spi-topcliff-pch: supports a spi mode setup and bit order setup by IO control
[zen-stable.git] / drivers / message / i2o / device.c
blob4547db99f7da7d6e321894419a15f5ec3c6413b8
1 /*
2 * Functions to handle I2O devices
4 * Copyright (C) 2004 Markus Lidel <Markus.Lidel@shadowconnect.com>
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; either version 2 of the License, or (at your
9 * option) any later version.
11 * Fixes/additions:
12 * Markus Lidel <Markus.Lidel@shadowconnect.com>
13 * initial version.
16 #include <linux/module.h>
17 #include <linux/i2o.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/slab.h>
21 #include "core.h"
23 /**
24 * i2o_device_issue_claim - claim or release a device
25 * @dev: I2O device to claim or release
26 * @cmd: claim or release command
27 * @type: type of claim
29 * Issue I2O UTIL_CLAIM or UTIL_RELEASE messages. The message to be sent
30 * is set by cmd. dev is the I2O device which should be claim or
31 * released and the type is the claim type (see the I2O spec).
33 * Returs 0 on success or negative error code on failure.
35 static inline int i2o_device_issue_claim(struct i2o_device *dev, u32 cmd,
36 u32 type)
38 struct i2o_message *msg;
40 msg = i2o_msg_get_wait(dev->iop, I2O_TIMEOUT_MESSAGE_GET);
41 if (IS_ERR(msg))
42 return PTR_ERR(msg);
44 msg->u.head[0] = cpu_to_le32(FIVE_WORD_MSG_SIZE | SGL_OFFSET_0);
45 msg->u.head[1] =
46 cpu_to_le32(cmd << 24 | HOST_TID << 12 | dev->lct_data.tid);
47 msg->body[0] = cpu_to_le32(type);
49 return i2o_msg_post_wait(dev->iop, msg, 60);
52 /**
53 * i2o_device_claim - claim a device for use by an OSM
54 * @dev: I2O device to claim
56 * Do the leg work to assign a device to a given OSM. If the claim succeeds,
57 * the owner is the primary. If the attempt fails a negative errno code
58 * is returned. On success zero is returned.
60 int i2o_device_claim(struct i2o_device *dev)
62 int rc = 0;
64 mutex_lock(&dev->lock);
66 rc = i2o_device_issue_claim(dev, I2O_CMD_UTIL_CLAIM, I2O_CLAIM_PRIMARY);
67 if (!rc)
68 pr_debug("i2o: claim of device %d succeeded\n",
69 dev->lct_data.tid);
70 else
71 pr_debug("i2o: claim of device %d failed %d\n",
72 dev->lct_data.tid, rc);
74 mutex_unlock(&dev->lock);
76 return rc;
79 /**
80 * i2o_device_claim_release - release a device that the OSM is using
81 * @dev: device to release
83 * Drop a claim by an OSM on a given I2O device.
85 * AC - some devices seem to want to refuse an unclaim until they have
86 * finished internal processing. It makes sense since you don't want a
87 * new device to go reconfiguring the entire system until you are done.
88 * Thus we are prepared to wait briefly.
90 * Returns 0 on success or negative error code on failure.
92 int i2o_device_claim_release(struct i2o_device *dev)
94 int tries;
95 int rc = 0;
97 mutex_lock(&dev->lock);
100 * If the controller takes a nonblocking approach to
101 * releases we have to sleep/poll for a few times.
103 for (tries = 0; tries < 10; tries++) {
104 rc = i2o_device_issue_claim(dev, I2O_CMD_UTIL_RELEASE,
105 I2O_CLAIM_PRIMARY);
106 if (!rc)
107 break;
109 ssleep(1);
112 if (!rc)
113 pr_debug("i2o: claim release of device %d succeeded\n",
114 dev->lct_data.tid);
115 else
116 pr_debug("i2o: claim release of device %d failed %d\n",
117 dev->lct_data.tid, rc);
119 mutex_unlock(&dev->lock);
121 return rc;
125 * i2o_device_release - release the memory for a I2O device
126 * @dev: I2O device which should be released
128 * Release the allocated memory. This function is called if refcount of
129 * device reaches 0 automatically.
