2 * ipg.c: Device Driver for the IP1000 Gigabit Ethernet Adapter
4 * Copyright (C) 2003, 2007 IC Plus Corp
9 * Sundance Technology, Inc.
11 * craig_rich@sundanceti.com
16 * http://www.icplus.com.tw
17 * sorbica@icplus.com.tw
20 * http://www.icplus.com.tw
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26 #include <linux/crc32.h>
27 #include <linux/ethtool.h>
28 #include <linux/interrupt.h>
29 #include <linux/gfp.h>
30 #include <linux/mii.h>
31 #include <linux/mutex.h>
33 #include <asm/div64.h>
35 #define IPG_RX_RING_BYTES (sizeof(struct ipg_rx) * IPG_RFDLIST_LENGTH)
36 #define IPG_TX_RING_BYTES (sizeof(struct ipg_tx) * IPG_TFDLIST_LENGTH)
37 #define IPG_RESET_MASK \
38 (IPG_AC_GLOBAL_RESET | IPG_AC_RX_RESET | IPG_AC_TX_RESET | \
39 IPG_AC_DMA | IPG_AC_FIFO | IPG_AC_NETWORK | IPG_AC_HOST | \
42 #define ipg_w32(val32, reg) iowrite32((val32), ioaddr + (reg))
43 #define ipg_w16(val16, reg) iowrite16((val16), ioaddr + (reg))
44 #define ipg_w8(val8, reg) iowrite8((val8), ioaddr + (reg))
46 #define ipg_r32(reg) ioread32(ioaddr + (reg))
47 #define ipg_r16(reg) ioread16(ioaddr + (reg))
48 #define ipg_r8(reg) ioread8(ioaddr + (reg))
55 #define DRV_NAME "ipg"
57 MODULE_AUTHOR("IC Plus Corp. 2003");
58 MODULE_DESCRIPTION("IC Plus IP1000 Gigabit Ethernet Adapter Linux Driver");
59 MODULE_LICENSE("GPL");
64 #define IPG_MAX_RXFRAME_SIZE 0x0600
65 #define IPG_RXFRAG_SIZE 0x0600
66 #define IPG_RXSUPPORT_SIZE 0x0600
67 #define IPG_IS_JUMBO false
70 * Variable record -- index by leading revision/length
71 * Revision/Length(=N*4), Address1, Data1, Address2, Data2,...,AddressN,DataN
73 static const unsigned short DefaultPhyParam
[] = {
74 /* 11/12/03 IP1000A v1-3 rev=0x40 */
75 /*--------------------------------------------------------------------------
76 (0x4000|(15*4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 22, 0x85bd, 24, 0xfff2,
77 27, 0x0c10, 28, 0x0c10, 29, 0x2c10, 31, 0x0003, 23, 0x92f6,
78 31, 0x0000, 23, 0x003d, 30, 0x00de, 20, 0x20e7, 9, 0x0700,
79 --------------------------------------------------------------------------*/
80 /* 12/17/03 IP1000A v1-4 rev=0x40 */
81 (0x4000 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
83 30, 0x005e, 9, 0x0700,
84 /* 01/09/04 IP1000A v1-5 rev=0x41 */
85 (0x4100 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
87 30, 0x005e, 9, 0x0700,
91 static const char * const ipg_brand_name
[] = {
92 "IC PLUS IP1000 1000/100/10 based NIC",
93 "Sundance Technology ST2021 based NIC",
94 "Tamarack Microelectronics TC9020/9021 based NIC",
98 static DEFINE_PCI_DEVICE_TABLE(ipg_pci_tbl
) = {
99 { PCI_VDEVICE(SUNDANCE
, 0x1023), 0 },
100 { PCI_VDEVICE(SUNDANCE
, 0x2021), 1 },
101 { PCI_VDEVICE(DLINK
, 0x9021), 2 },
102 { PCI_VDEVICE(DLINK
, 0x4020), 3 },
106 MODULE_DEVICE_TABLE(pci
, ipg_pci_tbl
);
108 static inline void __iomem
*ipg_ioaddr(struct net_device
*dev
)
110 struct ipg_nic_private
*sp
= netdev_priv(dev
);
115 static void ipg_dump_rfdlist(struct net_device
*dev
)
117 struct ipg_nic_private
*sp
= netdev_priv(dev
);
118 void __iomem
*ioaddr
= sp
->ioaddr
;
122 IPG_DEBUG_MSG("_dump_rfdlist\n");
124 netdev_info(dev
, "rx_current = %02x\n", sp
->rx_current
);
125 netdev_info(dev
, "rx_dirty = %02x\n", sp
->rx_dirty
);
126 netdev_info(dev
, "RFDList start address = %016lx\n",
127 (unsigned long)sp
->rxd_map
);
128 netdev_info(dev
, "RFDListPtr register = %08x%08x\n",
129 ipg_r32(IPG_RFDLISTPTR1
), ipg_r32(IPG_RFDLISTPTR0
));
131 for (i
= 0; i
< IPG_RFDLIST_LENGTH
; i
++) {
132 offset
= (u32
) &sp
->rxd
[i
].next_desc
- (u32
) sp
->rxd
;
133 netdev_info(dev
, "%02x %04x RFDNextPtr = %016lx\n",
134 i
, offset
, (unsigned long)sp
->rxd
[i
].next_desc
);
135 offset
= (u32
) &sp
->rxd
[i
].rfs
- (u32
) sp
->rxd
;
136 netdev_info(dev
, "%02x %04x RFS = %016lx\n",
137 i
, offset
, (unsigned long)sp
->rxd
[i
].rfs
);
138 offset
= (u32
) &sp
->rxd
[i
].frag_info
- (u32
) sp
->rxd
;
139 netdev_info(dev
, "%02x %04x frag_info = %016lx\n",
140 i
, offset
, (unsigned long)sp
->rxd
[i
].frag_info
);
144 static void ipg_dump_tfdlist(struct net_device
*dev
)
146 struct ipg_nic_private
*sp
= netdev_priv(dev
);
147 void __iomem
*ioaddr
= sp
->ioaddr
;
151 IPG_DEBUG_MSG("_dump_tfdlist\n");
153 netdev_info(dev
, "tx_current = %02x\n", sp
->tx_current
);
154 netdev_info(dev
, "tx_dirty = %02x\n", sp
->tx_dirty
);
155 netdev_info(dev
, "TFDList start address = %016lx\n",
156 (unsigned long) sp
->txd_map
);
157 netdev_info(dev
, "TFDListPtr register = %08x%08x\n",
158 ipg_r32(IPG_TFDLISTPTR1
), ipg_r32(IPG_TFDLISTPTR0
));
160 for (i
= 0; i
< IPG_TFDLIST_LENGTH
; i
++) {
161 offset
= (u32
) &sp
->txd
[i
].next_desc
- (u32
) sp
->txd
;
162 netdev_info(dev
, "%02x %04x TFDNextPtr = %016lx\n",
163 i
, offset
, (unsigned long)sp
->txd
[i
].next_desc
);
165 offset
= (u32
) &sp
->txd
[i
].tfc
- (u32
) sp
->txd
;
166 netdev_info(dev
, "%02x %04x TFC = %016lx\n",
167 i
, offset
, (unsigned long) sp
->txd
[i
].tfc
);
168 offset
= (u32
) &sp
->txd
[i
].frag_info
- (u32
) sp
->txd
;
169 netdev_info(dev
, "%02x %04x frag_info = %016lx\n",
170 i
, offset
, (unsigned long) sp
->txd
[i
].frag_info
);
175 static void ipg_write_phy_ctl(void __iomem
*ioaddr
, u8 data
)
177 ipg_w8(IPG_PC_RSVD_MASK
& data
, PHY_CTRL
);
178 ndelay(IPG_PC_PHYCTRLWAIT_NS
);
181 static void ipg_drive_phy_ctl_low_high(void __iomem
*ioaddr
, u8 data
)
183 ipg_write_phy_ctl(ioaddr
, IPG_PC_MGMTCLK_LO
| data
);
184 ipg_write_phy_ctl(ioaddr
, IPG_PC_MGMTCLK_HI
| data
);
187 static void send_three_state(void __iomem
*ioaddr
, u8 phyctrlpolarity
)
189 phyctrlpolarity
|= (IPG_PC_MGMTDATA
& 0) | IPG_PC_MGMTDIR
;
191 ipg_drive_phy_ctl_low_high(ioaddr
, phyctrlpolarity
);
194 static void send_end(void __iomem
*ioaddr
, u8 phyctrlpolarity
)
196 ipg_w8((IPG_PC_MGMTCLK_LO
| (IPG_PC_MGMTDATA
& 0) | IPG_PC_MGMTDIR
|
197 phyctrlpolarity
) & IPG_PC_RSVD_MASK
, PHY_CTRL
);
200 static u16
read_phy_bit(void __iomem
*ioaddr
, u8 phyctrlpolarity
)
204 ipg_write_phy_ctl(ioaddr
, IPG_PC_MGMTCLK_LO
| phyctrlpolarity
);
206 bit_data
= ((ipg_r8(PHY_CTRL
) & IPG_PC_MGMTDATA
) >> 1) & 1;
208 ipg_write_phy_ctl(ioaddr
, IPG_PC_MGMTCLK_HI
| phyctrlpolarity
);
214 * Read a register from the Physical Layer device located
215 * on the IPG NIC, using the IPG PHYCTRL register.
