spi-topcliff-pch: supports a spi mode setup and bit order setup by IO control
[zen-stable.git] / drivers / net / ethernet / dec / tulip / tulip_core.c
blob4eb0d76145c2347cf5060223f6003a94bfbb7857
1 /* tulip_core.c: A DEC 21x4x-family ethernet driver for Linux.
3 Copyright 2000,2001 The Linux Kernel Team
4 Written/copyright 1994-2001 by Donald Becker.
6 This software may be used and distributed according to the terms
7 of the GNU General Public License, incorporated herein by reference.
9 Please submit bugs to http://bugzilla.kernel.org/ .
12 #define pr_fmt(fmt) "tulip: " fmt
14 #define DRV_NAME "tulip"
15 #ifdef CONFIG_TULIP_NAPI
16 #define DRV_VERSION "1.1.15-NAPI" /* Keep at least for test */
17 #else
18 #define DRV_VERSION "1.1.15"
19 #endif
20 #define DRV_RELDATE "Feb 27, 2007"
23 #include <linux/module.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include "tulip.h"
27 #include <linux/init.h>
28 #include <linux/interrupt.h>
29 #include <linux/etherdevice.h>
30 #include <linux/delay.h>
31 #include <linux/mii.h>
32 #include <linux/crc32.h>
33 #include <asm/unaligned.h>
34 #include <asm/uaccess.h>
36 #ifdef CONFIG_SPARC
37 #include <asm/prom.h>
38 #endif
40 static char version[] __devinitdata =
41 "Linux Tulip driver version " DRV_VERSION " (" DRV_RELDATE ")\n";
43 /* A few user-configurable values. */
45 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
46 static unsigned int max_interrupt_work = 25;
48 #define MAX_UNITS 8
49 /* Used to pass the full-duplex flag, etc. */
50 static int full_duplex[MAX_UNITS];
51 static int options[MAX_UNITS];
52 static int mtu[MAX_UNITS]; /* Jumbo MTU for interfaces. */
54 /* The possible media types that can be set in options[] are: */
55 const char * const medianame[32] = {
56 "10baseT", "10base2", "AUI", "100baseTx",
57 "10baseT-FDX", "100baseTx-FDX", "100baseT4", "100baseFx",
58 "100baseFx-FDX", "MII 10baseT", "MII 10baseT-FDX", "MII",
59 "10baseT(forced)", "MII 100baseTx", "MII 100baseTx-FDX", "MII 100baseT4",
60 "MII 100baseFx-HDX", "MII 100baseFx-FDX", "Home-PNA 1Mbps", "Invalid-19",
61 "","","","", "","","","", "","","","Transceiver reset",
64 /* Set the copy breakpoint for the copy-only-tiny-buffer Rx structure. */
65 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \
66 defined(CONFIG_SPARC) || defined(__ia64__) || \
67 defined(__sh__) || defined(__mips__)
68 static int rx_copybreak = 1518;
69 #else
70 static int rx_copybreak = 100;
71 #endif
74 Set the bus performance register.
75 Typical: Set 16 longword cache alignment, no burst limit.
76 Cache alignment bits 15:14 Burst length 13:8
77 0000 No alignment 0x00000000 unlimited 0800 8 longwords
78 4000 8 longwords 0100 1 longword 1000 16 longwords
79 8000 16 longwords 0200 2 longwords 2000 32 longwords
80 C000 32 longwords 0400 4 longwords
81 Warning: many older 486 systems are broken and require setting 0x00A04800
82 8 longword cache alignment, 8 longword burst.
83 ToDo: Non-Intel setting could be better.
86 #if defined(__alpha__) || defined(__ia64__)
87 static int csr0 = 0x01A00000 | 0xE000;
88 #elif defined(__i386__) || defined(__powerpc__) || defined(__x86_64__)
89 static int csr0 = 0x01A00000 | 0x8000;
90 #elif defined(CONFIG_SPARC) || defined(__hppa__)
91 /* The UltraSparc PCI controllers will disconnect at every 64-byte
92 * crossing anyways so it makes no sense to tell Tulip to burst
93 * any more than that.
95 static int csr0 = 0x01A00000 | 0x9000;
96 #elif defined(__arm__) || defined(__sh__)
97 static int csr0 = 0x01A00000 | 0x4800;
98 #elif defined(__mips__)
99 static int csr0 = 0x00200000 | 0x4000;
100 #else
101 #warning Processor architecture undefined!
102 static int csr0 = 0x00A00000 | 0x4800;
103 #endif
105 /* Operational parameters that usually are not changed. */
106 /* Time in jiffies before concluding the transmitter is hung. */
107 #define TX_TIMEOUT (4*HZ)
110 MODULE_AUTHOR("The Linux Kernel Team");
111 MODULE_DESCRIPTION("Digital 21*4* Tulip ethernet driver");
112 MODULE_LICENSE("GPL");
113 MODULE_VERSION(DRV_VERSION);
114 module_param(tulip_debug, int, 0);
115 module_param(max_interrupt_work, int, 0);
116 module_param(rx_copybreak, int, 0);
117 module_param(csr0, int, 0);
118 module_param_array(options, int, NULL, 0);
119 module_param_array(full_duplex, int, NULL, 0);
121 #ifdef TULIP_DEBUG
122 int tulip_debug = TULIP_DEBUG;
123 #else
124 int tulip_debug = 1;
125 #endif
127 static void tulip_timer(unsigned long data)
129 struct net_device *dev = (struct net_device *)data;
130 struct tulip_private *tp = netdev_priv(dev);
132 if (netif_running(dev))
133 schedule_work(&tp->media_work);
137 * This table use during operation for capabilities and media timer.
139 * It is indexed via the values in 'enum chips'
142 struct tulip_chip_table tulip_tbl[] = {
143 { }, /* placeholder for array, slot unused currently */
144 { }, /* placeholder for array, slot unused currently */
146 /* DC21140 */
147 { "Digital DS21140 Tulip", 128, 0x0001ebef,
148 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_PCI_MWI, tulip_timer,
149 tulip_media_task },
151 /* DC21142, DC21143 */
152 { "Digital DS21142/43 Tulip", 128, 0x0801fbff,
153 HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI | HAS_NWAY
154 | HAS_INTR_MITIGATION | HAS_PCI_MWI, tulip_timer, t21142_media_task },
156 /* LC82C168 */
157 { "Lite-On 82c168 PNIC", 256, 0x0001fbef,
158 HAS_MII | HAS_PNICNWAY, pnic_timer, },
160 /* MX98713 */
161 { "Macronix 98713 PMAC", 128, 0x0001ebef,
162 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer, },
164 /* MX98715 */
165 { "Macronix 98715 PMAC", 256, 0x0001ebef,
166 HAS_MEDIA_TABLE, mxic_timer, },
168 /* MX98725 */
169 { "Macronix 98725 PMAC", 256, 0x0001ebef,
170 HAS_MEDIA_TABLE, mxic_timer, },
172 /* AX88140 */
173 { "ASIX AX88140", 128, 0x0001fbff,
174 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | MC_HASH_ONLY
175 | IS_ASIX, tulip_timer, tulip_media_task },
177 /* PNIC2 */
178 { "Lite-On PNIC-II", 256, 0x0801fbff,
179 HAS_MII | HAS_NWAY | HAS_8023X | HAS_PCI_MWI, pnic2_timer, },
181 /* COMET */
182 { "ADMtek Comet", 256, 0x0001abef,
183 HAS_MII | MC_HASH_ONLY | COMET_MAC_ADDR, comet_timer, },
185 /* COMPEX9881 */
186 { "Compex 9881 PMAC", 128, 0x0001ebef,
187 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer, },
189 /* I21145 */
190 { "Intel DS21145 Tulip", 128, 0x0801fbff,
191 HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI
192 | HAS_NWAY | HAS_PCI_MWI, tulip_timer, tulip_media_task },
194 /* DM910X */
195 #ifdef CONFIG_TULIP_DM910X
196 { "Davicom DM9102/DM9102A", 128, 0x0001ebef,
197 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_ACPI,
198 tulip_timer, tulip_media_task },
199 #else
200 { NULL },
201 #endif
203 /* RS7112 */
204 { "Conexant LANfinity", 256, 0x0001ebef,
205 HAS_MII | HAS_ACPI, tulip_timer, tulip_media_task },
210 static DEFINE_PCI_DEVICE_TABLE(tulip_pci_tbl) = {
211 { 0x1011, 0x0009, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21140 },
212 { 0x1011, 0x0019, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21143 },
213 { 0x11AD, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, LC82C168 },
214 { 0x10d9, 0x0512, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98713 },
215 { 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 },
216 /* { 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98725 },*/
217 { 0x125B, 0x1400, PCI_ANY_ID, PCI_ANY_ID, 0, 0, AX88140 },
218 { 0x11AD, 0xc115, PCI_ANY_ID, PCI_ANY_ID, 0, 0, PNIC2 },
219 { 0x1317, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