131 static void i2o_device_release(struct device *dev)
133 struct i2o_device *i2o_dev = to_i2o_device(dev);
135 pr_debug("i2o: device %s released\n", dev_name(dev));
137 kfree(i2o_dev);
141 * i2o_device_show_class_id - Displays class id of I2O device
142 * @dev: device of which the class id should be displayed
143 * @attr: pointer to device attribute
144 * @buf: buffer into which the class id should be printed
146 * Returns the number of bytes which are printed into the buffer.
148 static ssize_t i2o_device_show_class_id(struct device *dev,
149 struct device_attribute *attr,
150 char *buf)
152 struct i2o_device *i2o_dev = to_i2o_device(dev);
154 sprintf(buf, "0x%03x\n", i2o_dev->lct_data.class_id);
155 return strlen(buf) + 1;
159 * i2o_device_show_tid - Displays TID of I2O device
160 * @dev: device of which the TID should be displayed
161 * @attr: pointer to device attribute
162 * @buf: buffer into which the TID should be printed
164 * Returns the number of bytes which are printed into the buffer.
166 static ssize_t i2o_device_show_tid(struct device *dev,
167 struct device_attribute *attr, char *buf)
169 struct i2o_device *i2o_dev = to_i2o_device(dev);
171 sprintf(buf, "0x%03x\n", i2o_dev->lct_data.tid);
172 return strlen(buf) + 1;
175 /* I2O device attributes */
176 struct device_attribute i2o_device_attrs[] = {
177 __ATTR(class_id, S_IRUGO, i2o_device_show_class_id, NULL),
178 __ATTR(tid, S_IRUGO, i2o_device_show_tid, NULL),
179 __ATTR_NULL
183 * i2o_device_alloc - Allocate a I2O device and initialize it
185 * Allocate the memory for a I2O device and initialize locks and lists
187 * Returns the allocated I2O device or a negative error code if the device
188 * could not be allocated.
190 static struct i2o_device *i2o_device_alloc(void)
192 struct i2o_device *dev;
194 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
195 if (!dev)
196 return ERR_PTR(-ENOMEM);
198 INIT_LIST_HEAD(&dev->list);
199 mutex_init(&dev->lock);
201 dev->device.bus = &i2o_bus_type;
202 dev->device.release = &i2o_device_release;
204 return dev;
208 * i2o_device_add - allocate a new I2O device and add it to the IOP
209 * @c: I2O controller that the device is on
210 * @entry: LCT entry of the I2O device
212 * Allocate a new I2O device and initialize it with the LCT entry. The
213 * device is appended to the device list of the controller.
215 * Returns zero on success, or a -ve errno.