217 static int mdio_read(struct net_device
*dev
, int phy_id
, int phy_reg
)
219 void __iomem
*ioaddr
= ipg_ioaddr(dev
);
221 * The GMII mangement frame structure for a read is as follows:
223 * |Preamble|st|op|phyad|regad|ta| data |idle|
224 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z |
226 * <32 1s> = 32 consecutive logic 1 values
227 * A = bit of Physical Layer device address (MSB first)
228 * R = bit of register address (MSB first)
229 * z = High impedance state
230 * D = bit of read data (MSB first)
232 * Transmission order is 'Preamble' field first, bits transmitted
233 * left to right (first to last).
239 { GMII_PREAMBLE
, 32 }, /* Preamble */
240 { GMII_ST
, 2 }, /* ST */
241 { GMII_READ
, 2 }, /* OP */
242 { phy_id
, 5 }, /* PHYAD */
243 { phy_reg
, 5 }, /* REGAD */
244 { 0x0000, 2 }, /* TA */
245 { 0x0000, 16 }, /* DATA */
246 { 0x0000, 1 } /* IDLE */
251 polarity
= ipg_r8(PHY_CTRL
);
252 polarity
&= (IPG_PC_DUPLEX_POLARITY
| IPG_PC_LINK_POLARITY
);
254 /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
255 for (j
= 0; j
< 5; j
++) {
256 for (i
= 0; i
< p
[j
].len
; i
++) {
257 /* For each variable length field, the MSB must be
258 * transmitted first. Rotate through the field bits,
259 * starting with the MSB, and move each bit into the
260 * the 1st (2^1) bit position (this is the bit position
261 * corresponding to the MgmtData bit of the PhyCtrl
262 * register for the IPG).
266 * First write a '0' to bit 1 of the PhyCtrl
267 * register, then write a '1' to bit 1 of the
270 * To do this, right shift the MSB of ST by the value:
271 * [field length - 1 - #ST bits already written]
272 * then left shift this result by 1.
274 data
= (p
[j
].field
>> (p
[j
].len
- 1 - i
)) << 1;
275 data
&= IPG_PC_MGMTDATA
;
276 data
|= polarity
| IPG_PC_MGMTDIR
;
278 ipg_drive_phy_ctl_low_high(ioaddr
, data
);
282 send_three_state(ioaddr
, polarity
);
284 read_phy_bit(ioaddr
, polarity
);
287 * For a read cycle, the bits for the next two fields (TA and
288 * DATA) are driven by the PHY (the IPG reads these bits).
290 for (i
= 0; i
< p
[6].len
; i
++) {
292 (read_phy_bit(ioaddr
, polarity
) << (p
[6].len
- 1 - i
));
295 send_three_state(ioaddr
, polarity
);
296 send_three_state(ioaddr
, polarity
);
297 send_three_state(ioaddr
, polarity
);
298 send_end(ioaddr
, polarity
);
300 /* Return the value of the DATA field. */
305 * Write to a register from the Physical Layer device located
306 * on the IPG NIC, using the IPG PHYCTRL register.
308 static void mdio_write(struct net_device
*dev
, int phy_id
, int phy_reg
, int val
)
310 void __iomem
*ioaddr
= ipg_ioaddr(dev
);
312 * The GMII mangement frame structure for a read is as follows:
314 * |Preamble|st|op|phyad|regad|ta| data |idle|
315 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z |
317 * <32 1s> = 32 consecutive logic 1 values
318 * A = bit of Physical Layer device address (MSB first)
319 * R = bit of register address (MSB first)
320 * z = High impedance state
321 * D = bit of write data (MSB first)
323 * Transmission order is 'Preamble' field first, bits transmitted
324 * left to right (first to last).
330 { GMII_PREAMBLE
, 32 }, /* Preamble */
331 { GMII_ST
, 2 }, /* ST */
332 { GMII_WRITE
, 2 }, /* OP */
333 { phy_id
, 5 }, /* PHYAD */
334 { phy_reg
, 5 }, /* REGAD */
335 { 0x0002, 2 }, /* TA */
336 { val
& 0xffff, 16 }, /* DATA */
337 { 0x0000, 1 } /* IDLE */
342 polarity
= ipg_r8(PHY_CTRL
);
343 polarity
&= (IPG_PC_DUPLEX_POLARITY
| IPG_PC_LINK_POLARITY
);
345 /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
346 for (j
= 0; j
< 7; j
++) {
347 for (i
= 0; i
< p
[j
].len
; i
++) {
348 /* For each variable length field, the MSB must be
349 * transmitted first. Rotate through the field bits,
350 * starting with the MSB, and move each bit into the
351 * the 1st (2^1) bit position (this is the bit position
352 * corresponding to the MgmtData bit of the PhyCtrl
353 * register for the IPG).
357 * First write a '0' to bit 1 of the PhyCtrl
358 * register, then write a '1' to bit 1 of the
361 * To do this, right shift the MSB of ST by the value:
362 * [field length - 1 - #ST bits already written]
363 * then left shift this result by 1.
