv[drv_index]->serial_no, 16) == 0) &&
2040 drvinfo->block_size == h->drv[drv_index]->block_size &&
2041 drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
2042 drvinfo->heads == h->drv[drv_index]->heads &&
2043 drvinfo->sectors == h->drv[drv_index]->sectors &&
2044 drvinfo->cylinders == h->drv[drv_index]->cylinders))
2045 /* The disk is unchanged, nothing to update */
2046 goto freeret;
2048 /* If we get here it's not the same disk, or something's changed,
2049 * so we need to * deregister it, and re-register it, if it's not
2050 * in use.
2051 * If the disk already exists then deregister it before proceeding
2052 * (unless it's the first disk (for the controller node).
2054 if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
2055 dev_warn(&h->pdev->dev, "disk %d has changed.\n", drv_index);
2056 spin_lock_irqsave(&h->lock, flags);
2057 h->drv[drv_index]->busy_configuring = 1;
2058 spin_unlock_irqrestore(&h->lock, flags);
2060 /* deregister_disk sets h->drv[drv_index]->queue = NULL
2061 * which keeps the interrupt handler from starting
2062 * the queue.
2064 ret = deregister_disk(h, drv_index, 0, via_ioctl);
2067 /* If the disk is in use return */
2068 if (ret)
2069 goto freeret;
2071 /* Save the new information from cciss_geometry_inquiry
2072 * and serial number inquiry. If the disk was deregistered
2073 * above, then h->drv[drv_index] will be NULL.
2075 if (h->drv[drv_index] == NULL) {
2076 drvinfo->device_initialized = 0;
2077 h->drv[drv_index] = drvinfo;
2078 drvinfo = NULL; /* so it won't be freed below. */
2079 } else {
2080 /* special case for cxd0 */
2081 h->drv[drv_index]->block_size = drvinfo->block_size;
2082 h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
2083 h->drv[drv_index]->heads = drvinfo->heads;
2084 h->drv[drv_index]->sectors = drvinfo->sectors;
2085 h->drv[drv_index]->cylinders = drvinfo->cylinders;
2086 h->drv[drv_index]->raid_level = drvinfo->raid_level;
2087 memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
2088 memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
2089 VENDOR_LEN + 1);
2090 memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
2091 memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
2094 ++h->num_luns;
2095 disk = h->gendisk[drv_index];
2096 set_capacity(disk, h->drv[drv_index]->nr_blocks);
2098 /* If it's not disk 0 (drv_index != 0)
2099 * or if it was disk 0, but there was previously
2100 * no actual corresponding configured logical drive
2101 * (raid_leve == -1) then we want to update the
2102 * logical drive's information.
2104 if (drv_index || first_time) {
2105 if (cciss_add_disk(h, disk, drv_index) != 0) {
2106 cciss_free_gendisk(h, drv_index);
2107 cciss_free_drive_info(h, drv_index);
2108 dev_warn(&h->pdev->dev, "could not update disk %d\n",
2109 drv_index);
2110 --h->num_luns;
2114 freeret:
2115 kfree(inq_buff);
2116 kfree(drvinfo);
2117 return;
2118 mem_msg:
2119 dev_err(&h->pdev->dev, "out of memory\n");
2120 goto freeret;
2123 /* This function will find the first index of the controllers drive array
2124 * that has a null drv pointer and allocate the drive info struct and
2125 * will return that index This is where new drives will be added.
2126 * If the index to be returned is greater than the highest_lun index for
2127 * the controller then highest_lun is set * to this new index.
2128 * If there are no available indexes or if tha allocation fails, then -1
2129 * is returned. * "controller_node" is used to know if this is a real
2130 * logical drive, or just the controller node, which determines if this
2131 * counts towards highest_lun.
2133 static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
2135 int i;
2136 drive_info_struct *drv;
2138 /* Search for an empty slot for our drive info */
2139 for (i = 0; i < CISS_MAX_LUN; i++) {
2141 /* if not cxd0 case, and it's occupied, skip it. */
2142 if (h->drv[i] && i != 0)
2143 continue;
2145 * If it's cxd0 case, and drv is alloc'ed already, and a
2146 * disk is configured there, skip it.
2148 if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
2149 continue;
2152 * We've found an empty slot. Update highest_lun
2153 * provided this isn't just the fake cxd0 controller node.
2155 if (i > h->highest_lun && !controller_node)
2156 h->highest_lun = i;
2158 /* If adding a real disk at cxd0, and it's already alloc'ed */
2159 if (i == 0 && h->drv[i] != NULL)
2160 return i;
2163 * Found an empty slot, not already alloc'ed. Allocate it.
2164 * Mark it with raid_level == -1, so we know it's new later on.
2166 drv = kzalloc(sizeof(*drv), GFP_KERNEL);
2167 if (!drv)
2168 return -1;
2169 drv->raid_level = -1; /* so we know it's new */
2170 h->drv[i] = drv;
2171 return i;
2173 return -1;
2176 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
2178 kfree(h->drv[drv_index]);
2179 h->drv[drv_index] = NULL;
2182 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
2184 put_disk(h->gendisk[drv_index]);
2185 h->gendisk[drv_index] = NULL;
2188 /* cciss_add_gendisk finds a free hba[]->drv structure
2189 * and allocates a gendisk if needed, and sets the lunid
2190 * in the drvinfo structure. It returns the index into
2191 * the ->drv[] array, or -1 if none are free.
2192 * is_controller_node indicates whether highest_lun should
2193 * count this disk, or if it's only being added to provide
2194 * a means to talk to the controller in case no logical
2195 * drives have yet been configured.
2197 static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
2198 int controller_node)
2200 int drv_index;
2202 drv_index = cciss_alloc_drive_info(h, controller_node);
2203 if (drv_index == -1)
2204 return -1;
2206 /*Check if the gendisk needs to be allocated */
2207 if (!h->gendisk[drv_index]) {
2208 h->gendisk[drv_index] =
2209 alloc_disk(1 << NWD_SHIFT);
2210 if (!h->gendisk[drv_index]) {
2211 dev_err(&h->pdev->dev,
2212 "could not allocate a new disk %d\n",
2213 drv_index);
2214 goto err_free_drive_info;
2217 memcpy(h->drv[drv_index]->LunID, lunid,
2218 sizeof(h->drv[drv_index]->LunID));
2219 if (cciss_create_ld_sysfs_entry(h, drv_index))
2220 goto err_free_disk;
2221 /* Don't need to mark this busy because nobody */
2222 /* else knows about this disk yet to contend */
2223 /* for access to it. */
2224 h->drv[drv_index]->busy_configuring = 0;
2225 wmb();
2226 return drv_index;
2228 err_free_disk:
2229 cciss_free_gendisk(h, drv_index);
2230 err_free_drive_info:
2231 cciss_free_drive_info(h, drv_index);
2232 return -1;
2235 /* This is for the special case of a controller which
2236 * has no logical drives. In this case, we still need
2237 * to register a disk so the controller can be accessed
2238 * by the Array Config Utility.
2240 static void cciss_add_controller_node(ctlr_info_t *h)
2242 struct gendisk *disk;
2243 int drv_index;
2245 if (h->gendisk[0] != NULL) /* already did this? Then bail. */
2246 return;
2248 drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
2249 if (drv_index == -1)
2250 goto error;
2251 h->drv[drv_index]->block_size = 512;
2252 h->drv[drv_index]->nr_blocks = 0;
2253 h->drv[drv_index]->heads = 0;
2254 h->drv[drv_index]->sectors = 0;
2255 h->drv[drv_index]->cylinders = 0;
2256 h->drv[drv_index]->raid_level = -1;
2257 memset(h->drv[drv_index]->serial_no, 0, 16);
2258 disk = h->gendisk[drv_index];
2259 if (cciss_add_disk(h, disk, drv_index) == 0)
2260 return;
2261 cciss_free_gendisk(h, drv_index);
2262 cciss_free_drive_info(h, drv_index);
2263 error:
2264 dev_warn(&h->pdev->dev, "could not add disk 0.\n");
2265 return;
2268 /* This function will add and remove logical drives from the Logical
2269 * drive array of the controller and maintain persistency of ordering
2270 * so that mount points are preserved until the next reboot. This allows
2271 * for the removal of logical drives in the middle of the drive array
2272 * without a re-ordering of those drives.
2273 * INPUT
2274 * h = The controller to perform the operations on
2276 static int rebuild_lun_table(ctlr_info_t *h, int first_time,
2277 int via_ioctl)
2279 int num_luns;
2280 ReportLunData_struct *ld_buff = NULL;
2281 int return_code;
2282 int listlength = 0;
2283 int i;
2284 int drv_found;
2285 int drv_index = 0;
2286 unsigned char lunid[8] = CTLR_LUNID;
2287 unsigned long flags;
2289 if (!capable(CAP_SYS_RAWIO))
2290 return -EPERM;
2292 /* Set busy_configuring flag for this operation */
2293 spin_lock_irqsave(&h->lock, flags);
2294 if (h->busy_configuring) {
2295 spin_unlock_irqrestore(&h->lock, flags);
2296 return -EBUSY;
2298 h->busy_configuring = 1;
2299 spin_unlock_irqrestore(&h->lock, flags);
2301 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2302 if (ld_buff == NULL)
2303 goto mem_msg;
2305 return_code = sendcmd_withirq(h, CISS_REPORT_LOG, ld_buff,
2306 sizeof(ReportLunData_struct),
2307 0, CTLR_LUNID, TYPE_CMD);
2309 if (return_code == IO_OK)
2310 listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
2311 else { /* reading number of logical volumes failed */
2312 dev_warn(&h->pdev->dev,
2313 "report logical volume command failed\n");
2314 listlength = 0;
2315 goto freeret;
2318 num_luns = listlength / 8; /* 8 bytes per entry */
2319 if (num_luns > CISS_MAX_LUN) {
2320 num_luns = CISS_MAX_LUN;
2321 dev_warn(&h->pdev->dev, "more luns configured"
2322 " on controller than can be handled by"
2323 " this driver.\n");
2326 if (num_luns == 0)
2327 cciss_add_controller_node(h);
2329 /* Compare controller drive array to driver's drive array
2330 * to see if any drives are missing on the controller due
2331 * to action of Array Config Utility (user deletes drive)
2332 * and deregister logical drives which have disappeared.
2334 for (i = 0; i <= h->highest_lun; i++) {
2335 int j;
2336 drv_found = 0;
2338 /* skip holes in the array from already deleted drives */
2339 if (h->drv[i] == NULL)
2340 continue;
2342 for (j = 0; j < num_luns; j++) {
2343 memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
2344 if (memcmp(h->drv[i]->LunID, lunid,
2345 sizeof(lunid)) == 0) {
2346 drv_found = 1;
2347 break;
2350 if (!drv_found) {
2351 /* Deregister it from the OS, it's gone. */
2352 spin_lock_irqsave(&h->lock, flags);
2353 h->drv[i]->busy_configuring = 1;
2354 spin_unlock_irqrestore(&h->lock, flags);
2355 return_code = deregister_disk(h, i, 1, via_ioctl);
2356 if (h->drv[i] != NULL)
2357 h->drv[i]->busy_configuring = 0;
2361 /* Compare controller drive array to driver's drive array.
2362 * Check for updates in the drive information and any new drives
2363 * on the controller due to ACU adding logical drives, or changing
2364 * a logical drive's size, etc. Reregister any new/changed drives
2366 for (i = 0; i < num_luns; i++) {
2367 int j;
2369 drv_found = 0;
2371 memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
2372 /* Find if the LUN is already in the drive array
2373 * of the driver. If so then update its info
2374 * if not in use. If it does not exist then find
2375 * the first free index and add it.
2377 for (j = 0; j <= h->highest_lun; j++) {
2378 if (h->drv[j] != NULL &&
2379 memcmp(h->drv[j]->LunID, lunid,
2380 sizeof(h->drv[j]->LunID)) == 0) {
2381 drv_index = j;
2382 drv_found = 1;
2383 break;
2387 /* check if the drive was found already in the array */
2388 if (!drv_found) {
2389 drv_index = cciss_add_gendisk(h, lunid, 0);
2390 if (drv_index == -1)
2391 goto freeret;
2393 cciss_update_drive_info(h, drv_index, first_time, via_ioctl);
2394 } /* end for */
2396 freeret:
2397 kfree(ld_buff);
2398 h->busy_configuring = 0;
2399 /* We return -1 here to tell the ACU that we have registered/updated
2400 * all of the drives that we can and to keep it from calling us
2401 * additional times.
2403 return -1;
2404 mem_msg:
2405 dev_err(&h->pdev->dev, "out of memory\n");
2406 h->busy_configuring = 0;
2407 goto freeret;
2410 static void cciss_clear_drive_info(drive_info_struct *drive_info)
2412 /* zero out the disk size info */
2413 drive_info->nr_blocks = 0;
2414 drive_info->block_size = 0;
2415 drive_info->heads = 0;
2416 drive_info->sectors = 0;
2417 drive_info->cylinders = 0;
2418 drive_info->raid_level = -1;
2419 memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
2420 memset(drive_info->model, 0, sizeof(drive_info->model));
2421 memset(drive_info->rev, 0, sizeof(drive_info->rev));
2422 memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
2424 * don't clear the LUNID though, we need to remember which
2425 * one this one is.
2429 /* This function will deregister the disk and it's queue from the
2430 * kernel. It must be called with the controller lock held and the
2431 * drv structures busy_configuring flag set. It's parameters are:
2433 * disk = This is the disk to be deregistered
2434 * drv = This is the drive_info_struct associated with the disk to be
2435 * deregistered. It contains information about the disk used
2436 * by the driver.
2437 * clear_all = This flag determines whether or not the disk information
2438 * is going to be completely cleared out and the highest_lun
2439 * reset. Sometimes we want to clear out information about
2440 * the disk in preparation for re-adding it. In this case
2441 * the highest_lun should be left unchanged and the LunID
2442 * should not be cleared.
2443 * via_ioctl
2444 * This indicates whether we've reached this path via ioctl.
2445 * This affects the maximum usage count allowed for c0d0 to be messed with.
2446 * If this path is reached via ioctl(), then the max_usage_count will
2447 * be 1, as the process calling ioctl() has got to have the device open.
2448 * If we get here via sysfs, then the max usage count will be zero.
