spi-topcliff-pch: supports a spi mode setup and bit order setup by IO control
[zen-stable.git] / drivers / firewire / ohci.c
blob0a0225a34b769527f6716cfaa80f33eeb6b6777f
1 /*
2 * Driver for OHCI 1394 controllers
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/bitops.h>
22 #include <linux/bug.h>
23 #include <linux/compiler.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firewire.h>
28 #include <linux/firewire-constants.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/kernel.h>
33 #include <linux/list.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mutex.h>
38 #include <linux/pci.h>
39 #include <linux/pci_ids.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/time.h>
44 #include <linux/vmalloc.h>
45 #include <linux/workqueue.h>
47 #include <asm/byteorder.h>
48 #include <asm/page.h>
49 #include <asm/system.h>
51 #ifdef CONFIG_PPC_PMAC
52 #include <asm/pmac_feature.h>
53 #endif
55 #include "core.h"
56 #include "ohci.h"
58 #define DESCRIPTOR_OUTPUT_MORE 0
59 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
60 #define DESCRIPTOR_INPUT_MORE (2 << 12)
61 #define DESCRIPTOR_INPUT_LAST (3 << 12)
62 #define DESCRIPTOR_STATUS (1 << 11)
63 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
64 #define DESCRIPTOR_PING (1 << 7)
65 #define DESCRIPTOR_YY (1 << 6)
66 #define DESCRIPTOR_NO_IRQ (0 << 4)
67 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
68 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
69 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
70 #define DESCRIPTOR_WAIT (3 << 0)
72 struct descriptor {
73 __le16 req_count;
74 __le16 control;
75 __le32 data_address;
76 __le32 branch_address;
77 __le16 res_count;
78 __le16 transfer_status;
79 } __attribute__((aligned(16)));
81 #define CONTROL_SET(regs) (regs)
82 #define CONTROL_CLEAR(regs) ((regs) + 4)
83 #define COMMAND_PTR(regs) ((regs) + 12)
84 #define CONTEXT_MATCH(regs) ((regs) + 16)
86 #define AR_BUFFER_SIZE (32*1024)
87 #define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
88 /* we need at least two pages for proper list management */
89 #define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
91 #define MAX_ASYNC_PAYLOAD 4096
92 #define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4)
93 #define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
95 struct ar_context {
96 struct fw_ohci *ohci;
97 struct page *pages[AR_BUFFERS];
98 void *buffer;
99 struct descriptor *descriptors;
100 dma_addr_t descriptors_bus;
101 void *pointer;
102 unsigned int last_buffer_index;
103 u32 regs;
104 struct tasklet_struct tasklet;
107 struct context;
109 typedef int (*descriptor_callback_t)(struct context *ctx,
110 struct descriptor *d,
111 struct descriptor *last);
114 * A buffer that contains a block of DMA-able coherent memory used for
115 * storing a portion of a DMA descriptor program.
117 struct descriptor_buffer {
118 struct list_head list;
119 dma_addr_t buffer_bus;
120 size_t buffer_size;
121 size_t used;
122 struct descriptor buffer[0];
125 struct context {
126 struct fw_ohci *ohci;
127 u32 regs;
128 int total_allocation;
129 u32 current_bus;
130 bool running;
131 bool flushing;
134 * List of page-sized buffers for storing DMA descriptors.
135 * Head of list contains buffers in use and tail of list contains
136 * free buffers.
138 struct list_head buffer_list;
141 * Pointer to a buffer inside buffer_list that contains the tail
142 * end of the current DMA program.
144 struct descriptor_buffer *buffer_tail;
147 * The descriptor containing the branch address of the first
148 * descriptor that has not yet been filled by the device.
150 struct descriptor *last;
153 * The last descriptor in the DMA program. It contains the branch
154 * address that must be updated upon appending a new descriptor.
156 struct descriptor *prev;
158 descriptor_callback_t callback;
160 struct tasklet_struct tasklet;
163 #define IT_HEADER_SY(v) ((v) << 0)
164 #define IT_HEADER_TCODE(v) ((v) << 4)
165 #define IT_HEADER_CHANNEL(v) ((v) << 8)
166 #define IT_HEADER_TAG(v) ((v) << 14)
167 #define IT_HEADER_SPEED(v) ((v) << 16)
168 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
170 struct iso_context {
171 struct fw_iso_context base;
172 struct context context;
173 int excess_bytes;
174 void *header;
175 size_t header_length;
177 u8 sync;
178 u8 tags;
181 #define CONFIG_ROM_SIZE 1024
183 struct fw_ohci {
184 struct fw_card card;
186 __iomem char *registers;
187 int node_id;
188 int generation;
189 int request_generation; /* for timestamping incoming requests */
190 unsigned quirks;
191 unsigned int pri_req_max;
192 u32 bus_time;
193 bool is_root;
194 bool csr_state_setclear_abdicate;
195 int n_ir;
196 int n_it;
198 * Spinlock for accessing fw_ohci data. Never call out of
199 * this driver with this lock held.
201 spinlock_t lock;
203 struct mutex phy_reg_mutex;
205 void *misc_buffer;
206 dma_addr_t misc_buffer_bus;
208 struct ar_context ar_request_ctx;
209 struct ar_context ar_response_ctx;
210 struct context at_request_ctx;
211 struct context at_response_ctx;
213 u32 it_context_support;
214 u32 it_context_mask; /* unoccupied IT contexts */
215 struct iso_context *it_context_list;
216 u64 ir_context_channels; /* unoccupied channels */
217 u32 ir_context_support;
218 u32 ir_context_mask; /* unoccupied IR contexts */
219 struct iso_context *ir_context_list;
220 u64 mc_channels; /* channels in use by the multichannel IR context */
221 bool mc_allocated;
223 __be32 *config_rom;
224 dma_addr_t config_rom_bus;
225 __be32 *next_config_rom;
226 dma_addr_t next_config_rom_bus;
227 __be32 next_header;
229 __le32 *self_id_cpu;
230 dma_addr_t self_id_bus;
231 struct work_struct bus_reset_work;
233 u32 self_id_buffer[512];
236 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
238 return container_of(card, struct fw_ohci, card);
241 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
242 #define IR_CONTEXT_BUFFER_FILL 0x80000000
243 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
244 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
245 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
246 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
248 #define CONTEXT_RUN 0x8000
249 #define CONTEXT_WAKE 0x1000
250 #define CONTEXT_DEAD 0x0800
251 #define CONTEXT_ACTIVE 0x0400
253 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
254 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
255 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
257 #define OHCI1394_REGISTER_SIZE 0x800
258 #define OHCI1394_PCI_HCI_Control 0x40
259 #define SELF_ID_BUF_SIZE 0x800
260 #define OHCI_TCODE_PHY_PACKET 0x0e
261 #define OHCI_VERSION_1_1 0x010010
263 static char ohci_driver_name[] = KBUILD_MODNAME;
265 #define PCI_DEVICE_ID_AGERE_FW643 0x5901
266 #define PCI_DEVICE_ID_CREATIVE_SB1394 0x4001
267 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
268 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
269 #define PCI_DEVICE_ID_TI_TSB12LV26 0x8020
270 #define PCI_DEVICE_ID_TI_TSB82AA2 0x8025
271 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS 0x11bd
273 #define QUIRK_CYCLE_TIMER 1
274 #define QUIRK_RESET_PACKET 2
275 #define QUIRK_BE_HEADERS 4
276 #define QUIRK_NO_1394A 8
277 #define QUIRK_NO_MSI 16
278 #define QUIRK_TI_SLLZ059 32
280 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
281 static const struct {
282 unsigned short vendor, device, revision, flags;
283 } ohci_quirks[] = {
284 {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
285 QUIRK_CYCLE_TIMER},
287 {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
288 QUIRK_BE_HEADERS},
290 {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
291 QUIRK_NO_MSI},
293 {PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
294 QUIRK_RESET_PACKET},
296 {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
297 QUIRK_NO_MSI},
299 {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
300 QUIRK_CYCLE_TIMER},
302 {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
303 QUIRK_NO_MSI},
305 {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
306 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
308 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
309 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
311 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
312 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
314 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
315 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
317 {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
318 QUIRK_RESET_PACKET},
320 {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
321 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
324 /* This overrides anything that was found in ohci_quirks[]. */
325 static int param_quirks;
326 module_param_named(quirks, param_quirks, int, 0644);
327 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
328 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER)
329 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET)
330 ", AR/selfID endianess = " __stringify(QUIRK_BE_HEADERS)
331 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A)
332 ", disable MSI = " __stringify(QUIRK_NO_MSI)
333 ", TI SLLZ059 erratum = " __stringify(QUIRK_TI_SLLZ059)
334 ")");
336 #define OHCI_PARAM_DEBUG_AT_AR 1
337 #define OHCI_PARAM_DEBUG_SELFIDS 2
338 #define OHCI_PARAM_DEBUG_IRQS 4
339 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
341 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
343 static int param_debug;
344 module_param_named(debug, param_debug, int, 0644);
345 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
346 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
347 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
348 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
349 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
350 ", or a combination, or all = -1)");
352 static void log_irqs(u32 evt)
354 if (likely(!(param_debug &
355 (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
356 return;
358 if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
359 !(evt & OHCI1394_busReset))
360 return;
362 fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
363 evt & OHCI1394_selfIDComplete ? " selfID" : "",
364 evt & OHCI1394_RQPkt ? " AR_req" : "",
365 evt & OHCI1394_RSPkt ? " AR_resp" : "",
366 evt & OHCI1394_reqTxComplete ? " AT_req" : "",
367 evt & OHCI1394_respTxComplete ? " AT_resp" : "",
368 evt & OHCI1394_isochRx ? " IR" : "",
369 evt & OHCI1394_isochTx ? " IT" : "",
370 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
371 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
372 evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "",
373 evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "",
374 evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
375 evt & OHCI1394_unrecoverableError ? " unrecoverableError" : "",
376 evt & OHCI1394_busReset ? " busReset" : "",
377 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
378 OHCI1394_RSPkt | OHCI1394_reqTxComplete |
379 OHCI1394_respTxComplete | OHCI1394_isochRx |
380 OHCI1394_isochTx | OHCI1394_postedWriteErr |
381 OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
382 OHCI1394_cycleInconsistent |
383 OHCI1394_regAccessFail | OHCI1394_busReset)
384 ? " ?" : "");
387 static const char *speed[] = {
388 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
390 static const char *power[] = {
391 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
392 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
394 static const char port[] = { '.', '-', 'p', 'c', };
396 static char _p(u32 *s, int shift)
398 return port[*s >> shift & 3];
401 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
403 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
404 return;
406 fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
407 self_id_count, generation, node_id);
409 for (; self_id_count--; ++s)
410 if ((*s & 1 << 23) == 0)
411 fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
412 "%s gc=%d %s %s%s%s\n",
413 *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
414 speed[*s >> 14 & 3], *s >> 16 & 63,
415 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
416 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
417 else
418 fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
419 *s, *s >> 24 & 63,
420 _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
421 _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2));
424 static const char *evts[] = {
425 [0x00] = "evt_no_status", [0x01] = "-reserved-",
426 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
427 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
428 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
429 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
430 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
431 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
432 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
433 [0x10] = "-reserved-", [0x11] = "ack_complete",
434 [0x12] = "ack_pending ", [0x13] = "-reserved-",
435 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
436 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
437 [0x18] = "-reserved-", [0x19] = "-reserved-",
438 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
439 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
440 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
441 [0x20] = "pending/cancelled",
443 static const char *tcodes[] = {
444 [0x0] = "QW req", [0x1] = "BW req",
445 [0x2] = "W resp", [0x3] = "-reserved-",
446 [0x4] = "QR req", [0x5] = "BR req",
447 [0x6] = "QR resp", [0x7] = "BR resp",
448 [0x8] = "cycle start", [0x9] = "Lk req",
449 [0xa] = "async stream packet", [0xb] = "Lk resp",
450 [0xc] = "-reserved-", [0xd] = "-reserved-",
451 [0xe] = "link internal", [0xf] = "-reserved-",
454 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
456 int tcode = header[0] >> 4 & 0xf;
457 char specific[12];
459 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
460 return;
462 if (unlikely(evt >= ARRAY_SIZE(evts)))
463 evt = 0x1f;
465 if (evt == OHCI1394_evt_bus_reset) {
466 fw_notify("A%c evt_bus_reset, generation %d\n",
467 dir, (header[2] >> 16) & 0xff);
468 return;
471 switch (tcode) {
472 case 0x0: case 0x6: case 0x8:
473 snprintf(specific, sizeof(specific), " = %08x",
474 be32_to_cpu((__force __be32)header[3]));
475 break;
476 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
477 snprintf(specific, sizeof(specific), " %x,%x",
478 header[3] >> 16, header[3] & 0xffff);
479 break;
480 default:
481 specific[0] = '\0';
484 switch (tcode) {
485 case 0xa:
486 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
487 break;
488 case 0xe:
489 fw_notify("A%c %s, PHY %08x %08x\n",
490 dir, evts[evt], header[1], header[2]);
491 break;
492 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
493 fw_notify("A%c spd %x tl %02x, "
494 "%04x -> %04x, %s, "
495 "%s, %04x%08x%s\n",
496 dir, speed, header[0] >> 10 & 0x3f,
497 header[1] >> 16, header[0] >> 16, evts[evt],
498 tcodes[tcode], header[1] & 0xffff, header[2], specific);
499 break;
500 default:
501 fw_notify("A%c spd %x tl %02x, "
502 "%04x -> %04x, %s, "
503 "%s%s\n",
504 dir, speed, header[0] >> 10 & 0x3f,
505 header[1] >> 16, header[0] >> 16, evts[evt],
506 tcodes[tcode], specific);
510 #else
512 #define param_debug 0
513 static inline void log_irqs(u32 evt) {}
514 static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
515 static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
517 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
519 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
521 writel(data, ohci->registers + offset);
524 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
526 return readl(ohci->registers + offset);
529 static inline void flush_writes(const struct fw_ohci *ohci)
531 /* Do a dummy read to flush writes. */
532 reg_read(ohci, OHCI1394_Version);
536 * Beware! read_phy_reg(), write_phy_reg(), update_phy_reg(), and
537 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
538 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
539 * directly. Exceptions are intrinsically serialized contexts like pci_probe.