220 { 0x1317, 0x0985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
221 { 0x1317, 0x1985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
222 { 0x1317, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
223 { 0x13D1, 0xAB02, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
224 { 0x13D1, 0xAB03, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
225 { 0x13D1, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
226 { 0x104A, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
227 { 0x104A, 0x2774, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
228 { 0x1259, 0xa120, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
229 { 0x11F6, 0x9881, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMPEX9881 },
230 { 0x8086, 0x0039, PCI_ANY_ID, PCI_ANY_ID, 0, 0, I21145 },
231 #ifdef CONFIG_TULIP_DM910X
232 { 0x1282, 0x9100, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X },
233 { 0x1282, 0x9102, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X },
234 #endif
235 { 0x1113, 0x1216, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
236 { 0x1113, 0x1217, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 },
237 { 0x1113, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
238 { 0x1186, 0x1541, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
239 { 0x1186, 0x1561, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
240 { 0x1186, 0x1591, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
241 { 0x14f1, 0x1803, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CONEXANT },
242 { 0x1626, 0x8410, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
243 { 0x1737, 0xAB09, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
244 { 0x1737, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
245 { 0x17B3, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
246 { 0x10b7, 0x9300, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* 3Com 3CSOHO100B-TX */
247 { 0x14ea, 0xab08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* Planex FNW-3602-TX */
248 { 0x1414, 0x0001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* Microsoft MN-120 */
249 { 0x1414, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
250 { } /* terminate list */
252 MODULE_DEVICE_TABLE(pci, tulip_pci_tbl);
255 /* A full-duplex map for media types. */
256 const char tulip_media_cap[32] =
257 {0,0,0,16, 3,19,16,24, 27,4,7,5, 0,20,23,20, 28,31,0,0, };
259 static void tulip_tx_timeout(struct net_device *dev);
260 static void tulip_init_ring(struct net_device *dev);
261 static void tulip_free_ring(struct net_device *dev);
262 static netdev_tx_t tulip_start_xmit(struct sk_buff *skb,
263 struct net_device *dev);
264 static int tulip_open(struct net_device *dev);
265 static int tulip_close(struct net_device *dev);
266 static void tulip_up(struct net_device *dev);
267 static void tulip_down(struct net_device *dev);
268 static struct net_device_stats *tulip_get_stats(struct net_device *dev);
269 static int private_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
270 static void set_rx_mode(struct net_device *dev);
271 static void tulip_set_wolopts(struct pci_dev *pdev, u32 wolopts);
272 #ifdef CONFIG_NET_POLL_CONTROLLER
273 static void poll_tulip(struct net_device *dev);
274 #endif
276 static void tulip_set_power_state (struct tulip_private *tp,
277 int sleep, int snooze)
279 if (tp->flags & HAS_ACPI) {
280 u32 tmp, newtmp;
281 pci_read_config_dword (tp->pdev, CFDD, &tmp);
282 newtmp = tmp & ~(CFDD_Sleep | CFDD_Snooze);
283 if (sleep)
284 newtmp |= CFDD_Sleep;
285 else if (snooze)
286 newtmp |= CFDD_Snooze;
287 if (tmp != newtmp)
288 pci_write_config_dword (tp->pdev, CFDD, newtmp);
294 static void tulip_up(struct net_device *dev)
296 struct tulip_private *tp = netdev_priv(dev);
297 void __iomem *ioaddr = tp->base_addr;
298 int next_tick = 3*HZ;
299 u32 reg;
300 int i;
302 #ifdef CONFIG_TULIP_NAPI
303 napi_enable(&tp->napi);
304 #endif
306 /* Wake the chip from sleep/snooze mode. */
307 tulip_set_power_state (tp, 0, 0);
309 /* Disable all WOL events */
310 pci_enable_wake(tp->pdev, PCI_D3hot, 0);
311 pci_enable_wake(tp->pdev, PCI_D3cold, 0);
312 tulip_set_wolopts(tp->pdev, 0);
314 /* On some chip revs we must set the MII/SYM port before the reset!? */
315 if (tp->mii_cnt || (tp->mtable && tp->mtable->has_mii))
316 iowrite32(0x00040000, ioaddr + CSR6);
318 /* Reset the chip, holding bit 0 set at least 50 PCI cycles. */
319 iowrite32(0x00000001, ioaddr + CSR0);
320 pci_read_config_dword(tp->pdev, PCI_COMMAND, &reg); /* flush write */
321 udelay(100);
323 /* Deassert reset.
324 Wait the specified 50 PCI cycles after a reset by initializing
325 Tx and Rx queues and the address filter list. */
326 iowrite32(tp->csr0, ioaddr + CSR0);
327 pci_read_config_dword(tp->pdev, PCI_COMMAND, &reg); /* flush write */
328 udelay(100);
330 if (tulip_debug > 1)
331 netdev_dbg(dev, "tulip_up(), irq==%d\n", dev->irq);
333 iowrite32(tp->rx_ring_dma, ioaddr + CSR3);
334 iowrite32(tp->tx_ring_dma, ioaddr + CSR4);
335 tp->cur_rx = tp->cur_tx = 0;
336 tp->dirty_rx = tp->dirty_tx = 0;
338 if (tp->flags & MC_HASH_ONLY) {
339 u32 addr_low = get_unaligned_le32(dev->dev_addr);
340 u32 addr_high = get_unaligned_le16(dev->dev_addr + 4);
341 if (tp->chip_id == AX88140) {
342 iowrite32(0, ioaddr + CSR13);
343 iowrite32(addr_low, ioaddr + CSR14);
344 iowrite32(1, ioaddr + CSR13);
345 iowrite32(addr_high, ioaddr + CSR14);
346 } else if (tp->flags & COMET_MAC_ADDR) {
347 iowrite32(addr_low, ioaddr + 0xA4);
348 iowrite32(addr_high, ioaddr + 0xA8);
349 iowrite32(0, ioaddr + CSR27);
350 iowrite32(0, ioaddr + CSR28);
352 } else {
353 /* This is set_rx_mode(), but without starting the transmitter. */
354 u16 *eaddrs = (u16 *)dev->dev_addr;
355 u16 *setup_frm = &tp->setup_frame[15*6];
356 dma_addr_t mapping;
358 /* 21140 bug: you must add the broadcast address. */
359 memset(tp->setup_frame, 0xff, sizeof(tp->setup_frame));
360 /* Fill the final entry of the table with our physical address. */
361 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
362 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
363 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
365 mapping = pci_map_single(tp->pdev, tp->setup_frame,
366 sizeof(tp->setup_frame),
367 PCI_DMA_TODEVICE);
368 tp->tx_buffers[tp->cur_tx].skb = NULL;
369 tp->tx_buffers[tp->cur_tx].mapping = mapping;
371 /* Put the setup frame on the Tx list. */
372 tp->tx_ring[tp->cur_tx].length = cpu_to_le32(0x08000000 | 192);
373 tp->tx_ring[tp->cur_tx].buffer1 = cpu_to_le32(mapping);
374 tp->tx_ring[tp->cur_tx].status = cpu_to_le32(DescOwned);
376 tp->cur_tx++;
379 tp->saved_if_port = dev->if_port;
380 if (dev->if_port == 0)
381 dev->if_port = tp->default_port;
383 /* Allow selecting a default media. */
384 i = 0;
385 if (tp->mtable == NULL)
386 goto media_picked;
387 if (dev->if_port) {
388 int looking_for = tulip_media_cap[dev->if_port] & MediaIsMII ? 11 :
389 (dev->if_port == 12 ? 0 : dev->if_port);
390 for (i = 0; i < tp->mtable->leafcount; i++)
391 if (tp->mtable->mleaf[i].media == looking_for) {
392 dev_info(&dev->dev,
393 "Using user-specified media %s\n",
394 medianame[dev->if_port]);
395 goto media_picked;
398 if ((tp->mtable->defaultmedia & 0x0800) == 0) {
399 int looking_for = tp->mtable->defaultmedia & MEDIA_MASK;
400 for (i = 0; i < tp->mtable->leafcount; i++)
401 if (tp->mtable->mleaf[i].media == looking_for) {
402 dev_info(&dev->dev,
403 "Using EEPROM-set media %s\n",
404 medianame[looking_for]);