365 data
= (p
[j
].field
>> (p
[j
].len
- 1 - i
)) << 1;
366 data
&= IPG_PC_MGMTDATA
;
367 data
|= polarity
| IPG_PC_MGMTDIR
;
369 ipg_drive_phy_ctl_low_high(ioaddr
, data
);
373 /* The last cycle is a tri-state, so read from the PHY. */
374 ipg_write_phy_ctl(ioaddr
, IPG_PC_MGMTCLK_LO
| polarity
);
376 ipg_write_phy_ctl(ioaddr
, IPG_PC_MGMTCLK_HI
| polarity
);
379 static void ipg_set_led_mode(struct net_device
*dev
)
381 struct ipg_nic_private
*sp
= netdev_priv(dev
);
382 void __iomem
*ioaddr
= sp
->ioaddr
;
385 mode
= ipg_r32(ASIC_CTRL
);
386 mode
&= ~(IPG_AC_LED_MODE_BIT_1
| IPG_AC_LED_MODE
| IPG_AC_LED_SPEED
);
388 if ((sp
->led_mode
& 0x03) > 1)
389 mode
|= IPG_AC_LED_MODE_BIT_1
; /* Write Asic Control Bit 29 */
391 if ((sp
->led_mode
& 0x01) == 1)
392 mode
|= IPG_AC_LED_MODE
; /* Write Asic Control Bit 14 */
394 if ((sp
->led_mode
& 0x08) == 8)
395 mode
|= IPG_AC_LED_SPEED
; /* Write Asic Control Bit 27 */
397 ipg_w32(mode
, ASIC_CTRL
);
400 static void ipg_set_phy_set(struct net_device
*dev
)
402 struct ipg_nic_private
*sp
= netdev_priv(dev
);
403 void __iomem
*ioaddr
= sp
->ioaddr
;
406 physet
= ipg_r8(PHY_SET
);
407 physet
&= ~(IPG_PS_MEM_LENB9B
| IPG_PS_MEM_LEN9
| IPG_PS_NON_COMPDET
);
408 physet
|= ((sp
->led_mode
& 0x70) >> 4);
409 ipg_w8(physet
, PHY_SET
);
412 static int ipg_reset(struct net_device
*dev
, u32 resetflags
)
414 /* Assert functional resets via the IPG AsicCtrl
415 * register as specified by the 'resetflags' input
418 void __iomem
*ioaddr
= ipg_ioaddr(dev
);
419 unsigned int timeout_count
= 0;
421 IPG_DEBUG_MSG("_reset\n");
423 ipg_w32(ipg_r32(ASIC_CTRL
) | resetflags
, ASIC_CTRL
);
425 /* Delay added to account for problem with 10Mbps reset. */
426 mdelay(IPG_AC_RESETWAIT
);
428 while (IPG_AC_RESET_BUSY
& ipg_r32(ASIC_CTRL
)) {
429 mdelay(IPG_AC_RESETWAIT
);
430 if (++timeout_count
> IPG_AC_RESET_TIMEOUT
)
433 /* Set LED Mode in Asic Control */
434 ipg_set_led_mode(dev
);
436 /* Set PHYSet Register Value */
437 ipg_set_phy_set(dev
);
441 /* Find the GMII PHY address. */
442 static int ipg_find_phyaddr(struct net_device
*dev
)
444 unsigned int phyaddr
, i
;
446 for (i
= 0; i
< 32; i
++) {
449 /* Search for the correct PHY address among 32 possible. */
450 phyaddr
= (IPG_NIC_PHY_ADDRESS
+ i
) % 32;
452 /* 10/22/03 Grace change verify from GMII_PHY_STATUS to
456 status
= mdio_read(dev
, phyaddr
, MII_BMSR
);
458 if ((status
!= 0xFFFF) && (status
!= 0))
466 * Configure IPG based on result of IEEE 802.3 PHY
469 static int ipg_config_autoneg(struct net_device
*dev
)
471 struct ipg_nic_private
*sp
= netdev_priv(dev
);
472 void __iomem
*ioaddr
= sp
->ioaddr
;
473 unsigned int txflowcontrol
;
474 unsigned int rxflowcontrol
;
475 unsigned int fullduplex
;
484 IPG_DEBUG_MSG("_config_autoneg\n");
486 asicctrl
= ipg_r32(ASIC_CTRL
);
487 phyctrl
= ipg_r8(PHY_CTRL
);
488 mac_ctrl_val
= ipg_r32(MAC_CTRL
);
490 /* Set flags for use in resolving auto-negotiation, assuming
491 * non-1000Mbps, half duplex, no flow control.
497 /* To accommodate a problem in 10Mbps operation,
498 * set a global flag if PHY running in 10Mbps mode.
502 /* Determine actual speed of operation. */
503 switch (phyctrl
& IPG_PC_LINK_SPEED
) {
504 case IPG_PC_LINK_SPEED_10MBPS
:
508 case IPG_PC_LINK_SPEED_100MBPS
:
511 case IPG_PC_LINK_SPEED_1000MBPS
:
515 speed
= "undefined!";
519 netdev_info(dev
, "Link speed = %s\n", speed
);
520 if (sp
->tenmbpsmode
== 1)
521 netdev_info(dev
, "10Mbps operational mode enabled\n");
523 if (phyctrl
& IPG_PC_DUPLEX_STATUS
) {
529 /* Configure full duplex, and flow control. */
530 if (fullduplex
== 1) {
532 /* Configure IPG for full duplex operation. */
536 mac_ctrl_val
|= IPG_MC_DUPLEX_SELECT_FD
;
538 if (txflowcontrol
== 1) {
540 mac_ctrl_val
|= IPG_MC_TX_FLOW_CONTROL_ENABLE
;
543 mac_ctrl_val
&= ~IPG_MC_TX_FLOW_CONTROL_ENABLE
;
546 if (rxflowcontrol
== 1) {
548 mac_ctrl_val
|= IPG_MC_RX_FLOW_CONTROL_ENABLE
;
551 mac_ctrl_val
&= ~IPG_MC_RX_FLOW_CONTROL_ENABLE
;
557 mac_ctrl_val
&= (~IPG_MC_DUPLEX_SELECT_FD
&
558 ~IPG_MC_TX_FLOW_CONTROL_ENABLE
&
559 ~IPG_MC_RX_FLOW_CONTROL_ENABLE
);
562 netdev_info(dev
, "setting %s duplex, %sTX, %sRX flow control\n",
563 duplex
, tx_desc
, rx_desc
);
564 ipg_w32(mac_ctrl_val
, MAC_CTRL
);
569 /* Determine and configure multicast operation and set
570 * receive mode for IPG.
572 static void ipg_nic_set_multicast_list(struct net_device
*dev
)
574 void __iomem
*ioaddr
= ipg_ioaddr(dev
);
575 struct netdev_hw_addr
*ha
;
576 unsigned int hashindex
;
580 IPG_DEBUG_MSG("_nic_set_multicast_list\n");
582 receivemode
= IPG_RM_RECEIVEUNICAST
| IPG_RM_RECEIVEBROADCAST
;
584 if (dev
->flags
& IFF_PROMISC
) {
585 /* NIC to be configured in promiscuous mode. */
586 receivemode
= IPG_RM_RECEIVEALLFRAMES
;
587 } else if ((dev
->flags
& IFF_ALLMULTI
) ||
588 ((dev
->flags
& IFF_MULTICAST
) &&
589 (netdev_mc_count(dev
) > IPG_MULTICAST_HASHTABLE_SIZE
))) {
590 /* NIC to be configured to receive all multicast
592 receivemode
|= IPG_RM_RECEIVEMULTICAST
;
593 } else if ((dev
->flags
& IFF_MULTICAST
) && !netdev_mc_empty(dev
)) {
594 /* NIC to be configured to receive selected
595 * multicast addresses. */
596 receivemode
|= IPG_RM_RECEIVEMULTICASTHASH
;
599 /* Calculate the bits to set for the 64 bit, IPG HASHTABLE.
600 * The IPG applies a cyclic-redundancy-check (the same CRC
601 * used to calculate the frame data FCS) to the destination
602 * address all incoming multicast frames whose destination
603 * address has the multicast bit set. The least significant
604 * 6 bits of the CRC result are used as an addressing index
605 * into the hash table. If the value of the bit addressed by
606 * this index is a 1, the frame is passed to the host system.
609 /* Clear hashtable. */
610 hashtable
[0] = 0x00000000;
611 hashtable
[1] = 0x00000000;
613 /* Cycle through all multicast addresses to filter. */
614 netdev_for_each_mc_addr(ha
, dev
) {
615 /* Calculate CRC result for each multicast address. */
616 hashindex
= crc32_le(0xffffffff, ha
->addr
,
619 /* Use only the least significant 6 bits. */
620 hashindex
= hashindex
& 0x3F;
622 /* Within "hashtable", set bit number "hashindex"
625 set_bit(hashindex
, (void *)hashtable
);
628 /* Write the value of the hashtable, to the 4, 16 bit
629 * HASHTABLE IPG registers.
631 ipg_w32(hashtable
[0], HASHTABLE_0
);
632 ipg_w32(hashtable
[1], HASHTABLE_1
);
634 ipg_w8(IPG_RM_RSVD_MASK
& receivemode
, RECEIVE_MODE
);
636 IPG_DEBUG_MSG("ReceiveMode = %x\n", ipg_r8(RECEIVE_MODE
));
639 static int ipg_io_config(struct net_device
*dev
)
641 struct ipg_nic_private
*sp
= netdev_priv(dev
);
642 void __iomem
*ioaddr
= ipg_ioaddr(dev
);
646 IPG_DEBUG_MSG("_io_config\n");
648 origmacctrl
= ipg_r32(MAC_CTRL
);
650 restoremacctrl
= origmacctrl
| IPG_MC_STATISTICS_ENABLE
;
652 /* Based on compilation option, determine if FCS is to be
653 * stripped on receive frames by IPG.