217 static int i2o_device_add(struct i2o_controller *c, i2o_lct_entry *entry)
219 struct i2o_device *i2o_dev, *tmp;
220 int rc;
222 i2o_dev = i2o_device_alloc();
223 if (IS_ERR(i2o_dev)) {
224 printk(KERN_ERR "i2o: unable to allocate i2o device\n");
225 return PTR_ERR(i2o_dev);
228 i2o_dev->lct_data = *entry;
230 dev_set_name(&i2o_dev->device, "%d:%03x", c->unit,
231 i2o_dev->lct_data.tid);
233 i2o_dev->iop = c;
234 i2o_dev->device.parent = &c->device;
236 rc = device_register(&i2o_dev->device);
237 if (rc)
238 goto err;
240 list_add_tail(&i2o_dev->list, &c->devices);
242 /* create user entries for this device */
243 tmp = i2o_iop_find_device(i2o_dev->iop, i2o_dev->lct_data.user_tid);
244 if (tmp && (tmp != i2o_dev)) {
245 rc = sysfs_create_link(&i2o_dev->device.kobj,
246 &tmp->device.kobj, "user");
247 if (rc)
248 goto unreg_dev;
251 /* create user entries referring to this device */
252 list_for_each_entry(tmp, &c->devices, list)
253 if ((tmp->lct_data.user_tid == i2o_dev->lct_data.tid)
254 && (tmp != i2o_dev)) {
255 rc = sysfs_create_link(&tmp->device.kobj,
256 &i2o_dev->device.kobj, "user");
257 if (rc)
258 goto rmlink1;
261 /* create parent entries for this device */
262 tmp = i2o_iop_find_device(i2o_dev->iop, i2o_dev->lct_data.parent_tid);
263 if (tmp && (tmp != i2o_dev)) {
264 rc = sysfs_create_link(&i2o_dev->device.kobj,
265 &tmp->device.kobj, "parent");
266 if (rc)
267 goto rmlink1;
270 /* create parent entries referring to this device */
271 list_for_each_entry(tmp, &c->devices, list)
272 if ((tmp->lct_data.parent_tid == i2o_dev->lct_data.tid)
273 && (tmp != i2o_dev)) {
274 rc = sysfs_create_link(&tmp->device.kobj,
275 &i2o_dev->device.kobj, "parent");
276 if (rc)
277 goto rmlink2;
280 i2o_driver_notify_device_add_all(i2o_dev);
282 pr_debug("i2o: device %s added\n", dev_name(&i2o_dev->device));
284 return 0;
286 rmlink2:
287 /* If link creating failed halfway, we loop whole list to cleanup.
288 * And we don't care wrong removing of link, because sysfs_remove_link
289 * will take care of it.
291 list_for_each_entry(tmp, &c->devices, list) {
292 if (tmp->lct_data.parent_tid == i2o_dev->lct_data.tid)
293 sysfs_remove_link(&tmp->device.kobj, "parent");
295 sysfs_remove_link(&i2o_dev->device.kobj, "parent");
296 rmlink1:
297 list_for_each_entry(tmp, &c->devices, list)
298 if (tmp->lct_data.user_tid == i2o_dev->lct_data.tid)
299 sysfs_remove_link(&tmp->device.kobj, "user");
300 sysfs_remove_link(&i2o_dev->device.kobj, "user");
301 unreg_dev:
302 list_del(&i2o_dev->list);
303 device_unregister(&i2o_dev->device);
304 err:
305 kfree(i2o_dev);
306 return rc;
310 * i2o_device_remove - remove an I2O device from the I2O core
311 * @i2o_dev: I2O device which should be released
313 * Is used on I2O controller removal or LCT modification, when the device
314 * is removed from the system. Note that the device could still hang
315 * around until the refcount reaches 0.
317 void i2o_device_remove(struct i2o_device *i2o_dev)
319 struct i2o_device *tmp;
320 struct i2o_controller *c = i2o_dev->iop;
322 i2o_driver_notify_device_remove_all(i2o_dev);
324 sysfs_remove_link(&i2o_dev->device.kobj, "parent");
325 sysfs_remove_link(&i2o_dev->device.kobj, "user");
327 list_for_each_entry(tmp, &c->devices, list) {
328 if (tmp->lct_data.parent_tid == i2o_dev->lct_data.tid)
329 sysfs_remove_link(&tmp->device.kobj, "parent");
330 if (tmp->lct_data.user_tid == i2o_dev->lct_data.tid)
331 sysfs_remove_link(&tmp->device.kobj, "user");
333 list_del(&i2o_dev->list);
335 device_unregister(&i2o_dev->device);
339 * i2o_device_parse_lct - Parse a previously fetched LCT and create devices
340 * @c: I2O controller from which the LCT should be parsed.
342 * The Logical Configuration Table tells us what we can talk to on the
343 * board. For every entry we create an I2O device, which is registered in
344 * the I2O core.
346 * Returns 0 on success or negative error code on failure.