2450 static int deregister_disk(ctlr_info_t *h, int drv_index,
2451 int clear_all, int via_ioctl)
2453 int i;
2454 struct gendisk *disk;
2455 drive_info_struct *drv;
2456 int recalculate_highest_lun;
2458 if (!capable(CAP_SYS_RAWIO))
2459 return -EPERM;
2461 drv = h->drv[drv_index];
2462 disk = h->gendisk[drv_index];
2464 /* make sure logical volume is NOT is use */
2465 if (clear_all || (h->gendisk[0] == disk)) {
2466 if (drv->usage_count > via_ioctl)
2467 return -EBUSY;
2468 } else if (drv->usage_count > 0)
2469 return -EBUSY;
2471 recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
2473 /* invalidate the devices and deregister the disk. If it is disk
2474 * zero do not deregister it but just zero out it's values. This
2475 * allows us to delete disk zero but keep the controller registered.
2477 if (h->gendisk[0] != disk) {
2478 struct request_queue *q = disk->queue;
2479 if (disk->flags & GENHD_FL_UP) {
2480 cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
2481 del_gendisk(disk);
2483 if (q)
2484 blk_cleanup_queue(q);
2485 /* If clear_all is set then we are deleting the logical
2486 * drive, not just refreshing its info. For drives
2487 * other than disk 0 we will call put_disk. We do not
2488 * do this for disk 0 as we need it to be able to
2489 * configure the controller.
2491 if (clear_all){
2492 /* This isn't pretty, but we need to find the
2493 * disk in our array and NULL our the pointer.
2494 * This is so that we will call alloc_disk if
2495 * this index is used again later.
2497 for (i=0; i < CISS_MAX_LUN; i++){
2498 if (h->gendisk[i] == disk) {
2499 h->gendisk[i] = NULL;
2500 break;
2503 put_disk(disk);
2505 } else {
2506 set_capacity(disk, 0);
2507 cciss_clear_drive_info(drv);
2510 --h->num_luns;
2512 /* if it was the last disk, find the new hightest lun */
2513 if (clear_all && recalculate_highest_lun) {
2514 int newhighest = -1;
2515 for (i = 0; i <= h->highest_lun; i++) {
2516 /* if the disk has size > 0, it is available */
2517 if (h->drv[i] && h->drv[i]->heads)
2518 newhighest = i;
2520 h->highest_lun = newhighest;
2522 return 0;
2525 static int fill_cmd(ctlr_info_t *h, CommandList_struct *c, __u8 cmd, void *buff,
2526 size_t size, __u8 page_code, unsigned char *scsi3addr,
2527 int cmd_type)
2529 u64bit buff_dma_handle;
2530 int status = IO_OK;
2532 c->cmd_type = CMD_IOCTL_PEND;
2533 c->Header.ReplyQueue = 0;
2534 if (buff != NULL) {
2535 c->Header.SGList = 1;
2536 c->Header.SGTotal = 1;
2537 } else {
2538 c->Header.SGList = 0;
2539 c->Header.SGTotal = 0;
2541 c->Header.Tag.lower = c->busaddr;
2542 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2544 c->Request.Type.Type = cmd_type;
2545 if (cmd_type == TYPE_CMD) {
2546 switch (cmd) {
2547 case CISS_INQUIRY:
2548 /* are we trying to read a vital product page */
2549 if (page_code != 0) {
2550 c->Request.CDB[1] = 0x01;
2551 c->Request.CDB[2] = page_code;
2553 c->Request.CDBLen = 6;
2554 c->Request.Type.Attribute = ATTR_SIMPLE;
2555 c->Request.Type.Direction = XFER_READ;
2556 c->Request.Timeout = 0;
2557 c->Request.CDB[0] = CISS_INQUIRY;
2558 c->Request.CDB[4] = size & 0xFF;
2559 break;
2560 case CISS_REPORT_LOG:
2561 case CISS_REPORT_PHYS:
2562 /* Talking to controller so It's a physical command
2563 mode = 00 target = 0. Nothing to write.
2565 c->Request.CDBLen = 12;
2566 c->Request.Type.Attribute = ATTR_SIMPLE;
2567 c->Request.Type.Direction = XFER_READ;
2568 c->Request.Timeout = 0;
2569 c->Request.CDB[0] = cmd;
2570 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2571 c->Request.CDB[7] = (size >> 16) & 0xFF;
2572 c->Request.CDB[8] = (size >> 8) & 0xFF;
2573 c->Request.CDB[9] = size & 0xFF;
2574 break;
2576 case CCISS_READ_CAPACITY:
2577 c->Request.CDBLen = 10;
2578 c->Request.Type.Attribute = ATTR_SIMPLE;
2579 c->Request.Type.Direction = XFER_READ;
2580 c->Request.Timeout = 0;
2581 c->Request.CDB[0] = cmd;
2582 break;
2583 case CCISS_READ_CAPACITY_16:
2584 c->Request.CDBLen = 16;
2585 c->Request.Type.Attribute = ATTR_SIMPLE;
2586 c->Request.Type.Direction = XFER_READ;
2587 c->Request.Timeout = 0;
2588 c->Request.CDB[0] = cmd;
2589 c->Request.CDB[1] = 0x10;
2590 c->Request.CDB[10] = (size >> 24) & 0xFF;
2591 c->Request.CDB[11] = (size >> 16) & 0xFF;
2592 c->Request.CDB[12] = (size >> 8) & 0xFF;
2593 c->Request.CDB[13] = size & 0xFF;
2594 c->Request.Timeout = 0;
2595 c->Request.CDB[0] = cmd;
2596 break;
2597 case CCISS_CACHE_FLUSH:
2598 c->Request.CDBLen = 12;
2599 c->Request.Type.Attribute = ATTR_SIMPLE;
2600 c->Request.Type.Direction = XFER_WRITE;
2601 c->Request.Timeout = 0;
2602 c->Request.CDB[0] = BMIC_WRITE;
2603 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2604 c->Request.CDB[7] = (size >> 8) & 0xFF;
2605 c->Request.CDB[8] = size & 0xFF;
2606 break;
2607 case TEST_UNIT_READY:
2608 c->Request.CDBLen = 6;
2609 c->Request.Type.Attribute = ATTR_SIMPLE;
2610 c->Request.Type.Direction = XFER_NONE;
2611 c->Request.Timeout = 0;
2612 break;
2613 default:
2614 dev_warn(&h->pdev->dev, "Unknown Command 0x%c\n", cmd);
2615 return IO_ERROR;
2617 } else if (cmd_type == TYPE_MSG) {
2618 switch (cmd) {
2619 case CCISS_ABORT_MSG:
2620 c->Request.CDBLen = 12;
2621 c->Request.Type.Attribute = ATTR_SIMPLE;
2622 c->Request.Type.Direction = XFER_WRITE;
2623 c->Request.Timeout = 0;
2624 c->Request.CDB[0] = cmd; /* abort */
2625 c->Request.CDB[1] = 0; /* abort a command */
2626 /* buff contains the tag of the command to abort */
2627 memcpy(&c->Request.CDB[4], buff, 8);
2628 break;
2629 case CCISS_RESET_MSG:
2630 c->Request.CDBLen = 16;
2631 c->Request.Type.Attribute = ATTR_SIMPLE;
2632 c->Request.Type.Direction = XFER_NONE;
2633 c->Request.Timeout = 0;
2634 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2635 c->Request.CDB[0] = cmd; /* reset */
2636 c->Request.CDB[1] = CCISS_RESET_TYPE_TARGET;
2637 break;
2638 case CCISS_NOOP_MSG:
2639 c->Request.CDBLen = 1;
2640 c->Request.Type.Attribute = ATTR_SIMPLE;
2641 c->Request.Type.Direction = XFER_WRITE;
2642 c->Request.Timeout = 0;
2643 c->Request.CDB[0] = cmd;
2644 break;
2645 default:
2646 dev_warn(&h->pdev->dev,
2647 "unknown message type %d\n", cmd);
2648 return IO_ERROR;
2650 } else {
2651 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2652 return IO_ERROR;
2654 /* Fill in the scatter gather information */
2655 if (size > 0) {
2656 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2657 buff, size,
2658 PCI_DMA_BIDIRECTIONAL);
2659 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2660 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2661 c->SG[0].Len = size;
2662 c->SG[0].Ext = 0; /* we are not chaining */
2664 return status;
2667 static int __devinit cciss_send_reset(ctlr_info_t *h, unsigned char *scsi3addr,
2668 u8 reset_type)
2670 CommandList_struct *c;
2671 int return_status;
2673 c = cmd_alloc(h);
2674 if (!c)
2675 return -ENOMEM;
2676 return_status = fill_cmd(h, c, CCISS_RESET_MSG, NULL, 0, 0,
2677 CTLR_LUNID, TYPE_MSG);
2678 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2679 if (return_status != IO_OK) {
2680 cmd_special_free(h, c);
2681 return return_status;
2683 c->waiting = NULL;
2684 enqueue_cmd_and_start_io(h, c);
2685 /* Don't wait for completion, the reset won't complete. Don't free
2686 * the command either. This is the last command we will send before
2687 * re-initializing everything, so it doesn't matter and won't leak.
2689 return 0;
2692 static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2694 switch (c->err_info->ScsiStatus) {
2695 case SAM_STAT_GOOD:
2696 return IO_OK;
2697 case SAM_STAT_CHECK_CONDITION:
2698 switch (0xf & c->err_info->SenseInfo[2]) {
2699 case 0: return IO_OK; /* no sense */
2700 case 1: return IO_OK; /* recovered error */
2701 default:
2702 if (check_for_unit_attention(h, c))
2703 return IO_NEEDS_RETRY;
2704 dev_warn(&h->pdev->dev, "cmd 0x%02x "
2705 "check condition, sense key = 0x%02x\n",
2706 c->Request.CDB[0], c->err_info->SenseInfo[2]);
2708 break;
2709 default:
2710 dev_warn(&h->pdev->dev, "cmd 0x%02x"
2711 "scsi status = 0x%02x\n",
2712 c->Request.CDB[0], c->err_info->ScsiStatus);
2713 break;
2715 return IO_ERROR;
2718 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2720 int return_status = IO_OK;
2722 if (c->err_info->CommandStatus == CMD_SUCCESS)
2723 return IO_OK;
2725 switch (c->err_info->CommandStatus) {
2726 case CMD_TARGET_STATUS:
2727 return_status = check_target_status(h, c);
2728 break;
2729 case CMD_DATA_UNDERRUN:
2730 case CMD_DATA_OVERRUN:
2731 /* expected for inquiry and report lun commands */
2732 break;
2733 case CMD_INVALID:
2734 dev_warn(&h->pdev->dev, "cmd 0x%02x is "
2735 "reported invalid\n", c->Request.CDB[0]);
2736 return_status = IO_ERROR;
2737 break;
2738 case CMD_PROTOCOL_ERR:
2739 dev_warn(&h->pdev->dev, "cmd 0x%02x has "
2740 "protocol error\n", c->Request.CDB[0]);
2741 return_status = IO_ERROR;
2742 break;
2743 case CMD_HARDWARE_ERR:
2744 dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2745 " hardware error\n", c->Request.CDB[0]);
2746 return_status = IO_ERROR;
2747 break;
2748 case CMD_CONNECTION_LOST:
2749 dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2750 "connection lost\n", c->Request.CDB[0]);
2751 return_status = IO_ERROR;
2752 break;
2753 case CMD_ABORTED:
2754 dev_warn(&h->pdev->dev, "cmd 0x%02x was "
2755 "aborted\n", c->Request.CDB[0]);
2756 return_status = IO_ERROR;
2757 break;
2758 case CMD_ABORT_FAILED:
2759 dev_warn(&h->pdev->dev, "cmd 0x%02x reports "
2760 "abort failed\n", c->Request.CDB[0]);
2761 return_status = IO_ERROR;
2762 break;
2763 case CMD_UNSOLICITED_ABORT:
2764 dev_warn(&h->pdev->dev, "unsolicited abort 0x%02x\n",
2765 c->Request.CDB[0]);
2766 return_status = IO_NEEDS_RETRY;
2767 break;
2768 case CMD_UNABORTABLE:
2769 dev_warn(&h->pdev->dev, "cmd unabortable\n");
2770 return_status = IO_ERROR;
2771 break;
2772 default:
2773 dev_warn(&h->pdev->dev, "cmd 0x%02x returned "
2774 "unknown status %x\n", c->Request.CDB[0],
2775 c->err_info->CommandStatus);
2776 return_status = IO_ERROR;
2778 return return_status;
2781 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2782 int attempt_retry)
2784 DECLARE_COMPLETION_ONSTACK(wait);
2785 u64bit buff_dma_handle;
2786 int return_status = IO_OK;
2788 resend_cmd2:
2789 c->waiting = &wait;
2790 enqueue_cmd_and_start_io(h, c);
2792 wait_for_completion(&wait);
2794 if (c->err_info->CommandStatus == 0 || !attempt_retry)
2795 goto command_done;
2797 return_status = process_sendcmd_error(h, c);
2799 if (return_status == IO_NEEDS_RETRY &&
2800 c->retry_count < MAX_CMD_RETRIES) {
2801 dev_warn(&h->pdev->dev, "retrying 0x%02x\n",
2802 c->Request.CDB[0]);
2803 c->retry_count++;
2804 /* erase the old error information */
2805 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2806 return_status = IO_OK;
2807 INIT_COMPLETION(wait);
2808 goto resend_cmd2;
2811 command_done:
2812 /* unlock the buffers from DMA */
2813 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2814 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2815 pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2816 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2817 return return_status;
2820 static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
2821 __u8 page_code, unsigned char scsi3addr[],
2822 int cmd_type)
2824 CommandList_struct *c;
2825 int return_status;
2827 c = cmd_special_alloc(h);
2828 if (!c)
2829 return -ENOMEM;
2830 return_status = fill_cmd(h, c, cmd, buff, size, page_code,
2831 scsi3addr, cmd_type);
2832 if (return_status == IO_OK)
2833 return_status = sendcmd_withirq_core(h, c, 1);
2835 cmd_special_free(h, c);
2836 return return_status;
2839 static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
2840 sector_t total_size,
2841 unsigned int block_size,
2842 InquiryData_struct *inq_buff,
2843 drive_info_struct *drv)
2845 int return_code;
2846 unsigned long t;
2847 unsigned char scsi3addr[8];
2849 memset(inq_buff, 0, sizeof(InquiryData_struct));
2850 log_unit_to_scsi3addr(h, scsi3addr, logvol);
2851 return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
2852 sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD);
2853 if (return_code == IO_OK) {
2854 if (inq_buff->data_byte[8] == 0xFF) {
2855 dev_warn(&h->pdev->dev,
2856 "reading geometry failed, volume "
2857 "does not support reading geometry\n");
2858 drv->heads = 255;
2859 drv->sectors = 32; /* Sectors per track */
2860 drv->cylinders = total_size + 1;
2861 drv->raid_level = RAID_UNKNOWN;
2862 } else {
2863 drv->heads = inq_buff->data_byte[6];
2864 drv->sectors = inq_buff->data_byte[7];
2865 drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2866 drv->cylinders += inq_buff->data_byte[5];
2867 drv->raid_level = inq_buff->data_byte[8];