655 if (!IPG_STRIP_FCS_ON_RX
)
656 restoremacctrl
|= IPG_MC_RCV_FCS
;
658 /* Determine if transmitter and/or receiver are
659 * enabled so we may restore MACCTRL correctly.
661 if (origmacctrl
& IPG_MC_TX_ENABLED
)
662 restoremacctrl
|= IPG_MC_TX_ENABLE
;
664 if (origmacctrl
& IPG_MC_RX_ENABLED
)
665 restoremacctrl
|= IPG_MC_RX_ENABLE
;
667 /* Transmitter and receiver must be disabled before setting
670 ipg_w32((origmacctrl
& (IPG_MC_RX_DISABLE
| IPG_MC_TX_DISABLE
)) &
671 IPG_MC_RSVD_MASK
, MAC_CTRL
);
673 /* Now that transmitter and receiver are disabled, write
676 ipg_w32((origmacctrl
& IPG_MC_IFS_96BIT
) & IPG_MC_RSVD_MASK
, MAC_CTRL
);
678 /* Set RECEIVEMODE register. */
679 ipg_nic_set_multicast_list(dev
);
681 ipg_w16(sp
->max_rxframe_size
, MAX_FRAME_SIZE
);
683 ipg_w8(IPG_RXDMAPOLLPERIOD_VALUE
, RX_DMA_POLL_PERIOD
);
684 ipg_w8(IPG_RXDMAURGENTTHRESH_VALUE
, RX_DMA_URGENT_THRESH
);
685 ipg_w8(IPG_RXDMABURSTTHRESH_VALUE
, RX_DMA_BURST_THRESH
);
686 ipg_w8(IPG_TXDMAPOLLPERIOD_VALUE
, TX_DMA_POLL_PERIOD
);
687 ipg_w8(IPG_TXDMAURGENTTHRESH_VALUE
, TX_DMA_URGENT_THRESH
);
688 ipg_w8(IPG_TXDMABURSTTHRESH_VALUE
, TX_DMA_BURST_THRESH
);
689 ipg_w16((IPG_IE_HOST_ERROR
| IPG_IE_TX_DMA_COMPLETE
|
690 IPG_IE_TX_COMPLETE
| IPG_IE_INT_REQUESTED
|
691 IPG_IE_UPDATE_STATS
| IPG_IE_LINK_EVENT
|
692 IPG_IE_RX_DMA_COMPLETE
| IPG_IE_RX_DMA_PRIORITY
), INT_ENABLE
);
693 ipg_w16(IPG_FLOWONTHRESH_VALUE
, FLOW_ON_THRESH
);
694 ipg_w16(IPG_FLOWOFFTHRESH_VALUE
, FLOW_OFF_THRESH
);
696 /* IPG multi-frag frame bug workaround.
697 * Per silicon revision B3 eratta.
699 ipg_w16(ipg_r16(DEBUG_CTRL
) | 0x0200, DEBUG_CTRL
);
701 /* IPG TX poll now bug workaround.
702 * Per silicon revision B3 eratta.
704 ipg_w16(ipg_r16(DEBUG_CTRL
) | 0x0010, DEBUG_CTRL
);
706 /* IPG RX poll now bug workaround.
707 * Per silicon revision B3 eratta.
709 ipg_w16(ipg_r16(DEBUG_CTRL
) | 0x0020, DEBUG_CTRL
);
711 /* Now restore MACCTRL to original setting. */
712 ipg_w32(IPG_MC_RSVD_MASK
& restoremacctrl
, MAC_CTRL
);
714 /* Disable unused RMON statistics. */
715 ipg_w32(IPG_RZ_ALL
, RMON_STATISTICS_MASK
);
717 /* Disable unused MIB statistics. */
718 ipg_w32(IPG_SM_MACCONTROLFRAMESXMTD
| IPG_SM_MACCONTROLFRAMESRCVD
|
719 IPG_SM_BCSTOCTETXMTOK_BCSTFRAMESXMTDOK
| IPG_SM_TXJUMBOFRAMES
|
720 IPG_SM_MCSTOCTETXMTOK_MCSTFRAMESXMTDOK
| IPG_SM_RXJUMBOFRAMES
|
721 IPG_SM_BCSTOCTETRCVDOK_BCSTFRAMESRCVDOK
|
722 IPG_SM_UDPCHECKSUMERRORS
| IPG_SM_TCPCHECKSUMERRORS
|
723 IPG_SM_IPCHECKSUMERRORS
, STATISTICS_MASK
);
729 * Create a receive buffer within system memory and update
730 * NIC private structure appropriately.
732 static int ipg_get_rxbuff(struct net_device
*dev
, int entry
)
734 struct ipg_nic_private
*sp
= netdev_priv(dev
);
735 struct ipg_rx
*rxfd
= sp
->rxd
+ entry
;
739 IPG_DEBUG_MSG("_get_rxbuff\n");
741 skb
= netdev_alloc_skb_ip_align(dev
, sp
->rxsupport_size
);
743 sp
->rx_buff
[entry
] = NULL
;
747 /* Associate the receive buffer with the IPG NIC. */
750 /* Save the address of the sk_buff structure. */
751 sp
->rx_buff
[entry
] = skb
;
753 rxfd
->frag_info
= cpu_to_le64(pci_map_single(sp
->pdev
, skb
->data
,
754 sp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
));
756 /* Set the RFD fragment length. */
757 rxfragsize
= sp
->rxfrag_size
;
758 rxfd
->frag_info
|= cpu_to_le64((rxfragsize
<< 48) & IPG_RFI_FRAGLEN
);
763 static int init_rfdlist(struct net_device
*dev
)
765 struct ipg_nic_private
*sp
= netdev_priv(dev
);
766 void __iomem
*ioaddr
= sp
->ioaddr
;
769 IPG_DEBUG_MSG("_init_rfdlist\n");
771 for (i
= 0; i
< IPG_RFDLIST_LENGTH
; i
++) {
772 struct ipg_rx
*rxfd
= sp
->rxd
+ i
;
774 if (sp
->rx_buff
[i
]) {
775 pci_unmap_single(sp
->pdev
,
776 le64_to_cpu(rxfd
->frag_info
) & ~IPG_RFI_FRAGLEN
,
777 sp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
778 dev_kfree_skb_irq(sp
->rx_buff
[i
]);
779 sp
->rx_buff
[i
] = NULL
;
782 /* Clear out the RFS field. */
783 rxfd
->rfs
= 0x0000000000000000;
785 if (ipg_get_rxbuff(dev
, i
) < 0) {
787 * A receive buffer was not ready, break the
790 IPG_DEBUG_MSG("Cannot allocate Rx buffer\n");
792 /* Just in case we cannot allocate a single RFD.
796 netdev_err(dev
, "No memory available for RFD list\n");
801 rxfd
->next_desc
= cpu_to_le64(sp
->rxd_map
+
802 sizeof(struct ipg_rx
)*(i
+ 1));
804 sp
->rxd
[i
- 1].next_desc
= cpu_to_le64(sp
->rxd_map
);
809 /* Write the location of the RFDList to the IPG. */
810 ipg_w32((u32
) sp
->rxd_map
, RFD_LIST_PTR_0
);
811 ipg_w32(0x00000000, RFD_LIST_PTR_1
);
816 static void init_tfdlist(struct net_device
*dev
)
818 struct ipg_nic_private
*sp
= netdev_priv(dev
);
819 void __iomem
*ioaddr
= sp
->ioaddr
;
822 IPG_DEBUG_MSG("_init_tfdlist\n");
824 for (i
= 0; i
< IPG_TFDLIST_LENGTH
; i
++) {
825 struct ipg_tx
*txfd
= sp
->txd
+ i
;
827 txfd
->tfc
= cpu_to_le64(IPG_TFC_TFDDONE
);
829 if (sp
->tx_buff
[i
]) {
830 dev_kfree_skb_irq(sp
->tx_buff
[i
]);
831 sp
->tx_buff
[i
] = NULL
;
834 txfd
->next_desc
= cpu_to_le64(sp
->txd_map
+
835 sizeof(struct ipg_tx
)*(i
+ 1));
837 sp
->txd
[i
- 1].next_desc
= cpu_to_le64(sp
->txd_map
);
842 /* Write the location of the TFDList to the IPG. */
843 IPG_DDEBUG_MSG("Starting TFDListPtr = %08x\n",
845 ipg_w32((u32
) sp
->txd_map
, TFD_LIST_PTR_0
);
846 ipg_w32(0x00000000, TFD_LIST_PTR_1
);
848 sp
->reset_current_tfd
= 1;
852 * Free all transmit buffers which have already been transferred
853 * via DMA to the IPG.