348 int i2o_device_parse_lct(struct i2o_controller *c)
350 struct i2o_device *dev, *tmp;
351 i2o_lct *lct;
352 u32 *dlct = c->dlct.virt;
353 int max = 0, i = 0;
354 u16 table_size;
355 u32 buf;
357 mutex_lock(&c->lct_lock);
359 kfree(c->lct);
361 buf = le32_to_cpu(*dlct++);
362 table_size = buf & 0xffff;
364 lct = c->lct = kmalloc(table_size * 4, GFP_KERNEL);
365 if (!lct) {
366 mutex_unlock(&c->lct_lock);
367 return -ENOMEM;
370 lct->lct_ver = buf >> 28;
371 lct->boot_tid = buf >> 16 & 0xfff;
372 lct->table_size = table_size;
373 lct->change_ind = le32_to_cpu(*dlct++);
374 lct->iop_flags = le32_to_cpu(*dlct++);
376 table_size -= 3;
378 pr_debug("%s: LCT has %d entries (LCT size: %d)\n", c->name, max,
379 lct->table_size);
381 while (table_size > 0) {
382 i2o_lct_entry *entry = &lct->lct_entry[max];
383 int found = 0;
385 buf = le32_to_cpu(*dlct++);
386 entry->entry_size = buf & 0xffff;
387 entry->tid = buf >> 16 & 0xfff;
389 entry->change_ind = le32_to_cpu(*dlct++);
390 entry->device_flags = le32_to_cpu(*dlct++);
392 buf = le32_to_cpu(*dlct++);
393 entry->class_id = buf & 0xfff;
394 entry->version = buf >> 12 & 0xf;
395 entry->vendor_id = buf >> 16;
397 entry->sub_class = le32_to_cpu(*dlct++);
399 buf = le32_to_cpu(*dlct++);
400 entry->user_tid = buf & 0xfff;
401 entry->parent_tid = buf >> 12 & 0xfff;
402 entry->bios_info = buf >> 24;
404 memcpy(&entry->identity_tag, dlct, 8);
405 dlct += 2;
407 entry->event_capabilities = le32_to_cpu(*dlct++);
409 /* add new devices, which are new in the LCT */
410 list_for_each_entry_safe(dev, tmp, &c->devices, list) {
411 if (entry->tid == dev->lct_data.tid) {
412 found = 1;
413 break;
417 if (!found)
418 i2o_device_add(c, entry);
420 table_size -= 9;
421 max++;
424 /* remove devices, which are not in the LCT anymore */
425 list_for_each_entry_safe(dev, tmp, &c->devices, list) {
426 int found = 0;
428 for (i = 0; i < max; i++) {
429 if (lct->lct_entry[i].tid == dev->lct_data.tid) {
430 found = 1;
431 break;
435 if (!found)
436 i2o_device_remove(dev);
439 mutex_unlock(&c->lct_lock);
441 return 0;
445 * Run time support routines
448 /* Issue UTIL_PARAMS_GET or UTIL_PARAMS_SET
450 * This function can be used for all UtilParamsGet/Set operations.
451 * The OperationList is given in oplist-buffer,
452 * and results are returned in reslist-buffer.
453 * Note that the minimum sized reslist is 8 bytes and contains
454 * ResultCount, ErrorInfoSize, BlockStatus and BlockSize.