2869 drv->block_size = block_size;
2870 drv->nr_blocks = total_size + 1;
2871 t = drv->heads * drv->sectors;
2872 if (t > 1) {
2873 sector_t real_size = total_size + 1;
2874 unsigned long rem = sector_div(real_size, t);
2875 if (rem)
2876 real_size++;
2877 drv->cylinders = real_size;
2879 } else { /* Get geometry failed */
2880 dev_warn(&h->pdev->dev, "reading geometry failed\n");
2884 static void
2885 cciss_read_capacity(ctlr_info_t *h, int logvol, sector_t *total_size,
2886 unsigned int *block_size)
2888 ReadCapdata_struct *buf;
2889 int return_code;
2890 unsigned char scsi3addr[8];
2892 buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2893 if (!buf) {
2894 dev_warn(&h->pdev->dev, "out of memory\n");
2895 return;
2898 log_unit_to_scsi3addr(h, scsi3addr, logvol);
2899 return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY, buf,
2900 sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD);
2901 if (return_code == IO_OK) {
2902 *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2903 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2904 } else { /* read capacity command failed */
2905 dev_warn(&h->pdev->dev, "read capacity failed\n");
2906 *total_size = 0;
2907 *block_size = BLOCK_SIZE;
2909 kfree(buf);
2912 static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
2913 sector_t *total_size, unsigned int *block_size)
2915 ReadCapdata_struct_16 *buf;
2916 int return_code;
2917 unsigned char scsi3addr[8];
2919 buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2920 if (!buf) {
2921 dev_warn(&h->pdev->dev, "out of memory\n");
2922 return;
2925 log_unit_to_scsi3addr(h, scsi3addr, logvol);
2926 return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY_16,
2927 buf, sizeof(ReadCapdata_struct_16),
2928 0, scsi3addr, TYPE_CMD);
2929 if (return_code == IO_OK) {
2930 *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2931 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2932 } else { /* read capacity command failed */
2933 dev_warn(&h->pdev->dev, "read capacity failed\n");
2934 *total_size = 0;
2935 *block_size = BLOCK_SIZE;
2937 dev_info(&h->pdev->dev, " blocks= %llu block_size= %d\n",
2938 (unsigned long long)*total_size+1, *block_size);
2939 kfree(buf);
2942 static int cciss_revalidate(struct gendisk *disk)
2944 ctlr_info_t *h = get_host(disk);
2945 drive_info_struct *drv = get_drv(disk);
2946 int logvol;
2947 int FOUND = 0;
2948 unsigned int block_size;
2949 sector_t total_size;
2950 InquiryData_struct *inq_buff = NULL;
2952 for (logvol = 0; logvol <= h->highest_lun; logvol++) {
2953 if (!h->drv[logvol])
2954 continue;
2955 if (memcmp(h->drv[logvol]->LunID, drv->LunID,
2956 sizeof(drv->LunID)) == 0) {
2957 FOUND = 1;
2958 break;
2962 if (!FOUND)
2963 return 1;
2965 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2966 if (inq_buff == NULL) {
2967 dev_warn(&h->pdev->dev, "out of memory\n");
2968 return 1;
2970 if (h->cciss_read == CCISS_READ_10) {
2971 cciss_read_capacity(h, logvol,
2972 &total_size, &block_size);
2973 } else {
2974 cciss_read_capacity_16(h, logvol,
2975 &total_size, &block_size);
2977 cciss_geometry_inquiry(h, logvol, total_size, block_size,
2978 inq_buff, drv);
2980 blk_queue_logical_block_size(drv->queue, drv->block_size);
2981 set_capacity(disk, drv->nr_blocks);
2983 kfree(inq_buff);
2984 return 0;
2988 * Map (physical) PCI mem into (virtual) kernel space
2990 static void __iomem *remap_pci_mem(ulong base, ulong size)
2992 ulong page_base = ((ulong) base) & PAGE_MASK;
2993 ulong page_offs = ((ulong) base) - page_base;
2994 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2996 return page_remapped ? (page_remapped + page_offs) : NULL;
3000 * Takes jobs of the Q and sends them to the hardware, then puts it on
3001 * the Q to wait for completion.
3003 static void start_io(ctlr_info_t *h)
3005 CommandList_struct *c;
3007 while (!list_empty(&h->reqQ)) {
3008 c = list_entry(h->reqQ.next, CommandList_struct, list);
3009 /* can't do anything if fifo is full */
3010 if ((h->access.fifo_full(h))) {
3011 dev_warn(&h->pdev->dev, "fifo full\n");
3012 break;
3015 /* Get the first entry from the Request Q */
3016 removeQ(c);
3017 h->Qdepth--;
3019 /* Tell the controller execute command */
3020 h->access.submit_command(h, c);
3022 /* Put job onto the completed Q */
3023 addQ(&h->cmpQ, c);
3027 /* Assumes that h->lock is held. */
3028 /* Zeros out the error record and then resends the command back */
3029 /* to the controller */
3030 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
3032 /* erase the old error information */
3033 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
3035 /* add it to software queue and then send it to the controller */
3036 addQ(&h->reqQ, c);
3037 h->Qdepth++;
3038 if (h->Qdepth > h->maxQsinceinit)
3039 h->maxQsinceinit = h->Qdepth;
3041 start_io(h);
3044 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
3045 unsigned int msg_byte, unsigned int host_byte,
3046 unsigned int driver_byte)
3048 /* inverse of macros in scsi.h */
3049 return (scsi_status_byte & 0xff) |
3050 ((msg_byte & 0xff) << 8) |
3051 ((host_byte & 0xff) << 16) |
3052 ((driver_byte & 0xff) << 24);
3055 static inline int evaluate_target_status(ctlr_info_t *h,
3056 CommandList_struct *cmd, int *retry_cmd)
3058 unsigned char sense_key;
3059 unsigned char status_byte, msg_byte, host_byte, driver_byte;
3060 int error_value;
3062 *retry_cmd = 0;
3063 /* If we get in here, it means we got "target status", that is, scsi status */
3064 status_byte = cmd->err_info->ScsiStatus;
3065 driver_byte = DRIVER_OK;
3066 msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */
3068 if (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC)
3069 host_byte = DID_PASSTHROUGH;
3070 else
3071 host_byte = DID_OK;
3073 error_value = make_status_bytes(status_byte, msg_byte,
3074 host_byte, driver_byte);
3076 if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
3077 if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC)
3078 dev_warn(&h->pdev->dev, "cmd %p "
3079 "has SCSI Status 0x%x\n",
3080 cmd, cmd->err_info->ScsiStatus);
3081 return error_value;
3084 /* check the sense key */
3085 sense_key = 0xf & cmd->err_info->SenseInfo[2];
3086 /* no status or recovered error */
3087 if (((sense_key == 0x0) || (sense_key == 0x1)) &&
3088 (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC))
3089 error_value = 0;
3091 if (check_for_unit_attention(h, cmd)) {
3092 *retry_cmd = !(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC);
3093 return 0;
3096 /* Not SG_IO or similar? */
3097 if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC) {
3098 if (error_value != 0)
3099 dev_warn(&h->pdev->dev, "cmd %p has CHECK CONDITION"
3100 " sense key = 0x%x\n", cmd, sense_key);
3101 return error_value;
3104 /* SG_IO or similar, copy sense data back */
3105 if (cmd->rq->sense) {
3106 if (cmd->rq->sense_len > cmd->err_info->SenseLen)
3107 cmd->rq->sense_len = cmd->err_info->SenseLen;
3108 memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
3109 cmd->rq->sense_len);
3110 } else
3111 cmd->rq->sense_len = 0;
3113 return error_value;
3116 /* checks the status of the job and calls complete buffers to mark all
3117 * buffers for the completed job. Note that this function does not need
3118 * to hold the hba/queue lock.
3120 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
3121 int timeout)
3123 int retry_cmd = 0;
3124 struct request *rq = cmd->rq;
3126 rq->errors = 0;
3128 if (timeout)
3129 rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
3131 if (cmd->err_info->CommandStatus == 0) /* no error has occurred */
3132 goto after_error_processing;
3134 switch (cmd->err_info->CommandStatus) {
3135 case CMD_TARGET_STATUS:
3136 rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
3137 break;
3138 case CMD_DATA_UNDERRUN:
3139 if (cmd->rq->cmd_type == REQ_TYPE_FS) {
3140 dev_warn(&h->pdev->dev, "cmd %p has"
3141 " completed with data underrun "
3142 "reported\n", cmd);
3143 cmd->rq->resid_len = cmd->err_info->ResidualCnt;
3145 break;
3146 case CMD_DATA_OVERRUN:
3147 if (cmd->rq->cmd_type == REQ_TYPE_FS)
3148 dev_warn(&h->pdev->dev, "cciss: cmd %p has"
3149 " completed with data overrun "
3150 "reported\n", cmd);
3151 break;
3152 case CMD_INVALID:
3153 dev_warn(&h->pdev->dev, "cciss: cmd %p is "
3154 "reported invalid\n", cmd);
3155 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3156 cmd->err_info->CommandStatus, DRIVER_OK,
3157 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3158 DID_PASSTHROUGH : DID_ERROR);
3159 break;
3160 case CMD_PROTOCOL_ERR:
3161 dev_warn(&h->pdev->dev, "cciss: cmd %p has "
3162 "protocol error\n", cmd);
3163 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3164 cmd->err_info->CommandStatus, DRIVER_OK,
3165 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3166 DID_PASSTHROUGH : DID_ERROR);
3167 break;
3168 case CMD_HARDWARE_ERR:
3169 dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3170 " hardware error\n", cmd);
3171 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3172 cmd->err_info->CommandStatus, DRIVER_OK,
3173 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3174 DID_PASSTHROUGH : DID_ERROR);
3175 break;
3176 case CMD_CONNECTION_LOST:
3177 dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3178 "connection lost\n", cmd);
3179 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3180 cmd->err_info->CommandStatus, DRIVER_OK,
3181 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3182 DID_PASSTHROUGH : DID_ERROR);
3183 break;
3184 case CMD_ABORTED:
3185 dev_warn(&h->pdev->dev, "cciss: cmd %p was "
3186 "aborted\n", cmd);
3187 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3188 cmd->err_info->CommandStatus, DRIVER_OK,
3189 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3190 DID_PASSTHROUGH : DID_ABORT);
3191 break;
3192 case CMD_ABORT_FAILED:
3193 dev_warn(&h->pdev->dev, "cciss: cmd %p reports "
3194 "abort failed\n", cmd);
3195 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3196 cmd->err_info->CommandStatus, DRIVER_OK,
3197 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3198 DID_PASSTHROUGH : DID_ERROR);
3199 break;
3200 case CMD_UNSOLICITED_ABORT:
3201 dev_warn(&h->pdev->dev, "cciss%d: unsolicited "
3202 "abort %p\n", h->ctlr, cmd);
3203 if (cmd->retry_count < MAX_CMD_RETRIES) {
3204 retry_cmd = 1;
3205 dev_warn(&h->pdev->dev, "retrying %p\n", cmd);
3206 cmd->retry_count++;
3207 } else
3208 dev_warn(&h->pdev->dev,
3209 "%p retried too many times\n", cmd);
3210 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3211 cmd->err_info->CommandStatus, DRIVER_OK,
3212 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3213 DID_PASSTHROUGH : DID_ABORT);
3214 break;
3215 case CMD_TIMEOUT:
3216 dev_warn(&h->pdev->dev, "cmd %p timedout\n", cmd);
3217 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3218 cmd->err_info->CommandStatus, DRIVER_OK,
3219 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3220 DID_PASSTHROUGH : DID_ERROR);
3221 break;
3222 case CMD_UNABORTABLE:
3223 dev_warn(&h->pdev->dev, "cmd %p unabortable\n", cmd);
3224 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3225 cmd->err_info->CommandStatus, DRIVER_OK,
3226 cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC ?
3227 DID_PASSTHROUGH : DID_ERROR);
3228 break;
3229 default:
3230 dev_warn(&h->pdev->dev, "cmd %p returned "
3231 "unknown status %x\n", cmd,
3232 cmd->err_info->CommandStatus);
3233 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3234 cmd->err_info->CommandStatus, DRIVER_OK,
3235 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3236 DID_PASSTHROUGH : DID_ERROR);
3239 after_error_processing:
3241 /* We need to return this command */
3242 if (retry_cmd) {
3243 resend_cciss_cmd(h, cmd);
3244 return;
3246 cmd->rq->completion_data = cmd;
3247 blk_complete_request(cmd->rq);
3250 static inline u32 cciss_tag_contains_index(u32 tag)
3252 #define DIRECT_LOOKUP_BIT 0x10
3253 return tag & DIRECT_LOOKUP_BIT;
3256 static inline u32 cciss_tag_to_index(u32 tag)
3258 #define DIRECT_LOOKUP_SHIFT 5
3259 return tag >> DIRECT_LOOKUP_SHIFT;
3262 static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag)
3264 #define CCISS_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3265 #define CCISS_SIMPLE_ERROR_BITS 0x03
3266 if (likely(h->transMethod & CFGTBL_Trans_Performant))
3267 return tag & ~CCISS_PERF_ERROR_BITS;
3268 return tag & ~CCISS_SIMPLE_ERROR_BITS;
3271 static inline void cciss_mark_tag_indexed(u32 *tag)
3273 *tag |= DIRECT_LOOKUP_BIT;
3276 static inline void cciss_set_tag_index(u32 *tag, u32 index)
3278 *tag |= (index << DIRECT_LOOKUP_SHIFT);
3282 * Get a request and submit it to the controller.