541 static int read_phy_reg(struct fw_ohci *ohci, int addr)
543 u32 val;
544 int i;
546 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
547 for (i = 0; i < 3 + 100; i++) {
548 val = reg_read(ohci, OHCI1394_PhyControl);
549 if (!~val)
550 return -ENODEV; /* Card was ejected. */
552 if (val & OHCI1394_PhyControl_ReadDone)
553 return OHCI1394_PhyControl_ReadData(val);
556 * Try a few times without waiting. Sleeping is necessary
557 * only when the link/PHY interface is busy.
559 if (i >= 3)
560 msleep(1);
562 fw_error("failed to read phy reg\n");
564 return -EBUSY;
567 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
569 int i;
571 reg_write(ohci, OHCI1394_PhyControl,
572 OHCI1394_PhyControl_Write(addr, val));
573 for (i = 0; i < 3 + 100; i++) {
574 val = reg_read(ohci, OHCI1394_PhyControl);
575 if (!~val)
576 return -ENODEV; /* Card was ejected. */
578 if (!(val & OHCI1394_PhyControl_WritePending))
579 return 0;
581 if (i >= 3)
582 msleep(1);
584 fw_error("failed to write phy reg\n");
586 return -EBUSY;
589 static int update_phy_reg(struct fw_ohci *ohci, int addr,
590 int clear_bits, int set_bits)
592 int ret = read_phy_reg(ohci, addr);
593 if (ret < 0)
594 return ret;
597 * The interrupt status bits are cleared by writing a one bit.
598 * Avoid clearing them unless explicitly requested in set_bits.
600 if (addr == 5)
601 clear_bits |= PHY_INT_STATUS_BITS;
603 return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
606 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
608 int ret;
610 ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
611 if (ret < 0)
612 return ret;
614 return read_phy_reg(ohci, addr);
617 static int ohci_read_phy_reg(struct fw_card *card, int addr)
619 struct fw_ohci *ohci = fw_ohci(card);
620 int ret;
622 mutex_lock(&ohci->phy_reg_mutex);
623 ret = read_phy_reg(ohci, addr);
624 mutex_unlock(&ohci->phy_reg_mutex);
626 return ret;
629 static int ohci_update_phy_reg(struct fw_card *card, int addr,
630 int clear_bits, int set_bits)
632 struct fw_ohci *ohci = fw_ohci(card);
633 int ret;
635 mutex_lock(&ohci->phy_reg_mutex);
636 ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
637 mutex_unlock(&ohci->phy_reg_mutex);
639 return ret;
642 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
644 return page_private(ctx->pages[i]);
647 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
649 struct descriptor *d;
651 d = &ctx->descriptors[index];
652 d->branch_address &= cpu_to_le32(~0xf);
653 d->res_count = cpu_to_le16(PAGE_SIZE);
654 d->transfer_status = 0;
656 wmb(); /* finish init of new descriptors before branch_address update */
657 d = &ctx->descriptors[ctx->last_buffer_index];
658 d->branch_address |= cpu_to_le32(1);
660 ctx->last_buffer_index = index;
662 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
665 static void ar_context_release(struct ar_context *ctx)
667 unsigned int i;
669 if (ctx->buffer)
670 vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
672 for (i = 0; i < AR_BUFFERS; i++)
673 if (ctx->pages[i]) {
674 dma_unmap_page(ctx->ohci->card.device,
675 ar_buffer_bus(ctx, i),
676 PAGE_SIZE, DMA_FROM_DEVICE);
677 __free_page(ctx->pages[i]);
681 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
683 if (reg_read(ctx->ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
684 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
685 flush_writes(ctx->ohci);
687 fw_error("AR error: %s; DMA stopped\n", error_msg);
689 /* FIXME: restart? */
692 static inline unsigned int ar_next_buffer_index(unsigned int index)
694 return (index + 1) % AR_BUFFERS;
697 static inline unsigned int ar_prev_buffer_index(unsigned int index)
699 return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
702 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
704 return ar_next_buffer_index(ctx->last_buffer_index);
708 * We search for the buffer that contains the last AR packet DMA data written
709 * by the controller.
711 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
712 unsigned int *buffer_offset)
714 unsigned int i, next_i, last = ctx->last_buffer_index;
715 __le16 res_count, next_res_count;
717 i = ar_first_buffer_index(ctx);
718 res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);
720 /* A buffer that is not yet completely filled must be the last one. */
721 while (i != last && res_count == 0) {
723 /* Peek at the next descriptor. */
724 next_i = ar_next_buffer_index(i);
725 rmb(); /* read descriptors in order */
726 next_res_count = ACCESS_ONCE(
727 ctx->descriptors[next_i].res_count);
729 * If the next descriptor is still empty, we must stop at this
730 * descriptor.
732 if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
734 * The exception is when the DMA data for one packet is
735 * split over three buffers; in this case, the middle
736 * buffer's descriptor might be never updated by the
737 * controller and look still empty, and we have to peek
738 * at the third one.
740 if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
741 next_i = ar_next_buffer_index(next_i);
742 rmb();
743 next_res_count = ACCESS_ONCE(
744 ctx->descriptors[next_i].res_count);
745 if (next_res_count != cpu_to_le16(PAGE_SIZE))
746 goto next_buffer_is_active;
749 break;
752 next_buffer_is_active:
753 i = next_i;
754 res_count = next_res_count;
757 rmb(); /* read res_count before the DMA data */
759 *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
760 if (*buffer_offset > PAGE_SIZE) {
761 *buffer_offset = 0;
762 ar_context_abort(ctx, "corrupted descriptor");
765 return i;
768 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
769 unsigned int end_buffer_index,
770 unsigned int end_buffer_offset)
772 unsigned int i;
774 i = ar_first_buffer_index(ctx);
775 while (i != end_buffer_index) {
776 dma_sync_single_for_cpu(ctx->ohci->card.device,
777 ar_buffer_bus(ctx, i),
778 PAGE_SIZE, DMA_FROM_DEVICE);
779 i = ar_next_buffer_index(i);
781 if (end_buffer_offset > 0)
782 dma_sync_single_for_cpu(ctx->ohci->card.device,
783 ar_buffer_bus(ctx, i),
784 end_buffer_offset, DMA_FROM_DEVICE);
787 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
788 #define cond_le32_to_cpu(v) \
789 (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
790 #else
791 #define cond_le32_to_cpu(v) le32_to_cpu(v)
792 #endif
794 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
796 struct fw_ohci *ohci = ctx->ohci;
797 struct fw_packet p;
798 u32 status, length, tcode;
799 int evt;
801 p.header[0] = cond_le32_to_cpu(buffer[0]);
802 p.header[1] = cond_le32_to_cpu(buffer[1]);
803 p.header[2] = cond_le32_to_cpu(buffer[2]);
805 tcode = (p.header[0] >> 4) & 0x0f;
806 switch (tcode) {
807 case TCODE_WRITE_QUADLET_REQUEST:
808 case TCODE_READ_QUADLET_RESPONSE:
809 p.header[3] = (__force __u32) buffer[3];
810 p.header_length = 16;
811 p.payload_length = 0;
812 break;
814 case TCODE_READ_BLOCK_REQUEST :
815 p.header[3] = cond_le32_to_cpu(buffer[3]);
816 p.header_length = 16;
817 p.payload_length = 0;
818 break;
820 case TCODE_WRITE_BLOCK_REQUEST:
821 case TCODE_READ_BLOCK_RESPONSE:
822 case TCODE_LOCK_REQUEST:
823 case TCODE_LOCK_RESPONSE:
824 p.header[3] = cond_le32_to_cpu(buffer[3]);
825 p.header_length = 16;
826 p.payload_length = p.header[3] >> 16;
827 if (p.payload_length > MAX_ASYNC_PAYLOAD) {
828 ar_context_abort(ctx, "invalid packet length");
829 return NULL;
831 break;
833 case TCODE_WRITE_RESPONSE:
834 case TCODE_READ_QUADLET_REQUEST:
835 case OHCI_TCODE_PHY_PACKET:
836 p.header_length = 12;
837 p.payload_length = 0;
838 break;
840 default:
841 ar_context_abort(ctx, "invalid tcode");
842 return NULL;
845 p.payload = (void *) buffer + p.header_length;
847 /* FIXME: What to do about evt_* errors? */
848 length = (p.header_length + p.payload_length + 3) / 4;
849 status = cond_le32_to_cpu(buffer[length]);
850 evt = (status >> 16) & 0x1f;
852 p.ack = evt - 16;
853 p.speed = (status >> 21) & 0x7;
854 p.timestamp = status & 0xffff;
855 p.generation = ohci->request_generation;
857 log_ar_at_event('R', p.speed, p.header, evt);
860 * Several controllers, notably from NEC and VIA, forget to
861 * write ack_complete status at PHY packet reception.
863 if (evt == OHCI1394_evt_no_status &&
864 (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
865 p.ack = ACK_COMPLETE;
868 * The OHCI bus reset handler synthesizes a PHY packet with
869 * the new generation number when a bus reset happens (see
870 * section 8.4.2.3). This helps us determine when a request
871 * was received and make sure we send the response in the same
872 * generation. We only need this for requests; for responses
873 * we use the unique tlabel for finding the matching
874 * request.
876 * Alas some chips sometimes emit bus reset packets with a
877 * wrong generation. We set the correct generation for these
878 * at a slightly incorrect time (in bus_reset_work).
880 if (evt == OHCI1394_evt_bus_reset) {
881 if (!(ohci->quirks & QUIRK_RESET_PACKET))
882 ohci->request_generation = (p.header[2] >> 16) & 0xff;
883 } else if (ctx == &ohci->ar_request_ctx) {
884 fw_core_handle_request(&ohci->card, &p);
885 } else {
886 fw_core_handle_response(&ohci->card, &p);
889 return buffer + length + 1;
892 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
894 void *next;
896 while (p < end) {
897 next = handle_ar_packet(ctx, p);
898 if (!next)
899 return p;
900 p = next;
903 return p;
906 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
908 unsigned int i;
910 i = ar_first_buffer_index(ctx);
911 while (i != end_buffer) {
912 dma_sync_single_for_device(ctx->ohci->card.device,
913 ar_buffer_bus(ctx, i),
914 PAGE_SIZE, DMA_FROM_DEVICE);
915 ar_context_link_page(ctx, i);
916 i = ar_next_buffer_index(i);
920 static void ar_context_tasklet(unsigned long data)
922 struct ar_context *ctx = (struct ar_context *)data;
923 unsigned int end_buffer_index, end_buffer_offset;
924 void *p, *end;
926 p = ctx->pointer;
927 if (!p)
928 return;
930 end_buffer_index = ar_search_last_active_buffer(ctx,
931 &end_buffer_offset);
932 ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
933 end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
935 if (end_buffer_index < ar_first_buffer_index(ctx)) {
937 * The filled part of the overall buffer wraps around; handle
938 * all packets up to the buffer end here. If the last packet
939 * wraps around, its tail will be visible after the buffer end
940 * because the buffer start pages are mapped there again.