855 static void ipg_nic_txfree(struct net_device
*dev
)
857 struct ipg_nic_private
*sp
= netdev_priv(dev
);
858 unsigned int released
, pending
, dirty
;
860 IPG_DEBUG_MSG("_nic_txfree\n");
862 pending
= sp
->tx_current
- sp
->tx_dirty
;
863 dirty
= sp
->tx_dirty
% IPG_TFDLIST_LENGTH
;
865 for (released
= 0; released
< pending
; released
++) {
866 struct sk_buff
*skb
= sp
->tx_buff
[dirty
];
867 struct ipg_tx
*txfd
= sp
->txd
+ dirty
;
869 IPG_DEBUG_MSG("TFC = %016lx\n", (unsigned long) txfd
->tfc
);
871 /* Look at each TFD's TFC field beginning
872 * at the last freed TFD up to the current TFD.
873 * If the TFDDone bit is set, free the associated
876 if (!(txfd
->tfc
& cpu_to_le64(IPG_TFC_TFDDONE
)))
879 /* Free the transmit buffer. */
881 pci_unmap_single(sp
->pdev
,
882 le64_to_cpu(txfd
->frag_info
) & ~IPG_TFI_FRAGLEN
,
883 skb
->len
, PCI_DMA_TODEVICE
);
885 dev_kfree_skb_irq(skb
);
887 sp
->tx_buff
[dirty
] = NULL
;
889 dirty
= (dirty
+ 1) % IPG_TFDLIST_LENGTH
;
892 sp
->tx_dirty
+= released
;
894 if (netif_queue_stopped(dev
) &&
895 (sp
->tx_current
!= (sp
->tx_dirty
+ IPG_TFDLIST_LENGTH
))) {
896 netif_wake_queue(dev
);
900 static void ipg_tx_timeout(struct net_device
*dev
)
902 struct ipg_nic_private
*sp
= netdev_priv(dev
);
903 void __iomem
*ioaddr
= sp
->ioaddr
;
905 ipg_reset(dev
, IPG_AC_TX_RESET
| IPG_AC_DMA
| IPG_AC_NETWORK
|
908 spin_lock_irq(&sp
->lock
);
910 /* Re-configure after DMA reset. */
911 if (ipg_io_config(dev
) < 0)
912 netdev_info(dev
, "Error during re-configuration\n");
916 spin_unlock_irq(&sp
->lock
);
918 ipg_w32((ipg_r32(MAC_CTRL
) | IPG_MC_TX_ENABLE
) & IPG_MC_RSVD_MASK
,
923 * For TxComplete interrupts, free all transmit
924 * buffers which have already been transferred via DMA
927 static void ipg_nic_txcleanup(struct net_device
*dev
)
929 struct ipg_nic_private
*sp
= netdev_priv(dev
);
930 void __iomem
*ioaddr
= sp
->ioaddr
;
933 IPG_DEBUG_MSG("_nic_txcleanup\n");
935 for (i
= 0; i
< IPG_TFDLIST_LENGTH
; i
++) {
936 /* Reading the TXSTATUS register clears the
937 * TX_COMPLETE interrupt.
939 u32 txstatusdword
= ipg_r32(TX_STATUS
);
941 IPG_DEBUG_MSG("TxStatus = %08x\n", txstatusdword
);
943 /* Check for Transmit errors. Error bits only valid if
944 * TX_COMPLETE bit in the TXSTATUS register is a 1.
946 if (!(txstatusdword
& IPG_TS_TX_COMPLETE
))
949 /* If in 10Mbps mode, indicate transmit is ready. */
950 if (sp
->tenmbpsmode
) {
951 netif_wake_queue(dev
);
954 /* Transmit error, increment stat counters. */
955 if (txstatusdword
& IPG_TS_TX_ERROR
) {
956 IPG_DEBUG_MSG("Transmit error\n");
957 sp
->stats
.tx_errors
++;
960 /* Late collision, re-enable transmitter. */
961 if (txstatusdword
& IPG_TS_LATE_COLLISION
) {
962 IPG_DEBUG_MSG("Late collision on transmit\n");
963 ipg_w32((ipg_r32(MAC_CTRL
) | IPG_MC_TX_ENABLE
) &
964 IPG_MC_RSVD_MASK
, MAC_CTRL
);
967 /* Maximum collisions, re-enable transmitter. */
968 if (txstatusdword
& IPG_TS_TX_MAX_COLL
) {
969 IPG_DEBUG_MSG("Maximum collisions on transmit\n");
970 ipg_w32((ipg_r32(MAC_CTRL
) | IPG_MC_TX_ENABLE
) &
971 IPG_MC_RSVD_MASK
, MAC_CTRL
);
974 /* Transmit underrun, reset and re-enable
977 if (txstatusdword
& IPG_TS_TX_UNDERRUN
) {
978 IPG_DEBUG_MSG("Transmitter underrun\n");
979 sp
->stats
.tx_fifo_errors
++;
980 ipg_reset(dev
, IPG_AC_TX_RESET
| IPG_AC_DMA
|
981 IPG_AC_NETWORK
| IPG_AC_FIFO
);
983 /* Re-configure after DMA reset. */
984 if (ipg_io_config(dev
) < 0) {
985 netdev_info(dev
, "Error during re-configuration\n");
989 ipg_w32((ipg_r32(MAC_CTRL
) | IPG_MC_TX_ENABLE
) &
990 IPG_MC_RSVD_MASK
, MAC_CTRL
);
997 /* Provides statistical information about the IPG NIC. */
998 static struct net_device_stats
*ipg_nic_get_stats(struct net_device
*dev
)
1000 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1001 void __iomem
*ioaddr
= sp
->ioaddr
;
1005 IPG_DEBUG_MSG("_nic_get_stats\n");
1007 /* Check to see if the NIC has been initialized via nic_open,
1008 * before trying to read statistic registers.
1010 if (!test_bit(__LINK_STATE_START
, &dev
->state
))
1013 sp
->stats
.rx_packets
+= ipg_r32(IPG_FRAMESRCVDOK
);
1014 sp
->stats
.tx_packets
+= ipg_r32(IPG_FRAMESXMTDOK
);
1015 sp
->stats
.rx_bytes
+= ipg_r32(IPG_OCTETRCVOK
);
1016 sp
->stats
.tx_bytes
+= ipg_r32(IPG_OCTETXMTOK
);
1017 temp1
= ipg_r16(IPG_FRAMESLOSTRXERRORS
);
1018 sp
->stats
.rx_errors
+= temp1
;
1019 sp
->stats
.rx_missed_errors
+= temp1
;
1020 temp1
= ipg_r32(IPG_SINGLECOLFRAMES
) + ipg_r32(IPG_MULTICOLFRAMES
) +
1021 ipg_r32(IPG_LATECOLLISIONS
);
1022 temp2
= ipg_r16(IPG_CARRIERSENSEERRORS
);
1023 sp
->stats
.collisions
+= temp1
;
1024 sp
->stats
.tx_dropped
+= ipg_r16(IPG_FRAMESABORTXSCOLLS
);
1025 sp
->stats
.tx_errors
+= ipg_r16(IPG_FRAMESWEXDEFERRAL
) +
1026 ipg_r32(IPG_FRAMESWDEFERREDXMT
) + temp1
+ temp2
;
1027 sp
->stats
.multicast
+= ipg_r32(IPG_MCSTOCTETRCVDOK
);
1029 /* detailed tx_errors */
1030 sp
->stats
.tx_carrier_errors
+= temp2
;
1032 /* detailed rx_errors */
1033 sp
->stats
.rx_length_errors
+= ipg_r16(IPG_INRANGELENGTHERRORS
) +
1034 ipg_r16(IPG_FRAMETOOLONGERRRORS
);
1035 sp
->stats
.rx_crc_errors
+= ipg_r16(IPG_FRAMECHECKSEQERRORS
);
1037 /* Unutilized IPG statistic registers. */
1038 ipg_r32(IPG_MCSTFRAMESRCVDOK
);
1043 /* Restore used receive buffers. */
1044 static int ipg_nic_rxrestore(struct net_device
*dev
)
1046 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1047 const unsigned int curr
= sp
->rx_current
;
1048 unsigned int dirty
= sp
->rx_dirty
;
1050 IPG_DEBUG_MSG("_nic_rxrestore\n");
1052 for (dirty
= sp
->rx_dirty
; curr
- dirty
> 0; dirty
++) {
1053 unsigned int entry
= dirty
% IPG_RFDLIST_LENGTH
;
1055 /* rx_copybreak may poke hole here and there. */
1056 if (sp
->rx_buff
[entry
])
1059 /* Generate a new receive buffer to replace the
1060 * current buffer (which will be released by the
1063 if (ipg_get_rxbuff(dev
, entry
) < 0) {
1064 IPG_DEBUG_MSG("Cannot allocate new Rx buffer\n");
1069 /* Reset the RFS field. */
1070 sp
->rxd
[entry
].rfs
= 0x0000000000000000;
1072 sp
->rx_dirty
= dirty
;
1077 /* use jumboindex and jumbosize to control jumbo frame status
1078 * initial status is jumboindex=-1 and jumbosize=0
1079 * 1. jumboindex = -1 and jumbosize=0 : previous jumbo frame has been done.