3284 static void do_cciss_request(struct request_queue *q)
3286 ctlr_info_t *h = q->queuedata;
3287 CommandList_struct *c;
3288 sector_t start_blk;
3289 int seg;
3290 struct request *creq;
3291 u64bit temp64;
3292 struct scatterlist *tmp_sg;
3293 SGDescriptor_struct *curr_sg;
3294 drive_info_struct *drv;
3295 int i, dir;
3296 int sg_index = 0;
3297 int chained = 0;
3299 queue:
3300 creq = blk_peek_request(q);
3301 if (!creq)
3302 goto startio;
3304 BUG_ON(creq->nr_phys_segments > h->maxsgentries);
3306 c = cmd_alloc(h);
3307 if (!c)
3308 goto full;
3310 blk_start_request(creq);
3312 tmp_sg = h->scatter_list[c->cmdindex];
3313 spin_unlock_irq(q->queue_lock);
3315 c->cmd_type = CMD_RWREQ;
3316 c->rq = creq;
3318 /* fill in the request */
3319 drv = creq->rq_disk->private_data;
3320 c->Header.ReplyQueue = 0; /* unused in simple mode */
3321 /* got command from pool, so use the command block index instead */
3322 /* for direct lookups. */
3323 /* The first 2 bits are reserved for controller error reporting. */
3324 cciss_set_tag_index(&c->Header.Tag.lower, c->cmdindex);
3325 cciss_mark_tag_indexed(&c->Header.Tag.lower);
3326 memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
3327 c->Request.CDBLen = 10; /* 12 byte commands not in FW yet; */
3328 c->Request.Type.Type = TYPE_CMD; /* It is a command. */
3329 c->Request.Type.Attribute = ATTR_SIMPLE;
3330 c->Request.Type.Direction =
3331 (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3332 c->Request.Timeout = 0; /* Don't time out */
3333 c->Request.CDB[0] =
3334 (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3335 start_blk = blk_rq_pos(creq);
3336 dev_dbg(&h->pdev->dev, "sector =%d nr_sectors=%d\n",
3337 (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3338 sg_init_table(tmp_sg, h->maxsgentries);
3339 seg = blk_rq_map_sg(q, creq, tmp_sg);
3341 /* get the DMA records for the setup */
3342 if (c->Request.Type.Direction == XFER_READ)
3343 dir = PCI_DMA_FROMDEVICE;
3344 else
3345 dir = PCI_DMA_TODEVICE;
3347 curr_sg = c->SG;
3348 sg_index = 0;
3349 chained = 0;
3351 for (i = 0; i < seg; i++) {
3352 if (((sg_index+1) == (h->max_cmd_sgentries)) &&
3353 !chained && ((seg - i) > 1)) {
3354 /* Point to next chain block. */
3355 curr_sg = h->cmd_sg_list[c->cmdindex];
3356 sg_index = 0;
3357 chained = 1;
3359 curr_sg[sg_index].Len = tmp_sg[i].length;
3360 temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3361 tmp_sg[i].offset,
3362 tmp_sg[i].length, dir);
3363 curr_sg[sg_index].Addr.lower = temp64.val32.lower;
3364 curr_sg[sg_index].Addr.upper = temp64.val32.upper;
3365 curr_sg[sg_index].Ext = 0; /* we are not chaining */
3366 ++sg_index;
3368 if (chained)
3369 cciss_map_sg_chain_block(h, c, h->cmd_sg_list[c->cmdindex],
3370 (seg - (h->max_cmd_sgentries - 1)) *
3371 sizeof(SGDescriptor_struct));
3373 /* track how many SG entries we are using */
3374 if (seg > h->maxSG)
3375 h->maxSG = seg;
3377 dev_dbg(&h->pdev->dev, "Submitting %u sectors in %d segments "
3378 "chained[%d]\n",
3379 blk_rq_sectors(creq), seg, chained);
3381 c->Header.SGTotal = seg + chained;
3382 if (seg <= h->max_cmd_sgentries)
3383 c->Header.SGList = c->Header.SGTotal;
3384 else
3385 c->Header.SGList = h->max_cmd_sgentries;
3386 set_performant_mode(h, c);
3388 if (likely(creq->cmd_type == REQ_TYPE_FS)) {
3389 if(h->cciss_read == CCISS_READ_10) {
3390 c->Request.CDB[1] = 0;
3391 c->Request.CDB[2] = (start_blk >> 24) & 0xff; /* MSB */
3392 c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3393 c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3394 c->Request.CDB[5] = start_blk & 0xff;
3395 c->Request.CDB[6] = 0; /* (sect >> 24) & 0xff; MSB */
3396 c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3397 c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3398 c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3399 } else {
3400 u32 upper32 = upper_32_bits(start_blk);
3402 c->Request.CDBLen = 16;
3403 c->Request.CDB[1]= 0;
3404 c->Request.CDB[2]= (upper32 >> 24) & 0xff; /* MSB */
3405 c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3406 c->Request.CDB[4]= (upper32 >> 8) & 0xff;
3407 c->Request.CDB[5]= upper32 & 0xff;
3408 c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3409 c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3410 c->Request.CDB[8]= (start_blk >> 8) & 0xff;
3411 c->Request.CDB[9]= start_blk & 0xff;
3412 c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3413 c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3414 c->Request.CDB[12]= (blk_rq_sectors(creq) >> 8) & 0xff;
3415 c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3416 c->Request.CDB[14] = c->Request.CDB[15] = 0;
3418 } else if (creq->cmd_type == REQ_TYPE_BLOCK_PC) {
3419 c->Request.CDBLen = creq->cmd_len;
3420 memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3421 } else {
3422 dev_warn(&h->pdev->dev, "bad request type %d\n",
3423 creq->cmd_type);
3424 BUG();
3427 spin_lock_irq(q->queue_lock);
3429 addQ(&h->reqQ, c);
3430 h->Qdepth++;
3431 if (h->Qdepth > h->maxQsinceinit)
3432 h->maxQsinceinit = h->Qdepth;
3434 goto queue;
3435 full:
3436 blk_stop_queue(q);
3437 startio:
3438 /* We will already have the driver lock here so not need
3439 * to lock it.
3441 start_io(h);
3444 static inline unsigned long get_next_completion(ctlr_info_t *h)
3446 return h->access.command_completed(h);
3449 static inline int interrupt_pending(ctlr_info_t *h)
3451 return h->access.intr_pending(h);
3454 static inline long interrupt_not_for_us(ctlr_info_t *h)
3456 return ((h->access.intr_pending(h) == 0) ||
3457 (h->interrupts_enabled == 0));
3460 static inline int bad_tag(ctlr_info_t *h, u32 tag_index,
3461 u32 raw_tag)
3463 if (unlikely(tag_index >= h->nr_cmds)) {
3464 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3465 return 1;
3467 return 0;
3470 static inline void finish_cmd(ctlr_info_t *h, CommandList_struct *c,
3471 u32 raw_tag)
3473 removeQ(c);
3474 if (likely(c->cmd_type == CMD_RWREQ))
3475 complete_command(h, c, 0);
3476 else if (c->cmd_type == CMD_IOCTL_PEND)
3477 complete(c->waiting);
3478 #ifdef CONFIG_CISS_SCSI_TAPE
3479 else if (c->cmd_type == CMD_SCSI)
3480 complete_scsi_command(c, 0, raw_tag);
3481 #endif
3484 static inline u32 next_command(ctlr_info_t *h)
3486 u32 a;
3488 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3489 return h->access.command_completed(h);
3491 if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
3492 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
3493 (h->reply_pool_head)++;
3494 h->commands_outstanding--;
3495 } else {
3496 a = FIFO_EMPTY;
3498 /* Check for wraparound */
3499 if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
3500 h->reply_pool_head = h->reply_pool;
3501 h->reply_pool_wraparound ^= 1;
3503 return a;
3506 /* process completion of an indexed ("direct lookup") command */
3507 static inline u32 process_indexed_cmd(ctlr_info_t *h, u32 raw_tag)
3509 u32 tag_index;
3510 CommandList_struct *c;
3512 tag_index = cciss_tag_to_index(raw_tag);
3513 if (bad_tag(h, tag_index, raw_tag))
3514 return next_command(h);
3515 c = h->cmd_pool + tag_index;
3516 finish_cmd(h, c, raw_tag);
3517 return next_command(h);
3520 /* process completion of a non-indexed command */
3521 static inline u32 process_nonindexed_cmd(ctlr_info_t *h, u32 raw_tag)
3523 CommandList_struct *c = NULL;
3524 __u32 busaddr_masked, tag_masked;
3526 tag_masked = cciss_tag_discard_error_bits(h, raw_tag);
3527 list_for_each_entry(c, &h->cmpQ, list) {
3528 busaddr_masked = cciss_tag_discard_error_bits(h, c->busaddr);
3529 if (busaddr_masked == tag_masked) {
3530 finish_cmd(h, c, raw_tag);
3531 return next_command(h);
3534 bad_tag(h, h->nr_cmds + 1, raw_tag);
3535 return next_command(h);
3538 /* Some controllers, like p400, will give us one interrupt
3539 * after a soft reset, even if we turned interrupts off.
3540 * Only need to check for this in the cciss_xxx_discard_completions
3541 * functions.
3543 static int ignore_bogus_interrupt(ctlr_info_t *h)
3545 if (likely(!reset_devices))
3546 return 0;
3548 if (likely(h->interrupts_enabled))
3549 return 0;
3551 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3552 "(known firmware bug.) Ignoring.\n");
3554 return 1;
3557 static irqreturn_t cciss_intx_discard_completions(int irq, void *dev_id)
3559 ctlr_info_t *h = dev_id;
3560 unsigned long flags;
3561 u32 raw_tag;
3563 if (ignore_bogus_interrupt(h))
3564 return IRQ_NONE;
3566 if (interrupt_not_for_us(h))
3567 return IRQ_NONE;
3568 spin_lock_irqsave(&h->lock, flags);
3569 while (interrupt_pending(h)) {
3570 raw_tag = get_next_completion(h);
3571 while (raw_tag != FIFO_EMPTY)
3572 raw_tag = next_command(h);
3574 spin_unlock_irqrestore(&h->lock, flags);
3575 return IRQ_HANDLED;
3578 static irqreturn_t cciss_msix_discard_completions(int irq, void *dev_id)
3580 ctlr_info_t *h = dev_id;
3581 unsigned long flags;
3582 u32 raw_tag;
3584 if (ignore_bogus_interrupt(h))
3585 return IRQ_NONE;
3587 spin_lock_irqsave(&h->lock, flags);
3588 raw_tag = get_next_completion(h);
3589 while (raw_tag != FIFO_EMPTY)
3590 raw_tag = next_command(h);
3591 spin_unlock_irqrestore(&h->lock, flags);
3592 return IRQ_HANDLED;
3595 static irqreturn_t do_cciss_intx(int irq, void *dev_id)
3597 ctlr_info_t *h = dev_id;
3598 unsigned long flags;
3599 u32 raw_tag;
3601 if (interrupt_not_for_us(h))
3602 return IRQ_NONE;
3603 spin_lock_irqsave(&h->lock, flags);
3604 while (interrupt_pending(h)) {
3605 raw_tag = get_next_completion(h);
3606 while (raw_tag != FIFO_EMPTY) {
3607 if (cciss_tag_contains_index(raw_tag))
3608 raw_tag = process_indexed_cmd(h, raw_tag);
3609 else
3610 raw_tag = process_nonindexed_cmd(h, raw_tag);
3613 spin_unlock_irqrestore(&h->lock, flags);
3614 return IRQ_HANDLED;
3617 /* Add a second interrupt handler for MSI/MSI-X mode. In this mode we never
3618 * check the interrupt pending register because it is not set.
3620 static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id)
3622 ctlr_info_t *h = dev_id;
3623 unsigned long flags;
3624 u32 raw_tag;
3626 spin_lock_irqsave(&h->lock, flags);
3627 raw_tag = get_next_completion(h);
3628 while (raw_tag != FIFO_EMPTY) {
3629 if (cciss_tag_contains_index(raw_tag))
3630 raw_tag = process_indexed_cmd(h, raw_tag);
3631 else
3632 raw_tag = process_nonindexed_cmd(h, raw_tag);
3634 spin_unlock_irqrestore(&h->lock, flags);
3635 return IRQ_HANDLED;
3639 * add_to_scan_list() - add controller to rescan queue
3640 * @h: Pointer to the controller.
3642 * Adds the controller to the rescan queue if not already on the queue.
3644 * returns 1 if added to the queue, 0 if skipped (could be on the
3645 * queue already, or the controller could be initializing or shutting
3646 * down).
3648 static int add_to_scan_list(struct ctlr_info *h)
3650 struct ctlr_info *test_h;
3651 int found = 0;
3652 int ret = 0;
3654 if (h->busy_initializing)
3655 return 0;
3657 if (!mutex_trylock(&h->busy_shutting_down))
3658 return 0;
3660 mutex_lock(&scan_mutex);
3661 list_for_each_entry(test_h, &scan_q, scan_list) {
3662 if (test_h == h) {
3663 found = 1;
3664 break;
3667 if (!found && !h->busy_scanning) {
3668 INIT_COMPLETION(h->scan_wait);
3669 list_add_tail(&h->scan_list, &scan_q);
3670 ret = 1;
3672 mutex_unlock(&scan_mutex);
3673 mutex_unlock(&h->busy_shutting_down);
3675 return ret;
3679 * remove_from_scan_list() - remove controller from rescan queue
3680 * @h: Pointer to the controller.
3682 * Removes the controller from the rescan queue if present. Blocks if
3683 * the controller is currently conducting a rescan. The controller
3684 * can be in one of three states:
3685 * 1. Doesn't need a scan
3686 * 2. On the scan list, but not scanning yet (we remove it)
3687 * 3. Busy scanning (and not on the list). In this case we want to wait for
3688 * the scan to complete to make sure the scanning thread for this
3689 * controller is completely idle.