405 goto media_picked;
408 /* Start sensing first non-full-duplex media. */
409 for (i = tp->mtable->leafcount - 1;
410 (tulip_media_cap[tp->mtable->mleaf[i].media] & MediaAlwaysFD) && i > 0; i--)
412 media_picked:
414 tp->csr6 = 0;
415 tp->cur_index = i;
416 tp->nwayset = 0;
418 if (dev->if_port) {
419 if (tp->chip_id == DC21143 &&
420 (tulip_media_cap[dev->if_port] & MediaIsMII)) {
421 /* We must reset the media CSRs when we force-select MII mode. */
422 iowrite32(0x0000, ioaddr + CSR13);
423 iowrite32(0x0000, ioaddr + CSR14);
424 iowrite32(0x0008, ioaddr + CSR15);
426 tulip_select_media(dev, 1);
427 } else if (tp->chip_id == DC21142) {
428 if (tp->mii_cnt) {
429 tulip_select_media(dev, 1);
430 if (tulip_debug > 1)
431 dev_info(&dev->dev,
432 "Using MII transceiver %d, status %04x\n",
433 tp->phys[0],
434 tulip_mdio_read(dev, tp->phys[0], 1));
435 iowrite32(csr6_mask_defstate, ioaddr + CSR6);
436 tp->csr6 = csr6_mask_hdcap;
437 dev->if_port = 11;
438 iowrite32(0x0000, ioaddr + CSR13);
439 iowrite32(0x0000, ioaddr + CSR14);
440 } else
441 t21142_start_nway(dev);
442 } else if (tp->chip_id == PNIC2) {
443 /* for initial startup advertise 10/100 Full and Half */
444 tp->sym_advertise = 0x01E0;
445 /* enable autonegotiate end interrupt */
446 iowrite32(ioread32(ioaddr+CSR5)| 0x00008010, ioaddr + CSR5);
447 iowrite32(ioread32(ioaddr+CSR7)| 0x00008010, ioaddr + CSR7);
448 pnic2_start_nway(dev);
449 } else if (tp->chip_id == LC82C168 && ! tp->medialock) {
450 if (tp->mii_cnt) {
451 dev->if_port = 11;
452 tp->csr6 = 0x814C0000 | (tp->full_duplex ? 0x0200 : 0);
453 iowrite32(0x0001, ioaddr + CSR15);
454 } else if (ioread32(ioaddr + CSR5) & TPLnkPass)
455 pnic_do_nway(dev);
456 else {
457 /* Start with 10mbps to do autonegotiation. */
458 iowrite32(0x32, ioaddr + CSR12);
459 tp->csr6 = 0x00420000;
460 iowrite32(0x0001B078, ioaddr + 0xB8);
461 iowrite32(0x0201B078, ioaddr + 0xB8);
462 next_tick = 1*HZ;
464 } else if ((tp->chip_id == MX98713 || tp->chip_id == COMPEX9881) &&
465 ! tp->medialock) {
466 dev->if_port = 0;
467 tp->csr6 = 0x01880000 | (tp->full_duplex ? 0x0200 : 0);
468 iowrite32(0x0f370000 | ioread16(ioaddr + 0x80), ioaddr + 0x80);
469 } else if (tp->chip_id == MX98715 || tp->chip_id == MX98725) {
470 /* Provided by BOLO, Macronix - 12/10/1998. */
471 dev->if_port = 0;
472 tp->csr6 = 0x01a80200;
473 iowrite32(0x0f370000 | ioread16(ioaddr + 0x80), ioaddr + 0x80);
474 iowrite32(0x11000 | ioread16(ioaddr + 0xa0), ioaddr + 0xa0);
475 } else if (tp->chip_id == COMET || tp->chip_id == CONEXANT) {
476 /* Enable automatic Tx underrun recovery. */
477 iowrite32(ioread32(ioaddr + 0x88) | 1, ioaddr + 0x88);
478 dev->if_port = tp->mii_cnt ? 11 : 0;
479 tp->csr6 = 0x00040000;
480 } else if (tp->chip_id == AX88140) {
481 tp->csr6 = tp->mii_cnt ? 0x00040100 : 0x00000100;
482 } else
483 tulip_select_media(dev, 1);
485 /* Start the chip's Tx to process setup frame. */
486 tulip_stop_rxtx(tp);
487 barrier();
488 udelay(5);
489 iowrite32(tp->csr6 | TxOn, ioaddr + CSR6);
491 /* Enable interrupts by setting the interrupt mask. */
492 iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR5);
493 iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR7);
494 tulip_start_rxtx(tp);
495 iowrite32(0, ioaddr + CSR2); /* Rx poll demand */
497 if (tulip_debug > 2) {
498 netdev_dbg(dev, "Done tulip_up(), CSR0 %08x, CSR5 %08x CSR6 %08x\n",
499 ioread32(ioaddr + CSR0),
500 ioread32(ioaddr + CSR5),
501 ioread32(ioaddr + CSR6));
504 /* Set the timer to switch to check for link beat and perhaps switch
505 to an alternate media type. */
506 tp->timer.expires = RUN_AT(next_tick);
507 add_timer(&tp->timer);
508 #ifdef CONFIG_TULIP_NAPI
509 init_timer(&tp->oom_timer);
510 tp->oom_timer.data = (unsigned long)dev;
511 tp->oom_timer.function = oom_timer;
512 #endif
515 static int
516 tulip_open(struct net_device *dev)
518 int retval;
520 tulip_init_ring (dev);
522 retval = request_irq(dev->irq, tulip_interrupt, IRQF_SHARED, dev->name, dev);
523 if (retval)
524 goto free_ring;
526 tulip_up (dev);
528 netif_start_queue (dev);
530 return 0;
532 free_ring:
533 tulip_free_ring (dev);
534 return retval;
538 static void tulip_tx_timeout(struct net_device *dev)
540 struct tulip_private *tp = netdev_priv(dev);
541 void __iomem *ioaddr = tp->base_addr;
542 unsigned long flags;
544 spin_lock_irqsave (&tp->lock, flags);
546 if (tulip_media_cap[dev->if_port] & MediaIsMII) {
547 /* Do nothing -- the media monitor should handle this. */
548 if (tulip_debug > 1)
549 dev_warn(&dev->dev,
550 "Transmit timeout using MII device\n");
551 } else if (tp->chip_id == DC21140 || tp->chip_id == DC21142 ||
552 tp->chip_id == MX98713 || tp->chip_id == COMPEX9881 ||
553 tp->chip_id == DM910X) {
554 dev_warn(&dev->dev,
555 "21140 transmit timed out, status %08x, SIA %08x %08x %08x %08x, resetting...\n",
556 ioread32(ioaddr + CSR5), ioread32(ioaddr + CSR12),
557 ioread32(ioaddr + CSR13), ioread32(ioaddr + CSR14),
558 ioread32(ioaddr + CSR15));
559 tp->timeout_recovery = 1;
560 schedule_work(&tp->media_work);
561 goto out_unlock;
562 } else if (tp->chip_id == PNIC2) {
563 dev_warn(&dev->dev,
564 "PNIC2 transmit timed out, status %08x, CSR6/7 %08x / %08x CSR12 %08x, resetting...\n",
565 (int)ioread32(ioaddr + CSR5),
566 (int)ioread32(ioaddr + CSR6),
567 (int)ioread32(ioaddr + CSR7),
568 (int)ioread32(ioaddr + CSR12));
569 } else {
570 dev_warn(&dev->dev,
571 "Transmit timed out, status %08x, CSR12 %08x, resetting...\n",
572 ioread32(ioaddr + CSR5), ioread32(ioaddr + CSR12));
573 dev->if_port = 0;
576 #if defined(way_too_many_messages)
577 if (tulip_debug > 3) {
578 int i;
579 for (i = 0; i < RX_RING_SIZE; i++) {
580 u8 *buf = (u8 *)(tp->rx_ring[i].buffer1);
581 int j;
582 printk(KERN_DEBUG
583 "%2d: %08x %08x %08x %08x %02x %02x %02x\n",
585 (unsigned int)tp->rx_ring[i].status,
586 (unsigned int)tp->rx_ring[i].length,
587 (unsigned int)tp->rx_ring[i].buffer1,
588 (unsigned int)tp->rx_ring[i].buffer2,
589 buf[0], buf[1], buf[2]);
590 for (j = 0; buf[j] != 0xee && j < 1600; j++)
591 if (j < 100)
592 pr_cont(" %02x", buf[j]);
593 pr_cont(" j=%d\n", j);
595 printk(KERN_DEBUG " Rx ring %p: ", tp->rx_ring);
596 for (i = 0; i < RX_RING_SIZE; i++)
597 pr_cont(" %08x", (unsigned int)tp->rx_ring[i].status);
598 printk(KERN_DEBUG " Tx ring %p: ", tp->tx_ring);
599 for (i = 0; i < TX_RING_SIZE; i++)
600 pr_cont(" %08x", (unsigned int)tp->tx_ring[i].status);
601 pr_cont("\n");
603 #endif
605 tulip_tx_timeout_complete(tp, ioaddr);
607 out_unlock:
608 spin_unlock_irqrestore (&tp->lock, flags);
609 dev->trans_start = jiffies; /* prevent tx timeout */
610 netif_wake_queue (dev);
614 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
615 static void tulip_init_ring(struct net_device *dev)
617 struct tulip_private *tp = netdev_priv(dev);
618 int i;
620 tp->susp_rx = 0;
621 tp->ttimer = 0;
622 tp->nir = 0;
624 for (i = 0; i < RX_RING_SIZE; i++) {
625 tp->rx_ring[i].status = 0x00000000;
626 tp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ);
627 tp->rx_ring[i].buffer2 = cpu_to_le32(tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * (i + 1));
628 tp->rx_buffers[i].skb = NULL;
629 tp->rx_buffers[i].mapping = 0;
631 /* Mark the last entry as wrapping the ring. */
632 tp->rx_ring[i-1].length = cpu_to_le32(PKT_BUF_SZ | DESC_RING_WRAP);
633 tp->rx_ring[i-1].buffer2 = cpu_to_le32(tp->rx_ring_dma);
635 for (i = 0; i < RX_RING_SIZE; i++) {
636 dma_addr_t mapping;
638 /* Note the receive buffer must be longword aligned.