942 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
943 p = handle_ar_packets(ctx, p, buffer_end);
944 if (p < buffer_end)
945 goto error;
946 /* adjust p to point back into the actual buffer */
947 p -= AR_BUFFERS * PAGE_SIZE;
950 p = handle_ar_packets(ctx, p, end);
951 if (p != end) {
952 if (p > end)
953 ar_context_abort(ctx, "inconsistent descriptor");
954 goto error;
957 ctx->pointer = p;
958 ar_recycle_buffers(ctx, end_buffer_index);
960 return;
962 error:
963 ctx->pointer = NULL;
966 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
967 unsigned int descriptors_offset, u32 regs)
969 unsigned int i;
970 dma_addr_t dma_addr;
971 struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
972 struct descriptor *d;
974 ctx->regs = regs;
975 ctx->ohci = ohci;
976 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
978 for (i = 0; i < AR_BUFFERS; i++) {
979 ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
980 if (!ctx->pages[i])
981 goto out_of_memory;
982 dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
983 0, PAGE_SIZE, DMA_FROM_DEVICE);
984 if (dma_mapping_error(ohci->card.device, dma_addr)) {
985 __free_page(ctx->pages[i]);
986 ctx->pages[i] = NULL;
987 goto out_of_memory;
989 set_page_private(ctx->pages[i], dma_addr);
992 for (i = 0; i < AR_BUFFERS; i++)
993 pages[i] = ctx->pages[i];
994 for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
995 pages[AR_BUFFERS + i] = ctx->pages[i];
996 ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
997 -1, PAGE_KERNEL);
998 if (!ctx->buffer)
999 goto out_of_memory;
1001 ctx->descriptors = ohci->misc_buffer + descriptors_offset;
1002 ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1004 for (i = 0; i < AR_BUFFERS; i++) {
1005 d = &ctx->descriptors[i];
1006 d->req_count = cpu_to_le16(PAGE_SIZE);
1007 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1008 DESCRIPTOR_STATUS |
1009 DESCRIPTOR_BRANCH_ALWAYS);
1010 d->data_address = cpu_to_le32(ar_buffer_bus(ctx, i));
1011 d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1012 ar_next_buffer_index(i) * sizeof(struct descriptor));
1015 return 0;
1017 out_of_memory:
1018 ar_context_release(ctx);
1020 return -ENOMEM;
1023 static void ar_context_run(struct ar_context *ctx)
1025 unsigned int i;
1027 for (i = 0; i < AR_BUFFERS; i++)
1028 ar_context_link_page(ctx, i);
1030 ctx->pointer = ctx->buffer;
1032 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1033 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1036 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1038 __le16 branch;
1040 branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1042 /* figure out which descriptor the branch address goes in */
1043 if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1044 return d;
1045 else
1046 return d + z - 1;
1049 static void context_tasklet(unsigned long data)
1051 struct context *ctx = (struct context *) data;
1052 struct descriptor *d, *last;
1053 u32 address;
1054 int z;
1055 struct descriptor_buffer *desc;
1057 desc = list_entry(ctx->buffer_list.next,
1058 struct descriptor_buffer, list);
1059 last = ctx->last;
1060 while (last->branch_address != 0) {
1061 struct descriptor_buffer *old_desc = desc;
1062 address = le32_to_cpu(last->branch_address);
1063 z = address & 0xf;
1064 address &= ~0xf;
1065 ctx->current_bus = address;
1067 /* If the branch address points to a buffer outside of the
1068 * current buffer, advance to the next buffer. */
1069 if (address < desc->buffer_bus ||
1070 address >= desc->buffer_bus + desc->used)
1071 desc = list_entry(desc->list.next,
1072 struct descriptor_buffer, list);
1073 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1074 last = find_branch_descriptor(d, z);
1076 if (!ctx->callback(ctx, d, last))
1077 break;
1079 if (old_desc != desc) {
1080 /* If we've advanced to the next buffer, move the
1081 * previous buffer to the free list. */
1082 unsigned long flags;
1083 old_desc->used = 0;
1084 spin_lock_irqsave(&ctx->ohci->lock, flags);
1085 list_move_tail(&old_desc->list, &ctx->buffer_list);
1086 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1088 ctx->last = last;
1093 * Allocate a new buffer and add it to the list of free buffers for this
1094 * context. Must be called with ohci->lock held.
1096 static int context_add_buffer(struct context *ctx)
1098 struct descriptor_buffer *desc;
1099 dma_addr_t uninitialized_var(bus_addr);
1100 int offset;
1103 * 16MB of descriptors should be far more than enough for any DMA
1104 * program. This will catch run-away userspace or DoS attacks.
1106 if (ctx->total_allocation >= 16*1024*1024)
1107 return -ENOMEM;
1109 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1110 &bus_addr, GFP_ATOMIC);
1111 if (!desc)
1112 return -ENOMEM;
1114 offset = (void *)&desc->buffer - (void *)desc;
1115 desc->buffer_size = PAGE_SIZE - offset;
1116 desc->buffer_bus = bus_addr + offset;
1117 desc->used = 0;
1119 list_add_tail(&desc->list, &ctx->buffer_list);
1120 ctx->total_allocation += PAGE_SIZE;
1122 return 0;
1125 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1126 u32 regs, descriptor_callback_t callback)
1128 ctx->ohci = ohci;
1129 ctx->regs = regs;
1130 ctx->total_allocation = 0;
1132 INIT_LIST_HEAD(&ctx->buffer_list);
1133 if (context_add_buffer(ctx) < 0)
1134 return -ENOMEM;
1136 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1137 struct descriptor_buffer, list);
1139 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1140 ctx->callback = callback;
1143 * We put a dummy descriptor in the buffer that has a NULL
1144 * branch address and looks like it's been sent. That way we
1145 * have a descriptor to append DMA programs to.
1147 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1148 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1149 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1150 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1151 ctx->last = ctx->buffer_tail->buffer;
1152 ctx->prev = ctx->buffer_tail->buffer;
1154 return 0;
1157 static void context_release(struct context *ctx)
1159 struct fw_card *card = &ctx->ohci->card;
1160 struct descriptor_buffer *desc, *tmp;
1162 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1163 dma_free_coherent(card->device, PAGE_SIZE, desc,
1164 desc->buffer_bus -
1165 ((void *)&desc->buffer - (void *)desc));
1168 /* Must be called with ohci->lock held */
1169 static struct descriptor *context_get_descriptors(struct context *ctx,
1170 int z, dma_addr_t *d_bus)
1172 struct descriptor *d = NULL;
1173 struct descriptor_buffer *desc = ctx->buffer_tail;
1175 if (z * sizeof(*d) > desc->buffer_size)
1176 return NULL;
1178 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1179 /* No room for the descriptor in this buffer, so advance to the
1180 * next one. */
1182 if (desc->list.next == &ctx->buffer_list) {
1183 /* If there is no free buffer next in the list,
1184 * allocate one. */
1185 if (context_add_buffer(ctx) < 0)
1186 return NULL;
1188 desc = list_entry(desc->list.next,
1189 struct descriptor_buffer, list);
1190 ctx->buffer_tail = desc;
1193 d = desc->buffer + desc->used / sizeof(*d);
1194 memset(d, 0, z * sizeof(*d));
1195 *d_bus = desc->buffer_bus + desc->used;
1197 return d;
1200 static void context_run(struct context *ctx, u32 extra)
1202 struct fw_ohci *ohci = ctx->ohci;
1204 reg_write(ohci, COMMAND_PTR(ctx->regs),
1205 le32_to_cpu(ctx->last->branch_address));
1206 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1207 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1208 ctx->running = true;
1209 flush_writes(ohci);
1212 static void context_append(struct context *ctx,
1213 struct descriptor *d, int z, int extra)
1215 dma_addr_t d_bus;
1216 struct descriptor_buffer *desc = ctx->buffer_tail;
1218 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1220 desc->used += (z + extra) * sizeof(*d);
1222 wmb(); /* finish init of new descriptors before branch_address update */
1223 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1224 ctx->prev = find_branch_descriptor(d, z);
1227 static void context_stop(struct context *ctx)
1229 u32 reg;
1230 int i;
1232 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1233 ctx->running = false;
1235 for (i = 0; i < 1000; i++) {
1236 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1237 if ((reg & CONTEXT_ACTIVE) == 0)
1238 return;
1240 if (i)
1241 udelay(10);
1243 fw_error("Error: DMA context still active (0x%08x)\n", reg);
1246 struct driver_data {
1247 u8 inline_data[8];
1248 struct fw_packet *packet;
1252 * This function apppends a packet to the DMA queue for transmission.
1253 * Must always be called with the ochi->lock held to ensure proper
1254 * generation handling and locking around packet queue manipulation.
1256 static int at_context_queue_packet(struct context *ctx,
1257 struct fw_packet *packet)
1259 struct fw_ohci *ohci = ctx->ohci;
1260 dma_addr_t d_bus, uninitialized_var(payload_bus);
1261 struct driver_data *driver_data;
1262 struct descriptor *d, *last;
1263 __le32 *header;
1264 int z, tcode;
1266 d = context_get_descriptors(ctx, 4, &d_bus);
1267 if (d == NULL) {
1268 packet->ack = RCODE_SEND_ERROR;
1269 return -1;
1272 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1273 d[0].res_count = cpu_to_le16(packet->timestamp);
1276 * The DMA format for asyncronous link packets is different
1277 * from the IEEE1394 layout, so shift the fields around
1278 * accordingly.
1281 tcode = (packet->header[0] >> 4) & 0x0f;
1282 header = (__le32 *) &d[1];
1283 switch (tcode) {
1284 case TCODE_WRITE_QUADLET_REQUEST:
1285 case TCODE_WRITE_BLOCK_REQUEST:
1286 case TCODE_WRITE_RESPONSE:
1287 case TCODE_READ_QUADLET_REQUEST:
1288 case TCODE_READ_BLOCK_REQUEST:
1289 case TCODE_READ_QUADLET_RESPONSE:
1290 case TCODE_READ_BLOCK_RESPONSE:
1291 case TCODE_LOCK_REQUEST:
1292 case TCODE_LOCK_RESPONSE:
1293 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1294 (packet->speed << 16));
1295 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1296 (packet->header[0] & 0xffff0000));
1297 header[2] = cpu_to_le32(packet->header[2]);
1299 if (TCODE_IS_BLOCK_PACKET(tcode))
1300 header[3] = cpu_to_le32(packet->header[3]);
1301 else
1302 header[3] = (__force __le32) packet->header[3];
1304 d[0].req_count = cpu_to_le16(packet->header_length);
1305 break;
1307 case TCODE_LINK_INTERNAL:
1308 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1309 (packet->speed << 16));
1310 header[1] = cpu_to_le32(packet->header[1]);
1311 header[2] = cpu_to_le32(packet->header[2]);
1312 d[0].req_count = cpu_to_le16(12);
1314 if (is_ping_packet(&packet->header[1]))
1315 d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1316 break;
1318 case TCODE_STREAM_DATA:
1319 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1320 (packet->speed << 16));
1321 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1322 d[0].req_count = cpu_to_le16(8);
1323 break;
1325 default:
1326 /* BUG(); */
1327 packet->ack = RCODE_SEND_ERROR;
1328 return -1;
1331 BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1332 driver_data = (struct driver_data *) &d[3];
1333 driver_data->packet = packet;
1334 packet->driver_data = driver_data;
1336 if (packet->payload_length > 0) {
1337 if (packet->payload_length > sizeof(driver_data->inline_data)) {
1338 payload_bus = dma_map_single(ohci->card.device,
1339 packet->payload,
1340 packet->payload_length,
1341 DMA_TO_DEVICE);
1342 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1343 packet->ack = RCODE_SEND_ERROR;
1344 return -1;
1346 packet->payload_bus = payload_bus;
1347 packet->payload_mapped = true;
1348 } else {
1349 memcpy(driver_data->inline_data, packet->payload,
1350 packet->payload_length);
1351 payload_bus = d_bus + 3 * sizeof(*d);
1354 d[2].req_count = cpu_to_le16(packet->payload_length);
1355 d[2].data_address = cpu_to_le32(payload_bus);
1356 last = &d[2];
1357 z = 3;
1358 } else {
1359 last = &d[0];
1360 z = 2;
1363 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1364 DESCRIPTOR_IRQ_ALWAYS |
1365 DESCRIPTOR_BRANCH_ALWAYS);
1367 /* FIXME: Document how the locking works. */
1368 if (ohci->generation != packet->generation) {
1369 if (packet->payload_mapped)
1370 dma_unmap_single(ohci->card.device, payload_bus,
1371 packet->payload_length, DMA_TO_DEVICE);
1372 packet->ack = RCODE_GENERATION;
1373 return -1;
1376 context_append(ctx, d, z, 4 - z);
1378 if (ctx->running)
1379 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1380 else
1381 context_run(ctx, 0);
1383 return 0;
1386 static void at_context_flush(struct context *ctx)
1388 tasklet_disable(&ctx->tasklet);
1390 ctx->flushing = true;
1391 context_tasklet((unsigned long)ctx);
1392 ctx->flushing = false;
1394 tasklet_enable(&ctx->tasklet);
1397 static int handle_at_packet(struct context *context,
1398 struct descriptor *d,
1399 struct descriptor *last)
1401 struct driver_data *driver_data;
1402 struct fw_packet *packet;
1403 struct fw_ohci *ohci = context->ohci;
1404 int evt;
1406 if (last->transfer_status == 0 && !context->flushing)
1407 /* This descriptor isn't done yet, stop iteration. */
1408 return 0;
1410 driver_data = (struct driver_data *) &d[3];
1411 packet = driver_data->packet;
1412 if (packet == NULL)
1413 /* This packet was cancelled, just continue. */
1414 return 1;
1416 if (packet->payload_mapped)
1417 dma_unmap_single(ohci->card.device, packet->payload_bus,
1418 packet->payload_length, DMA_TO_DEVICE);
1420 evt = le16_to_cpu(last->transfer_status) & 0x1f;
1421 packet->timestamp = le16_to_cpu(last->res_count);
1423 log_ar_at_event('T', packet->speed, packet->header, evt);
1425 switch (evt) {
1426 case OHCI1394_evt_timeout:
1427 /* Async response transmit timed out. */
1428 packet->ack = RCODE_CANCELLED;
1429 break;
1431 case OHCI1394_evt_flushed:
1433 * The packet was flushed should give same error as
1434 * when we try to use a stale generation count.
1436 packet->ack = RCODE_GENERATION;
1437 break;
1439 case OHCI1394_evt_missing_ack:
1440 if (context->flushing)
1441 packet->ack = RCODE_GENERATION;
1442 else {
1444 * Using a valid (current) generation count, but the
1445 * node is not on the bus or not sending acks.