1080 * 2. jumboindex != -1 and jumbosize != 0 : jumbo frame is not over size and receiving
1081 * 3. jumboindex = -1 and jumbosize != 0 : jumbo frame is over size, already dump
1082 * previous receiving and need to continue dumping the current one
1090 FRAME_NO_START_NO_END
= 0,
1091 FRAME_WITH_START
= 1,
1092 FRAME_WITH_END
= 10,
1093 FRAME_WITH_START_WITH_END
= 11
1096 static void ipg_nic_rx_free_skb(struct net_device
*dev
)
1098 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1099 unsigned int entry
= sp
->rx_current
% IPG_RFDLIST_LENGTH
;
1101 if (sp
->rx_buff
[entry
]) {
1102 struct ipg_rx
*rxfd
= sp
->rxd
+ entry
;
1104 pci_unmap_single(sp
->pdev
,
1105 le64_to_cpu(rxfd
->frag_info
) & ~IPG_RFI_FRAGLEN
,
1106 sp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1107 dev_kfree_skb_irq(sp
->rx_buff
[entry
]);
1108 sp
->rx_buff
[entry
] = NULL
;
1112 static int ipg_nic_rx_check_frame_type(struct net_device
*dev
)
1114 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1115 struct ipg_rx
*rxfd
= sp
->rxd
+ (sp
->rx_current
% IPG_RFDLIST_LENGTH
);
1116 int type
= FRAME_NO_START_NO_END
;
1118 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_FRAMESTART
)
1119 type
+= FRAME_WITH_START
;
1120 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_FRAMEEND
)
1121 type
+= FRAME_WITH_END
;
1125 static int ipg_nic_rx_check_error(struct net_device
*dev
)
1127 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1128 unsigned int entry
= sp
->rx_current
% IPG_RFDLIST_LENGTH
;
1129 struct ipg_rx
*rxfd
= sp
->rxd
+ entry
;
1131 if (IPG_DROP_ON_RX_ETH_ERRORS
&& (le64_to_cpu(rxfd
->rfs
) &
1132 (IPG_RFS_RXFIFOOVERRUN
| IPG_RFS_RXRUNTFRAME
|
1133 IPG_RFS_RXALIGNMENTERROR
| IPG_RFS_RXFCSERROR
|
1134 IPG_RFS_RXOVERSIZEDFRAME
| IPG_RFS_RXLENGTHERROR
))) {
1135 IPG_DEBUG_MSG("Rx error, RFS = %016lx\n",
1136 (unsigned long) rxfd
->rfs
);
1138 /* Increment general receive error statistic. */
1139 sp
->stats
.rx_errors
++;
1141 /* Increment detailed receive error statistics. */
1142 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXFIFOOVERRUN
) {
1143 IPG_DEBUG_MSG("RX FIFO overrun occurred\n");
1145 sp
->stats
.rx_fifo_errors
++;
1148 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXRUNTFRAME
) {
1149 IPG_DEBUG_MSG("RX runt occurred\n");
1150 sp
->stats
.rx_length_errors
++;
1153 /* Do nothing for IPG_RFS_RXOVERSIZEDFRAME,
1154 * error count handled by a IPG statistic register.
1157 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXALIGNMENTERROR
) {
1158 IPG_DEBUG_MSG("RX alignment error occurred\n");
1159 sp
->stats
.rx_frame_errors
++;
1162 /* Do nothing for IPG_RFS_RXFCSERROR, error count
1163 * handled by a IPG statistic register.
1166 /* Free the memory associated with the RX
1167 * buffer since it is erroneous and we will
1168 * not pass it to higher layer processes.
1170 if (sp
->rx_buff
[entry
]) {
1171 pci_unmap_single(sp
->pdev
,
1172 le64_to_cpu(rxfd
->frag_info
) & ~IPG_RFI_FRAGLEN
,
1173 sp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1175 dev_kfree_skb_irq(sp
->rx_buff
[entry
]);
1176 sp
->rx_buff
[entry
] = NULL
;
1178 return ERROR_PACKET
;
1180 return NORMAL_PACKET
;
1183 static void ipg_nic_rx_with_start_and_end(struct net_device
*dev
,
1184 struct ipg_nic_private
*sp
,
1185 struct ipg_rx
*rxfd
, unsigned entry
)
1187 struct ipg_jumbo
*jumbo
= &sp
->jumbo
;
1188 struct sk_buff
*skb
;
1191 if (jumbo
->found_start
) {
1192 dev_kfree_skb_irq(jumbo
->skb
);
1193 jumbo
->found_start
= 0;
1194 jumbo
->current_size
= 0;
1198 /* 1: found error, 0 no error */
1199 if (ipg_nic_rx_check_error(dev
) != NORMAL_PACKET
)
1202 skb
= sp
->rx_buff
[entry
];
1206 /* accept this frame and send to upper layer */
1207 framelen
= le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXFRAMELEN
;
1208 if (framelen
> sp
->rxfrag_size
)
1209 framelen
= sp
->rxfrag_size
;
1211 skb_put(skb
, framelen
);
1212 skb
->protocol
= eth_type_trans(skb
, dev
);
1213 skb_checksum_none_assert(skb
);
1215 sp
->rx_buff
[entry
] = NULL
;
1218 static void ipg_nic_rx_with_start(struct net_device
*dev
,
1219 struct ipg_nic_private
*sp
,
1220 struct ipg_rx
*rxfd
, unsigned entry
)
1222 struct ipg_jumbo
*jumbo
= &sp
->jumbo
;
1223 struct pci_dev
*pdev
= sp
->pdev
;
1224 struct sk_buff
*skb
;
1226 /* 1: found error, 0 no error */
1227 if (ipg_nic_rx_check_error(dev
) != NORMAL_PACKET
)
1230 /* accept this frame and send to upper layer */
1231 skb
= sp
->rx_buff
[entry
];
1235 if (jumbo
->found_start
)
1236 dev_kfree_skb_irq(jumbo
->skb
);
1238 pci_unmap_single(pdev
, le64_to_cpu(rxfd
->frag_info
) & ~IPG_RFI_FRAGLEN
,
1239 sp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1241 skb_put(skb
, sp
->rxfrag_size
);
1243 jumbo
->found_start
= 1;
1244 jumbo
->current_size
= sp
->rxfrag_size
;
1247 sp
->rx_buff
[entry
] = NULL
;
1250 static void ipg_nic_rx_with_end(struct net_device
*dev
,
1251 struct ipg_nic_private
*sp
,
1252 struct ipg_rx
*rxfd
, unsigned entry
)
1254 struct ipg_jumbo
*jumbo
= &sp
->jumbo
;
1256 /* 1: found error, 0 no error */
1257 if (ipg_nic_rx_check_error(dev
) == NORMAL_PACKET
) {
1258 struct sk_buff
*skb
= sp
->rx_buff
[entry
];
1263 if (jumbo
->found_start
) {
1264 int framelen
, endframelen
;
1266 framelen
= le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXFRAMELEN
;
1268 endframelen
= framelen
- jumbo
->current_size
;
1269 if (framelen
> sp
->rxsupport_size
)
1270 dev_kfree_skb_irq(jumbo
->skb
);
1272 memcpy(skb_put(jumbo
->skb