639 dev_alloc_skb() provides 16 byte alignment. But do *not*
640 use skb_reserve() to align the IP header! */
641 struct sk_buff *skb = dev_alloc_skb(PKT_BUF_SZ);
642 tp->rx_buffers[i].skb = skb;
643 if (skb == NULL)
644 break;
645 mapping = pci_map_single(tp->pdev, skb->data,
646 PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
647 tp->rx_buffers[i].mapping = mapping;
648 skb->dev = dev; /* Mark as being used by this device. */
649 tp->rx_ring[i].status = cpu_to_le32(DescOwned); /* Owned by Tulip chip */
650 tp->rx_ring[i].buffer1 = cpu_to_le32(mapping);
652 tp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
654 /* The Tx buffer descriptor is filled in as needed, but we
655 do need to clear the ownership bit. */
656 for (i = 0; i < TX_RING_SIZE; i++) {
657 tp->tx_buffers[i].skb = NULL;
658 tp->tx_buffers[i].mapping = 0;
659 tp->tx_ring[i].status = 0x00000000;
660 tp->tx_ring[i].buffer2 = cpu_to_le32(tp->tx_ring_dma + sizeof(struct tulip_tx_desc) * (i + 1));
662 tp->tx_ring[i-1].buffer2 = cpu_to_le32(tp->tx_ring_dma);
665 static netdev_tx_t
666 tulip_start_xmit(struct sk_buff *skb, struct net_device *dev)
668 struct tulip_private *tp = netdev_priv(dev);
669 int entry;
670 u32 flag;
671 dma_addr_t mapping;
672 unsigned long flags;
674 spin_lock_irqsave(&tp->lock, flags);
676 /* Calculate the next Tx descriptor entry. */
677 entry = tp->cur_tx % TX_RING_SIZE;
679 tp->tx_buffers[entry].skb = skb;
680 mapping = pci_map_single(tp->pdev, skb->data,
681 skb->len, PCI_DMA_TODEVICE);
682 tp->tx_buffers[entry].mapping = mapping;
683 tp->tx_ring[entry].buffer1 = cpu_to_le32(mapping);
685 if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE/2) {/* Typical path */
686 flag = 0x60000000; /* No interrupt */
687 } else if (tp->cur_tx - tp->dirty_tx == TX_RING_SIZE/2) {
688 flag = 0xe0000000; /* Tx-done intr. */
689 } else if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE - 2) {
690 flag = 0x60000000; /* No Tx-done intr. */
691 } else { /* Leave room for set_rx_mode() to fill entries. */
692 flag = 0xe0000000; /* Tx-done intr. */
693 netif_stop_queue(dev);
695 if (entry == TX_RING_SIZE-1)
696 flag = 0xe0000000 | DESC_RING_WRAP;
698 tp->tx_ring[entry].length = cpu_to_le32(skb->len | flag);
699 /* if we were using Transmit Automatic Polling, we would need a
700 * wmb() here. */
701 tp->tx_ring[entry].status = cpu_to_le32(DescOwned);
702 wmb();
704 tp->cur_tx++;
706 /* Trigger an immediate transmit demand. */
707 iowrite32(0, tp->base_addr + CSR1);
709 spin_unlock_irqrestore(&tp->lock, flags);
711 return NETDEV_TX_OK;
714 static void tulip_clean_tx_ring(struct tulip_private *tp)
716 unsigned int dirty_tx;
718 for (dirty_tx = tp->dirty_tx ; tp->cur_tx - dirty_tx > 0;
719 dirty_tx++) {
720 int entry = dirty_tx % TX_RING_SIZE;
721 int status = le32_to_cpu(tp->tx_ring[entry].status);
723 if (status < 0) {
724 tp->dev->stats.tx_errors++; /* It wasn't Txed */
725 tp->tx_ring[entry].status = 0;
728 /* Check for Tx filter setup frames. */
729 if (tp->tx_buffers[entry].skb == NULL) {
730 /* test because dummy frames not mapped */
731 if (tp->tx_buffers[entry].mapping)
732 pci_unmap_single(tp->pdev,
733 tp->tx_buffers[entry].mapping,
734 sizeof(tp->setup_frame),
735 PCI_DMA_TODEVICE);
736 continue;
739 pci_unmap_single(tp->pdev, tp->tx_buffers[entry].mapping,
740 tp->tx_buffers[entry].skb->len,
741 PCI_DMA_TODEVICE);
743 /* Free the original skb. */
744 dev_kfree_skb_irq(tp->tx_buffers[entry].skb);
745 tp->tx_buffers[entry].skb = NULL;
746 tp->tx_buffers[entry].mapping = 0;
750 static void tulip_down (struct net_device *dev)
752 struct tulip_private *tp = netdev_priv(dev);
753 void __iomem *ioaddr = tp->base_addr;
754 unsigned long flags;
756 cancel_work_sync(&tp->media_work);
758 #ifdef CONFIG_TULIP_NAPI
759 napi_disable(&tp->napi);
760 #endif
762 del_timer_sync (&tp->timer);
763 #ifdef CONFIG_TULIP_NAPI
764 del_timer_sync (&tp->oom_timer);
765 #endif
766 spin_lock_irqsave (&tp->lock, flags);
768 /* Disable interrupts by clearing the interrupt mask. */
769 iowrite32 (0x00000000, ioaddr + CSR7);
771 /* Stop the Tx and Rx processes. */
772 tulip_stop_rxtx(tp);
774 /* prepare receive buffers */
775 tulip_refill_rx(dev);
777 /* release any unconsumed transmit buffers */
778 tulip_clean_tx_ring(tp);
780 if (ioread32(ioaddr + CSR6) != 0xffffffff)
781 dev->stats.rx_missed_errors += ioread32(ioaddr + CSR8) & 0xffff;
783 spin_unlock_irqrestore (&tp->lock, flags);
785 init_timer(&tp->timer);
786 tp->timer.data = (unsigned long)dev;
787 tp->timer.function = tulip_tbl[tp->chip_id].media_timer;
789 dev->if_port = tp->saved_if_port;
791 /* Leave the driver in snooze, not sleep, mode. */
792 tulip_set_power_state (tp, 0, 1);
795 static void tulip_free_ring (struct net_device *dev)
797 struct tulip_private *tp = netdev_priv(dev);
798 int i;
800 /* Free all the skbuffs in the Rx queue. */
801 for (i = 0; i < RX_RING_SIZE; i++) {
802 struct sk_buff *skb = tp->rx_buffers[i].skb;
803 dma_addr_t mapping = tp->rx_buffers[i].mapping;
805 tp->rx_buffers[i].skb = NULL;
806 tp->rx_buffers[i].mapping = 0;
808 tp->rx_ring[i].status = 0; /* Not owned by Tulip chip. */
809 tp->rx_ring[i].length = 0;
810 /* An invalid address. */
811 tp->rx_ring[i].buffer1 = cpu_to_le32(0xBADF00D0);
812 if (skb) {
813 pci_unmap_single(tp->pdev, mapping, PKT_BUF_SZ,
814 PCI_DMA_FROMDEVICE);
815 dev_kfree_skb (skb);
819 for (i = 0; i < TX_RING_SIZE; i++) {
820 struct sk_buff *skb = tp->tx_buffers[i].skb;
822 if (skb != NULL) {
823 pci_unmap_single(tp->pdev, tp->tx_buffers[i].mapping,
824 skb->len, PCI_DMA_TODEVICE);
825 dev_kfree_skb (skb);
827 tp->tx_buffers[i].skb = NULL;
828 tp->tx_buffers[i].mapping = 0;
832 static int tulip_close (struct net_device *dev)
834 struct tulip_private *tp = netdev_priv(dev);
835 void __iomem *ioaddr = tp->base_addr;
837 netif_stop_queue (dev);
839 tulip_down (dev);
841 if (tulip_debug > 1)
842 netdev_dbg(dev, "Shutting down ethercard, status was %02x\n",
843 ioread32 (ioaddr + CSR5));
845 free_irq (dev->irq, dev);
847 tulip_free_ring (dev);
849 return 0;
852 static struct net_device_stats *tulip_get_stats(struct net_device *dev)
854 struct tulip_private *tp = netdev_priv(dev);
855 void __iomem *ioaddr = tp->base_addr;
857 if (netif_running(dev)) {
858 unsigned long flags;
860 spin_lock_irqsave (&tp->lock, flags);
862 dev->stats.rx_missed_errors += ioread32(ioaddr + CSR8) & 0xffff;
864 spin_unlock_irqrestore(&tp->lock, flags);
867 return &dev->stats;
871 static void tulip_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
873 struct tulip_private *np = netdev_priv(dev);
874 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
875 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
876 strlcpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info));
880 static int tulip_ethtool_set_wol(struct net_device *dev,
881 struct ethtool_wolinfo *wolinfo)
883 struct tulip_private *tp = netdev_priv(dev);
885 if (wolinfo->wolopts & (~tp->wolinfo.supported))
886 return -EOPNOTSUPP;
888 tp->wolinfo.wolopts = wolinfo->wolopts;
889 device_set_wakeup_enable(&tp->pdev->dev, tp->wolinfo.wolopts);
890 return 0;
893 static void tulip_ethtool_get_wol(struct net_device *dev,
894 struct ethtool_wolinfo *wolinfo)
896 struct tulip_private *tp = netdev_priv(dev);
898 wolinfo->supported = tp->wolinfo.supported;
899 wolinfo->wolopts = tp->wolinfo.wolopts;
900 return;
904 static const struct ethtool_ops ops = {
905 .get_drvinfo = tulip_get_drvinfo,
906 .set_wol = tulip_ethtool_set_wol,
907 .get_wol = tulip_ethtool_get_wol,
910 /* Provide ioctl() calls to examine the MII xcvr state. */
911 static int private_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
913 struct tulip_private *tp = netdev_priv(dev);
914 void __iomem *ioaddr = tp->base_addr;
915 struct mii_ioctl_data *data = if_mii(rq);
916 const unsigned int phy_idx = 0;
917 int phy = tp->phys[phy_idx] & 0x1f;
918 unsigned int regnum = data->reg_num;
920 switch (cmd) {
921 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
922 if (tp->mii_cnt)
923 data->phy_id = phy;
924 else if (tp->flags & HAS_NWAY)
925 data->phy_id = 32;
926 else if (tp->chip_id == COMET)
927 data->phy_id = 1;
928 else
929 return -ENODEV;
931 case SIOCGMIIREG: /* Read MII PHY register. */
932 if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) {
933 int csr12 = ioread32 (ioaddr + CSR12);
934 int csr14 = ioread32 (ioaddr + CSR14);
935 switch (regnum) {
936 case 0:
937 if (((csr14<<5) & 0x1000) ||
938 (dev->if_port == 5 && tp->nwayset))
939 data->val_out = 0x1000;
940 else
941 data->val_out = (tulip_media_cap[dev->if_port]&MediaIs100 ? 0x2000 : 0)
942 | (tulip_media_cap[dev->if_port]&MediaIsFD ? 0x0100 : 0);
943 break;
944 case 1:
945 data->val_out =
946 0x1848 +
947 ((csr12&0x7000) == 0x5000 ? 0x20 : 0) +
948 ((csr12&0x06) == 6 ? 0 : 4);
949 data->val_out |= 0x6048;
950 break;
951 case 4:
952 /* Advertised value, bogus 10baseTx-FD value from CSR6. */
953 data->val_out =
954 ((ioread32(ioaddr + CSR6) >> 3) & 0x0040) +
955 ((csr14 >> 1) & 0x20) + 1;
956 data->val_out |= ((csr14 >> 9) & 0x03C0);
957 break;
958 case 5: data->val_out = tp->lpar; break;
959 default: data->val_out = 0; break;
961 } else {
962 data->val_out = tulip_mdio_read (dev, data->phy_id & 0x1f, regnum);
964 return 0;
966 case SIOCSMIIREG: /* Write MII PHY register. */
967 if (regnum & ~0x1f)
968 return -EINVAL;
969 if (data->phy_id == phy) {
970 u16 value = data->val_in;
971 switch (regnum) {
972 case 0: /* Check for autonegotiation on or reset. */
973 tp->full_duplex_lock = (value & 0x9000) ? 0 : 1;
974 if (tp->full_duplex_lock)
975 tp->full_duplex = (value & 0x0100) ? 1 : 0;
976 break;
977 case 4:
978 tp->advertising[phy_idx] =
979 tp->mii_advertise = data->val_in;
980 break;
983 if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) {
984 u16 value = data->val_in;
985 if (regnum == 0) {
986 if ((value & 0x1200) == 0x1200) {
987 if (tp->chip_id == PNIC2) {
988 pnic2_start_nway (dev);
989 } else {
990 t21142_start_nway (dev);
993 } else if (regnum == 4)
994 tp->sym_advertise = value;
995 } else {
996 tulip_mdio_write (dev, data->phy_id & 0x1f, regnum, data->val_in);
998 return 0;
999 default:
1000 return -EOPNOTSUPP;
1003 return -EOPNOTSUPP;
1007 /* Set or clear the multicast filter for this adaptor.
