spi-topcliff-pch: supports a spi mode setup and bit order setup by IO control
[zen-stable.git] / drivers / media / video / em28xx / em28xx-input.c
blob2630b265b0e813c5c6f450927367d3899933c013
1 /*
2 handle em28xx IR remotes via linux kernel input layer.
4 Copyright (C) 2005 Ludovico Cavedon <cavedon@sssup.it>
5 Markus Rechberger <mrechberger@gmail.com>
6 Mauro Carvalho Chehab <mchehab@infradead.org>
7 Sascha Sommer <saschasommer@freenet.de>
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #include <linux/module.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/interrupt.h>
28 #include <linux/usb.h>
29 #include <linux/slab.h>
31 #include "em28xx.h"
33 #define EM28XX_SNAPSHOT_KEY KEY_CAMERA
34 #define EM28XX_SBUTTON_QUERY_INTERVAL 500
35 #define EM28XX_R0C_USBSUSP_SNAPSHOT 0x20
37 static unsigned int ir_debug;
38 module_param(ir_debug, int, 0644);
39 MODULE_PARM_DESC(ir_debug, "enable debug messages [IR]");
41 #define MODULE_NAME "em28xx"
43 #define i2cdprintk(fmt, arg...) \
44 if (ir_debug) { \
45 printk(KERN_DEBUG "%s/ir: " fmt, ir->name , ## arg); \
48 #define dprintk(fmt, arg...) \
49 if (ir_debug) { \
50 printk(KERN_DEBUG "%s/ir: " fmt, ir->name , ## arg); \
53 /**********************************************************
54 Polling structure used by em28xx IR's
55 **********************************************************/
57 struct em28xx_ir_poll_result {
58 unsigned int toggle_bit:1;
59 unsigned int read_count:7;
60 u8 rc_address;
61 u8 rc_data[4]; /* 1 byte on em2860/2880, 4 on em2874 */
64 struct em28xx_IR {
65 struct em28xx *dev;
66 struct rc_dev *rc;
67 char name[32];
68 char phys[32];
70 /* poll external decoder */
71 int polling;
72 struct delayed_work work;
73 unsigned int full_code:1;
74 unsigned int last_readcount;
76 int (*get_key)(struct em28xx_IR *, struct em28xx_ir_poll_result *);
79 /**********************************************************
80 I2C IR based get keycodes - should be used with ir-kbd-i2c
81 **********************************************************/
83 int em28xx_get_key_terratec(struct IR_i2c *ir, u32 *ir_key, u32 *ir_raw)
85 unsigned char b;
87 /* poll IR chip */
88 if (1 != i2c_master_recv(ir->c, &b, 1)) {
89 i2cdprintk("read error\n");
90 return -EIO;
93 /* it seems that 0xFE indicates that a button is still hold
94 down, while 0xff indicates that no button is hold
95 down. 0xfe sequences are sometimes interrupted by 0xFF */
97 i2cdprintk("key %02x\n", b);
99 if (b == 0xff)
100 return 0;
102 if (b == 0xfe)
103 /* keep old data */
104 return 1;
106 *ir_key = b;
107 *ir_raw = b;
108 return 1;
111 int em28xx_get_key_em_haup(struct IR_i2c *ir, u32 *ir_key, u32 *ir_raw)
113 unsigned char buf[2];
114 u16 code;
115 int size;
117 /* poll IR chip */
118 size = i2c_master_recv(ir->c, buf, sizeof(buf));
120 if (size != 2)
121 return -EIO;
123 /* Does eliminate repeated parity code */
124 if (buf[1] == 0xff)
125 return 0;
127 ir->old = buf[1];
130 * Rearranges bits to the right order.
131 * The bit order were determined experimentally by using
132 * The original Hauppauge Grey IR and another RC5 that uses addr=0x08
133 * The RC5 code has 14 bits, but we've experimentally determined
134 * the meaning for only 11 bits.
135 * So, the code translation is not complete. Yet, it is enough to
136 * work with the provided RC5 IR.