1447 packet->ack = RCODE_NO_ACK;
1449 break;
1451 case ACK_COMPLETE + 0x10:
1452 case ACK_PENDING + 0x10:
1453 case ACK_BUSY_X + 0x10:
1454 case ACK_BUSY_A + 0x10:
1455 case ACK_BUSY_B + 0x10:
1456 case ACK_DATA_ERROR + 0x10:
1457 case ACK_TYPE_ERROR + 0x10:
1458 packet->ack = evt - 0x10;
1459 break;
1461 case OHCI1394_evt_no_status:
1462 if (context->flushing) {
1463 packet->ack = RCODE_GENERATION;
1464 break;
1466 /* fall through */
1468 default:
1469 packet->ack = RCODE_SEND_ERROR;
1470 break;
1473 packet->callback(packet, &ohci->card, packet->ack);
1475 return 1;
1478 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1479 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1480 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1481 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1482 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1484 static void handle_local_rom(struct fw_ohci *ohci,
1485 struct fw_packet *packet, u32 csr)
1487 struct fw_packet response;
1488 int tcode, length, i;
1490 tcode = HEADER_GET_TCODE(packet->header[0]);
1491 if (TCODE_IS_BLOCK_PACKET(tcode))
1492 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1493 else
1494 length = 4;
1496 i = csr - CSR_CONFIG_ROM;
1497 if (i + length > CONFIG_ROM_SIZE) {
1498 fw_fill_response(&response, packet->header,
1499 RCODE_ADDRESS_ERROR, NULL, 0);
1500 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1501 fw_fill_response(&response, packet->header,
1502 RCODE_TYPE_ERROR, NULL, 0);
1503 } else {
1504 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1505 (void *) ohci->config_rom + i, length);
1508 fw_core_handle_response(&ohci->card, &response);
1511 static void handle_local_lock(struct fw_ohci *ohci,
1512 struct fw_packet *packet, u32 csr)
1514 struct fw_packet response;
1515 int tcode, length, ext_tcode, sel, try;
1516 __be32 *payload, lock_old;
1517 u32 lock_arg, lock_data;
1519 tcode = HEADER_GET_TCODE(packet->header[0]);
1520 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1521 payload = packet->payload;
1522 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1524 if (tcode == TCODE_LOCK_REQUEST &&
1525 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1526 lock_arg = be32_to_cpu(payload[0]);
1527 lock_data = be32_to_cpu(payload[1]);
1528 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1529 lock_arg = 0;
1530 lock_data = 0;
1531 } else {
1532 fw_fill_response(&response, packet->header,
1533 RCODE_TYPE_ERROR, NULL, 0);
1534 goto out;
1537 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1538 reg_write(ohci, OHCI1394_CSRData, lock_data);
1539 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1540 reg_write(ohci, OHCI1394_CSRControl, sel);
1542 for (try = 0; try < 20; try++)
1543 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1544 lock_old = cpu_to_be32(reg_read(ohci,
1545 OHCI1394_CSRData));
1546 fw_fill_response(&response, packet->header,
1547 RCODE_COMPLETE,
1548 &lock_old, sizeof(lock_old));
1549 goto out;
1552 fw_error("swap not done (CSR lock timeout)\n");
1553 fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1555 out:
1556 fw_core_handle_response(&ohci->card, &response);
1559 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1561 u64 offset, csr;
1563 if (ctx == &ctx->ohci->at_request_ctx) {
1564 packet->ack = ACK_PENDING;
1565 packet->callback(packet, &ctx->ohci->card, packet->ack);
1568 offset =
1569 ((unsigned long long)
1570 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1571 packet->header[2];
1572 csr = offset - CSR_REGISTER_BASE;
1574 /* Handle config rom reads. */
1575 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1576 handle_local_rom(ctx->ohci, packet, csr);
1577 else switch (csr) {
1578 case CSR_BUS_MANAGER_ID:
1579 case CSR_BANDWIDTH_AVAILABLE:
1580 case CSR_CHANNELS_AVAILABLE_HI:
1581 case CSR_CHANNELS_AVAILABLE_LO:
1582 handle_local_lock(ctx->ohci, packet, csr);
1583 break;
1584 default:
1585 if (ctx == &ctx->ohci->at_request_ctx)
1586 fw_core_handle_request(&ctx->ohci->card, packet);
1587 else
1588 fw_core_handle_response(&ctx->ohci->card, packet);
1589 break;
1592 if (ctx == &ctx->ohci->at_response_ctx) {
1593 packet->ack = ACK_COMPLETE;
1594 packet->callback(packet, &ctx->ohci->card, packet->ack);
1598 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1600 unsigned long flags;
1601 int ret;
1603 spin_lock_irqsave(&ctx->ohci->lock, flags);
1605 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1606 ctx->ohci->generation == packet->generation) {
1607 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1608 handle_local_request(ctx, packet);
1609 return;
1612 ret = at_context_queue_packet(ctx, packet);
1613 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1615 if (ret < 0)
1616 packet->callback(packet, &ctx->ohci->card, packet->ack);
1620 static void detect_dead_context(struct fw_ohci *ohci,
1621 const char *name, unsigned int regs)
1623 u32 ctl;
1625 ctl = reg_read(ohci, CONTROL_SET(regs));
1626 if (ctl & CONTEXT_DEAD) {
1627 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
1628 fw_error("DMA context %s has stopped, error code: %s\n",
1629 name, evts[ctl & 0x1f]);
1630 #else
1631 fw_error("DMA context %s has stopped, error code: %#x\n",
1632 name, ctl & 0x1f);
1633 #endif
1637 static void handle_dead_contexts(struct fw_ohci *ohci)
1639 unsigned int i;
1640 char name[8];
1642 detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1643 detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1644 detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1645 detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1646 for (i = 0; i < 32; ++i) {
1647 if (!(ohci->it_context_support & (1 << i)))
1648 continue;
1649 sprintf(name, "IT%u", i);
1650 detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1652 for (i = 0; i < 32; ++i) {
1653 if (!(ohci->ir_context_support & (1 << i)))
1654 continue;
1655 sprintf(name, "IR%u", i);
1656 detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1658 /* TODO: maybe try to flush and restart the dead contexts */
1661 static u32 cycle_timer_ticks(u32 cycle_timer)
1663 u32 ticks;
1665 ticks = cycle_timer & 0xfff;
1666 ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1667 ticks += (3072 * 8000) * (cycle_timer >> 25);
1669 return ticks;
1673 * Some controllers exhibit one or more of the following bugs when updating the
1674 * iso cycle timer register:
1675 * - When the lowest six bits are wrapping around to zero, a read that happens
1676 * at the same time will return garbage in the lowest ten bits.
1677 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1678 * not incremented for about 60 ns.
1679 * - Occasionally, the entire register reads zero.
1681 * To catch these, we read the register three times and ensure that the
1682 * difference between each two consecutive reads is approximately the same, i.e.
1683 * less than twice the other. Furthermore, any negative difference indicates an
1684 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1685 * execute, so we have enough precision to compute the ratio of the differences.)
1687 static u32 get_cycle_time(struct fw_ohci *ohci)
1689 u32 c0, c1, c2;
1690 u32 t0, t1, t2;
1691 s32 diff01, diff12;
1692 int i;
1694 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1696 if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1697 i = 0;
1698 c1 = c2;
1699 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1700 do {
1701 c0 = c1;
1702 c1 = c2;
1703 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1704 t0 = cycle_timer_ticks(c0);
1705 t1 = cycle_timer_ticks(c1);
1706 t2 = cycle_timer_ticks(c2);
1707 diff01 = t1 - t0;
1708 diff12 = t2 - t1;
1709 } while ((diff01 <= 0 || diff12 <= 0 ||
1710 diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1711 && i++ < 20);
1714 return c2;
1718 * This function has to be called at least every 64 seconds. The bus_time
1719 * field stores not only the upper 25 bits of the BUS_TIME register but also
1720 * the most significant bit of the cycle timer in bit 6 so that we can detect
1721 * changes in this bit.
1723 static u32 update_bus_time(struct fw_ohci *ohci)
1725 u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1727 if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1728 ohci->bus_time += 0x40;
1730 return ohci->bus_time | cycle_time_seconds;
1733 static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1735 int reg;
1737 mutex_lock(&ohci->phy_reg_mutex);
1738 reg = write_phy_reg(ohci, 7, port_index);
1739 if (reg >= 0)
1740 reg = read_phy_reg(ohci, 8);
1741 mutex_unlock(&ohci->phy_reg_mutex);
1742 if (reg < 0)
1743 return reg;
1745 switch (reg & 0x0f) {
1746 case 0x06:
1747 return 2; /* is child node (connected to parent node) */
1748 case 0x0e:
1749 return 3; /* is parent node (connected to child node) */
1751 return 1; /* not connected */
1754 static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1755 int self_id_count)
1757 int i;
1758 u32 entry;
1760 for (i = 0; i < self_id_count; i++) {
1761 entry = ohci->self_id_buffer[i];
1762 if ((self_id & 0xff000000) == (entry & 0xff000000))
1763 return -1;
1764 if ((self_id & 0xff000000) < (entry & 0xff000000))
1765 return i;
1767 return i;
1771 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1772 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1773 * Construct the selfID from phy register contents.
1774 * FIXME: How to determine the selfID.i flag?
1776 static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1778 int reg, i, pos, status;
1779 /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1780 u32 self_id = 0x8040c800;
1782 reg = reg_read(ohci, OHCI1394_NodeID);
1783 if (!(reg & OHCI1394_NodeID_idValid)) {
1784 fw_notify("node ID not valid, new bus reset in progress\n");
1785 return -EBUSY;
1787 self_id |= ((reg & 0x3f) << 24); /* phy ID */
1789 reg = ohci_read_phy_reg(&ohci->card, 4);
1790 if (reg < 0)
1791 return reg;
1792 self_id |= ((reg & 0x07) << 8); /* power class */
1794 reg = ohci_read_phy_reg(&ohci->card, 1);
1795 if (reg < 0)
1796 return reg;
1797 self_id |= ((reg & 0x3f) << 16); /* gap count */
1799 for (i = 0; i < 3; i++) {
1800 status = get_status_for_port(ohci, i);
1801 if (status < 0)
1802 return status;
1803 self_id |= ((status & 0x3) << (6 - (i * 2)));
1806 pos = get_self_id_pos(ohci, self_id, self_id_count);
1807 if (pos >= 0) {
1808 memmove(&(ohci->self_id_buffer[pos+1]),
1809 &(ohci->self_id_buffer[pos]),
1810 (self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1811 ohci->self_id_buffer[pos] = self_id;
1812 self_id_count++;
1814 return self_id_count;
1817 static void bus_reset_work(struct work_struct *work)
1819 struct fw_ohci *ohci =
1820 container_of(work, struct fw_ohci, bus_reset_work);
1821 int self_id_count, i, j, reg;
1822 int generation, new_generation;
1823 unsigned long flags;
1824 void *free_rom = NULL;
1825 dma_addr_t free_rom_bus = 0;
1826 bool is_new_root;
1828 reg = reg_read(ohci, OHCI1394_NodeID);
1829 if (!(reg & OHCI1394_NodeID_idValid)) {
1830 fw_notify("node ID not valid, new bus reset in progress\n");
1831 return;
1833 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1834 fw_notify("malconfigured bus\n");
1835 return;
1837 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1838 OHCI1394_NodeID_nodeNumber);
1840 is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1841 if (!(ohci->is_root && is_new_root))
1842 reg_write(ohci, OHCI1394_LinkControlSet,
1843 OHCI1394_LinkControl_cycleMaster);
1844 ohci->is_root = is_new_root;
1846 reg = reg_read(ohci, OHCI1394_SelfIDCount);
1847 if (reg & OHCI1394_SelfIDCount_selfIDError) {
1848 fw_notify("inconsistent self IDs\n");
1849 return;
1852 * The count in the SelfIDCount register is the number of
1853 * bytes in the self ID receive buffer. Since we also receive
1854 * the inverted quadlets and a header quadlet, we shift one
1855 * bit extra to get the actual number of self IDs.
1857 self_id_count = (reg >> 3) & 0xff;
1859 if (self_id_count > 252) {
1860 fw_notify("inconsistent self IDs\n");
1861 return;
1864 generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1865 rmb();
1867 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1868 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1870 * If the invalid data looks like a cycle start packet,
1871 * it's likely to be the result of the cycle master
1872 * having a wrong gap count. In this case, the self IDs
1873 * so far are valid and should be processed so that the
1874 * bus manager can then correct the gap count.
1876 if (cond_le32_to_cpu(ohci->self_id_cpu[i])
1877 == 0xffff008f) {
1878 fw_notify("ignoring spurious self IDs\n");
1879 self_id_count = j;
1880 break;
1881 } else {
1882 fw_notify("inconsistent self IDs\n");
1883 return;
1886 ohci->self_id_buffer[j] =
1887 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1890 if (ohci->quirks & QUIRK_TI_SLLZ059) {
1891 self_id_count = find_and_insert_self_id(ohci, self_id_count);
1892 if (self_id_count < 0) {
1893 fw_notify("could not construct local self ID\n");
1894 return;
1898 if (self_id_count == 0) {
1899 fw_notify("inconsistent self IDs\n");
1900 return;
1902 rmb();
1905 * Check the consistency of the self IDs we just read. The
1906 * problem we face is that a new bus reset can start while we
1907 * read out the self IDs from the DMA buffer. If this happens,
1908 * the DMA buffer will be overwritten with new self IDs and we
1909 * will read out inconsistent data. The OHCI specification
1910 * (section 11.2) recommends a technique similar to
1911 * linux/seqlock.h, where we remember the generation of the
1912 * self IDs in the buffer before reading them out and compare
1913 * it to the current generation after reading them out. If
1914 * the two generations match we know we have a consistent set
1915 * of self IDs.