3691 static void remove_from_scan_list(struct ctlr_info *h)
3693 struct ctlr_info *test_h, *tmp_h;
3695 mutex_lock(&scan_mutex);
3696 list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
3697 if (test_h == h) { /* state 2. */
3698 list_del(&h->scan_list);
3699 complete_all(&h->scan_wait);
3700 mutex_unlock(&scan_mutex);
3701 return;
3704 if (h->busy_scanning) { /* state 3. */
3705 mutex_unlock(&scan_mutex);
3706 wait_for_completion(&h->scan_wait);
3707 } else { /* state 1, nothing to do. */
3708 mutex_unlock(&scan_mutex);
3713 * scan_thread() - kernel thread used to rescan controllers
3714 * @data: Ignored.
3716 * A kernel thread used scan for drive topology changes on
3717 * controllers. The thread processes only one controller at a time
3718 * using a queue. Controllers are added to the queue using
3719 * add_to_scan_list() and removed from the queue either after done
3720 * processing or using remove_from_scan_list().
3722 * returns 0.
3724 static int scan_thread(void *data)
3726 struct ctlr_info *h;
3728 while (1) {
3729 set_current_state(TASK_INTERRUPTIBLE);
3730 schedule();
3731 if (kthread_should_stop())
3732 break;
3734 while (1) {
3735 mutex_lock(&scan_mutex);
3736 if (list_empty(&scan_q)) {
3737 mutex_unlock(&scan_mutex);
3738 break;
3741 h = list_entry(scan_q.next,
3742 struct ctlr_info,
3743 scan_list);
3744 list_del(&h->scan_list);
3745 h->busy_scanning = 1;
3746 mutex_unlock(&scan_mutex);
3748 rebuild_lun_table(h, 0, 0);
3749 complete_all(&h->scan_wait);
3750 mutex_lock(&scan_mutex);
3751 h->busy_scanning = 0;
3752 mutex_unlock(&scan_mutex);
3756 return 0;
3759 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3761 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3762 return 0;
3764 switch (c->err_info->SenseInfo[12]) {
3765 case STATE_CHANGED:
3766 dev_warn(&h->pdev->dev, "a state change "
3767 "detected, command retried\n");
3768 return 1;
3769 break;
3770 case LUN_FAILED:
3771 dev_warn(&h->pdev->dev, "LUN failure "
3772 "detected, action required\n");
3773 return 1;
3774 break;
3775 case REPORT_LUNS_CHANGED:
3776 dev_warn(&h->pdev->dev, "report LUN data changed\n");
3778 * Here, we could call add_to_scan_list and wake up the scan thread,
3779 * except that it's quite likely that we will get more than one
3780 * REPORT_LUNS_CHANGED condition in quick succession, which means
3781 * that those which occur after the first one will likely happen
3782 * *during* the scan_thread's rescan. And the rescan code is not
3783 * robust enough to restart in the middle, undoing what it has already
3784 * done, and it's not clear that it's even possible to do this, since
3785 * part of what it does is notify the block layer, which starts
3786 * doing it's own i/o to read partition tables and so on, and the
3787 * driver doesn't have visibility to know what might need undoing.
3788 * In any event, if possible, it is horribly complicated to get right
3789 * so we just don't do it for now.
3791 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
3793 return 1;
3794 break;
3795 case POWER_OR_RESET:
3796 dev_warn(&h->pdev->dev,
3797 "a power on or device reset detected\n");
3798 return 1;
3799 break;
3800 case UNIT_ATTENTION_CLEARED:
3801 dev_warn(&h->pdev->dev,
3802 "unit attention cleared by another initiator\n");
3803 return 1;
3804 break;
3805 default:
3806 dev_warn(&h->pdev->dev, "unknown unit attention detected\n");
3807 return 1;
3812 * We cannot read the structure directly, for portability we must use
3813 * the io functions.
3814 * This is for debug only.
3816 static void print_cfg_table(ctlr_info_t *h)
3818 int i;
3819 char temp_name[17];
3820 CfgTable_struct *tb = h->cfgtable;
3822 dev_dbg(&h->pdev->dev, "Controller Configuration information\n");
3823 dev_dbg(&h->pdev->dev, "------------------------------------\n");
3824 for (i = 0; i < 4; i++)
3825 temp_name[i] = readb(&(tb->Signature[i]));
3826 temp_name[4] = '\0';
3827 dev_dbg(&h->pdev->dev, " Signature = %s\n", temp_name);
3828 dev_dbg(&h->pdev->dev, " Spec Number = %d\n",
3829 readl(&(tb->SpecValence)));
3830 dev_dbg(&h->pdev->dev, " Transport methods supported = 0x%x\n",
3831 readl(&(tb->TransportSupport)));
3832 dev_dbg(&h->pdev->dev, " Transport methods active = 0x%x\n",
3833 readl(&(tb->TransportActive)));
3834 dev_dbg(&h->pdev->dev, " Requested transport Method = 0x%x\n",
3835 readl(&(tb->HostWrite.TransportRequest)));
3836 dev_dbg(&h->pdev->dev, " Coalesce Interrupt Delay = 0x%x\n",
3837 readl(&(tb->HostWrite.CoalIntDelay)));
3838 dev_dbg(&h->pdev->dev, " Coalesce Interrupt Count = 0x%x\n",
3839 readl(&(tb->HostWrite.CoalIntCount)));
3840 dev_dbg(&h->pdev->dev, " Max outstanding commands = 0x%d\n",
3841 readl(&(tb->CmdsOutMax)));
3842 dev_dbg(&h->pdev->dev, " Bus Types = 0x%x\n",
3843 readl(&(tb->BusTypes)));
3844 for (i = 0; i < 16; i++)
3845 temp_name[i] = readb(&(tb->ServerName[i]));
3846 temp_name[16] = '\0';
3847 dev_dbg(&h->pdev->dev, " Server Name = %s\n", temp_name);
3848 dev_dbg(&h->pdev->dev, " Heartbeat Counter = 0x%x\n\n\n",
3849 readl(&(tb->HeartBeat)));
3852 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3854 int i, offset, mem_type, bar_type;
3855 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3856 return 0;
3857 offset = 0;
3858 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3859 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3860 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3861 offset += 4;
3862 else {
3863 mem_type = pci_resource_flags(pdev, i) &
3864 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3865 switch (mem_type) {
3866 case PCI_BASE_ADDRESS_MEM_TYPE_32:
3867 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3868 offset += 4; /* 32 bit */
3869 break;
3870 case PCI_BASE_ADDRESS_MEM_TYPE_64:
3871 offset += 8;
3872 break;
3873 default: /* reserved in PCI 2.2 */
3874 dev_warn(&pdev->dev,
3875 "Base address is invalid\n");
3876 return -1;
3877 break;
3880 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3881 return i + 1;
3883 return -1;
3886 /* Fill in bucket_map[], given nsgs (the max number of
3887 * scatter gather elements supported) and bucket[],
3888 * which is an array of 8 integers. The bucket[] array
3889 * contains 8 different DMA transfer sizes (in 16
3890 * byte increments) which the controller uses to fetch
3891 * commands. This function fills in bucket_map[], which
3892 * maps a given number of scatter gather elements to one of
3893 * the 8 DMA transfer sizes. The point of it is to allow the
3894 * controller to only do as much DMA as needed to fetch the
3895 * command, with the DMA transfer size encoded in the lower
3896 * bits of the command address.
3898 static void calc_bucket_map(int bucket[], int num_buckets,
3899 int nsgs, int *bucket_map)
3901 int i, j, b, size;
3903 /* even a command with 0 SGs requires 4 blocks */
3904 #define MINIMUM_TRANSFER_BLOCKS 4
3905 #define NUM_BUCKETS 8
3906 /* Note, bucket_map must have nsgs+1 entries. */
3907 for (i = 0; i <= nsgs; i++) {
3908 /* Compute size of a command with i SG entries */
3909 size = i + MINIMUM_TRANSFER_BLOCKS;
3910 b = num_buckets; /* Assume the biggest bucket */
3911 /* Find the bucket that is just big enough */
3912 for (j = 0; j < 8; j++) {
3913 if (bucket[j] >= size) {
3914 b = j;
3915 break;
3918 /* for a command with i SG entries, use bucket b. */
3919 bucket_map[i] = b;
3923 static void __devinit cciss_wait_for_mode_change_ack(ctlr_info_t *h)
3925 int i;
3927 /* under certain very rare conditions, this can take awhile.
3928 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3929 * as we enter this code.) */
3930 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3931 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3932 break;
3933 usleep_range(10000, 20000);
3937 static __devinit void cciss_enter_performant_mode(ctlr_info_t *h,
3938 u32 use_short_tags)
3940 /* This is a bit complicated. There are 8 registers on
3941 * the controller which we write to to tell it 8 different
3942 * sizes of commands which there may be. It's a way of
3943 * reducing the DMA done to fetch each command. Encoded into
3944 * each command's tag are 3 bits which communicate to the controller
3945 * which of the eight sizes that command fits within. The size of
3946 * each command depends on how many scatter gather entries there are.
3947 * Each SG entry requires 16 bytes. The eight registers are programmed
3948 * with the number of 16-byte blocks a command of that size requires.
3949 * The smallest command possible requires 5 such 16 byte blocks.
3950 * the largest command possible requires MAXSGENTRIES + 4 16-byte
3951 * blocks. Note, this only extends to the SG entries contained
3952 * within the command block, and does not extend to chained blocks
3953 * of SG elements. bft[] contains the eight values we write to
3954 * the registers. They are not evenly distributed, but have more
3955 * sizes for small commands, and fewer sizes for larger commands.
3957 __u32 trans_offset;
3958 int bft[8] = { 5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
3960 * 5 = 1 s/g entry or 4k
3961 * 6 = 2 s/g entry or 8k
3962 * 8 = 4 s/g entry or 16k
3963 * 10 = 6 s/g entry or 24k
3965 unsigned long register_value;
3966 BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
3968 h->reply_pool_wraparound = 1; /* spec: init to 1 */
3970 /* Controller spec: zero out this buffer. */
3971 memset(h->reply_pool, 0, h->max_commands * sizeof(__u64));
3972 h->reply_pool_head = h->reply_pool;
3974 trans_offset = readl(&(h->cfgtable->TransMethodOffset));
3975 calc_bucket_map(bft, ARRAY_SIZE(bft), h->maxsgentries,
3976 h->blockFetchTable);
3977 writel(bft[0], &h->transtable->BlockFetch0);
3978 writel(bft[1], &h->transtable->BlockFetch1);
3979 writel(bft[2], &h->transtable->BlockFetch2);
3980 writel(bft[3], &h->transtable->BlockFetch3);
3981 writel(bft[4], &h->transtable->BlockFetch4);
3982 writel(bft[5], &h->transtable->BlockFetch5);
3983 writel(bft[6], &h->transtable->BlockFetch6);
3984 writel(bft[7], &h->transtable->BlockFetch7);
3986 /* size of controller ring buffer */
3987 writel(h->max_commands, &h->transtable->RepQSize);
3988 writel(1, &h->transtable->RepQCount);
3989 writel(0, &h->transtable->RepQCtrAddrLow32);
3990 writel(0, &h->transtable->RepQCtrAddrHigh32);
3991 writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
3992 writel(0, &h->transtable->RepQAddr0High32);
3993 writel(CFGTBL_Trans_Performant | use_short_tags,
3994 &(h->cfgtable->HostWrite.TransportRequest));
3996 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3997 cciss_wait_for_mode_change_ack(h);
3998 register_value = readl(&(h->cfgtable->TransportActive));
3999 if (!(register_value & CFGTBL_Trans_Performant))
4000 dev_warn(&h->pdev->dev, "cciss: unable to get board into"
4001 " performant mode\n");
4004 static void __devinit cciss_put_controller_into_performant_mode(ctlr_info_t *h)
4006 __u32 trans_support;
4008 if (cciss_simple_mode)
4009 return;
4011 dev_dbg(&h->pdev->dev, "Trying to put board into Performant mode\n");
4012 /* Attempt to put controller into performant mode if supported */
4013 /* Does board support performant mode? */
4014 trans_support = readl(&(h->cfgtable->TransportSupport));
4015 if (!(trans_support & PERFORMANT_MODE))
4016 return;
4018 dev_dbg(&h->pdev->dev, "Placing controller into performant mode\n");
4019 /* Performant mode demands commands on a 32 byte boundary
4020 * pci_alloc_consistent aligns on page boundarys already.
4021 * Just need to check if divisible by 32
4023 if ((sizeof(CommandList_struct) % 32) != 0) {
4024 dev_warn(&h->pdev->dev, "%s %d %s\n",
4025 "cciss info: command size[",
4026 (int)sizeof(CommandList_struct),
4027 "] not divisible by 32, no performant mode..\n");
4028 return;
4031 /* Performant mode ring buffer and supporting data structures */
4032 h->reply_pool = (__u64 *)pci_alloc_consistent(
4033 h->pdev, h->max_commands * sizeof(__u64),
4034 &(h->reply_pool_dhandle));
4036 /* Need a block fetch table for performant mode */
4037 h->blockFetchTable = kmalloc(((h->maxsgentries+1) *
4038 sizeof(__u32)), GFP_KERNEL);
4040 if ((h->reply_pool == NULL) || (h->blockFetchTable == NULL))
4041 goto clean_up;
4043 cciss_enter_performant_mode(h,
4044 trans_support & CFGTBL_Trans_use_short_tags);
4046 /* Change the access methods to the performant access methods */
4047 h->access = SA5_performant_access;
4048 h->transMethod = CFGTBL_Trans_Performant;
4050 return;
4051 clean_up:
4052 kfree(h->blockFetchTable);
4053 if (h->reply_pool)
4054 pci_free_consistent(h->pdev,
4055 h->max_commands * sizeof(__u64),
4056 h->reply_pool,
4057 h->reply_pool_dhandle);
4058 return;
4060 } /* cciss_put_controller_into_performant_mode */
4062 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
4063 * controllers that are capable. If not, we use IO-APIC mode.