1008 Note that we only use exclusion around actually queueing the
1009 new frame, not around filling tp->setup_frame. This is non-deterministic
1010 when re-entered but still correct. */
1012 #undef set_bit_le
1013 #define set_bit_le(i,p) do { ((char *)(p))[(i)/8] |= (1<<((i)%8)); } while(0)
1015 static void build_setup_frame_hash(u16 *setup_frm, struct net_device *dev)
1017 struct tulip_private *tp = netdev_priv(dev);
1018 u16 hash_table[32];
1019 struct netdev_hw_addr *ha;
1020 int i;
1021 u16 *eaddrs;
1023 memset(hash_table, 0, sizeof(hash_table));
1024 set_bit_le(255, hash_table); /* Broadcast entry */
1025 /* This should work on big-endian machines as well. */
1026 netdev_for_each_mc_addr(ha, dev) {
1027 int index = ether_crc_le(ETH_ALEN, ha->addr) & 0x1ff;
1029 set_bit_le(index, hash_table);
1031 for (i = 0; i < 32; i++) {
1032 *setup_frm++ = hash_table[i];
1033 *setup_frm++ = hash_table[i];
1035 setup_frm = &tp->setup_frame[13*6];
1037 /* Fill the final entry with our physical address. */
1038 eaddrs = (u16 *)dev->dev_addr;
1039 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
1040 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
1041 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
1044 static void build_setup_frame_perfect(u16 *setup_frm, struct net_device *dev)
1046 struct tulip_private *tp = netdev_priv(dev);
1047 struct netdev_hw_addr *ha;
1048 u16 *eaddrs;
1050 /* We have <= 14 addresses so we can use the wonderful
1051 16 address perfect filtering of the Tulip. */
1052 netdev_for_each_mc_addr(ha, dev) {
1053 eaddrs = (u16 *) ha->addr;
1054 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
1055 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
1056 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
1058 /* Fill the unused entries with the broadcast address. */
1059 memset(setup_frm, 0xff, (15 - netdev_mc_count(dev)) * 12);
1060 setup_frm = &tp->setup_frame[15*6];
1062 /* Fill the final entry with our physical address. */
1063 eaddrs = (u16 *)dev->dev_addr;
1064 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
1065 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
1066 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
1070 static void set_rx_mode(struct net_device *dev)
1072 struct tulip_private *tp = netdev_priv(dev);
1073 void __iomem *ioaddr = tp->base_addr;
1074 int csr6;
1076 csr6 = ioread32(ioaddr + CSR6) & ~0x00D5;
1078 tp->csr6 &= ~0x00D5;
1079 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1080 tp->csr6 |= AcceptAllMulticast | AcceptAllPhys;
1081 csr6 |= AcceptAllMulticast | AcceptAllPhys;
1082 } else if ((netdev_mc_count(dev) > 1000) ||
1083 (dev->flags & IFF_ALLMULTI)) {
1084 /* Too many to filter well -- accept all multicasts. */
1085 tp->csr6 |= AcceptAllMulticast;
1086 csr6 |= AcceptAllMulticast;
1087 } else if (tp->flags & MC_HASH_ONLY) {
1088 /* Some work-alikes have only a 64-entry hash filter table. */
1089 /* Should verify correctness on big-endian/__powerpc__ */
1090 struct netdev_hw_addr *ha;
1091 if (netdev_mc_count(dev) > 64) {
1092 /* Arbitrary non-effective limit. */
1093 tp->csr6 |= AcceptAllMulticast;
1094 csr6 |= AcceptAllMulticast;
1095 } else {
1096 u32 mc_filter[2] = {0, 0}; /* Multicast hash filter */
1097 int filterbit;
1098 netdev_for_each_mc_addr(ha, dev) {
1099 if (tp->flags & COMET_MAC_ADDR)
1100 filterbit = ether_crc_le(ETH_ALEN,
1101 ha->addr);
1102 else
1103 filterbit = ether_crc(ETH_ALEN,
1104 ha->addr) >> 26;
1105 filterbit &= 0x3f;
1106 mc_filter[filterbit >> 5] |= 1 << (filterbit & 31);
1107 if (tulip_debug > 2)
1108 dev_info(&dev->dev,
1109 "Added filter for %pM %08x bit %d\n",
1110 ha->addr,
1111 ether_crc(ETH_ALEN, ha->addr),
1112 filterbit);
1114 if (mc_filter[0] == tp->mc_filter[0] &&
1115 mc_filter[1] == tp->mc_filter[1])
1116 ; /* No change. */
1117 else if (tp->flags & IS_ASIX) {
1118 iowrite32(2, ioaddr + CSR13);
1119 iowrite32(mc_filter[0], ioaddr + CSR14);
1120 iowrite32(3, ioaddr + CSR13);
1121 iowrite32(mc_filter[1], ioaddr + CSR14);
1122 } else if (tp->flags & COMET_MAC_ADDR) {
1123 iowrite32(mc_filter[0], ioaddr + CSR27);
1124 iowrite32(mc_filter[1], ioaddr + CSR28);
1126 tp->mc_filter[0] = mc_filter[0];
1127 tp->mc_filter[1] = mc_filter[1];
1129 } else {
1130 unsigned long flags;
1131 u32 tx_flags = 0x08000000 | 192;
1133 /* Note that only the low-address shortword of setup_frame is valid!
1134 The values are doubled for big-endian architectures. */
1135 if (netdev_mc_count(dev) > 14) {
1136 /* Must use a multicast hash table. */
1137 build_setup_frame_hash(tp->setup_frame, dev);
1138 tx_flags = 0x08400000 | 192;
1139 } else {
1140 build_setup_frame_perfect(tp->setup_frame, dev);
1143 spin_lock_irqsave(&tp->lock, flags);
1145 if (tp->cur_tx - tp->dirty_tx > TX_RING_SIZE - 2) {
1146 /* Same setup recently queued, we need not add it. */
1147 } else {
1148 unsigned int entry;
1149 int dummy = -1;
1151 /* Now add this frame to the Tx list. */
1153 entry = tp->cur_tx++ % TX_RING_SIZE;
1155 if (entry != 0) {
1156 /* Avoid a chip errata by prefixing a dummy entry. */
1157 tp->tx_buffers[entry].skb = NULL;
1158 tp->tx_buffers[entry].mapping = 0;
1159 tp->tx_ring[entry].length =
1160 (entry == TX_RING_SIZE-1) ? cpu_to_le32(DESC_RING_WRAP) : 0;
1161 tp->tx_ring[entry].buffer1 = 0;
1162 /* Must set DescOwned later to avoid race with chip */
1163 dummy = entry;
1164 entry = tp->cur_tx++ % TX_RING_SIZE;
1168 tp->tx_buffers[entry].skb = NULL;
1169 tp->tx_buffers[entry].mapping =
1170 pci_map_single(tp->pdev, tp->setup_frame,
1171 sizeof(tp->setup_frame),
1172 PCI_DMA_TODEVICE);
1173 /* Put the setup frame on the Tx list. */
1174 if (entry == TX_RING_SIZE-1)
1175 tx_flags |= DESC_RING_WRAP; /* Wrap ring. */
1176 tp->tx_ring[entry].length = cpu_to_le32(tx_flags);
1177 tp->tx_ring[entry].buffer1 =
1178 cpu_to_le32(tp->tx_buffers[entry].mapping);
1179 tp->tx_ring[entry].status = cpu_to_le32(DescOwned);
1180 if (dummy >= 0)
1181 tp->tx_ring[dummy].status = cpu_to_le32(DescOwned);
1182 if (tp->cur_tx - tp->dirty_tx >= TX_RING_SIZE - 2)
1183 netif_stop_queue(dev);
1185 /* Trigger an immediate transmit demand. */
1186 iowrite32(0, ioaddr + CSR1);
1189 spin_unlock_irqrestore(&tp->lock, flags);
1192 iowrite32(csr6, ioaddr + CSR6);
1195 #ifdef CONFIG_TULIP_MWI
1196 static void __devinit tulip_mwi_config (struct pci_dev *pdev,
1197 struct net_device *dev)
1199 struct tulip_private *tp = netdev_priv(dev);
1200 u8 cache;
1201 u16 pci_command;
1202 u32 csr0;
1204 if (tulip_debug > 3)
1205 netdev_dbg(dev, "tulip_mwi_config()\n");
1207 tp->csr0 = csr0 = 0;
1209 /* if we have any cache line size at all, we can do MRM and MWI */
1210 csr0 |= MRM | MWI;
1212 /* Enable MWI in the standard PCI command bit.