, endframelen
),
1273 skb
->data
, endframelen
);
1275 jumbo
->skb
->protocol
=
1276 eth_type_trans(jumbo
->skb
, dev
);
1278 skb_checksum_none_assert(jumbo
->skb
);
1279 netif_rx(jumbo
->skb
);
1283 jumbo
->found_start
= 0;
1284 jumbo
->current_size
= 0;
1287 ipg_nic_rx_free_skb(dev
);
1289 dev_kfree_skb_irq(jumbo
->skb
);
1290 jumbo
->found_start
= 0;
1291 jumbo
->current_size
= 0;
1296 static void ipg_nic_rx_no_start_no_end(struct net_device
*dev
,
1297 struct ipg_nic_private
*sp
,
1298 struct ipg_rx
*rxfd
, unsigned entry
)
1300 struct ipg_jumbo
*jumbo
= &sp
->jumbo
;
1302 /* 1: found error, 0 no error */
1303 if (ipg_nic_rx_check_error(dev
) == NORMAL_PACKET
) {
1304 struct sk_buff
*skb
= sp
->rx_buff
[entry
];
1307 if (jumbo
->found_start
) {
1308 jumbo
->current_size
+= sp
->rxfrag_size
;
1309 if (jumbo
->current_size
<= sp
->rxsupport_size
) {
1310 memcpy(skb_put(jumbo
->skb
,
1312 skb
->data
, sp
->rxfrag_size
);
1315 ipg_nic_rx_free_skb(dev
);
1318 dev_kfree_skb_irq(jumbo
->skb
);
1319 jumbo
->found_start
= 0;
1320 jumbo
->current_size
= 0;
1325 static int ipg_nic_rx_jumbo(struct net_device
*dev
)
1327 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1328 unsigned int curr
= sp
->rx_current
;
1329 void __iomem
*ioaddr
= sp
->ioaddr
;
1332 IPG_DEBUG_MSG("_nic_rx\n");
1334 for (i
= 0; i
< IPG_MAXRFDPROCESS_COUNT
; i
++, curr
++) {
1335 unsigned int entry
= curr
% IPG_RFDLIST_LENGTH
;
1336 struct ipg_rx
*rxfd
= sp
->rxd
+ entry
;
1338 if (!(rxfd
->rfs
& cpu_to_le64(IPG_RFS_RFDDONE
)))
1341 switch (ipg_nic_rx_check_frame_type(dev
)) {
1342 case FRAME_WITH_START_WITH_END
:
1343 ipg_nic_rx_with_start_and_end(dev
, sp
, rxfd
, entry
);
1345 case FRAME_WITH_START
:
1346 ipg_nic_rx_with_start(dev
, sp
, rxfd
, entry
);
1348 case FRAME_WITH_END
:
1349 ipg_nic_rx_with_end(dev
, sp
, rxfd
, entry
);
1351 case FRAME_NO_START_NO_END
:
1352 ipg_nic_rx_no_start_no_end(dev
, sp
, rxfd
, entry
);
1357 sp
->rx_current
= curr
;
1359 if (i
== IPG_MAXRFDPROCESS_COUNT
) {
1360 /* There are more RFDs to process, however the
1361 * allocated amount of RFD processing time has
1362 * expired. Assert Interrupt Requested to make
1363 * sure we come back to process the remaining RFDs.
1365 ipg_w32(ipg_r32(ASIC_CTRL
) | IPG_AC_INT_REQUEST
, ASIC_CTRL
);
1368 ipg_nic_rxrestore(dev
);
1373 static int ipg_nic_rx(struct net_device
*dev
)
1375 /* Transfer received Ethernet frames to higher network layers. */
1376 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1377 unsigned int curr
= sp
->rx_current
;
1378 void __iomem
*ioaddr
= sp
->ioaddr
;
1379 struct ipg_rx
*rxfd
;
1382 IPG_DEBUG_MSG("_nic_rx\n");
1384 #define __RFS_MASK \
1385 cpu_to_le64(IPG_RFS_RFDDONE | IPG_RFS_FRAMESTART | IPG_RFS_FRAMEEND)
1387 for (i
= 0; i
< IPG_MAXRFDPROCESS_COUNT
; i
++, curr
++) {
1388 unsigned int entry
= curr
% IPG_RFDLIST_LENGTH
;
1389 struct sk_buff
*skb
= sp
->rx_buff
[entry
];
1390 unsigned int framelen
;
1392 rxfd
= sp
->rxd
+ entry
;
1394 if (((rxfd
->rfs
& __RFS_MASK
) != __RFS_MASK
) || !skb
)
1397 /* Get received frame length. */
1398 framelen
= le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXFRAMELEN
;
1400 /* Check for jumbo frame arrival with too small
1403 if (framelen
> sp
->rxfrag_size
) {
1405 ("RFS FrameLen > allocated fragment size\n");
1407 framelen
= sp
->rxfrag_size
;
1410 if ((IPG_DROP_ON_RX_ETH_ERRORS
&& (le64_to_cpu(rxfd
->rfs
) &
1411 (IPG_RFS_RXFIFOOVERRUN
| IPG_RFS_RXRUNTFRAME
|
1412 IPG_RFS_RXALIGNMENTERROR
| IPG_RFS_RXFCSERROR
|
1413 IPG_RFS_RXOVERSIZEDFRAME
| IPG_RFS_RXLENGTHERROR
)))) {
1415 IPG_DEBUG_MSG("Rx error, RFS = %016lx\n",
1416 (unsigned long int) rxfd
->rfs
);
1418 /* Increment general receive error statistic. */
1419 sp
->stats
.rx_errors
++;
1421 /* Increment detailed receive error statistics. */
1422 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXFIFOOVERRUN
) {
1423 IPG_DEBUG_MSG("RX FIFO overrun occurred\n");
1424 sp
->stats
.rx_fifo_errors
++;
1427 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXRUNTFRAME
) {
1428 IPG_DEBUG_MSG("RX runt occurred\n");
1429 sp
->stats
.rx_length_errors
++;
1432 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXOVERSIZEDFRAME
) ;
1433 /* Do nothing, error count handled by a IPG
1434 * statistic register.
1437 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXALIGNMENTERROR
) {
1438 IPG_DEBUG_MSG("RX alignment error occurred\n");
1439 sp
->stats
.rx_frame_errors
++;
1442 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXFCSERROR
) ;
1443 /* Do nothing, error count handled by a IPG
1444 * statistic register.
1447 /* Free the memory associated with the RX
1448 * buffer since it is erroneous and we will
1449 * not pass it to higher layer processes.
1452 __le64 info
= rxfd
->frag_info
;
1454 pci_unmap_single(sp
->pdev
,
1455 le64_to_cpu(info
) & ~IPG_RFI_FRAGLEN
,
1456 sp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1458 dev_kfree_skb_irq(skb
);
1462 /* Adjust the new buffer length to accommodate the size
1463 * of the received frame.
1465 skb_put(skb
, framelen
);
1467 /* Set the buffer's protocol field to Ethernet. */
1468 skb
->protocol
= eth_type_trans(skb
, dev
);
1470 /* The IPG encountered an error with (or
1471 * there were no) IP/TCP/UDP checksums.
1472 * This may or may not indicate an invalid
1473 * IP/TCP/UDP frame was received. Let the
1474 * upper layer decide.
1476 skb_checksum_none_assert(skb
);
1478 /* Hand off frame for higher layer processing.