1918 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1919 if (new_generation != generation) {
1920 fw_notify("recursive bus reset detected, "
1921 "discarding self ids\n");
1922 return;
1925 /* FIXME: Document how the locking works. */
1926 spin_lock_irqsave(&ohci->lock, flags);
1928 ohci->generation = -1; /* prevent AT packet queueing */
1929 context_stop(&ohci->at_request_ctx);
1930 context_stop(&ohci->at_response_ctx);
1932 spin_unlock_irqrestore(&ohci->lock, flags);
1935 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
1936 * packets in the AT queues and software needs to drain them.
1937 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
1939 at_context_flush(&ohci->at_request_ctx);
1940 at_context_flush(&ohci->at_response_ctx);
1942 spin_lock_irqsave(&ohci->lock, flags);
1944 ohci->generation = generation;
1945 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1947 if (ohci->quirks & QUIRK_RESET_PACKET)
1948 ohci->request_generation = generation;
1951 * This next bit is unrelated to the AT context stuff but we
1952 * have to do it under the spinlock also. If a new config rom
1953 * was set up before this reset, the old one is now no longer
1954 * in use and we can free it. Update the config rom pointers
1955 * to point to the current config rom and clear the
1956 * next_config_rom pointer so a new update can take place.
1959 if (ohci->next_config_rom != NULL) {
1960 if (ohci->next_config_rom != ohci->config_rom) {
1961 free_rom = ohci->config_rom;
1962 free_rom_bus = ohci->config_rom_bus;
1964 ohci->config_rom = ohci->next_config_rom;
1965 ohci->config_rom_bus = ohci->next_config_rom_bus;
1966 ohci->next_config_rom = NULL;
1969 * Restore config_rom image and manually update
1970 * config_rom registers. Writing the header quadlet
1971 * will indicate that the config rom is ready, so we
1972 * do that last.
1974 reg_write(ohci, OHCI1394_BusOptions,
1975 be32_to_cpu(ohci->config_rom[2]));
1976 ohci->config_rom[0] = ohci->next_header;
1977 reg_write(ohci, OHCI1394_ConfigROMhdr,
1978 be32_to_cpu(ohci->next_header));
1981 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1982 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1983 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1984 #endif
1986 spin_unlock_irqrestore(&ohci->lock, flags);
1988 if (free_rom)
1989 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1990 free_rom, free_rom_bus);
1992 log_selfids(ohci->node_id, generation,
1993 self_id_count, ohci->self_id_buffer);
1995 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1996 self_id_count, ohci->self_id_buffer,
1997 ohci->csr_state_setclear_abdicate);
1998 ohci->csr_state_setclear_abdicate = false;
2001 static irqreturn_t irq_handler(int irq, void *data)
2003 struct fw_ohci *ohci = data;
2004 u32 event, iso_event;
2005 int i;
2007 event = reg_read(ohci, OHCI1394_IntEventClear);
2009 if (!event || !~event)
2010 return IRQ_NONE;
2013 * busReset and postedWriteErr must not be cleared yet
2014 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2016 reg_write(ohci, OHCI1394_IntEventClear,
2017 event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2018 log_irqs(event);
2020 if (event & OHCI1394_selfIDComplete)
2021 queue_work(fw_workqueue, &ohci->bus_reset_work);
2023 if (event & OHCI1394_RQPkt)
2024 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2026 if (event & OHCI1394_RSPkt)
2027 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2029 if (event & OHCI1394_reqTxComplete)
2030 tasklet_schedule(&ohci->at_request_ctx.tasklet);
2032 if (event & OHCI1394_respTxComplete)
2033 tasklet_schedule(&ohci->at_response_ctx.tasklet);
2035 if (event & OHCI1394_isochRx) {
2036 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2037 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2039 while (iso_event) {
2040 i = ffs(iso_event) - 1;
2041 tasklet_schedule(
2042 &ohci->ir_context_list[i].context.tasklet);
2043 iso_event &= ~(1 << i);
2047 if (event & OHCI1394_isochTx) {
2048 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2049 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2051 while (iso_event) {
2052 i = ffs(iso_event) - 1;
2053 tasklet_schedule(
2054 &ohci->it_context_list[i].context.tasklet);
2055 iso_event &= ~(1 << i);
2059 if (unlikely(event & OHCI1394_regAccessFail))
2060 fw_error("Register access failure - "
2061 "please notify linux1394-devel@lists.sf.net\n");
2063 if (unlikely(event & OHCI1394_postedWriteErr)) {
2064 reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2065 reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2066 reg_write(ohci, OHCI1394_IntEventClear,
2067 OHCI1394_postedWriteErr);
2068 if (printk_ratelimit())
2069 fw_error("PCI posted write error\n");
2072 if (unlikely(event & OHCI1394_cycleTooLong)) {
2073 if (printk_ratelimit())
2074 fw_notify("isochronous cycle too long\n");
2075 reg_write(ohci, OHCI1394_LinkControlSet,
2076 OHCI1394_LinkControl_cycleMaster);
2079 if (unlikely(event & OHCI1394_cycleInconsistent)) {
2081 * We need to clear this event bit in order to make
2082 * cycleMatch isochronous I/O work. In theory we should
2083 * stop active cycleMatch iso contexts now and restart
2084 * them at least two cycles later. (FIXME?)
2086 if (printk_ratelimit())
2087 fw_notify("isochronous cycle inconsistent\n");
2090 if (unlikely(event & OHCI1394_unrecoverableError))
2091 handle_dead_contexts(ohci);
2093 if (event & OHCI1394_cycle64Seconds) {
2094 spin_lock(&ohci->lock);
2095 update_bus_time(ohci);
2096 spin_unlock(&ohci->lock);
2097 } else
2098 flush_writes(ohci);
2100 return IRQ_HANDLED;
2103 static int software_reset(struct fw_ohci *ohci)
2105 u32 val;
2106 int i;
2108 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2109 for (i = 0; i < 500; i++) {
2110 val = reg_read(ohci, OHCI1394_HCControlSet);
2111 if (!~val)
2112 return -ENODEV; /* Card was ejected. */
2114 if (!(val & OHCI1394_HCControl_softReset))
2115 return 0;
2117 msleep(1);
2120 return -EBUSY;
2123 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2125 size_t size = length * 4;
2127 memcpy(dest, src, size);
2128 if (size < CONFIG_ROM_SIZE)
2129 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2132 static int configure_1394a_enhancements(struct fw_ohci *ohci)
2134 bool enable_1394a;
2135 int ret, clear, set, offset;
2137 /* Check if the driver should configure link and PHY. */
2138 if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2139 OHCI1394_HCControl_programPhyEnable))
2140 return 0;
2142 /* Paranoia: check whether the PHY supports 1394a, too. */
2143 enable_1394a = false;
2144 ret = read_phy_reg(ohci, 2);
2145 if (ret < 0)
2146 return ret;
2147 if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2148 ret = read_paged_phy_reg(ohci, 1, 8);
2149 if (ret < 0)
2150 return ret;
2151 if (ret >= 1)
2152 enable_1394a = true;
2155 if (ohci->quirks & QUIRK_NO_1394A)
2156 enable_1394a = false;
2158 /* Configure PHY and link consistently. */
2159 if (enable_1394a) {
2160 clear = 0;
2161 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2162 } else {
2163 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2164 set = 0;
2166 ret = update_phy_reg(ohci, 5, clear, set);
2167 if (ret < 0)
2168 return ret;
2170 if (enable_1394a)
2171 offset = OHCI1394_HCControlSet;
2172 else
2173 offset = OHCI1394_HCControlClear;
2174 reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2176 /* Clean up: configuration has been taken care of. */
2177 reg_write(ohci, OHCI1394_HCControlClear,
2178 OHCI1394_HCControl_programPhyEnable);
2180 return 0;
2183 static int probe_tsb41ba3d(struct fw_ohci *ohci)
2185 /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2186 static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2187 int reg, i;
2189 reg = read_phy_reg(ohci, 2);
2190 if (reg < 0)
2191 return reg;
2192 if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2193 return 0;
2195 for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2196 reg = read_paged_phy_reg(ohci, 1, i + 10);
2197 if (reg < 0)
2198 return reg;
2199 if (reg != id[i])
2200 return 0;
2202 return 1;
2205 static int ohci_enable(struct fw_card *card,
2206 const __be32 *config_rom, size_t length)
2208 struct fw_ohci *ohci = fw_ohci(card);
2209 struct pci_dev *dev = to_pci_dev(card->device);
2210 u32 lps, seconds, version, irqs;
2211 int i, ret;
2213 if (software_reset(ohci)) {
2214 fw_error("Failed to reset ohci card.\n");
2215 return -EBUSY;
2219 * Now enable LPS, which we need in order to start accessing
2220 * most of the registers. In fact, on some cards (ALI M5251),
2221 * accessing registers in the SClk domain without LPS enabled
2222 * will lock up the machine. Wait 50msec to make sure we have
2223 * full link enabled. However, with some cards (well, at least
2224 * a JMicron PCIe card), we have to try again sometimes.
2226 reg_write(ohci, OHCI1394_HCControlSet,
2227 OHCI1394_HCControl_LPS |
2228 OHCI1394_HCControl_postedWriteEnable);
2229 flush_writes(ohci);
2231 for (lps = 0, i = 0; !lps && i < 3; i++) {
2232 msleep(50);
2233 lps = reg_read(ohci, OHCI1394_HCControlSet) &
2234 OHCI1394_HCControl_LPS;
2237 if (!lps) {
2238 fw_error("Failed to set Link Power Status\n");
2239 return -EIO;
2242 if (ohci->quirks & QUIRK_TI_SLLZ059) {
2243 ret = probe_tsb41ba3d(ohci);
2244 if (ret < 0)
2245 return ret;
2246 if (ret)
2247 fw_notify("local TSB41BA3D phy\n");
2248 else
2249 ohci->quirks &= ~QUIRK_TI_SLLZ059;
2252 reg_write(ohci, OHCI1394_HCControlClear,
2253 OHCI1394_HCControl_noByteSwapData);
2255 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2256 reg_write(ohci, OHCI1394_LinkControlSet,
2257 OHCI1394_LinkControl_cycleTimerEnable |
2258 OHCI1394_LinkControl_cycleMaster);
2260 reg_write(ohci, OHCI1394_ATRetries,
2261 OHCI1394_MAX_AT_REQ_RETRIES |
2262 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2263 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2264 (200 << 16));
2266 seconds = lower_32_bits(get_seconds());
2267 reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
2268 ohci->bus_time = seconds & ~0x3f;
2270 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2271 if (version >= OHCI_VERSION_1_1) {
2272 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2273 0xfffffffe);
2274 card->broadcast_channel_auto_allocated = true;
2277 /* Get implemented bits of the priority arbitration request counter. */
2278 reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2279 ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2280 reg_write(ohci, OHCI1394_FairnessControl, 0);
2281 card->priority_budget_implemented = ohci->pri_req_max != 0;
2283 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
2284 reg_write(ohci, OHCI1394_IntEventClear, ~0);
2285 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2287 ret = configure_1394a_enhancements(ohci);
2288 if (ret < 0)
2289 return ret;
2291 /* Activate link_on bit and contender bit in our self ID packets.*/
2292 ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2293 if (ret < 0)
2294 return ret;
2297 * When the link is not yet enabled, the atomic config rom
2298 * update mechanism described below in ohci_set_config_rom()
2299 * is not active. We have to update ConfigRomHeader and
2300 * BusOptions manually, and the write to ConfigROMmap takes
2301 * effect immediately. We tie this to the enabling of the
2302 * link, so we have a valid config rom before enabling - the
2303 * OHCI requires that ConfigROMhdr and BusOptions have valid
2304 * values before enabling.
2306 * However, when the ConfigROMmap is written, some controllers
2307 * always read back quadlets 0 and 2 from the config rom to
2308 * the ConfigRomHeader and BusOptions registers on bus reset.
2309 * They shouldn't do that in this initial case where the link
2310 * isn't enabled. This means we have to use the same
2311 * workaround here, setting the bus header to 0 and then write
2312 * the right values in the bus reset tasklet.
2315 if (config_rom) {
2316 ohci->next_config_rom =
2317 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2318 &ohci->next_config_rom_bus,
2319 GFP_KERNEL);
2320 if (ohci->next_config_rom == NULL)
2321 return -ENOMEM;
2323 copy_config_rom(ohci->next_config_rom, config_rom, length);
2324 } else {
2326 * In the suspend case, config_rom is NULL, which
2327 * means that we just reuse the old config rom.