4066 static void __devinit cciss_interrupt_mode(ctlr_info_t *h)
4068 #ifdef CONFIG_PCI_MSI
4069 int err;
4070 struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
4071 {0, 2}, {0, 3}
4074 /* Some boards advertise MSI but don't really support it */
4075 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
4076 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
4077 goto default_int_mode;
4079 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
4080 err = pci_enable_msix(h->pdev, cciss_msix_entries, 4);
4081 if (!err) {
4082 h->intr[0] = cciss_msix_entries[0].vector;
4083 h->intr[1] = cciss_msix_entries[1].vector;
4084 h->intr[2] = cciss_msix_entries[2].vector;
4085 h->intr[3] = cciss_msix_entries[3].vector;
4086 h->msix_vector = 1;
4087 return;
4089 if (err > 0) {
4090 dev_warn(&h->pdev->dev,
4091 "only %d MSI-X vectors available\n", err);
4092 goto default_int_mode;
4093 } else {
4094 dev_warn(&h->pdev->dev,
4095 "MSI-X init failed %d\n", err);
4096 goto default_int_mode;
4099 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
4100 if (!pci_enable_msi(h->pdev))
4101 h->msi_vector = 1;
4102 else
4103 dev_warn(&h->pdev->dev, "MSI init failed\n");
4105 default_int_mode:
4106 #endif /* CONFIG_PCI_MSI */
4107 /* if we get here we're going to use the default interrupt mode */
4108 h->intr[h->intr_mode] = h->pdev->irq;
4109 return;
4112 static int __devinit cciss_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
4114 int i;
4115 u32 subsystem_vendor_id, subsystem_device_id;
4117 subsystem_vendor_id = pdev->subsystem_vendor;
4118 subsystem_device_id = pdev->subsystem_device;
4119 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
4120 subsystem_vendor_id;
4122 for (i = 0; i < ARRAY_SIZE(products); i++)
4123 if (*board_id == products[i].board_id)
4124 return i;
4125 dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x, ignoring.\n",
4126 *board_id);
4127 return -ENODEV;
4130 static inline bool cciss_board_disabled(ctlr_info_t *h)
4132 u16 command;
4134 (void) pci_read_config_word(h->pdev, PCI_COMMAND, &command);
4135 return ((command & PCI_COMMAND_MEMORY) == 0);
4138 static int __devinit cciss_pci_find_memory_BAR(struct pci_dev *pdev,
4139 unsigned long *memory_bar)
4141 int i;
4143 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4144 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4145 /* addressing mode bits already removed */
4146 *memory_bar = pci_resource_start(pdev, i);
4147 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4148 *memory_bar);
4149 return 0;
4151 dev_warn(&pdev->dev, "no memory BAR found\n");
4152 return -ENODEV;
4155 static int __devinit cciss_wait_for_board_state(struct pci_dev *pdev,
4156 void __iomem *vaddr, int wait_for_ready)
4157 #define BOARD_READY 1
4158 #define BOARD_NOT_READY 0
4160 int i, iterations;
4161 u32 scratchpad;
4163 if (wait_for_ready)
4164 iterations = CCISS_BOARD_READY_ITERATIONS;
4165 else
4166 iterations = CCISS_BOARD_NOT_READY_ITERATIONS;
4168 for (i = 0; i < iterations; i++) {
4169 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
4170 if (wait_for_ready) {
4171 if (scratchpad == CCISS_FIRMWARE_READY)
4172 return 0;
4173 } else {
4174 if (scratchpad != CCISS_FIRMWARE_READY)
4175 return 0;
4177 msleep(CCISS_BOARD_READY_POLL_INTERVAL_MSECS);
4179 dev_warn(&pdev->dev, "board not ready, timed out.\n");
4180 return -ENODEV;
4183 static int __devinit cciss_find_cfg_addrs(struct pci_dev *pdev,
4184 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
4185 u64 *cfg_offset)
4187 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
4188 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
4189 *cfg_base_addr &= (u32) 0x0000ffff;
4190 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
4191 if (*cfg_base_addr_index == -1) {
4192 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index, "
4193 "*cfg_base_addr = 0x%08x\n", *cfg_base_addr);
4194 return -ENODEV;
4196 return 0;
4199 static int __devinit cciss_find_cfgtables(ctlr_info_t *h)
4201 u64 cfg_offset;
4202 u32 cfg_base_addr;
4203 u64 cfg_base_addr_index;
4204 u32 trans_offset;
4205 int rc;
4207 rc = cciss_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
4208 &cfg_base_addr_index, &cfg_offset);
4209 if (rc)
4210 return rc;
4211 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4212 cfg_base_addr_index) + cfg_offset, sizeof(h->cfgtable));
4213 if (!h->cfgtable)
4214 return -ENOMEM;
4215 rc = write_driver_ver_to_cfgtable(h->cfgtable);
4216 if (rc)
4217 return rc;
4218 /* Find performant mode table. */
4219 trans_offset = readl(&h->cfgtable->TransMethodOffset);
4220 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4221 cfg_base_addr_index)+cfg_offset+trans_offset,
4222 sizeof(*h->transtable));
4223 if (!h->transtable)
4224 return -ENOMEM;
4225 return 0;
4228 static void __devinit cciss_get_max_perf_mode_cmds(struct ctlr_info *h)
4230 h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4232 /* Limit commands in memory limited kdump scenario. */
4233 if (reset_devices && h->max_commands > 32)
4234 h->max_commands = 32;
4236 if (h->max_commands < 16) {
4237 dev_warn(&h->pdev->dev, "Controller reports "
4238 "max supported commands of %d, an obvious lie. "
4239 "Using 16. Ensure that firmware is up to date.\n",
4240 h->max_commands);
4241 h->max_commands = 16;
4245 /* Interrogate the hardware for some limits:
4246 * max commands, max SG elements without chaining, and with chaining,
4247 * SG chain block size, etc.
4249 static void __devinit cciss_find_board_params(ctlr_info_t *h)
4251 cciss_get_max_perf_mode_cmds(h);
4252 h->nr_cmds = h->max_commands - 4 - cciss_tape_cmds;
4253 h->maxsgentries = readl(&(h->cfgtable->MaxSGElements));
4255 * Limit in-command s/g elements to 32 save dma'able memory.
4256 * Howvever spec says if 0, use 31
4258 h->max_cmd_sgentries = 31;
4259 if (h->maxsgentries > 512) {
4260 h->max_cmd_sgentries = 32;
4261 h->chainsize = h->maxsgentries - h->max_cmd_sgentries + 1;
4262 h->maxsgentries--; /* save one for chain pointer */
4263 } else {
4264 h->maxsgentries = 31; /* default to traditional values */
4265 h->chainsize = 0;
4269 static inline bool CISS_signature_present(ctlr_info_t *h)
4271 if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
4272 (readb(&h->cfgtable->Signature[1]) != 'I') ||
4273 (readb(&h->cfgtable->Signature[2]) != 'S') ||
4274 (readb(&h->cfgtable->Signature[3]) != 'S')) {
4275 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
4276 return false;
4278 return true;
4281 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
4282 static inline void cciss_enable_scsi_prefetch(ctlr_info_t *h)
4284 #ifdef CONFIG_X86
4285 u32 prefetch;
4287 prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
4288 prefetch |= 0x100;
4289 writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
4290 #endif
4293 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
4294 * in a prefetch beyond physical memory.
4296 static inline void cciss_p600_dma_prefetch_quirk(ctlr_info_t *h)
4298 u32 dma_prefetch;
4299 __u32 dma_refetch;
4301 if (h->board_id != 0x3225103C)
4302 return;
4303 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
4304 dma_prefetch |= 0x8000;
4305 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
4306 pci_read_config_dword(h->pdev, PCI_COMMAND_PARITY, &dma_refetch);
4307 dma_refetch |= 0x1;
4308 pci_write_config_dword(h->pdev, PCI_COMMAND_PARITY, dma_refetch);
4311 static int __devinit cciss_pci_init(ctlr_info_t *h)
4313 int prod_index, err;
4315 prod_index = cciss_lookup_board_id(h->pdev, &h->board_id);
4316 if (prod_index < 0)
4317 return -ENODEV;
4318 h->product_name = products[prod_index].product_name;
4319 h->access = *(products[prod_index].access);
4321 if (cciss_board_disabled(h)) {
4322 dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
4323 return -ENODEV;
4326 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
4327 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
4329 err = pci_enable_device(h->pdev);
4330 if (err) {
4331 dev_warn(&h->pdev->dev, "Unable to Enable PCI device\n");
4332 return err;
4335 err = pci_request_regions(h->pdev, "cciss");
4336 if (err) {
4337 dev_warn(&h->pdev->dev,
4338 "Cannot obtain PCI resources, aborting\n");
4339 return err;
4342 dev_dbg(&h->pdev->dev, "irq = %x\n", h->pdev->irq);
4343 dev_dbg(&h->pdev->dev, "board_id = %x\n", h->board_id);
4345 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
4346 * else we use the IO-APIC interrupt assigned to us by system ROM.
4348 cciss_interrupt_mode(h);
4349 err = cciss_pci_find_memory_BAR(h->pdev, &h->paddr);
4350 if (err)
4351 goto err_out_free_res;
4352 h->vaddr = remap_pci_mem(h->paddr, 0x250);
4353 if (!h->vaddr) {
4354 err = -ENOMEM;
4355 goto err_out_free_res;
4357 err = cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
4358 if (err)
4359 goto err_out_free_res;
4360 err = cciss_find_cfgtables(h);
4361 if (err)
4362 goto err_out_free_res;
4363 print_cfg_table(h);
4364 cciss_find_board_params(h);
4366 if (!CISS_signature_present(h)) {
4367 err = -ENODEV;
4368 goto err_out_free_res;
4370 cciss_enable_scsi_prefetch(h);
4371 cciss_p600_dma_prefetch_quirk(h);
4372 err = cciss_enter_simple_mode(h);
4373 if (err)
4374 goto err_out_free_res;
4375 cciss_put_controller_into_performant_mode(h);
4376 return 0;
4378 err_out_free_res:
4380 * Deliberately omit pci_disable_device(): it does something nasty to
4381 * Smart Array controllers that pci_enable_device does not undo
4383 if (h->transtable)
4384 iounmap(h->transtable);
4385 if (h->cfgtable)
4386 iounmap(h->cfgtable);
4387 if (h->vaddr)
4388 iounmap(h->vaddr);
4389 pci_release_regions(h->pdev);
4390 return err;
4393 /* Function to find the first free pointer into our hba[] array
4394 * Returns -1 if no free entries are left.
4396 static int alloc_cciss_hba(struct pci_dev *pdev)
4398 int i;
4400 for (i = 0; i < MAX_CTLR; i++) {
4401 if (!hba[i]) {
4402 ctlr_info_t *h;
4404 h = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
4405 if (!h)
4406 goto Enomem;
4407 hba[i] = h;
4408 return i;
4411 dev_warn(&pdev->dev, "This driver supports a maximum"
4412 " of %d controllers.\n", MAX_CTLR);
4413 return -1;
4414 Enomem:
4415 dev_warn(&pdev->dev, "out of memory.\n");
4416 return -1;
4419 static void free_hba(ctlr_info_t *h)
4421 int i;
4423 hba[h->ctlr] = NULL;
4424 for (i = 0; i < h->highest_lun + 1; i++)
4425 if (h->gendisk[i] != NULL)
4426 put_disk(h->gendisk[i]);
4427 kfree(h);
4430 /* Send a message CDB to the firmware. */
4431 static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type)
4433 typedef struct {
4434 CommandListHeader_struct CommandHeader;
4435 RequestBlock_struct Request;
4436 ErrDescriptor_struct ErrorDescriptor;
4437 } Command;
4438 static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
4439 Command *cmd;
4440 dma_addr_t paddr64;
4441 uint32_t paddr32, tag;
4442 void __iomem *vaddr;
4443 int i, err;
4445 vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
4446 if (vaddr == NULL)
4447 return -ENOMEM;
4449 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
4450 CCISS commands, so they must be allocated from the lower 4GiB of
4451 memory. */
4452 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4453 if (err) {
4454 iounmap(vaddr);
4455 return -ENOMEM;
4458 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
4459 if (cmd == NULL) {
4460 iounmap(vaddr);
4461 return -ENOMEM;
4464 /* This must fit, because of the 32-bit consistent DMA mask. Also,
4465 although there's no guarantee, we assume that the address is at
4466 least 4-byte aligned (most likely, it's page-aligned). */
4467 paddr32 = paddr64;
4469 cmd->CommandHeader.ReplyQueue = 0;
4470 cmd->CommandHeader.SGList = 0;
4471 cmd->CommandHeader.SGTotal = 0;
4472 cmd->CommandHeader.Tag.lower = paddr32;
4473 cmd->CommandHeader.Tag.upper = 0;
4474 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
4476 cmd->Request.CDBLen = 16;
4477 cmd->Request.Type.Type = TYPE_MSG;
4478 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
4479 cmd->Request.Type.Direction = XFER_NONE;
4480 cmd->Request.Timeout = 0; /* Don't time out */
4481 cmd->Request.CDB[0] = opcode;
4482 cmd->Request.CDB[1] = type;
4483 memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
4485 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
4486 cmd->ErrorDescriptor.Addr.upper = 0;
4487 cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
4489 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
4491 for (i = 0; i < 10; i++) {
4492 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
4493 if ((tag & ~3) == paddr32)
4494 break;
4495 msleep(CCISS_POST_RESET_NOOP_TIMEOUT_MSECS);
4498 iounmap(vaddr);
4500 /* we leak the DMA buffer here ... no choice since the controller could
4501 still complete the command. */
4502 if (i == 10) {
4503 dev_err(&pdev->dev,
4504 "controller message %02x:%02x timed out\n",
4505 opcode, type);
4506 return -ETIMEDOUT;
4509 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
4511 if (tag & 2) {
4512 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
4513 opcode, type);
4514 return -EIO;
4517 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
4518 opcode, type);
4519 return 0;
4522 #define cciss_noop(p) cciss_message(p, 3, 0)
4524 static int cciss_controller_hard_reset(struct pci_dev *pdev,
4525 void * __iomem vaddr, u32 use_doorbell)
4527 u16 pmcsr;
4528 int pos;
4530 if (use_doorbell) {
4531 /* For everything after the P600, the PCI power state method
4532 * of resetting the controller doesn't work, so we have this
4533 * other way using the doorbell register.