138 code =
139 ((buf[0] & 0x01) ? 0x0020 : 0) | /* 0010 0000 */
140 ((buf[0] & 0x02) ? 0x0010 : 0) | /* 0001 0000 */
141 ((buf[0] & 0x04) ? 0x0008 : 0) | /* 0000 1000 */
142 ((buf[0] & 0x08) ? 0x0004 : 0) | /* 0000 0100 */
143 ((buf[0] & 0x10) ? 0x0002 : 0) | /* 0000 0010 */
144 ((buf[0] & 0x20) ? 0x0001 : 0) | /* 0000 0001 */
145 ((buf[1] & 0x08) ? 0x1000 : 0) | /* 0001 0000 */
146 ((buf[1] & 0x10) ? 0x0800 : 0) | /* 0000 1000 */
147 ((buf[1] & 0x20) ? 0x0400 : 0) | /* 0000 0100 */
148 ((buf[1] & 0x40) ? 0x0200 : 0) | /* 0000 0010 */
149 ((buf[1] & 0x80) ? 0x0100 : 0); /* 0000 0001 */
151 i2cdprintk("ir hauppauge (em2840): code=0x%02x (rcv=0x%02x%02x)\n",
152 code, buf[1], buf[0]);
154 /* return key */
155 *ir_key = code;
156 *ir_raw = code;
157 return 1;
160 int em28xx_get_key_pinnacle_usb_grey(struct IR_i2c *ir, u32 *ir_key,
161 u32 *ir_raw)
163 unsigned char buf[3];
165 /* poll IR chip */
167 if (3 != i2c_master_recv(ir->c, buf, 3)) {
168 i2cdprintk("read error\n");
169 return -EIO;
172 i2cdprintk("key %02x\n", buf[2]&0x3f);
173 if (buf[0] != 0x00)
174 return 0;
176 *ir_key = buf[2]&0x3f;
177 *ir_raw = buf[2]&0x3f;
179 return 1;
182 int em28xx_get_key_winfast_usbii_deluxe(struct IR_i2c *ir, u32 *ir_key, u32 *ir_raw)
184 unsigned char subaddr, keydetect, key;
186 struct i2c_msg msg[] = { { .addr = ir->c->addr, .flags = 0, .buf = &subaddr, .len = 1},
188 { .addr = ir->c->addr, .flags = I2C_M_RD, .buf = &keydetect, .len = 1} };
190 subaddr = 0x10;
191 if (2 != i2c_transfer(ir->c->adapter, msg, 2)) {
192 i2cdprintk("read error\n");
193 return -EIO;
195 if (keydetect == 0x00)
196 return 0;
198 subaddr = 0x00;
199 msg[1].buf = &key;
200 if (2 != i2c_transfer(ir->c->adapter, msg, 2)) {
201 i2cdprintk("read error\n");
202 return -EIO;
204 if (key == 0x00)
205 return 0;
207 *ir_key = key;
208 *ir_raw = key;
209 return 1;
212 /**********************************************************
213 Poll based get keycode functions
214 **********************************************************/
216 /* This is for the em2860/em2880 */
217 static int default_polling_getkey(struct em28xx_IR *ir,
218 struct em28xx_ir_poll_result *poll_result)
220 struct em28xx *dev = ir->dev;
221 int rc;
222 u8 msg[3] = { 0, 0, 0 };
224 /* Read key toggle, brand, and key code
225 on registers 0x45, 0x46 and 0x47
227 rc = dev->em28xx_read_reg_req_len(dev, 0, EM28XX_R45_IR,
228 msg, sizeof(msg));
229 if (rc < 0)
230 return rc;
232 /* Infrared toggle (Reg 0x45[7]) */
233 poll_result->toggle_bit = (msg[0] >> 7);
235 /* Infrared read count (Reg 0x45[6:0] */
236 poll_result->read_count = (msg[0] & 0x7f);
238 /* Remote Control Address (Reg 0x46) */
239 poll_result->rc_address = msg[1];
241 /* Remote Control Data (Reg 0x47) */
242 poll_result->rc_data[0] = msg[2];
244 return 0;
247 static int em2874_polling_getkey(struct em28xx_IR *ir,
248 struct em28xx_ir_poll_result *poll_result)
250 struct em28xx *dev = ir->dev;
251 int rc;
252 u8 msg[5] = { 0, 0, 0, 0, 0 };
254 /* Read key toggle, brand, and key code
255 on registers 0x51-55
257 rc = dev->em28xx_read_reg_req_len(dev, 0, EM2874_R51_IR,
258 msg, sizeof(msg));
259 if (rc < 0)
260 return rc;
262 /* Infrared toggle (Reg 0x51[7]) */
263 poll_result->toggle_bit = (msg[0] >> 7);
265 /* Infrared read count (Reg 0x51[6:0] */
266 poll_result->read_count = (msg[0] & 0x7f);
268 /* Remote Control Address (Reg 0x52) */
269 poll_result->rc_address = msg[1];
271 /* Remote Control Data (Reg 0x53-55) */
272 poll_result->rc_data[0] = msg[2];
273 poll_result->rc_data[1] = msg[3];
274 poll_result->rc_data[2] = msg[4];
276 return 0;
279 /**********************************************************
280 Polling code for em28xx
281 **********************************************************/
283 static void em28xx_ir_handle_key(struct em28xx_IR *ir)
285 int result;