2329 ohci->next_config_rom = ohci->config_rom;
2330 ohci->next_config_rom_bus = ohci->config_rom_bus;
2333 ohci->next_header = ohci->next_config_rom[0];
2334 ohci->next_config_rom[0] = 0;
2335 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2336 reg_write(ohci, OHCI1394_BusOptions,
2337 be32_to_cpu(ohci->next_config_rom[2]));
2338 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2340 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2342 if (!(ohci->quirks & QUIRK_NO_MSI))
2343 pci_enable_msi(dev);
2344 if (request_irq(dev->irq, irq_handler,
2345 pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
2346 ohci_driver_name, ohci)) {
2347 fw_error("Failed to allocate interrupt %d.\n", dev->irq);
2348 pci_disable_msi(dev);
2350 if (config_rom) {
2351 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2352 ohci->next_config_rom,
2353 ohci->next_config_rom_bus);
2354 ohci->next_config_rom = NULL;
2356 return -EIO;
2359 irqs = OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2360 OHCI1394_RQPkt | OHCI1394_RSPkt |
2361 OHCI1394_isochTx | OHCI1394_isochRx |
2362 OHCI1394_postedWriteErr |
2363 OHCI1394_selfIDComplete |
2364 OHCI1394_regAccessFail |
2365 OHCI1394_cycle64Seconds |
2366 OHCI1394_cycleInconsistent |
2367 OHCI1394_unrecoverableError |
2368 OHCI1394_cycleTooLong |
2369 OHCI1394_masterIntEnable;
2370 if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2371 irqs |= OHCI1394_busReset;
2372 reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2374 reg_write(ohci, OHCI1394_HCControlSet,
2375 OHCI1394_HCControl_linkEnable |
2376 OHCI1394_HCControl_BIBimageValid);
2378 reg_write(ohci, OHCI1394_LinkControlSet,
2379 OHCI1394_LinkControl_rcvSelfID |
2380 OHCI1394_LinkControl_rcvPhyPkt);
2382 ar_context_run(&ohci->ar_request_ctx);
2383 ar_context_run(&ohci->ar_response_ctx);
2385 flush_writes(ohci);
2387 /* We are ready to go, reset bus to finish initialization. */
2388 fw_schedule_bus_reset(&ohci->card, false, true);
2390 return 0;
2393 static int ohci_set_config_rom(struct fw_card *card,
2394 const __be32 *config_rom, size_t length)
2396 struct fw_ohci *ohci;
2397 unsigned long flags;
2398 __be32 *next_config_rom;
2399 dma_addr_t uninitialized_var(next_config_rom_bus);
2401 ohci = fw_ohci(card);
2404 * When the OHCI controller is enabled, the config rom update
2405 * mechanism is a bit tricky, but easy enough to use. See
2406 * section 5.5.6 in the OHCI specification.
2408 * The OHCI controller caches the new config rom address in a
2409 * shadow register (ConfigROMmapNext) and needs a bus reset
2410 * for the changes to take place. When the bus reset is
2411 * detected, the controller loads the new values for the
2412 * ConfigRomHeader and BusOptions registers from the specified
2413 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2414 * shadow register. All automatically and atomically.
2416 * Now, there's a twist to this story. The automatic load of
2417 * ConfigRomHeader and BusOptions doesn't honor the
2418 * noByteSwapData bit, so with a be32 config rom, the
2419 * controller will load be32 values in to these registers
2420 * during the atomic update, even on litte endian
2421 * architectures. The workaround we use is to put a 0 in the
2422 * header quadlet; 0 is endian agnostic and means that the
2423 * config rom isn't ready yet. In the bus reset tasklet we
2424 * then set up the real values for the two registers.
2426 * We use ohci->lock to avoid racing with the code that sets
2427 * ohci->next_config_rom to NULL (see bus_reset_work).
2430 next_config_rom =
2431 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2432 &next_config_rom_bus, GFP_KERNEL);
2433 if (next_config_rom == NULL)
2434 return -ENOMEM;
2436 spin_lock_irqsave(&ohci->lock, flags);
2439 * If there is not an already pending config_rom update,
2440 * push our new allocation into the ohci->next_config_rom
2441 * and then mark the local variable as null so that we
2442 * won't deallocate the new buffer.
2444 * OTOH, if there is a pending config_rom update, just
2445 * use that buffer with the new config_rom data, and
2446 * let this routine free the unused DMA allocation.
2449 if (ohci->next_config_rom == NULL) {
2450 ohci->next_config_rom = next_config_rom;
2451 ohci->next_config_rom_bus = next_config_rom_bus;
2452 next_config_rom = NULL;
2455 copy_config_rom(ohci->next_config_rom, config_rom, length);
2457 ohci->next_header = config_rom[0];
2458 ohci->next_config_rom[0] = 0;
2460 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2462 spin_unlock_irqrestore(&ohci->lock, flags);
2464 /* If we didn't use the DMA allocation, delete it. */
2465 if (next_config_rom != NULL)
2466 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2467 next_config_rom, next_config_rom_bus);
2470 * Now initiate a bus reset to have the changes take
2471 * effect. We clean up the old config rom memory and DMA
2472 * mappings in the bus reset tasklet, since the OHCI
2473 * controller could need to access it before the bus reset
2474 * takes effect.
2477 fw_schedule_bus_reset(&ohci->card, true, true);
2479 return 0;
2482 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2484 struct fw_ohci *ohci = fw_ohci(card);
2486 at_context_transmit(&ohci->at_request_ctx, packet);
2489 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2491 struct fw_ohci *ohci = fw_ohci(card);
2493 at_context_transmit(&ohci->at_response_ctx, packet);
2496 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2498 struct fw_ohci *ohci = fw_ohci(card);
2499 struct context *ctx = &ohci->at_request_ctx;
2500 struct driver_data *driver_data = packet->driver_data;
2501 int ret = -ENOENT;
2503 tasklet_disable(&ctx->tasklet);
2505 if (packet->ack != 0)
2506 goto out;
2508 if (packet->payload_mapped)
2509 dma_unmap_single(ohci->card.device, packet->payload_bus,
2510 packet->payload_length, DMA_TO_DEVICE);
2512 log_ar_at_event('T', packet->speed, packet->header, 0x20);
2513 driver_data->packet = NULL;
2514 packet->ack = RCODE_CANCELLED;
2515 packet->callback(packet, &ohci->card, packet->ack);
2516 ret = 0;
2517 out:
2518 tasklet_enable(&ctx->tasklet);
2520 return ret;
2523 static int ohci_enable_phys_dma(struct fw_card *card,
2524 int node_id, int generation)
2526 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2527 return 0;
2528 #else
2529 struct fw_ohci *ohci = fw_ohci(card);
2530 unsigned long flags;
2531 int n, ret = 0;
2534 * FIXME: Make sure this bitmask is cleared when we clear the busReset
2535 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
2538 spin_lock_irqsave(&ohci->lock, flags);
2540 if (ohci->generation != generation) {
2541 ret = -ESTALE;
2542 goto out;
2546 * Note, if the node ID contains a non-local bus ID, physical DMA is
2547 * enabled for _all_ nodes on remote buses.
2550 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2551 if (n < 32)
2552 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2553 else
2554 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2556 flush_writes(ohci);
2557 out:
2558 spin_unlock_irqrestore(&ohci->lock, flags);
2560 return ret;
2561 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2564 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2566 struct fw_ohci *ohci = fw_ohci(card);
2567 unsigned long flags;
2568 u32 value;
2570 switch (csr_offset) {
2571 case CSR_STATE_CLEAR:
2572 case CSR_STATE_SET:
2573 if (ohci->is_root &&
2574 (reg_read(ohci, OHCI1394_LinkControlSet) &
2575 OHCI1394_LinkControl_cycleMaster))
2576 value = CSR_STATE_BIT_CMSTR;
2577 else
2578 value = 0;
2579 if (ohci->csr_state_setclear_abdicate)
2580 value |= CSR_STATE_BIT_ABDICATE;
2582 return value;
2584 case CSR_NODE_IDS:
2585 return reg_read(ohci, OHCI1394_NodeID) << 16;
2587 case CSR_CYCLE_TIME:
2588 return get_cycle_time(ohci);
2590 case CSR_BUS_TIME:
2592 * We might be called just after the cycle timer has wrapped
2593 * around but just before the cycle64Seconds handler, so we
2594 * better check here, too, if the bus time needs to be updated.
2596 spin_lock_irqsave(&ohci->lock, flags);
2597 value = update_bus_time(ohci);
2598 spin_unlock_irqrestore(&ohci->lock, flags);
2599 return value;
2601 case CSR_BUSY_TIMEOUT:
2602 value = reg_read(ohci, OHCI1394_ATRetries);
2603 return (value >> 4) & 0x0ffff00f;
2605 case CSR_PRIORITY_BUDGET:
2606 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2607 (ohci->pri_req_max << 8);
2609 default:
2610 WARN_ON(1);
2611 return 0;
2615 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2617 struct fw_ohci *ohci = fw_ohci(card);
2618 unsigned long flags;
2620 switch (csr_offset) {
2621 case CSR_STATE_CLEAR:
2622 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2623 reg_write(ohci, OHCI1394_LinkControlClear,
2624 OHCI1394_LinkControl_cycleMaster);
2625 flush_writes(ohci);
2627 if (value & CSR_STATE_BIT_ABDICATE)
2628 ohci->csr_state_setclear_abdicate = false;
2629 break;
2631 case CSR_STATE_SET:
2632 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2633 reg_write(ohci, OHCI1394_LinkControlSet,
2634 OHCI1394_LinkControl_cycleMaster);
2635 flush_writes(ohci);
2637 if (value & CSR_STATE_BIT_ABDICATE)
2638 ohci->csr_state_setclear_abdicate = true;
2639 break;
2641 case CSR_NODE_IDS:
2642 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2643 flush_writes(ohci);
2644 break;
2646 case CSR_CYCLE_TIME:
2647 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2648 reg_write(ohci, OHCI1394_IntEventSet,
2649 OHCI1394_cycleInconsistent);
2650 flush_writes(ohci);
2651 break;
2653 case CSR_BUS_TIME:
2654 spin_lock_irqsave(&ohci->lock, flags);
2655 ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
2656 spin_unlock_irqrestore(&ohci->lock, flags);
2657 break;
2659 case CSR_BUSY_TIMEOUT:
2660 value = (value & 0xf) | ((value & 0xf) << 4) |
2661 ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2662 reg_write(ohci, OHCI1394_ATRetries, value);
2663 flush_writes(ohci);
2664 break;
2666 case CSR_PRIORITY_BUDGET:
2667 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2668 flush_writes(ohci);
2669 break;
2671 default:
2672 WARN_ON(1);
2673 break;
2677 static void copy_iso_headers(struct iso_context *ctx, void *p)
2679 int i = ctx->header_length;
2681 if (i + ctx->base.header_size > PAGE_SIZE)
2682 return;
2685 * The iso header is byteswapped to little endian by
2686 * the controller, but the remaining header quadlets
2687 * are big endian. We want to present all the headers
2688 * as big endian, so we have to swap the first quadlet.
2690 if (ctx->base.header_size > 0)
2691 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
2692 if (ctx->base.header_size > 4)
2693 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
2694 if (ctx->base.header_size > 8)
2695 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
2696 ctx->header_length += ctx->base.header_size;
2699 static int handle_ir_packet_per_buffer(struct context *context,
2700 struct descriptor *d,
2701 struct descriptor *last)
2703 struct iso_context *ctx =
2704 container_of(context, struct iso_context, context);
2705 struct descriptor *pd;
2706 u32 buffer_dma;
2707 __le32 *ir_header;
2708 void *p;
2710 for (pd = d; pd <= last; pd++)
2711 if (pd->transfer_status)
2712 break;
2713 if (pd > last)
2714 /* Descriptor(s) not done yet, stop iteration */
2715 return 0;
2717 while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2718 d++;
2719 buffer_dma = le32_to_cpu(d->data_address);
2720 dma_sync_single_range_for_cpu(context->ohci->card.device,
2721 buffer_dma & PAGE_MASK,
2722 buffer_dma & ~PAGE_MASK,
2723 le16_to_cpu(d->req_count),
2724 DMA_FROM_DEVICE);
2727 p = last + 1;
2728 copy_iso_headers(ctx, p);
2730 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2731 ir_header = (__le32 *) p;
2732 ctx->base.callback.sc(&ctx->base,
2733 le32_to_cpu(ir_header[0]) & 0xffff,
2734 ctx->header_length, ctx->header,
2735 ctx->base.callback_data);
2736 ctx->header_length = 0;
2739 return 1;
2742 /* d == last because each descriptor block is only a single descriptor. */
2743 static int handle_ir_buffer_fill(struct context *context,
2744 struct descriptor *d,
2745 struct descriptor *last)
2747 struct iso_context *ctx =
2748 container_of(context, struct iso_context, context);
2749 u32 buffer_dma;
2751 if (last->res_count != 0)
2752 /* Descriptor(s) not done yet, stop iteration */
2753 return 0;
2755 buffer_dma = le32_to_cpu(last->data_address);
2756 dma_sync_single_range_for_cpu(context->ohci->card.device,
2757 buffer_dma & PAGE_MASK,
2758 buffer_dma & ~PAGE_MASK,
2759 le16_to_cpu(last->req_count),
2760 DMA_FROM_DEVICE);
2762 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
2763 ctx->base.callback.mc(&ctx->base,
2764 le32_to_cpu(last->data_address) +
2765 le16_to_cpu(last->req_count),
2766 ctx->base.callback_data);
2768 return 1;
2771 static inline void sync_it_packet_for_cpu(struct context *context,
2772 struct descriptor *pd)
2774 __le16 control;
2775 u32 buffer_dma;
2777 /* only packets beginning with OUTPUT_MORE* have data buffers */
2778 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2779 return;
2781 /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2782 pd += 2;
2785 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2786 * data buffer is in the context program's coherent page and must not
2787 * be synced.