4535 dev_info(&pdev->dev, "using doorbell to reset controller\n");
4536 writel(use_doorbell, vaddr + SA5_DOORBELL);
4537 } else { /* Try to do it the PCI power state way */
4539 /* Quoting from the Open CISS Specification: "The Power
4540 * Management Control/Status Register (CSR) controls the power
4541 * state of the device. The normal operating state is D0,
4542 * CSR=00h. The software off state is D3, CSR=03h. To reset
4543 * the controller, place the interface device in D3 then to D0,
4544 * this causes a secondary PCI reset which will reset the
4545 * controller." */
4547 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
4548 if (pos == 0) {
4549 dev_err(&pdev->dev,
4550 "cciss_controller_hard_reset: "
4551 "PCI PM not supported\n");
4552 return -ENODEV;
4554 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
4555 /* enter the D3hot power management state */
4556 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
4557 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4558 pmcsr |= PCI_D3hot;
4559 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4561 msleep(500);
4563 /* enter the D0 power management state */
4564 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4565 pmcsr |= PCI_D0;
4566 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4569 * The P600 requires a small delay when changing states.
4570 * Otherwise we may think the board did not reset and we bail.
4571 * This for kdump only and is particular to the P600.
4573 msleep(500);
4575 return 0;
4578 static __devinit void init_driver_version(char *driver_version, int len)
4580 memset(driver_version, 0, len);
4581 strncpy(driver_version, "cciss " DRIVER_NAME, len - 1);
4584 static __devinit int write_driver_ver_to_cfgtable(
4585 CfgTable_struct __iomem *cfgtable)
4587 char *driver_version;
4588 int i, size = sizeof(cfgtable->driver_version);
4590 driver_version = kmalloc(size, GFP_KERNEL);
4591 if (!driver_version)
4592 return -ENOMEM;
4594 init_driver_version(driver_version, size);
4595 for (i = 0; i < size; i++)
4596 writeb(driver_version[i], &cfgtable->driver_version[i]);
4597 kfree(driver_version);
4598 return 0;
4601 static __devinit void read_driver_ver_from_cfgtable(
4602 CfgTable_struct __iomem *cfgtable, unsigned char *driver_ver)
4604 int i;
4606 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
4607 driver_ver[i] = readb(&cfgtable->driver_version[i]);
4610 static __devinit int controller_reset_failed(
4611 CfgTable_struct __iomem *cfgtable)
4614 char *driver_ver, *old_driver_ver;
4615 int rc, size = sizeof(cfgtable->driver_version);
4617 old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
4618 if (!old_driver_ver)
4619 return -ENOMEM;
4620 driver_ver = old_driver_ver + size;
4622 /* After a reset, the 32 bytes of "driver version" in the cfgtable
4623 * should have been changed, otherwise we know the reset failed.
4625 init_driver_version(old_driver_ver, size);
4626 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
4627 rc = !memcmp(driver_ver, old_driver_ver, size);
4628 kfree(old_driver_ver);
4629 return rc;
4632 /* This does a hard reset of the controller using PCI power management
4633 * states or using the doorbell register. */
4634 static __devinit int cciss_kdump_hard_reset_controller(struct pci_dev *pdev)
4636 u64 cfg_offset;
4637 u32 cfg_base_addr;
4638 u64 cfg_base_addr_index;
4639 void __iomem *vaddr;
4640 unsigned long paddr;
4641 u32 misc_fw_support;
4642 int rc;
4643 CfgTable_struct __iomem *cfgtable;
4644 u32 use_doorbell;
4645 u32 board_id;
4646 u16 command_register;
4648 /* For controllers as old a the p600, this is very nearly
4649 * the same thing as
4651 * pci_save_state(pci_dev);
4652 * pci_set_power_state(pci_dev, PCI_D3hot);
4653 * pci_set_power_state(pci_dev, PCI_D0);
4654 * pci_restore_state(pci_dev);
4656 * For controllers newer than the P600, the pci power state
4657 * method of resetting doesn't work so we have another way
4658 * using the doorbell register.
4661 /* Exclude 640x boards. These are two pci devices in one slot
4662 * which share a battery backed cache module. One controls the
4663 * cache, the other accesses the cache through the one that controls
4664 * it. If we reset the one controlling the cache, the other will
4665 * likely not be happy. Just forbid resetting this conjoined mess.
4667 cciss_lookup_board_id(pdev, &board_id);
4668 if (!ctlr_is_resettable(board_id)) {
4669 dev_warn(&pdev->dev, "Cannot reset Smart Array 640x "
4670 "due to shared cache module.");
4671 return -ENODEV;
4674 /* if controller is soft- but not hard resettable... */
4675 if (!ctlr_is_hard_resettable(board_id))
4676 return -ENOTSUPP; /* try soft reset later. */
4678 /* Save the PCI command register */
4679 pci_read_config_word(pdev, 4, &command_register);
4680 /* Turn the board off. This is so that later pci_restore_state()
4681 * won't turn the board on before the rest of config space is ready.
4683 pci_disable_device(pdev);
4684 pci_save_state(pdev);
4686 /* find the first memory BAR, so we can find the cfg table */
4687 rc = cciss_pci_find_memory_BAR(pdev, &paddr);
4688 if (rc)
4689 return rc;
4690 vaddr = remap_pci_mem(paddr, 0x250);
4691 if (!vaddr)
4692 return -ENOMEM;
4694 /* find cfgtable in order to check if reset via doorbell is supported */
4695 rc = cciss_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
4696 &cfg_base_addr_index, &cfg_offset);
4697 if (rc)
4698 goto unmap_vaddr;
4699 cfgtable = remap_pci_mem(pci_resource_start(pdev,
4700 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
4701 if (!cfgtable) {
4702 rc = -ENOMEM;
4703 goto unmap_vaddr;
4705 rc = write_driver_ver_to_cfgtable(cfgtable);
4706 if (rc)
4707 goto unmap_vaddr;
4709 /* If reset via doorbell register is supported, use that.
4710 * There are two such methods. Favor the newest method.
4712 misc_fw_support = readl(&cfgtable->misc_fw_support);
4713 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
4714 if (use_doorbell) {
4715 use_doorbell = DOORBELL_CTLR_RESET2;
4716 } else {
4717 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
4718 if (use_doorbell) {
4719 dev_warn(&pdev->dev, "Controller claims that "
4720 "'Bit 2 doorbell reset' is "
4721 "supported, but not 'bit 5 doorbell reset'. "
4722 "Firmware update is recommended.\n");
4723 rc = -ENOTSUPP; /* use the soft reset */
4724 goto unmap_cfgtable;
4728 rc = cciss_controller_hard_reset(pdev, vaddr, use_doorbell);
4729 if (rc)
4730 goto unmap_cfgtable;
4731 pci_restore_state(pdev);
4732 rc = pci_enable_device(pdev);
4733 if (rc) {
4734 dev_warn(&pdev->dev, "failed to enable device.\n");
4735 goto unmap_cfgtable;
4737 pci_write_config_word(pdev, 4, command_register);
4739 /* Some devices (notably the HP Smart Array 5i Controller)
4740 need a little pause here */
4741 msleep(CCISS_POST_RESET_PAUSE_MSECS);
4743 /* Wait for board to become not ready, then ready. */
4744 dev_info(&pdev->dev, "Waiting for board to reset.\n");
4745 rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
4746 if (rc) {
4747 dev_warn(&pdev->dev, "Failed waiting for board to hard reset."
4748 " Will try soft reset.\n");
4749 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
4750 goto unmap_cfgtable;
4752 rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_READY);
4753 if (rc) {
4754 dev_warn(&pdev->dev,
4755 "failed waiting for board to become ready "
4756 "after hard reset\n");
4757 goto unmap_cfgtable;
4760 rc = controller_reset_failed(vaddr);
4761 if (rc < 0)
4762 goto unmap_cfgtable;
4763 if (rc) {
4764 dev_warn(&pdev->dev, "Unable to successfully hard reset "
4765 "controller. Will try soft reset.\n");
4766 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
4767 } else {
4768 dev_info(&pdev->dev, "Board ready after hard reset.\n");
4771 unmap_cfgtable:
4772 iounmap(cfgtable);
4774 unmap_vaddr:
4775 iounmap(vaddr);
4776 return rc;
4779 static __devinit int cciss_init_reset_devices(struct pci_dev *pdev)
4781 int rc, i;
4783 if (!reset_devices)
4784 return 0;
4786 /* Reset the controller with a PCI power-cycle or via doorbell */
4787 rc = cciss_kdump_hard_reset_controller(pdev);
4789 /* -ENOTSUPP here means we cannot reset the controller
4790 * but it's already (and still) up and running in
4791 * "performant mode". Or, it might be 640x, which can't reset
4792 * due to concerns about shared bbwc between 6402/6404 pair.
4794 if (rc == -ENOTSUPP)
4795 return rc; /* just try to do the kdump anyhow. */
4796 if (rc)
4797 return -ENODEV;
4799 /* Now try to get the controller to respond to a no-op */
4800 dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4801 for (i = 0; i < CCISS_POST_RESET_NOOP_RETRIES; i++) {
4802 if (cciss_noop(pdev) == 0)
4803 break;
4804 else
4805 dev_warn(&pdev->dev, "no-op failed%s\n",
4806 (i < CCISS_POST_RESET_NOOP_RETRIES - 1 ?
4807 "; re-trying" : ""));
4808 msleep(CCISS_POST_RESET_NOOP_INTERVAL_MSECS);
4810 return 0;
4813 static __devinit int cciss_allocate_cmd_pool(ctlr_info_t *h)
4815 h->cmd_pool_bits = kmalloc(
4816 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
4817 sizeof(unsigned long), GFP_KERNEL);
4818 h->cmd_pool = pci_alloc_consistent(h->pdev,
4819 h->nr_cmds * sizeof(CommandList_struct),
4820 &(h->cmd_pool_dhandle));
4821 h->errinfo_pool = pci_alloc_consistent(h->pdev,
4822 h->nr_cmds * sizeof(ErrorInfo_struct),
4823 &(h->errinfo_pool_dhandle));
4824 if ((h->cmd_pool_bits == NULL)
4825 || (h->cmd_pool == NULL)
4826 || (h->errinfo_pool == NULL)) {
4827 dev_err(&h->pdev->dev, "out of memory");
4828 return -ENOMEM;
4830 return 0;
4833 static __devinit int cciss_allocate_scatterlists(ctlr_info_t *h)
4835 int i;
4837 /* zero it, so that on free we need not know how many were alloc'ed */
4838 h->scatter_list = kzalloc(h->max_commands *
4839 sizeof(struct scatterlist *), GFP_KERNEL);
4840 if (!h->scatter_list)
4841 return -ENOMEM;
4843 for (i = 0; i < h->nr_cmds; i++) {
4844 h->scatter_list[i] = kmalloc(sizeof(struct scatterlist) *
4845 h->maxsgentries, GFP_KERNEL);
4846 if (h->scatter_list[i] == NULL) {
4847 dev_err(&h->pdev->dev, "could not allocate "
4848 "s/g lists\n");
4849 return -ENOMEM;
4852 return 0;
4855 static void cciss_free_scatterlists(ctlr_info_t *h)
4857 int i;
4859 if (h->scatter_list) {
4860 for (i = 0; i < h->nr_cmds; i++)
4861 kfree(h->scatter_list[i]);
4862 kfree(h->scatter_list);
4866 static void cciss_free_cmd_pool(ctlr_info_t *h)
4868 kfree(h->cmd_pool_bits);
4869 if (h->cmd_pool)
4870 pci_free_consistent(h->pdev,
4871 h->nr_cmds * sizeof(CommandList_struct),
4872 h->cmd_pool, h->cmd_pool_dhandle);
4873 if (h->errinfo_pool)
4874 pci_free_consistent(h->pdev,
4875 h->nr_cmds * sizeof(ErrorInfo_struct),
4876 h->errinfo_pool, h->errinfo_pool_dhandle);
4879 static int cciss_request_irq(ctlr_info_t *h,
4880 irqreturn_t (*msixhandler)(int, void *),
4881 irqreturn_t (*intxhandler)(int, void *))
4883 if (h->msix_vector || h->msi_vector) {
4884 if (!request_irq(h->intr[h->intr_mode], msixhandler,
4885 0, h->devname, h))
4886 return 0;
4887 dev_err(&h->pdev->dev, "Unable to get msi irq %d"
4888 " for %s\n", h->intr[h->intr_mode],
4889 h->devname);
4890 return -1;
4893 if (!request_irq(h->intr[h->intr_mode], intxhandler,
4894 IRQF_SHARED, h->devname, h))
4895 return 0;
4896 dev_err(&h->pdev->dev, "Unable to get irq %d for %s\n",
4897 h->intr[h->intr_mode], h->devname);
4898 return -1;
4901 static int __devinit cciss_kdump_soft_reset(ctlr_info_t *h)
4903 if (cciss_send_reset(h, CTLR_LUNID, CCISS_RESET_TYPE_CONTROLLER)) {
4904 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4905 return -EIO;
4908 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4909 if (cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4910 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4911 return -1;
4914 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4915 if (cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4916 dev_warn(&h->pdev->dev, "Board failed to become ready "
4917 "after soft reset.\n");
4918 return -1;
4921 return 0;
4924 static void cciss_undo_allocations_after_kdump_soft_reset(ctlr_info_t *h)
4926 int ctlr = h->ctlr;
4928 free_irq(h->intr[h->intr_mode], h);
4929 #ifdef CONFIG_PCI_MSI
4930 if (h->msix_vector)
4931 pci_disable_msix(h->pdev);
4932 else if (h->msi_vector)
4933 pci_disable_msi(h->pdev);
4934 #endif /* CONFIG_PCI_MSI */
4935 cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
4936 cciss_free_scatterlists(h);
4937 cciss_free_cmd_pool(h);
4938 kfree(h->blockFetchTable);
4939 if (h->reply_pool)
4940 pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64),
4941 h->reply_pool, h->reply_pool_dhandle);
4942 if (h->transtable)
4943 iounmap(h->transtable);
4944 if (h->cfgtable)
4945 iounmap(h->cfgtable);
4946 if (h->vaddr)
4947 iounmap(h->vaddr);
4948 unregister_blkdev(h->major, h->devname);
4949 cciss_destroy_hba_sysfs_entry(h);
4950 pci_release_regions(h->pdev);
4951 kfree(h);
4952 hba[ctlr] = NULL;
4956 * This is it. Find all the controllers and register them. I really hate
4957 * stealing all these major device numbers.
4958 * returns the number of block devices registered.