286 struct em28xx_ir_poll_result poll_result;
288 /* read the registers containing the IR status */
289 result = ir->get_key(ir, &poll_result);
290 if (unlikely(result < 0)) {
291 dprintk("ir->get_key() failed %d\n", result);
292 return;
295 if (unlikely(poll_result.read_count != ir->last_readcount)) {
296 dprintk("%s: toggle: %d, count: %d, key 0x%02x%02x\n", __func__,
297 poll_result.toggle_bit, poll_result.read_count,
298 poll_result.rc_address, poll_result.rc_data[0]);
299 if (ir->full_code)
300 rc_keydown(ir->rc,
301 poll_result.rc_address << 8 |
302 poll_result.rc_data[0],
303 poll_result.toggle_bit);
304 else
305 rc_keydown(ir->rc,
306 poll_result.rc_data[0],
307 poll_result.toggle_bit);
309 if (ir->dev->chip_id == CHIP_ID_EM2874 ||
310 ir->dev->chip_id == CHIP_ID_EM2884)
311 /* The em2874 clears the readcount field every time the
312 register is read. The em2860/2880 datasheet says that it
313 is supposed to clear the readcount, but it doesn't. So with
314 the em2874, we are looking for a non-zero read count as
315 opposed to a readcount that is incrementing */
316 ir->last_readcount = 0;
317 else
318 ir->last_readcount = poll_result.read_count;
322 static void em28xx_ir_work(struct work_struct *work)
324 struct em28xx_IR *ir = container_of(work, struct em28xx_IR, work.work);
326 em28xx_ir_handle_key(ir);
327 schedule_delayed_work(&ir->work, msecs_to_jiffies(ir->polling));
330 static int em28xx_ir_start(struct rc_dev *rc)
332 struct em28xx_IR *ir = rc->priv;
334 INIT_DELAYED_WORK(&ir->work, em28xx_ir_work);
335 schedule_delayed_work(&ir->work, 0);
337 return 0;
340 static void em28xx_ir_stop(struct rc_dev *rc)
342 struct em28xx_IR *ir = rc->priv;
344 cancel_delayed_work_sync(&ir->work);
347 int em28xx_ir_change_protocol(struct rc_dev *rc_dev, u64 rc_type)
349 int rc = 0;
350 struct em28xx_IR *ir = rc_dev->priv;
351 struct em28xx *dev = ir->dev;
352 u8 ir_config = EM2874_IR_RC5;
354 /* Adjust xclk based o IR table for RC5/NEC tables */
356 if (rc_type == RC_TYPE_RC5) {
357 dev->board.xclk |= EM28XX_XCLK_IR_RC5_MODE;
358 ir->full_code = 1;
359 } else if (rc_type == RC_TYPE_NEC) {
360 dev->board.xclk &= ~EM28XX_XCLK_IR_RC5_MODE;
361 ir_config = EM2874_IR_NEC;
362 ir->full_code = 1;
363 } else if (rc_type != RC_TYPE_UNKNOWN)
364 rc = -EINVAL;
366 em28xx_write_reg_bits(dev, EM28XX_R0F_XCLK, dev->board.xclk,
367 EM28XX_XCLK_IR_RC5_MODE);
369 /* Setup the proper handler based on the chip */
370 switch (dev->chip_id) {
371 case CHIP_ID_EM2860:
372 case CHIP_ID_EM2883:
373 ir->get_key = default_polling_getkey;
374 break;
375 case CHIP_ID_EM2884:
376 case CHIP_ID_EM2874:
377 case CHIP_ID_EM28174:
378 ir->get_key = em2874_polling_getkey;
379 em28xx_write_regs(dev, EM2874_R50_IR_CONFIG, &ir_config, 1);
380 break;
381 default:
382 printk("Unrecognized em28xx chip id 0x%02x: IR not supported\n",
383 dev->chip_id);
384 rc = -EINVAL;
387 return rc;
390 int em28xx_ir_init(struct em28xx *dev)
392 struct em28xx_IR *ir;
393 struct rc_dev *rc;
394 int err = -ENOMEM;
396 if (dev->board.ir_codes == NULL) {
397 /* No remote control support */
398 return 0;
401 ir = kzalloc(sizeof(*ir), GFP_KERNEL);
402 rc = rc_allocate_device();
403 if (!ir || !rc)
404 goto err_out_free;
406 /* record handles to ourself */
407 ir->dev = dev;
408 dev->ir = ir;
409 ir->rc = rc;
412 * em2874 supports more protocols. For now, let's just announce
413 * the two protocols that were already tested
415 rc->allowed_protos = RC_TYPE_RC5 | RC_TYPE_NEC;
416 rc->priv = ir;
417 rc->change_protocol = em28xx_ir_change_protocol;
418 rc->open = em28xx_ir_start;
419 rc->close = em28xx_ir_stop;
421 /* By default, keep protocol field untouched */
422 err = em28xx_ir_change_protocol(rc, RC_TYPE_UNKNOWN);
423 if (err)
424 goto err_out_free;
426 /* This is how often we ask the chip for IR information */