1213 * Check for the case where MWI is desired but not available
1215 pci_try_set_mwi(pdev);
1217 /* read result from hardware (in case bit refused to enable) */
1218 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
1219 if ((csr0 & MWI) && (!(pci_command & PCI_COMMAND_INVALIDATE)))
1220 csr0 &= ~MWI;
1222 /* if cache line size hardwired to zero, no MWI */
1223 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache);
1224 if ((csr0 & MWI) && (cache == 0)) {
1225 csr0 &= ~MWI;
1226 pci_clear_mwi(pdev);
1229 /* assign per-cacheline-size cache alignment and
1230 * burst length values
1232 switch (cache) {
1233 case 8:
1234 csr0 |= MRL | (1 << CALShift) | (16 << BurstLenShift);
1235 break;
1236 case 16:
1237 csr0 |= MRL | (2 << CALShift) | (16 << BurstLenShift);
1238 break;
1239 case 32:
1240 csr0 |= MRL | (3 << CALShift) | (32 << BurstLenShift);
1241 break;
1242 default:
1243 cache = 0;
1244 break;
1247 /* if we have a good cache line size, we by now have a good
1248 * csr0, so save it and exit
1250 if (cache)
1251 goto out;
1253 /* we don't have a good csr0 or cache line size, disable MWI */
1254 if (csr0 & MWI) {
1255 pci_clear_mwi(pdev);
1256 csr0 &= ~MWI;
1259 /* sane defaults for burst length and cache alignment
1260 * originally from de4x5 driver
1262 csr0 |= (8 << BurstLenShift) | (1 << CALShift);
1264 out:
1265 tp->csr0 = csr0;
1266 if (tulip_debug > 2)
1267 netdev_dbg(dev, "MWI config cacheline=%d, csr0=%08x\n",
1268 cache, csr0);
1270 #endif
1273 * Chips that have the MRM/reserved bit quirk and the burst quirk. That
1274 * is the DM910X and the on chip ULi devices
1277 static int tulip_uli_dm_quirk(struct pci_dev *pdev)
1279 if (pdev->vendor == 0x1282 && pdev->device == 0x9102)
1280 return 1;
1281 return 0;
1284 static const struct net_device_ops tulip_netdev_ops = {
1285 .ndo_open = tulip_open,
1286 .ndo_start_xmit = tulip_start_xmit,
1287 .ndo_tx_timeout = tulip_tx_timeout,
1288 .ndo_stop = tulip_close,
1289 .ndo_get_stats = tulip_get_stats,
1290 .ndo_do_ioctl = private_ioctl,
1291 .ndo_set_rx_mode = set_rx_mode,
1292 .ndo_change_mtu = eth_change_mtu,
1293 .ndo_set_mac_address = eth_mac_addr,
1294 .ndo_validate_addr = eth_validate_addr,
1295 #ifdef CONFIG_NET_POLL_CONTROLLER
1296 .ndo_poll_controller = poll_tulip,
1297 #endif
1300 DEFINE_PCI_DEVICE_TABLE(early_486_chipsets) = {
1301 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82424) },
1302 { PCI_DEVICE(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_496) },
1303 { },
1306 static int __devinit tulip_init_one (struct pci_dev *pdev,
1307 const struct pci_device_id *ent)
1309 struct tulip_private *tp;
1310 /* See note below on the multiport cards. */
1311 static unsigned char last_phys_addr[6] = {0x00, 'L', 'i', 'n', 'u', 'x'};
1312 static int last_irq;
1313 static int multiport_cnt; /* For four-port boards w/one EEPROM */
1314 int i, irq;
1315 unsigned short sum;
1316 unsigned char *ee_data;
1317 struct net_device *dev;
1318 void __iomem *ioaddr;
1319 static int board_idx = -1;
1320 int chip_idx = ent->driver_data;
1321 const char *chip_name = tulip_tbl[chip_idx].chip_name;
1322 unsigned int eeprom_missing = 0;
1323 unsigned int force_csr0 = 0;
1325 #ifndef MODULE
1326 if (tulip_debug > 0)
1327 printk_once(KERN_INFO "%s", version);
1328 #endif
1330 board_idx++;
1333 * Lan media wire a tulip chip to a wan interface. Needs a very
1334 * different driver (lmc driver)
1337 if (pdev->subsystem_vendor == PCI_VENDOR_ID_LMC) {
1338 pr_err("skipping LMC card\n");
1339 return -ENODEV;
1340 } else if (pdev->subsystem_vendor == PCI_VENDOR_ID_SBE &&
1341 (pdev->subsystem_device == PCI_SUBDEVICE_ID_SBE_T3E3 ||
1342 pdev->subsystem_device == PCI_SUBDEVICE_ID_SBE_2T3E3_P0 ||
1343 pdev->subsystem_device == PCI_SUBDEVICE_ID_SBE_2T3E3_P1)) {
1344 pr_err("skipping SBE T3E3 port\n");
1345 return -ENODEV;
1349 * DM910x chips should be handled by the dmfe driver, except
1350 * on-board chips on SPARC systems. Also, early DM9100s need
1351 * software CRC which only the dmfe driver supports.
1354 #ifdef CONFIG_TULIP_DM910X
1355 if (chip_idx == DM910X) {
1356 struct device_node *dp;
1358 if (pdev->vendor == 0x1282 && pdev->device == 0x9100 &&
1359 pdev->revision < 0x30) {
1360 pr_info("skipping early DM9100 with Crc bug (use dmfe)\n");
1361 return -ENODEV;
1364 dp = pci_device_to_OF_node(pdev);
1365 if (!(dp && of_get_property(dp, "local-mac-address", NULL))) {
1366 pr_info("skipping DM910x expansion card (use dmfe)\n");
1367 return -ENODEV;
1370 #endif
1373 * Looks for early PCI chipsets where people report hangs
1374 * without the workarounds being on.
1377 /* 1. Intel Saturn. Switch to 8 long words burst, 8 long word cache
1378 aligned. Aries might need this too. The Saturn errata are not
1379 pretty reading but thankfully it's an old 486 chipset.
1381 2. The dreaded SiS496 486 chipset. Same workaround as Intel
1382 Saturn.
1385 if (pci_dev_present(early_486_chipsets)) {
1386 csr0 = MRL | MRM | (8 << BurstLenShift) | (1 << CALShift);
1387 force_csr0 = 1;
1390 /* bugfix: the ASIX must have a burst limit or horrible things happen. */
1391 if (chip_idx == AX88140) {
1392 if ((csr0 & 0x3f00) == 0)
1393 csr0 |= 0x2000;
1396 /* PNIC doesn't have MWI/MRL/MRM... */
1397 if (chip_idx == LC82C168)
1398 csr0 &= ~0xfff10000; /* zero reserved bits 31:20, 16 */
1400 /* DM9102A has troubles with MRM & clear reserved bits 24:22, 20, 16, 7:1 */
1401 if (tulip_uli_dm_quirk(pdev)) {
1402 csr0 &= ~0x01f100ff;
1403 #if defined(CONFIG_SPARC)
1404 csr0 = (csr0 & ~0xff00) | 0xe000;
1405 #endif
1408 * And back to business
1411 i = pci_enable_device(pdev);
1412 if (i) {
1413 pr_err("Cannot enable tulip board #%d, aborting\n", board_idx);
1414 return i;
1417 /* The chip will fail to enter a low-power state later unless
1418 * first explicitly commanded into D0 */
1419 if (pci_set_power_state(pdev, PCI_D0)) {
1420 pr_notice("Failed to set power state to D0\n");
1423 irq = pdev->irq;
1425 /* alloc_etherdev ensures aligned and zeroed private structures */
1426 dev = alloc_etherdev (sizeof (*tp));
1427 if (!dev) {
1428 pr_err("ether device alloc failed, aborting\n");
1429 return -ENOMEM;
1432 SET_NETDEV_DEV(dev, &pdev->dev);
1433 if (pci_resource_len (pdev, 0) < tulip_tbl[chip_idx].io_size) {
1434 pr_err("%s: I/O region (0x%llx@0x%llx) too small, aborting\n",
1435 pci_name(pdev),
1436 (unsigned long long)pci_resource_len (pdev, 0),
1437 (unsigned long long)pci_resource_start (pdev, 0));
1438 goto err_out_free_netdev;
1441 /* grab all resources from both PIO and MMIO regions, as we
1442 * don't want anyone else messing around with our hardware */
1443 if (pci_request_regions (pdev, DRV_NAME))
1444 goto err_out_free_netdev;
1446 ioaddr = pci_iomap(pdev, TULIP_BAR, tulip_tbl[chip_idx].io_size);
1448 if (!ioaddr)
1449 goto err_out_free_res;
1452 * initialize private data structure 'tp'
1453 * it is zeroed and aligned in alloc_etherdev
1455 tp = netdev_priv(dev);
1456 tp->dev = dev;
1458 tp->rx_ring = pci_alloc_consistent(pdev,
1459 sizeof(struct tulip_rx_desc) * RX_RING_SIZE +
1460 sizeof(struct tulip_tx_desc) * TX_RING_SIZE,
1461 &tp->rx_ring_dma);
1462 if (!tp->rx_ring)
1463 goto err_out_mtable;
1464 tp->tx_ring = (struct tulip_tx_desc *)(tp->rx_ring + RX_RING_SIZE);
1465 tp->tx_ring_dma = tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * RX_RING_SIZE;
1467 tp->chip_id = chip_idx;
1468 tp->flags = tulip_tbl[chip_idx].flags;
1470 tp->wolinfo.supported = 0;
1471 tp->wolinfo.wolopts = 0;
1472 /* COMET: Enable power management only for AN983B */
1473 if (chip_idx == COMET ) {
1474 u32 sig;
1475 pci_read_config_dword (pdev, 0x80, &sig);
1476 if (sig == 0x09811317) {
1477 tp->flags |= COMET_PM;
1478 tp->wolinfo.supported = WAKE_PHY | WAKE_MAGIC;
1479 pr_info("%s: Enabled WOL support for AN983B\n",
1480 __func__);
1483 tp->pdev = pdev;
1484 tp->base_addr = ioaddr;
1485 tp->revision = pdev->revision;
1486 tp->csr0 = csr0;
1487 spin_lock_init(&tp->lock);
1488 spin_lock_init(&tp->mii_lock);
1489 init_timer(&tp->timer);
1490 tp->timer.data = (unsigned long)dev;
1491 tp->timer.function = tulip_tbl[tp->chip_id].media_timer;
1493 INIT_WORK(&tp->media_work, tulip_tbl[tp->chip_id].media_task);
1495 dev->base_addr = (unsigned long)ioaddr;
1497 #ifdef CONFIG_TULIP_MWI
1498 if (!force_csr0 && (tp->flags & HAS_PCI_MWI))
1499 tulip_mwi_config (pdev, dev);
1500 #endif
1502 /* Stop the chip's Tx and Rx processes. */
1503 tulip_stop_rxtx(tp);
1505 pci_set_master(pdev);
1507 #ifdef CONFIG_GSC
1508 if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP) {
1509 switch (pdev->subsystem_device) {
1510 default:
1511 break;
1512 case 0x1061:
1513 case 0x1062:
1514 case 0x1063:
1515 case 0x1098:
1516 case 0x1099:
1517 case 0x10EE:
1518 tp->flags |= HAS_SWAPPED_SEEPROM | NEEDS_FAKE_MEDIA_TABLE;
1519 chip_name = "GSC DS21140 Tulip";
1522 #endif
1524 /* Clear the missed-packet counter. */
1525 ioread32(ioaddr + CSR8);