2789 if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2790 (context->current_bus & PAGE_MASK)) {
2791 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2792 return;
2793 pd++;
2796 do {
2797 buffer_dma = le32_to_cpu(pd->data_address);
2798 dma_sync_single_range_for_cpu(context->ohci->card.device,
2799 buffer_dma & PAGE_MASK,
2800 buffer_dma & ~PAGE_MASK,
2801 le16_to_cpu(pd->req_count),
2802 DMA_TO_DEVICE);
2803 control = pd->control;
2804 pd++;
2805 } while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2808 static int handle_it_packet(struct context *context,
2809 struct descriptor *d,
2810 struct descriptor *last)
2812 struct iso_context *ctx =
2813 container_of(context, struct iso_context, context);
2814 int i;
2815 struct descriptor *pd;
2817 for (pd = d; pd <= last; pd++)
2818 if (pd->transfer_status)
2819 break;
2820 if (pd > last)
2821 /* Descriptor(s) not done yet, stop iteration */
2822 return 0;
2824 sync_it_packet_for_cpu(context, d);
2826 i = ctx->header_length;
2827 if (i + 4 < PAGE_SIZE) {
2828 /* Present this value as big-endian to match the receive code */
2829 *(__be32 *)(ctx->header + i) = cpu_to_be32(
2830 ((u32)le16_to_cpu(pd->transfer_status) << 16) |
2831 le16_to_cpu(pd->res_count));
2832 ctx->header_length += 4;
2834 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2835 ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
2836 ctx->header_length, ctx->header,
2837 ctx->base.callback_data);
2838 ctx->header_length = 0;
2840 return 1;
2843 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2845 u32 hi = channels >> 32, lo = channels;
2847 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2848 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2849 reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2850 reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2851 mmiowb();
2852 ohci->mc_channels = channels;
2855 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2856 int type, int channel, size_t header_size)
2858 struct fw_ohci *ohci = fw_ohci(card);
2859 struct iso_context *uninitialized_var(ctx);
2860 descriptor_callback_t uninitialized_var(callback);
2861 u64 *uninitialized_var(channels);
2862 u32 *uninitialized_var(mask), uninitialized_var(regs);
2863 unsigned long flags;
2864 int index, ret = -EBUSY;
2866 spin_lock_irqsave(&ohci->lock, flags);
2868 switch (type) {
2869 case FW_ISO_CONTEXT_TRANSMIT:
2870 mask = &ohci->it_context_mask;
2871 callback = handle_it_packet;
2872 index = ffs(*mask) - 1;
2873 if (index >= 0) {
2874 *mask &= ~(1 << index);
2875 regs = OHCI1394_IsoXmitContextBase(index);
2876 ctx = &ohci->it_context_list[index];
2878 break;
2880 case FW_ISO_CONTEXT_RECEIVE:
2881 channels = &ohci->ir_context_channels;
2882 mask = &ohci->ir_context_mask;
2883 callback = handle_ir_packet_per_buffer;
2884 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2885 if (index >= 0) {
2886 *channels &= ~(1ULL << channel);
2887 *mask &= ~(1 << index);
2888 regs = OHCI1394_IsoRcvContextBase(index);
2889 ctx = &ohci->ir_context_list[index];
2891 break;
2893 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2894 mask = &ohci->ir_context_mask;
2895 callback = handle_ir_buffer_fill;
2896 index = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2897 if (index >= 0) {
2898 ohci->mc_allocated = true;
2899 *mask &= ~(1 << index);
2900 regs = OHCI1394_IsoRcvContextBase(index);
2901 ctx = &ohci->ir_context_list[index];
2903 break;
2905 default:
2906 index = -1;
2907 ret = -ENOSYS;
2910 spin_unlock_irqrestore(&ohci->lock, flags);
2912 if (index < 0)
2913 return ERR_PTR(ret);
2915 memset(ctx, 0, sizeof(*ctx));
2916 ctx->header_length = 0;
2917 ctx->header = (void *) __get_free_page(GFP_KERNEL);
2918 if (ctx->header == NULL) {
2919 ret = -ENOMEM;
2920 goto out;
2922 ret = context_init(&ctx->context, ohci, regs, callback);
2923 if (ret < 0)
2924 goto out_with_header;
2926 if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
2927 set_multichannel_mask(ohci, 0);
2929 return &ctx->base;
2931 out_with_header:
2932 free_page((unsigned long)ctx->header);
2933 out:
2934 spin_lock_irqsave(&ohci->lock, flags);
2936 switch (type) {
2937 case FW_ISO_CONTEXT_RECEIVE:
2938 *channels |= 1ULL << channel;
2939 break;
2941 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2942 ohci->mc_allocated = false;
2943 break;
2945 *mask |= 1 << index;
2947 spin_unlock_irqrestore(&ohci->lock, flags);
2949 return ERR_PTR(ret);
2952 static int ohci_start_iso(struct fw_iso_context *base,
2953 s32 cycle, u32 sync, u32 tags)
2955 struct iso_context *ctx = container_of(base, struct iso_context, base);
2956 struct fw_ohci *ohci = ctx->context.ohci;
2957 u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2958 int index;
2960 /* the controller cannot start without any queued packets */
2961 if (ctx->context.last->branch_address == 0)
2962 return -ENODATA;
2964 switch (ctx->base.type) {
2965 case FW_ISO_CONTEXT_TRANSMIT:
2966 index = ctx - ohci->it_context_list;
2967 match = 0;
2968 if (cycle >= 0)
2969 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2970 (cycle & 0x7fff) << 16;
2972 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2973 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2974 context_run(&ctx->context, match);
2975 break;
2977 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2978 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
2979 /* fall through */
2980 case FW_ISO_CONTEXT_RECEIVE:
2981 index = ctx - ohci->ir_context_list;
2982 match = (tags << 28) | (sync << 8) | ctx->base.channel;
2983 if (cycle >= 0) {
2984 match |= (cycle & 0x07fff) << 12;
2985 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2988 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2989 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2990 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2991 context_run(&ctx->context, control);
2993 ctx->sync = sync;
2994 ctx->tags = tags;
2996 break;
2999 return 0;
3002 static int ohci_stop_iso(struct fw_iso_context *base)
3004 struct fw_ohci *ohci = fw_ohci(base->card);
3005 struct iso_context *ctx = container_of(base, struct iso_context, base);
3006 int index;
3008 switch (ctx->base.type) {
3009 case FW_ISO_CONTEXT_TRANSMIT:
3010 index = ctx - ohci->it_context_list;
3011 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3012 break;
3014 case FW_ISO_CONTEXT_RECEIVE:
3015 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3016 index = ctx - ohci->ir_context_list;
3017 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3018 break;
3020 flush_writes(ohci);
3021 context_stop(&ctx->context);
3022 tasklet_kill(&ctx->context.tasklet);
3024 return 0;
3027 static void ohci_free_iso_context(struct fw_iso_context *base)
3029 struct fw_ohci *ohci = fw_ohci(base->card);
3030 struct iso_context *ctx = container_of(base, struct iso_context, base);
3031 unsigned long flags;
3032 int index;
3034 ohci_stop_iso(base);
3035 context_release(&ctx->context);
3036 free_page((unsigned long)ctx->header);
3038 spin_lock_irqsave(&ohci->lock, flags);
3040 switch (base->type) {
3041 case FW_ISO_CONTEXT_TRANSMIT:
3042 index = ctx - ohci->it_context_list;
3043 ohci->it_context_mask |= 1 << index;
3044 break;
3046 case FW_ISO_CONTEXT_RECEIVE:
3047 index = ctx - ohci->ir_context_list;
3048 ohci->ir_context_mask |= 1 << index;
3049 ohci->ir_context_channels |= 1ULL << base->channel;
3050 break;
3052 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3053 index = ctx - ohci->ir_context_list;
3054 ohci->ir_context_mask |= 1 << index;
3055 ohci->ir_context_channels |= ohci->mc_channels;
3056 ohci->mc_channels = 0;
3057 ohci->mc_allocated = false;
3058 break;
3061 spin_unlock_irqrestore(&ohci->lock, flags);
3064 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3066 struct fw_ohci *ohci = fw_ohci(base->card);
3067 unsigned long flags;
3068 int ret;
3070 switch (base->type) {
3071 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3073 spin_lock_irqsave(&ohci->lock, flags);
3075 /* Don't allow multichannel to grab other contexts' channels. */
3076 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3077 *channels = ohci->ir_context_channels;
3078 ret = -EBUSY;
3079 } else {
3080 set_multichannel_mask(ohci, *channels);
3081 ret = 0;
3084 spin_unlock_irqrestore(&ohci->lock, flags);
3086 break;
3087 default:
3088 ret = -EINVAL;
3091 return ret;
3094 #ifdef CONFIG_PM
3095 static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3097 int i;
3098 struct iso_context *ctx;
3100 for (i = 0 ; i < ohci->n_ir ; i++) {
3101 ctx = &ohci->ir_context_list[i];
3102 if (ctx->context.running)
3103 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3106 for (i = 0 ; i < ohci->n_it ; i++) {
3107 ctx = &ohci->it_context_list[i];
3108 if (ctx->context.running)
3109 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3112 #endif
3114 static int queue_iso_transmit(struct iso_context *ctx,
3115 struct fw_iso_packet *packet,
3116 struct fw_iso_buffer *buffer,
3117 unsigned long payload)
3119 struct descriptor *d, *last, *pd;
3120 struct fw_iso_packet *p;
3121 __le32 *header;
3122 dma_addr_t d_bus, page_bus;
3123 u32 z, header_z, payload_z, irq;
3124 u32 payload_index, payload_end_index, next_page_index;
3125 int page, end_page, i, length, offset;
3127 p = packet;
3128 payload_index = payload;
3130 if (p->skip)
3131 z = 1;
3132 else
3133 z = 2;
3134 if (p->header_length > 0)
3135 z++;
3137 /* Determine the first page the payload isn't contained in. */
3138 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3139 if (p->payload_length > 0)
3140 payload_z = end_page - (payload_index >> PAGE_SHIFT);
3141 else
3142 payload_z = 0;
3144 z += payload_z;
3146 /* Get header size in number of descriptors. */
3147 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3149 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3150 if (d == NULL)
3151 return -ENOMEM;
3153 if (!p->skip) {
3154 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3155 d[0].req_count = cpu_to_le16(8);
3157 * Link the skip address to this descriptor itself. This causes
3158 * a context to skip a cycle whenever lost cycles or FIFO
3159 * overruns occur, without dropping the data. The application
3160 * should then decide whether this is an error condition or not.
3161 * FIXME: Make the context's cycle-lost behaviour configurable?
3163 d[0].branch_address = cpu_to_le32(d_bus | z);
3165 header = (__le32 *) &d[1];
3166 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3167 IT_HEADER_TAG(p->tag) |
3168 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3169 IT_HEADER_CHANNEL(ctx->base.channel) |
3170 IT_HEADER_SPEED(ctx->base.speed));
3171 header[1] =
3172 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3173 p->payload_length));
3176 if (p->header_length > 0) {
3177 d[2].req_count = cpu_to_le16(p->header_length);
3178 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3179 memcpy(&d[z], p->header, p->header_length);
3182 pd = d + z - payload_z;
3183 payload_end_index = payload_index + p->payload_length;
3184 for (i = 0; i < payload_z; i++) {
3185 page = payload_index >> PAGE_SHIFT;
3186 offset = payload_index & ~PAGE_MASK;
3187 next_page_index = (page + 1) << PAGE_SHIFT;
3188 length =
3189 min(next_page_index, payload_end_index) - payload_index;
3190 pd[i].req_count = cpu_to_le16(length);
3192 page_bus = page_private(buffer->pages[page]);
3193 pd[i].data_address = cpu_to_le32(page_bus + offset);
3195 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3196 page_bus, offset, length,
3197 DMA_TO_DEVICE);
3199 payload_index += length;
3202 if (p->interrupt)
3203 irq = DESCRIPTOR_IRQ_ALWAYS;
3204 else
3205 irq = DESCRIPTOR_NO_IRQ;
3207 last = z == 2 ? d : d + z - 1;
3208 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3209 DESCRIPTOR_STATUS |
3210 DESCRIPTOR_BRANCH_ALWAYS |
3211 irq);
3213 context_append(&ctx->context, d, z, header_z);
3215 return 0;
3218 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3219 struct fw_iso_packet *packet,
3220 struct fw_iso_buffer *buffer,
3221 unsigned long payload)
3223 struct device *device = ctx->context.ohci->card.device;
3224 struct descriptor *d, *pd;
3225 dma_addr_t d_bus, page_bus;
3226 u32 z, header_z, rest;
3227 int i, j, length;
3228 int page, offset, packet_count, header_size, payload_per_buffer;
3231 * The OHCI controller puts the isochronous header and trailer in the
3232 * buffer, so we need at least 8 bytes.