4960 static int __devinit cciss_init_one(struct pci_dev *pdev,
4961 const struct pci_device_id *ent)
4963 int i;
4964 int j = 0;
4965 int rc;
4966 int try_soft_reset = 0;
4967 int dac, return_code;
4968 InquiryData_struct *inq_buff;
4969 ctlr_info_t *h;
4970 unsigned long flags;
4972 rc = cciss_init_reset_devices(pdev);
4973 if (rc) {
4974 if (rc != -ENOTSUPP)
4975 return rc;
4976 /* If the reset fails in a particular way (it has no way to do
4977 * a proper hard reset, so returns -ENOTSUPP) we can try to do
4978 * a soft reset once we get the controller configured up to the
4979 * point that it can accept a command.
4981 try_soft_reset = 1;
4982 rc = 0;
4985 reinit_after_soft_reset:
4987 i = alloc_cciss_hba(pdev);
4988 if (i < 0)
4989 return -1;
4991 h = hba[i];
4992 h->pdev = pdev;
4993 h->busy_initializing = 1;
4994 h->intr_mode = cciss_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4995 INIT_LIST_HEAD(&h->cmpQ);
4996 INIT_LIST_HEAD(&h->reqQ);
4997 mutex_init(&h->busy_shutting_down);
4999 if (cciss_pci_init(h) != 0)
5000 goto clean_no_release_regions;
5002 sprintf(h->devname, "cciss%d", i);
5003 h->ctlr = i;
5005 if (cciss_tape_cmds < 2)
5006 cciss_tape_cmds = 2;
5007 if (cciss_tape_cmds > 16)
5008 cciss_tape_cmds = 16;
5010 init_completion(&h->scan_wait);
5012 if (cciss_create_hba_sysfs_entry(h))
5013 goto clean0;
5015 /* configure PCI DMA stuff */
5016 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
5017 dac = 1;
5018 else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
5019 dac = 0;
5020 else {
5021 dev_err(&h->pdev->dev, "no suitable DMA available\n");
5022 goto clean1;
5026 * register with the major number, or get a dynamic major number
5027 * by passing 0 as argument. This is done for greater than
5028 * 8 controller support.
5030 if (i < MAX_CTLR_ORIG)
5031 h->major = COMPAQ_CISS_MAJOR + i;
5032 rc = register_blkdev(h->major, h->devname);
5033 if (rc == -EBUSY || rc == -EINVAL) {
5034 dev_err(&h->pdev->dev,
5035 "Unable to get major number %d for %s "
5036 "on hba %d\n", h->major, h->devname, i);
5037 goto clean1;
5038 } else {
5039 if (i >= MAX_CTLR_ORIG)
5040 h->major = rc;
5043 /* make sure the board interrupts are off */
5044 h->access.set_intr_mask(h, CCISS_INTR_OFF);
5045 rc = cciss_request_irq(h, do_cciss_msix_intr, do_cciss_intx);
5046 if (rc)
5047 goto clean2;
5049 dev_info(&h->pdev->dev, "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
5050 h->devname, pdev->device, pci_name(pdev),
5051 h->intr[h->intr_mode], dac ? "" : " not");
5053 if (cciss_allocate_cmd_pool(h))
5054 goto clean4;
5056 if (cciss_allocate_scatterlists(h))
5057 goto clean4;
5059 h->cmd_sg_list = cciss_allocate_sg_chain_blocks(h,
5060 h->chainsize, h->nr_cmds);
5061 if (!h->cmd_sg_list && h->chainsize > 0)
5062 goto clean4;
5064 spin_lock_init(&h->lock);
5066 /* Initialize the pdev driver private data.
5067 have it point to h. */
5068 pci_set_drvdata(pdev, h);
5069 /* command and error info recs zeroed out before
5070 they are used */
5071 memset(h->cmd_pool_bits, 0,
5072 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG)
5073 * sizeof(unsigned long));
5075 h->num_luns = 0;
5076 h->highest_lun = -1;
5077 for (j = 0; j < CISS_MAX_LUN; j++) {
5078 h->drv[j] = NULL;
5079 h->gendisk[j] = NULL;
5082 /* At this point, the controller is ready to take commands.
5083 * Now, if reset_devices and the hard reset didn't work, try
5084 * the soft reset and see if that works.
5086 if (try_soft_reset) {
5088 /* This is kind of gross. We may or may not get a completion
5089 * from the soft reset command, and if we do, then the value
5090 * from the fifo may or may not be valid. So, we wait 10 secs
5091 * after the reset throwing away any completions we get during
5092 * that time. Unregister the interrupt handler and register
5093 * fake ones to scoop up any residual completions.
5095 spin_lock_irqsave(&h->lock, flags);
5096 h->access.set_intr_mask(h, CCISS_INTR_OFF);
5097 spin_unlock_irqrestore(&h->lock, flags);
5098 free_irq(h->intr[h->intr_mode], h);
5099 rc = cciss_request_irq(h, cciss_msix_discard_completions,
5100 cciss_intx_discard_completions);
5101 if (rc) {
5102 dev_warn(&h->pdev->dev, "Failed to request_irq after "
5103 "soft reset.\n");
5104 goto clean4;
5107 rc = cciss_kdump_soft_reset(h);
5108 if (rc) {
5109 dev_warn(&h->pdev->dev, "Soft reset failed.\n");
5110 goto clean4;
5113 dev_info(&h->pdev->dev, "Board READY.\n");
5114 dev_info(&h->pdev->dev,
5115 "Waiting for stale completions to drain.\n");
5116 h->access.set_intr_mask(h, CCISS_INTR_ON);
5117 msleep(10000);
5118 h->access.set_intr_mask(h, CCISS_INTR_OFF);
5120 rc = controller_reset_failed(h->cfgtable);
5121 if (rc)
5122 dev_info(&h->pdev->dev,
5123 "Soft reset appears to have failed.\n");
5125 /* since the controller's reset, we have to go back and re-init
5126 * everything. Easiest to just forget what we've done and do it
5127 * all over again.
5129 cciss_undo_allocations_after_kdump_soft_reset(h);
5130 try_soft_reset = 0;
5131 if (rc)
5132 /* don't go to clean4, we already unallocated */
5133 return -ENODEV;
5135 goto reinit_after_soft_reset;
5138 cciss_scsi_setup(h);
5140 /* Turn the interrupts on so we can service requests */
5141 h->access.set_intr_mask(h, CCISS_INTR_ON);
5143 /* Get the firmware version */
5144 inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
5145 if (inq_buff == NULL) {
5146 dev_err(&h->pdev->dev, "out of memory\n");
5147 goto clean4;
5150 return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
5151 sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
5152 if (return_code == IO_OK) {
5153 h->firm_ver[0] = inq_buff->data_byte[32];
5154 h->firm_ver[1] = inq_buff->data_byte[33];
5155 h->firm_ver[2] = inq_buff->data_byte[34];
5156 h->firm_ver[3] = inq_buff->data_byte[35];
5157 } else { /* send command failed */
5158 dev_warn(&h->pdev->dev, "unable to determine firmware"
5159 " version of controller\n");
5161 kfree(inq_buff);
5163 cciss_procinit(h);
5165 h->cciss_max_sectors = 8192;
5167 rebuild_lun_table(h, 1, 0);
5168 cciss_engage_scsi(h);
5169 h->busy_initializing = 0;
5170 return 1;
5172 clean4:
5173 cciss_free_cmd_pool(h);
5174 cciss_free_scatterlists(h);
5175 cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
5176 free_irq(h->intr[h->intr_mode], h);
5177 clean2:
5178 unregister_blkdev(h->major, h->devname);
5179 clean1:
5180 cciss_destroy_hba_sysfs_entry(h);
5181 clean0:
5182 pci_release_regions(pdev);
5183 clean_no_release_regions:
5184 h->busy_initializing = 0;
5187 * Deliberately omit pci_disable_device(): it does something nasty to
5188 * Smart Array controllers that pci_enable_device does not undo
5190 pci_set_drvdata(pdev, NULL);
5191 free_hba(h);
5192 return -1;
5195 static void cciss_shutdown(struct pci_dev *pdev)
5197 ctlr_info_t *h;
5198 char *flush_buf;
5199 int return_code;
5201 h = pci_get_drvdata(pdev);
5202 flush_buf = kzalloc(4, GFP_KERNEL);
5203 if (!flush_buf) {
5204 dev_warn(&h->pdev->dev, "cache not flushed, out of memory.\n");
5205 return;
5207 /* write all data in the battery backed cache to disk */
5208 memset(flush_buf, 0, 4);
5209 return_code = sendcmd_withirq(h, CCISS_CACHE_FLUSH, flush_buf,
5210 4, 0, CTLR_LUNID, TYPE_CMD);
5211 kfree(flush_buf);
5212 if (return_code != IO_OK)
5213 dev_warn(&h->pdev->dev, "Error flushing cache\n");
5214 h->access.set_intr_mask(h, CCISS_INTR_OFF);
5215 free_irq(h->intr[h->intr_mode], h);
5218 static int __devinit cciss_enter_simple_mode(struct ctlr_info *h)
5220 u32 trans_support;
5222 trans_support = readl(&(h->cfgtable->TransportSupport));
5223 if (!(trans_support & SIMPLE_MODE))
5224 return -ENOTSUPP;
5226 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
5227 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
5228 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
5229 cciss_wait_for_mode_change_ack(h);
5230 print_cfg_table(h);
5231 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
5232 dev_warn(&h->pdev->dev, "unable to get board into simple mode\n");
5233 return -ENODEV;
5235 h->transMethod = CFGTBL_Trans_Simple;
5236 return 0;
5240 static void __devexit cciss_remove_one(struct pci_dev *pdev)
5242 ctlr_info_t *h;
5243 int i, j;
5245 if (pci_get_drvdata(pdev) == NULL) {
5246 dev_err(&pdev->dev, "Unable to remove device\n");
5247 return;
5250 h = pci_get_drvdata(pdev);
5251 i = h->ctlr;
5252 if (hba[i] == NULL) {
5253 dev_err(&pdev->dev, "device appears to already be removed\n");
5254 return;
5257 mutex_lock(&h->busy_shutting_down);
5259 remove_from_scan_list(h);
5260 remove_proc_entry(h->devname, proc_cciss);
5261 unregister_blkdev(h->major, h->devname);
5263 /* remove it from the disk list */
5264 for (j = 0; j < CISS_MAX_LUN; j++) {
5265 struct gendisk *disk = h->gendisk[j];
5266 if (disk) {
5267 struct request_queue *q = disk->queue;
5269 if (disk->flags & GENHD_FL_UP) {
5270 cciss_destroy_ld_sysfs_entry(h, j, 1);
5271 del_gendisk(disk);
5273 if (q)
5274 blk_cleanup_queue(q);
5278 #ifdef CONFIG_CISS_SCSI_TAPE
5279 cciss_unregister_scsi(h); /* unhook from SCSI subsystem */
5280 #endif
5282 cciss_shutdown(pdev);
5284 #ifdef CONFIG_PCI_MSI
5285 if (h->msix_vector)
5286 pci_disable_msix(h->pdev);
5287 else if (h->msi_vector)
5288 pci_disable_msi(h->pdev);
5289 #endif /* CONFIG_PCI_MSI */
5291 iounmap(h->transtable);
5292 iounmap(h->cfgtable);
5293 iounmap(h->vaddr);
5295 cciss_free_cmd_pool(h);
5296 /* Free up sg elements */
5297 for (j = 0; j < h->nr_cmds; j++)
5298 kfree(h->scatter_list[j]);
5299 kfree(h->scatter_list);
5300 cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
5301 kfree(h->blockFetchTable);
5302 if (h->reply_pool)
5303 pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64),
5304 h->reply_pool, h->reply_pool_dhandle);
5306 * Deliberately omit pci_disable_device(): it does something nasty to
5307 * Smart Array controllers that pci_enable_device does not undo
5309 pci_release_regions(pdev);
5310 pci_set_drvdata(pdev, NULL);
5311 cciss_destroy_hba_sysfs_entry(h);
5312 mutex_unlock(&h->busy_shutting_down);
5313 free_hba(h);
5316 static struct pci_driver cciss_pci_driver = {
5317 .name = "cciss",
5318 .probe = cciss_init_one,
5319 .remove = __devexit_p(cciss_remove_one),
5320 .id_table = cciss_pci_device_id, /* id_table */
5321 .shutdown = cciss_shutdown,
5325 * This is it. Register the PCI driver information for the cards we control
5326 * the OS will call our registered routines when it finds one of our cards.
5328 static int __init cciss_init(void)
5330 int err;
5333 * The hardware requires that commands are aligned on a 64-bit
5334 * boundary. Given that we use pci_alloc_consistent() to allocate an
5335 * array of them, the size must be a multiple of 8 bytes.
5337 BUILD_BUG_ON(sizeof(CommandList_struct) % COMMANDLIST_ALIGNMENT);
5338 printk(KERN_INFO DRIVER_NAME "\n");
5340 err = bus_register(&cciss_bus_type);
5341 if (err)
5342 return err;
5344 /* Start the scan thread */
5345 cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
5346 if (IS_ERR(cciss_scan_thread)) {
5347 err = PTR_ERR(cciss_scan_thread);
5348 goto err_bus_unregister;
5351 /* Register for our PCI devices */
5352 err = pci_register_driver(&cciss_pci_driver);
5353 if (err)
5354 goto err_thread_stop;
5356 return err;
5358 err_thread_stop:
5359 kthread_stop(cciss_scan_thread);
5360 err_bus_unregister:
5361 bus_unregister(&cciss_bus_type);
5363 return err;
5366 static void __exit cciss_cleanup(void)
5368 int i;
5370 pci_unregister_driver(&cciss_pci_driver);
5371 /* double check that all controller entrys have been removed */
5372 for (i = 0; i < MAX_CTLR; i++) {
5373 if (hba[i] != NULL) {
5374 dev_warn(&hba[i]->pdev->dev,
5375 "had to remove controller\n");
5376 cciss_remove_one(hba[i]->pdev);
5379 kthread_stop(cciss_scan_thread);
5380 if (proc_cciss)
5381 remove_proc_entry("driver/cciss", NULL);
5382 bus_unregister(&cciss_bus_type);
5385 module_init(cciss_init);
5386 module_exit(cciss_cleanup);