1527 /* The station address ROM is read byte serially. The register must
1528 be polled, waiting for the value to be read bit serially from the
1529 EEPROM.
1531 ee_data = tp->eeprom;
1532 memset(ee_data, 0, sizeof(tp->eeprom));
1533 sum = 0;
1534 if (chip_idx == LC82C168) {
1535 for (i = 0; i < 3; i++) {
1536 int value, boguscnt = 100000;
1537 iowrite32(0x600 | i, ioaddr + 0x98);
1538 do {
1539 value = ioread32(ioaddr + CSR9);
1540 } while (value < 0 && --boguscnt > 0);
1541 put_unaligned_le16(value, ((__le16 *)dev->dev_addr) + i);
1542 sum += value & 0xffff;
1544 } else if (chip_idx == COMET) {
1545 /* No need to read the EEPROM. */
1546 put_unaligned_le32(ioread32(ioaddr + 0xA4), dev->dev_addr);
1547 put_unaligned_le16(ioread32(ioaddr + 0xA8), dev->dev_addr + 4);
1548 for (i = 0; i < 6; i ++)
1549 sum += dev->dev_addr[i];
1550 } else {
1551 /* A serial EEPROM interface, we read now and sort it out later. */
1552 int sa_offset = 0;
1553 int ee_addr_size = tulip_read_eeprom(dev, 0xff, 8) & 0x40000 ? 8 : 6;
1554 int ee_max_addr = ((1 << ee_addr_size) - 1) * sizeof(u16);
1556 if (ee_max_addr > sizeof(tp->eeprom))
1557 ee_max_addr = sizeof(tp->eeprom);
1559 for (i = 0; i < ee_max_addr ; i += sizeof(u16)) {
1560 u16 data = tulip_read_eeprom(dev, i/2, ee_addr_size);
1561 ee_data[i] = data & 0xff;
1562 ee_data[i + 1] = data >> 8;
1565 /* DEC now has a specification (see Notes) but early board makers
1566 just put the address in the first EEPROM locations. */
1567 /* This does memcmp(ee_data, ee_data+16, 8) */
1568 for (i = 0; i < 8; i ++)
1569 if (ee_data[i] != ee_data[16+i])
1570 sa_offset = 20;
1571 if (chip_idx == CONEXANT) {
1572 /* Check that the tuple type and length is correct. */
1573 if (ee_data[0x198] == 0x04 && ee_data[0x199] == 6)
1574 sa_offset = 0x19A;
1575 } else if (ee_data[0] == 0xff && ee_data[1] == 0xff &&
1576 ee_data[2] == 0) {
1577 sa_offset = 2; /* Grrr, damn Matrox boards. */
1578 multiport_cnt = 4;
1580 #ifdef CONFIG_MIPS_COBALT
1581 if ((pdev->bus->number == 0) &&
1582 ((PCI_SLOT(pdev->devfn) == 7) ||
1583 (PCI_SLOT(pdev->devfn) == 12))) {
1584 /* Cobalt MAC address in first EEPROM locations. */
1585 sa_offset = 0;
1586 /* Ensure our media table fixup get's applied */
1587 memcpy(ee_data + 16, ee_data, 8);
1589 #endif
1590 #ifdef CONFIG_GSC
1591 /* Check to see if we have a broken srom */
1592 if (ee_data[0] == 0x61 && ee_data[1] == 0x10) {
1593 /* pci_vendor_id and subsystem_id are swapped */
1594 ee_data[0] = ee_data[2];
1595 ee_data[1] = ee_data[3];
1596 ee_data[2] = 0x61;
1597 ee_data[3] = 0x10;
1599 /* HSC-PCI boards need to be byte-swaped and shifted
1600 * up 1 word. This shift needs to happen at the end
1601 * of the MAC first because of the 2 byte overlap.
1603 for (i = 4; i >= 0; i -= 2) {
1604 ee_data[17 + i + 3] = ee_data[17 + i];
1605 ee_data[16 + i + 5] = ee_data[16 + i];
1608 #endif
1610 for (i = 0; i < 6; i ++) {
1611 dev->dev_addr[i] = ee_data[i + sa_offset];
1612 sum += ee_data[i + sa_offset];
1615 /* Lite-On boards have the address byte-swapped. */
1616 if ((dev->dev_addr[0] == 0xA0 ||
1617 dev->dev_addr[0] == 0xC0 ||
1618 dev->dev_addr[0] == 0x02) &&
1619 dev->dev_addr[1] == 0x00)
1620 for (i = 0; i < 6; i+=2) {
1621 char tmp = dev->dev_addr[i];
1622 dev->dev_addr[i] = dev->dev_addr[i+1];
1623 dev->dev_addr[i+1] = tmp;
1625 /* On the Zynx 315 Etherarray and other multiport boards only the
1626 first Tulip has an EEPROM.
1627 On Sparc systems the mac address is held in the OBP property
1628 "local-mac-address".
1629 The addresses of the subsequent ports are derived from the first.
1630 Many PCI BIOSes also incorrectly report the IRQ line, so we correct
1631 that here as well. */
1632 if (sum == 0 || sum == 6*0xff) {
1633 #if defined(CONFIG_SPARC)
1634 struct device_node *dp = pci_device_to_OF_node(pdev);
1635 const unsigned char *addr;
1636 int len;
1637 #endif
1638 eeprom_missing = 1;
1639 for (i = 0; i < 5; i++)
1640 dev->dev_addr[i] = last_phys_addr[i];
1641 dev->dev_addr[i] = last_phys_addr[i] + 1;
1642 #if defined(CONFIG_SPARC)
1643 addr = of_get_property(dp, "local-mac-address", &len);
1644 if (addr && len == 6)
1645 memcpy(dev->dev_addr, addr, 6);
1646 #endif
1647 #if defined(__i386__) || defined(__x86_64__) /* Patch up x86 BIOS bug. */
1648 if (last_irq)
1649 irq = last_irq;
1650 #endif
1653 for (i = 0; i < 6; i++)
1654 last_phys_addr[i] = dev->dev_addr[i];
1655 last_irq = irq;
1656 dev->irq = irq;
1658 /* The lower four bits are the media type. */
1659 if (board_idx >= 0 && board_idx < MAX_UNITS) {
1660 if (options[board_idx] & MEDIA_MASK)
1661 tp->default_port = options[board_idx] & MEDIA_MASK;
1662 if ((options[board_idx] & FullDuplex) || full_duplex[board_idx] > 0)
1663 tp->full_duplex = 1;
1664 if (mtu[board_idx] > 0)
1665 dev->mtu = mtu[board_idx];
1667 if (dev->mem_start & MEDIA_MASK)
1668 tp->default_port = dev->mem_start & MEDIA_MASK;
1669 if (tp->default_port) {
1670 pr_info(DRV_NAME "%d: Transceiver selection forced to %s\n",
1671 board_idx, medianame[tp->default_port & MEDIA_MASK]);
1672 tp->medialock = 1;
1673 if (tulip_media_cap[tp->default_port] & MediaAlwaysFD)
1674 tp->full_duplex = 1;
1676 if (tp->full_duplex)
1677 tp->full_duplex_lock = 1;
1679 if (tulip_media_cap[tp->default_port] & MediaIsMII) {
1680 static const u16 media2advert[] = {
1681 0x20, 0x40, 0x03e0, 0x60, 0x80, 0x100, 0x200
1683 tp->mii_advertise = media2advert[tp->default_port - 9];
1684 tp->mii_advertise |= (tp->flags & HAS_8023X); /* Matching bits! */
1687 if (tp->flags & HAS_MEDIA_TABLE) {
1688 sprintf(dev->name, DRV_NAME "%d", board_idx); /* hack */
1689 tulip_parse_eeprom(dev);
1690 strcpy(dev->name, "eth%d"); /* un-hack */
1693 if ((tp->flags & ALWAYS_CHECK_MII) ||
1694 (tp->mtable && tp->mtable->has_mii) ||
1695 ( ! tp->mtable && (tp->flags & HAS_MII))) {
1696 if (tp->mtable && tp->mtable->has_mii) {
1697 for (i = 0; i < tp->mtable->leafcount; i++)
1698 if (tp->mtable->mleaf[i].media == 11) {
1699 tp->cur_index = i;
1700 tp->saved_if_port = dev->if_port;
1701 tulip_select_media(dev, 2);
1702 dev->if_port = tp->saved_if_port;
1703 break;
1707 /* Find the connected MII xcvrs.