427 ir->polling = 100; /* ms */
429 /* init input device */
430 snprintf(ir->name, sizeof(ir->name), "em28xx IR (%s)",
431 dev->name);
433 usb_make_path(dev->udev, ir->phys, sizeof(ir->phys));
434 strlcat(ir->phys, "/input0", sizeof(ir->phys));
436 rc->input_name = ir->name;
437 rc->input_phys = ir->phys;
438 rc->input_id.bustype = BUS_USB;
439 rc->input_id.version = 1;
440 rc->input_id.vendor = le16_to_cpu(dev->udev->descriptor.idVendor);
441 rc->input_id.product = le16_to_cpu(dev->udev->descriptor.idProduct);
442 rc->dev.parent = &dev->udev->dev;
443 rc->map_name = dev->board.ir_codes;
444 rc->driver_name = MODULE_NAME;
446 /* all done */
447 err = rc_register_device(rc);
448 if (err)
449 goto err_out_stop;
451 return 0;
453 err_out_stop:
454 dev->ir = NULL;
455 err_out_free:
456 rc_free_device(rc);
457 kfree(ir);
458 return err;
461 int em28xx_ir_fini(struct em28xx *dev)
463 struct em28xx_IR *ir = dev->ir;
465 /* skip detach on non attached boards */
466 if (!ir)
467 return 0;
469 if (ir->rc)
470 rc_unregister_device(ir->rc);
472 /* done */
473 kfree(ir);
474 dev->ir = NULL;
475 return 0;
478 /**********************************************************
479 Handle Webcam snapshot button
480 **********************************************************/
482 static void em28xx_query_sbutton(struct work_struct *work)
484 /* Poll the register and see if the button is depressed */
485 struct em28xx *dev =
486 container_of(work, struct em28xx, sbutton_query_work.work);
487 int ret;
489 ret = em28xx_read_reg(dev, EM28XX_R0C_USBSUSP);
491 if (ret & EM28XX_R0C_USBSUSP_SNAPSHOT) {
492 u8 cleared;
493 /* Button is depressed, clear the register */
494 cleared = ((u8) ret) & ~EM28XX_R0C_USBSUSP_SNAPSHOT;
495 em28xx_write_regs(dev, EM28XX_R0C_USBSUSP, &cleared, 1);
497 /* Not emulate the keypress */
498 input_report_key(dev->sbutton_input_dev, EM28XX_SNAPSHOT_KEY,
500 /* Now unpress the key */
501 input_report_key(dev->sbutton_input_dev, EM28XX_SNAPSHOT_KEY,
505 /* Schedule next poll */
506 schedule_delayed_work(&dev->sbutton_query_work,
507 msecs_to_jiffies(EM28XX_SBUTTON_QUERY_INTERVAL));
510 void em28xx_register_snapshot_button(struct em28xx *dev)
512 struct input_dev *input_dev;
513 int err;
515 em28xx_info("Registering snapshot button...\n");
516 input_dev = input_allocate_device();
517 if (!input_dev) {
518 em28xx_errdev("input_allocate_device failed\n");
519 return;
522 usb_make_path(dev->udev, dev->snapshot_button_path,
523 sizeof(dev->snapshot_button_path));
524 strlcat(dev->snapshot_button_path, "/sbutton",
525 sizeof(dev->snapshot_button_path));
526 INIT_DELAYED_WORK(&dev->sbutton_query_work, em28xx_query_sbutton);
528 input_dev->name = "em28xx snapshot button";
529 input_dev->phys = dev->snapshot_button_path;
530 input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_REP);
531 set_bit(EM28XX_SNAPSHOT_KEY, input_dev->keybit);
532 input_dev->keycodesize = 0;
533 input_dev->keycodemax = 0;
534 input_dev->id.bustype = BUS_USB;
535 input_dev->id.vendor = le16_to_cpu(dev->udev->descriptor.idVendor);
536 input_dev->id.product = le16_to_cpu(dev->udev->descriptor.idProduct);
537 input_dev->id.version = 1;
538 input_dev->dev.parent = &dev->udev->dev;
540 err = input_register_device(input_dev);
541 if (err) {
542 em28xx_errdev("input_register_device failed\n");
543 input_free_device(input_dev);
544 return;
547 dev->sbutton_input_dev = input_dev;
548 schedule_delayed_work(&dev->sbutton_query_work,
549 msecs_to_jiffies(EM28XX_SBUTTON_QUERY_INTERVAL));
550 return;
554 void em28xx_deregister_snapshot_button(struct em28xx *dev)
556 if (dev->sbutton_input_dev != NULL) {
557 em28xx_info("Deregistering snapshot button\n");
558 cancel_delayed_work_sync(&dev->sbutton_query_work);
559 input_unregister_device(dev->sbutton_input_dev);
560 dev->sbutton_input_dev = NULL;
562 return;