456 int i2o_parm_issue(struct i2o_device *i2o_dev, int cmd, void *oplist,
457 int oplen, void *reslist, int reslen)
459 struct i2o_message *msg;
460 int i = 0;
461 int rc;
462 struct i2o_dma res;
463 struct i2o_controller *c = i2o_dev->iop;
464 struct device *dev = &c->pdev->dev;
466 res.virt = NULL;
468 if (i2o_dma_alloc(dev, &res, reslen))
469 return -ENOMEM;
471 msg = i2o_msg_get_wait(c, I2O_TIMEOUT_MESSAGE_GET);
472 if (IS_ERR(msg)) {
473 i2o_dma_free(dev, &res);
474 return PTR_ERR(msg);
477 i = 0;
478 msg->u.head[1] =
479 cpu_to_le32(cmd << 24 | HOST_TID << 12 | i2o_dev->lct_data.tid);
480 msg->body[i++] = cpu_to_le32(0x00000000);
481 msg->body[i++] = cpu_to_le32(0x4C000000 | oplen); /* OperationList */
482 memcpy(&msg->body[i], oplist, oplen);
483 i += (oplen / 4 + (oplen % 4 ? 1 : 0));
484 msg->body[i++] = cpu_to_le32(0xD0000000 | res.len); /* ResultList */
485 msg->body[i++] = cpu_to_le32(res.phys);
487 msg->u.head[0] =
488 cpu_to_le32(I2O_MESSAGE_SIZE(i + sizeof(struct i2o_message) / 4) |
489 SGL_OFFSET_5);
491 rc = i2o_msg_post_wait_mem(c, msg, 10, &res);
493 /* This only looks like a memory leak - don't "fix" it. */
494 if (rc == -ETIMEDOUT)
495 return rc;
497 memcpy(reslist, res.virt, res.len);
498 i2o_dma_free(dev, &res);
500 return rc;
504 * Query one field group value or a whole scalar group.
506 int i2o_parm_field_get(struct i2o_device *i2o_dev, int group, int field,
507 void *buf, int buflen)
509 u32 opblk[] = { cpu_to_le32(0x00000001),
510 cpu_to_le32((u16) group << 16 | I2O_PARAMS_FIELD_GET),
511 cpu_to_le32((s16) field << 16 | 0x00000001)
513 u8 *resblk; /* 8 bytes for header */
514 int rc;
516 resblk = kmalloc(buflen + 8, GFP_KERNEL);
517 if (!resblk)
518 return -ENOMEM;
520 rc = i2o_parm_issue(i2o_dev, I2O_CMD_UTIL_PARAMS_GET, opblk,
521 sizeof(opblk), resblk, buflen + 8);
523 memcpy(buf, resblk + 8, buflen); /* cut off header */
525 kfree(resblk);
527 return rc;
531 * if oper == I2O_PARAMS_TABLE_GET, get from all rows
532 * if fieldcount == -1 return all fields
533 * ibuf and ibuflen are unused (use NULL, 0)
534 * else return specific fields
535 * ibuf contains fieldindexes
537 * if oper == I2O_PARAMS_LIST_GET, get from specific rows
538 * if fieldcount == -1 return all fields
539 * ibuf contains rowcount, keyvalues
540 * else return specific fields
541 * fieldcount is # of fieldindexes
542 * ibuf contains fieldindexes, rowcount, keyvalues
544 * You could also use directly function i2o_issue_params().
546 int i2o_parm_table_get(struct i2o_device *dev, int oper, int group,
547 int fieldcount, void *ibuf, int ibuflen, void *resblk,
548 int reslen)
550 u16 *opblk;
551 int size;
553 size = 10 + ibuflen;
554 if (size % 4)
555 size += 4 - size % 4;
557 opblk = kmalloc(size, GFP_KERNEL);
558 if (opblk == NULL) {
559 printk(KERN_ERR "i2o: no memory for query buffer.\n");
560 return -ENOMEM;
563 opblk[0] = 1; /* operation count */
564 opblk[1] = 0; /* pad */
565 opblk[2] = oper;
566 opblk[3] = group;
567 opblk[4] = fieldcount;
568 memcpy(opblk + 5, ibuf, ibuflen); /* other params */
570 size = i2o_parm_issue(dev, I2O_CMD_UTIL_PARAMS_GET, opblk,
571 size, resblk, reslen);
573 kfree(opblk);
574 if (size > reslen)
575 return reslen;
577 return size;
580 EXPORT_SYMBOL(i2o_device_claim);
581 EXPORT_SYMBOL(i2o_device_claim_release);
582 EXPORT_SYMBOL(i2o_parm_field_get);
583 EXPORT_SYMBOL(i2o_parm_table_get);
584 EXPORT_SYMBOL(i2o_parm_issue);