1708 Doing this in open() would allow detecting external xcvrs
1709 later, but takes much time. */
1710 tulip_find_mii (dev, board_idx);
1713 /* The Tulip-specific entries in the device structure. */
1714 dev->netdev_ops = &tulip_netdev_ops;
1715 dev->watchdog_timeo = TX_TIMEOUT;
1716 #ifdef CONFIG_TULIP_NAPI
1717 netif_napi_add(dev, &tp->napi, tulip_poll, 16);
1718 #endif
1719 SET_ETHTOOL_OPS(dev, &ops);
1721 if (register_netdev(dev))
1722 goto err_out_free_ring;
1724 pci_set_drvdata(pdev, dev);
1726 dev_info(&dev->dev,
1727 #ifdef CONFIG_TULIP_MMIO
1728 "%s rev %d at MMIO %#llx,%s %pM, IRQ %d\n",
1729 #else
1730 "%s rev %d at Port %#llx,%s %pM, IRQ %d\n",
1731 #endif
1732 chip_name, pdev->revision,
1733 (unsigned long long)pci_resource_start(pdev, TULIP_BAR),
1734 eeprom_missing ? " EEPROM not present," : "",
1735 dev->dev_addr, irq);
1737 if (tp->chip_id == PNIC2)
1738 tp->link_change = pnic2_lnk_change;
1739 else if (tp->flags & HAS_NWAY)
1740 tp->link_change = t21142_lnk_change;
1741 else if (tp->flags & HAS_PNICNWAY)
1742 tp->link_change = pnic_lnk_change;
1744 /* Reset the xcvr interface and turn on heartbeat. */
1745 switch (chip_idx) {
1746 case DC21140:
1747 case DM910X:
1748 default:
1749 if (tp->mtable)
1750 iowrite32(tp->mtable->csr12dir | 0x100, ioaddr + CSR12);
1751 break;
1752 case DC21142:
1753 if (tp->mii_cnt || tulip_media_cap[dev->if_port] & MediaIsMII) {
1754 iowrite32(csr6_mask_defstate, ioaddr + CSR6);
1755 iowrite32(0x0000, ioaddr + CSR13);
1756 iowrite32(0x0000, ioaddr + CSR14);
1757 iowrite32(csr6_mask_hdcap, ioaddr + CSR6);
1758 } else
1759 t21142_start_nway(dev);
1760 break;
1761 case PNIC2:
1762 /* just do a reset for sanity sake */
1763 iowrite32(0x0000, ioaddr + CSR13);
1764 iowrite32(0x0000, ioaddr + CSR14);
1765 break;
1766 case LC82C168:
1767 if ( ! tp->mii_cnt) {
1768 tp->nway = 1;
1769 tp->nwayset = 0;
1770 iowrite32(csr6_ttm | csr6_ca, ioaddr + CSR6);
1771 iowrite32(0x30, ioaddr + CSR12);
1772 iowrite32(0x0001F078, ioaddr + CSR6);
1773 iowrite32(0x0201F078, ioaddr + CSR6); /* Turn on autonegotiation. */
1775 break;
1776 case MX98713:
1777 case COMPEX9881:
1778 iowrite32(0x00000000, ioaddr + CSR6);
1779 iowrite32(0x000711C0, ioaddr + CSR14); /* Turn on NWay. */
1780 iowrite32(0x00000001, ioaddr + CSR13);
1781 break;
1782 case MX98715:
1783 case MX98725:
1784 iowrite32(0x01a80000, ioaddr + CSR6);
1785 iowrite32(0xFFFFFFFF, ioaddr + CSR14);
1786 iowrite32(0x00001000, ioaddr + CSR12);
1787 break;
1788 case COMET:
1789 /* No initialization necessary. */
1790 break;
1793 /* put the chip in snooze mode until opened */
1794 tulip_set_power_state (tp, 0, 1);
1796 return 0;
1798 err_out_free_ring:
1799 pci_free_consistent (pdev,
1800 sizeof (struct tulip_rx_desc) * RX_RING_SIZE +
1801 sizeof (struct tulip_tx_desc) * TX_RING_SIZE,
1802 tp->rx_ring, tp->rx_ring_dma);
1804 err_out_mtable:
1805 kfree (tp->mtable);
1806 pci_iounmap(pdev, ioaddr);
1808 err_out_free_res:
1809 pci_release_regions (pdev);
1811 err_out_free_netdev:
1812 free_netdev (dev);
1813 return -ENODEV;
1817 /* set the registers according to the given wolopts */
1818 static void tulip_set_wolopts (struct pci_dev *pdev, u32 wolopts)
1820 struct net_device *dev = pci_get_drvdata(pdev);
1821 struct tulip_private *tp = netdev_priv(dev);
1822 void __iomem *ioaddr = tp->base_addr;
1824 if (tp->flags & COMET_PM) {
1826 unsigned int tmp;
1828 tmp = ioread32(ioaddr + CSR18);
1829 tmp &= ~(comet_csr18_pmes_sticky | comet_csr18_apm_mode | comet_csr18_d3a);
1830 tmp |= comet_csr18_pm_mode;
1831 iowrite32(tmp, ioaddr + CSR18);
1833 /* Set the Wake-up Control/Status Register to the given WOL options*/
1834 tmp = ioread32(ioaddr + CSR13);
1835 tmp &= ~(comet_csr13_linkoffe | comet_csr13_linkone | comet_csr13_wfre | comet_csr13_lsce | comet_csr13_mpre);
1836 if (wolopts & WAKE_MAGIC)
1837 tmp |= comet_csr13_mpre;
1838 if (wolopts & WAKE_PHY)
1839 tmp |= comet_csr13_linkoffe | comet_csr13_linkone | comet_csr13_lsce;
1840 /* Clear the event flags */
1841 tmp |= comet_csr13_wfr | comet_csr13_mpr | comet_csr13_lsc;
1842 iowrite32(tmp, ioaddr + CSR13);
1846 #ifdef CONFIG_PM
1849 static int tulip_suspend (struct pci_dev *pdev, pm_message_t state)
1851 pci_power_t pstate;
1852 struct net_device *dev = pci_get_drvdata(pdev);
1853 struct tulip_private *tp = netdev_priv(dev);
1855 if (!dev)
1856 return -EINVAL;
1858 if (!netif_running(dev))
1859 goto save_state;
1861 tulip_down(dev);
1863 netif_device_detach(dev);
1864 free_irq(dev->irq, dev);
1866 save_state:
1867 pci_save_state(pdev);
1868 pci_disable_device(pdev);
1869 pstate = pci_choose_state(pdev, state);
1870 if (state.event == PM_EVENT_SUSPEND && pstate != PCI_D0) {
1871 int rc;
1873 tulip_set_wolopts(pdev, tp->wolinfo.wolopts);
1874 rc = pci_enable_wake(pdev, pstate, tp->wolinfo.wolopts);
1875 if (rc)
1876 pr_err("pci_enable_wake failed (%d)\n", rc);
1878 pci_set_power_state(pdev, pstate);
1880 return 0;
1884 static int tulip_resume(struct pci_dev *pdev)
1886 struct net_device *dev = pci_get_drvdata(pdev);
1887 struct tulip_private *tp = netdev_priv(dev);
1888 void __iomem *ioaddr = tp->base_addr;
1889 int retval;
1890 unsigned int tmp;
1892 if (!dev)
1893 return -EINVAL;
1895 pci_set_power_state(pdev, PCI_D0);
1896 pci_restore_state(pdev);
1898 if (!netif_running(dev))
1899 return 0;
1901 if ((retval = pci_enable_device(pdev))) {
1902 pr_err("pci_enable_device failed in resume\n");
1903 return retval;
1906 if ((retval = request_irq(dev->irq, tulip_interrupt, IRQF_SHARED, dev->name, dev))) {
1907 pr_err("request_irq failed in resume\n");
1908 return retval;
1911 if (tp->flags & COMET_PM) {
1912 pci_enable_wake(pdev, PCI_D3hot, 0);
1913 pci_enable_wake(pdev, PCI_D3cold, 0);
1915 /* Clear the PMES flag */
1916 tmp = ioread32(ioaddr + CSR20);
1917 tmp |= comet_csr20_pmes;
1918 iowrite32(tmp, ioaddr + CSR20);
1920 /* Disable all wake-up events */
1921 tulip_set_wolopts(pdev, 0);
1923 netif_device_attach(dev);
1925 if (netif_running(dev))
1926 tulip_up(dev);
1928 return 0;
1931 #endif /* CONFIG_PM */
1934 static void __devexit tulip_remove_one (struct pci_dev *pdev)
1936 struct net_device *dev = pci_get_drvdata (pdev);
1937 struct tulip_private *tp;
1939 if (!dev)
1940 return;
1942 tp = netdev_priv(dev);
1943 unregister_netdev(dev);
1944 pci_free_consistent (pdev,
1945 sizeof (struct tulip_rx_desc) * RX_RING_SIZE +
1946 sizeof (struct tulip_tx_desc) * TX_RING_SIZE,
1947 tp->rx_ring, tp->rx_ring_dma);
1948 kfree (tp->mtable);
1949 pci_iounmap(pdev, tp->base_addr);
1950 free_netdev (dev);
1951 pci_release_regions (pdev);
1952 pci_set_drvdata (pdev, NULL);
1954 /* pci_power_off (pdev, -1); */
1957 #ifdef CONFIG_NET_POLL_CONTROLLER
1959 * Polling 'interrupt' - used by things like netconsole to send skbs
1960 * without having to re-enable interrupts. It's not called while
1961 * the interrupt routine is executing.
1964 static void poll_tulip (struct net_device *dev)
1966 /* disable_irq here is not very nice, but with the lockless
1967 interrupt handler we have no other choice. */
1968 disable_irq(dev->irq);
1969 tulip_interrupt (dev->irq, dev);
1970 enable_irq(dev->irq);
1972 #endif
1974 static struct pci_driver tulip_driver = {
1975 .name = DRV_NAME,
1976 .id_table = tulip_pci_tbl,
1977 .probe = tulip_init_one,
1978 .remove = __devexit_p(tulip_remove_one),
1979 #ifdef CONFIG_PM
1980 .suspend = tulip_suspend,
1981 .resume = tulip_resume,
1982 #endif /* CONFIG_PM */
1986 static int __init tulip_init (void)
1988 #ifdef MODULE
1989 pr_info("%s", version);
1990 #endif
1992 /* copy module parms into globals */
1993 tulip_rx_copybreak = rx_copybreak;
1994 tulip_max_interrupt_work = max_interrupt_work;
1996 /* probe for and init boards */
1997 return pci_register_driver(&tulip_driver);
2001 static void __exit tulip_cleanup (void)
2003 pci_unregister_driver (&tulip_driver);
2007 module_init(tulip_init);
2008 module_exit(tulip_cleanup);