3234 packet_count = packet->header_length / ctx->base.header_size;
3235 header_size = max(ctx->base.header_size, (size_t)8);
3237 /* Get header size in number of descriptors. */
3238 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3239 page = payload >> PAGE_SHIFT;
3240 offset = payload & ~PAGE_MASK;
3241 payload_per_buffer = packet->payload_length / packet_count;
3243 for (i = 0; i < packet_count; i++) {
3244 /* d points to the header descriptor */
3245 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3246 d = context_get_descriptors(&ctx->context,
3247 z + header_z, &d_bus);
3248 if (d == NULL)
3249 return -ENOMEM;
3251 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
3252 DESCRIPTOR_INPUT_MORE);
3253 if (packet->skip && i == 0)
3254 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3255 d->req_count = cpu_to_le16(header_size);
3256 d->res_count = d->req_count;
3257 d->transfer_status = 0;
3258 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3260 rest = payload_per_buffer;
3261 pd = d;
3262 for (j = 1; j < z; j++) {
3263 pd++;
3264 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3265 DESCRIPTOR_INPUT_MORE);
3267 if (offset + rest < PAGE_SIZE)
3268 length = rest;
3269 else
3270 length = PAGE_SIZE - offset;
3271 pd->req_count = cpu_to_le16(length);
3272 pd->res_count = pd->req_count;
3273 pd->transfer_status = 0;
3275 page_bus = page_private(buffer->pages[page]);
3276 pd->data_address = cpu_to_le32(page_bus + offset);
3278 dma_sync_single_range_for_device(device, page_bus,
3279 offset, length,
3280 DMA_FROM_DEVICE);
3282 offset = (offset + length) & ~PAGE_MASK;
3283 rest -= length;
3284 if (offset == 0)
3285 page++;
3287 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3288 DESCRIPTOR_INPUT_LAST |
3289 DESCRIPTOR_BRANCH_ALWAYS);
3290 if (packet->interrupt && i == packet_count - 1)
3291 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3293 context_append(&ctx->context, d, z, header_z);
3296 return 0;
3299 static int queue_iso_buffer_fill(struct iso_context *ctx,
3300 struct fw_iso_packet *packet,
3301 struct fw_iso_buffer *buffer,
3302 unsigned long payload)
3304 struct descriptor *d;
3305 dma_addr_t d_bus, page_bus;
3306 int page, offset, rest, z, i, length;
3308 page = payload >> PAGE_SHIFT;
3309 offset = payload & ~PAGE_MASK;
3310 rest = packet->payload_length;
3312 /* We need one descriptor for each page in the buffer. */
3313 z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3315 if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3316 return -EFAULT;
3318 for (i = 0; i < z; i++) {
3319 d = context_get_descriptors(&ctx->context, 1, &d_bus);
3320 if (d == NULL)
3321 return -ENOMEM;
3323 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3324 DESCRIPTOR_BRANCH_ALWAYS);
3325 if (packet->skip && i == 0)
3326 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3327 if (packet->interrupt && i == z - 1)
3328 d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3330 if (offset + rest < PAGE_SIZE)
3331 length = rest;
3332 else
3333 length = PAGE_SIZE - offset;
3334 d->req_count = cpu_to_le16(length);
3335 d->res_count = d->req_count;
3336 d->transfer_status = 0;
3338 page_bus = page_private(buffer->pages[page]);
3339 d->data_address = cpu_to_le32(page_bus + offset);
3341 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3342 page_bus, offset, length,
3343 DMA_FROM_DEVICE);
3345 rest -= length;
3346 offset = 0;
3347 page++;
3349 context_append(&ctx->context, d, 1, 0);
3352 return 0;
3355 static int ohci_queue_iso(struct fw_iso_context *base,
3356 struct fw_iso_packet *packet,
3357 struct fw_iso_buffer *buffer,
3358 unsigned long payload)
3360 struct iso_context *ctx = container_of(base, struct iso_context, base);
3361 unsigned long flags;
3362 int ret = -ENOSYS;
3364 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3365 switch (base->type) {
3366 case FW_ISO_CONTEXT_TRANSMIT:
3367 ret = queue_iso_transmit(ctx, packet, buffer, payload);
3368 break;
3369 case FW_ISO_CONTEXT_RECEIVE:
3370 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3371 break;
3372 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3373 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3374 break;
3376 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3378 return ret;
3381 static void ohci_flush_queue_iso(struct fw_iso_context *base)
3383 struct context *ctx =
3384 &container_of(base, struct iso_context, base)->context;
3386 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3389 static const struct fw_card_driver ohci_driver = {
3390 .enable = ohci_enable,
3391 .read_phy_reg = ohci_read_phy_reg,
3392 .update_phy_reg = ohci_update_phy_reg,
3393 .set_config_rom = ohci_set_config_rom,
3394 .send_request = ohci_send_request,
3395 .send_response = ohci_send_response,
3396 .cancel_packet = ohci_cancel_packet,
3397 .enable_phys_dma = ohci_enable_phys_dma,
3398 .read_csr = ohci_read_csr,
3399 .write_csr = ohci_write_csr,
3401 .allocate_iso_context = ohci_allocate_iso_context,
3402 .free_iso_context = ohci_free_iso_context,
3403 .set_iso_channels = ohci_set_iso_channels,
3404 .queue_iso = ohci_queue_iso,
3405 .flush_queue_iso = ohci_flush_queue_iso,
3406 .start_iso = ohci_start_iso,
3407 .stop_iso = ohci_stop_iso,
3410 #ifdef CONFIG_PPC_PMAC
3411 static void pmac_ohci_on(struct pci_dev *dev)
3413 if (machine_is(powermac)) {
3414 struct device_node *ofn = pci_device_to_OF_node(dev);
3416 if (ofn) {
3417 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3418 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3423 static void pmac_ohci_off(struct pci_dev *dev)
3425 if (machine_is(powermac)) {
3426 struct device_node *ofn = pci_device_to_OF_node(dev);
3428 if (ofn) {
3429 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3430 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3434 #else
3435 static inline void pmac_ohci_on(struct pci_dev *dev) {}
3436 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3437 #endif /* CONFIG_PPC_PMAC */
3439 static int __devinit pci_probe(struct pci_dev *dev,
3440 const struct pci_device_id *ent)
3442 struct fw_ohci *ohci;
3443 u32 bus_options, max_receive, link_speed, version;
3444 u64 guid;
3445 int i, err;
3446 size_t size;
3448 if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3449 dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3450 return -ENOSYS;
3453 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3454 if (ohci == NULL) {
3455 err = -ENOMEM;
3456 goto fail;
3459 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3461 pmac_ohci_on(dev);
3463 err = pci_enable_device(dev);
3464 if (err) {
3465 fw_error("Failed to enable OHCI hardware\n");
3466 goto fail_free;
3469 pci_set_master(dev);
3470 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3471 pci_set_drvdata(dev, ohci);
3473 spin_lock_init(&ohci->lock);
3474 mutex_init(&ohci->phy_reg_mutex);
3476 INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3478 err = pci_request_region(dev, 0, ohci_driver_name);
3479 if (err) {
3480 fw_error("MMIO resource unavailable\n");
3481 goto fail_disable;
3484 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3485 if (ohci->registers == NULL) {
3486 fw_error("Failed to remap registers\n");
3487 err = -ENXIO;
3488 goto fail_iomem;
3491 for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3492 if ((ohci_quirks[i].vendor == dev->vendor) &&
3493 (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3494 ohci_quirks[i].device == dev->device) &&
3495 (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3496 ohci_quirks[i].revision >= dev->revision)) {
3497 ohci->quirks = ohci_quirks[i].flags;
3498 break;
3500 if (param_quirks)
3501 ohci->quirks = param_quirks;
3504 * Because dma_alloc_coherent() allocates at least one page,
3505 * we save space by using a common buffer for the AR request/
3506 * response descriptors and the self IDs buffer.
3508 BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3509 BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3510 ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3511 PAGE_SIZE,
3512 &ohci->misc_buffer_bus,
3513 GFP_KERNEL);
3514 if (!ohci->misc_buffer) {
3515 err = -ENOMEM;
3516 goto fail_iounmap;
3519 err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3520 OHCI1394_AsReqRcvContextControlSet);
3521 if (err < 0)
3522 goto fail_misc_buf;
3524 err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3525 OHCI1394_AsRspRcvContextControlSet);
3526 if (err < 0)
3527 goto fail_arreq_ctx;
3529 err = context_init(&ohci->at_request_ctx, ohci,
3530 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3531 if (err < 0)
3532 goto fail_arrsp_ctx;
3534 err = context_init(&ohci->at_response_ctx, ohci,
3535 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3536 if (err < 0)
3537 goto fail_atreq_ctx;
3539 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3540 ohci->ir_context_channels = ~0ULL;
3541 ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3542 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3543 ohci->ir_context_mask = ohci->ir_context_support;
3544 ohci->n_ir = hweight32(ohci->ir_context_mask);
3545 size = sizeof(struct iso_context) * ohci->n_ir;
3546 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3548 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3549 ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3550 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3551 ohci->it_context_mask = ohci->it_context_support;
3552 ohci->n_it = hweight32(ohci->it_context_mask);
3553 size = sizeof(struct iso_context) * ohci->n_it;
3554 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3556 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3557 err = -ENOMEM;
3558 goto fail_contexts;
3561 ohci->self_id_cpu = ohci->misc_buffer + PAGE_SIZE/2;
3562 ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3564 bus_options = reg_read(ohci, OHCI1394_BusOptions);
3565 max_receive = (bus_options >> 12) & 0xf;
3566 link_speed = bus_options & 0x7;
3567 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3568 reg_read(ohci, OHCI1394_GUIDLo);
3570 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3571 if (err)
3572 goto fail_contexts;
3574 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3575 fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
3576 "%d IR + %d IT contexts, quirks 0x%x\n",
3577 dev_name(&dev->dev), version >> 16, version & 0xff,
3578 ohci->n_ir, ohci->n_it, ohci->quirks);
3580 return 0;
3582 fail_contexts:
3583 kfree(ohci->ir_context_list);
3584 kfree(ohci->it_context_list);
3585 context_release(&ohci->at_response_ctx);
3586 fail_atreq_ctx:
3587 context_release(&ohci->at_request_ctx);
3588 fail_arrsp_ctx:
3589 ar_context_release(&ohci->ar_response_ctx);
3590 fail_arreq_ctx:
3591 ar_context_release(&ohci->ar_request_ctx);
3592 fail_misc_buf:
3593 dma_free_coherent(ohci->card.device, PAGE_SIZE,
3594 ohci->misc_buffer, ohci->misc_buffer_bus);
3595 fail_iounmap:
3596 pci_iounmap(dev, ohci->registers);
3597 fail_iomem:
3598 pci_release_region(dev, 0);
3599 fail_disable:
3600 pci_disable_device(dev);
3601 fail_free:
3602 kfree(ohci);
3603 pmac_ohci_off(dev);
3604 fail:
3605 if (err == -ENOMEM)
3606 fw_error("Out of memory\n");
3608 return err;
3611 static void pci_remove(struct pci_dev *dev)
3613 struct fw_ohci *ohci;
3615 ohci = pci_get_drvdata(dev);
3616 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3617 flush_writes(ohci);
3618 cancel_work_sync(&ohci->bus_reset_work);
3619 fw_core_remove_card(&ohci->card);
3622 * FIXME: Fail all pending packets here, now that the upper
3623 * layers can't queue any more.
3626 software_reset(ohci);
3627 free_irq(dev->irq, ohci);
3629 if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3630 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3631 ohci->next_config_rom, ohci->next_config_rom_bus);
3632 if (ohci->config_rom)
3633 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3634 ohci->config_rom, ohci->config_rom_bus);
3635 ar_context_release(&ohci->ar_request_ctx);
3636 ar_context_release(&ohci->ar_response_ctx);
3637 dma_free_coherent(ohci->card.device, PAGE_SIZE,
3638 ohci->misc_buffer, ohci->misc_buffer_bus);
3639 context_release(&ohci->at_request_ctx);
3640 context_release(&ohci->at_response_ctx);
3641 kfree(ohci->it_context_list);
3642 kfree(ohci->ir_context_list);
3643 pci_disable_msi(dev);
3644 pci_iounmap(dev, ohci->registers);
3645 pci_release_region(dev, 0);
3646 pci_disable_device(dev);
3647 kfree(ohci);
3648 pmac_ohci_off(dev);
3650 fw_notify("Removed fw-ohci device.\n");
3653 #ifdef CONFIG_PM
3654 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3656 struct fw_ohci *ohci = pci_get_drvdata(dev);
3657 int err;
3659 software_reset(ohci);
3660 free_irq(dev->irq, ohci);
3661 pci_disable_msi(dev);
3662 err = pci_save_state(dev);
3663 if (err) {
3664 fw_error("pci_save_state failed\n");
3665 return err;
3667 err = pci_set_power_state(dev, pci_choose_state(dev, state));
3668 if (err)
3669 fw_error("pci_set_power_state failed with %d\n", err);
3670 pmac_ohci_off(dev);
3672 return 0;
3675 static int pci_resume(struct pci_dev *dev)
3677 struct fw_ohci *ohci = pci_get_drvdata(dev);
3678 int err;
3680 pmac_ohci_on(dev);
3681 pci_set_power_state(dev, PCI_D0);
3682 pci_restore_state(dev);
3683 err = pci_enable_device(dev);
3684 if (err) {
3685 fw_error("pci_enable_device failed\n");
3686 return err;
3689 /* Some systems don't setup GUID register on resume from ram */
3690 if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3691 !reg_read(ohci, OHCI1394_GUIDHi)) {
3692 reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3693 reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3696 err = ohci_enable(&ohci->card, NULL, 0);
3697 if (err)
3698 return err;
3700 ohci_resume_iso_dma(ohci);
3702 return 0;
3704 #endif
3706 static const struct pci_device_id pci_table[] = {
3707 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3711 MODULE_DEVICE_TABLE(pci, pci_table);
3713 static struct pci_driver fw_ohci_pci_driver = {
3714 .name = ohci_driver_name,
3715 .id_table = pci_table,
3716 .probe = pci_probe,
3717 .remove = pci_remove,
3718 #ifdef CONFIG_PM
3719 .resume = pci_resume,
3720 .suspend = pci_suspend,
3721 #endif
3724 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3725 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3726 MODULE_LICENSE("GPL");
3728 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3729 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
3730 MODULE_ALIAS("ohci1394");
3731 #endif
3733 static int __init fw_ohci_init(void)
3735 return pci_register_driver(&fw_ohci_pci_driver);
3738 static void __exit fw_ohci_cleanup(void)
3740 pci_unregister_driver(&fw_ohci_pci_driver);
3743 module_init(fw_ohci_init);
3744 module_exit(fw_ohci_cleanup);