1479 * The function netif_rx() releases the sk_buff
1480 * when processing completes.
1485 /* Assure RX buffer is not reused by IPG. */
1486 sp
->rx_buff
[entry
] = NULL
;
1490 * If there are more RFDs to process and the allocated amount of RFD
1491 * processing time has expired, assert Interrupt Requested to make
1492 * sure we come back to process the remaining RFDs.
1494 if (i
== IPG_MAXRFDPROCESS_COUNT
)
1495 ipg_w32(ipg_r32(ASIC_CTRL
) | IPG_AC_INT_REQUEST
, ASIC_CTRL
);
1498 /* Check if the RFD list contained no receive frame data. */
1500 sp
->EmptyRFDListCount
++;
1502 while ((le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RFDDONE
) &&
1503 !((le64_to_cpu(rxfd
->rfs
) & IPG_RFS_FRAMESTART
) &&
1504 (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_FRAMEEND
))) {
1505 unsigned int entry
= curr
++ % IPG_RFDLIST_LENGTH
;
1507 rxfd
= sp
->rxd
+ entry
;
1509 IPG_DEBUG_MSG("Frame requires multiple RFDs\n");
1511 /* An unexpected event, additional code needed to handle
1512 * properly. So for the time being, just disregard the
1516 /* Free the memory associated with the RX
1517 * buffer since it is erroneous and we will
1518 * not pass it to higher layer processes.
1520 if (sp
->rx_buff
[entry
]) {
1521 pci_unmap_single(sp
->pdev
,
1522 le64_to_cpu(rxfd
->frag_info
) & ~IPG_RFI_FRAGLEN
,
1523 sp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1524 dev_kfree_skb_irq(sp
->rx_buff
[entry
]);
1527 /* Assure RX buffer is not reused by IPG. */
1528 sp
->rx_buff
[entry
] = NULL
;
1531 sp
->rx_current
= curr
;
1533 /* Check to see if there are a minimum number of used
1534 * RFDs before restoring any (should improve performance.)
1536 if ((curr
- sp
->rx_dirty
) >= IPG_MINUSEDRFDSTOFREE
)
1537 ipg_nic_rxrestore(dev
);
1542 static void ipg_reset_after_host_error(struct work_struct
*work
)
1544 struct ipg_nic_private
*sp
=
1545 container_of(work
, struct ipg_nic_private
, task
.work
);
1546 struct net_device
*dev
= sp
->dev
;
1549 * Acknowledge HostError interrupt by resetting
1552 ipg_reset(dev
, IPG_AC_GLOBAL_RESET
| IPG_AC_HOST
| IPG_AC_DMA
);
1557 if (ipg_io_config(dev
) < 0) {
1558 netdev_info(dev
, "Cannot recover from PCI error\n");
1559 schedule_delayed_work(&sp
->task
, HZ
);
1563 static irqreturn_t
ipg_interrupt_handler(int irq
, void *dev_inst
)
1565 struct net_device
*dev
= dev_inst
;
1566 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1567 void __iomem
*ioaddr
= sp
->ioaddr
;
1568 unsigned int handled
= 0;
1571 IPG_DEBUG_MSG("_interrupt_handler\n");
1574 ipg_nic_rxrestore(dev
);
1576 spin_lock(&sp
->lock
);
1578 /* Get interrupt source information, and acknowledge
1579 * some (i.e. TxDMAComplete, RxDMAComplete, RxEarly,
1580 * IntRequested, MacControlFrame, LinkEvent) interrupts
1581 * if issued. Also, all IPG interrupts are disabled by
1582 * reading IntStatusAck.
1584 status
= ipg_r16(INT_STATUS_ACK
);
1586 IPG_DEBUG_MSG("IntStatusAck = %04x\n", status
);
1588 /* Shared IRQ of remove event. */
1589 if (!(status
& IPG_IS_RSVD_MASK
))
1594 if (unlikely(!netif_running(dev
)))
1597 /* If RFDListEnd interrupt, restore all used RFDs. */
1598 if (status
& IPG_IS_RFD_LIST_END
) {
1599 IPG_DEBUG_MSG("RFDListEnd Interrupt\n");
1601 /* The RFD list end indicates an RFD was encountered
1602 * with a 0 NextPtr, or with an RFDDone bit set to 1
1603 * (indicating the RFD is not read for use by the
1604 * IPG.) Try to restore all RFDs.
1606 ipg_nic_rxrestore(dev
);
1609 /* Increment the RFDlistendCount counter. */
1610 sp
->RFDlistendCount
++;
1614 /* If RFDListEnd, RxDMAPriority, RxDMAComplete, or
1615 * IntRequested interrupt, process received frames. */
1616 if ((status
& IPG_IS_RX_DMA_PRIORITY
) ||
1617 (status
& IPG_IS_RFD_LIST_END
) ||
1618 (status
& IPG_IS_RX_DMA_COMPLETE
) ||
1619 (status
& IPG_IS_INT_REQUESTED
)) {
1621 /* Increment the RFD list checked counter if interrupted
1622 * only to check the RFD list. */
1623 if (status
& (~(IPG_IS_RX_DMA_PRIORITY
| IPG_IS_RFD_LIST_END
|
1624 IPG_IS_RX_DMA_COMPLETE
| IPG_IS_INT_REQUESTED
) &
1625 (IPG_IS_HOST_ERROR
| IPG_IS_TX_DMA_COMPLETE
|
1626 IPG_IS_LINK_EVENT
| IPG_IS_TX_COMPLETE
|
1627 IPG_IS_UPDATE_STATS
)))
1628 sp
->RFDListCheckedCount
++;
1632 ipg_nic_rx_jumbo(dev
);
1637 /* If TxDMAComplete interrupt, free used TFDs. */
1638 if (status
& IPG_IS_TX_DMA_COMPLETE
)
1639 ipg_nic_txfree(dev
);
1641 /* TxComplete interrupts indicate one of numerous actions.
1642 * Determine what action to take based on TXSTATUS register.
1644 if (status
& IPG_IS_TX_COMPLETE
)
1645 ipg_nic_txcleanup(dev
);
1647 /* If UpdateStats interrupt, update Linux Ethernet statistics */
1648 if (status
& IPG_IS_UPDATE_STATS
)
1649 ipg_nic_get_stats(dev
);
1651 /* If HostError interrupt, reset IPG. */
1652 if (status
& IPG_IS_HOST_ERROR
) {
1653 IPG_DDEBUG_MSG("HostError Interrupt\n");
1655 schedule_delayed_work(&sp
->task
, 0);
1658 /* If LinkEvent interrupt, resolve autonegotiation. */
1659 if (status
& IPG_IS_LINK_EVENT
) {
1660 if (ipg_config_autoneg(dev
) < 0)
1661 netdev_info(dev
, "Auto-negotiation error\n");
1664 /* If MACCtrlFrame interrupt, do nothing. */
1665 if (status
& IPG_IS_MAC_CTRL_FRAME
)
1666 IPG_DEBUG_MSG("MACCtrlFrame interrupt\n");
1668 /* If RxComplete interrupt, do nothing. */
1669 if (status
& IPG_IS_RX_COMPLETE
)
1670 IPG_DEBUG_MSG("RxComplete interrupt\n");
1672 /* If RxEarly interrupt, do nothing. */
1673 if (status
& IPG_IS_RX_EARLY
)
1674 IPG_DEBUG_MSG("RxEarly interrupt\n");
1677 /* Re-enable IPG interrupts. */
1678 ipg_w16(IPG_IE_TX_DMA_COMPLETE
| IPG_IE_RX_DMA_COMPLETE
|
1679 IPG_IE_HOST_ERROR
| IPG_IE_INT_REQUESTED
| IPG_IE_TX_COMPLETE
|
1680 IPG_IE_LINK_EVENT
| IPG_IE_UPDATE_STATS
, INT_ENABLE
);
1682 spin_unlock(&sp
->lock
);
1684 return IRQ_RETVAL(handled
);
1687 static void ipg_rx_clear(struct ipg_nic_private
*sp
)
1691 for (i
= 0; i
< IPG_RFDLIST_LENGTH
; i
++) {
1692 if (sp
->rx_buff
[i
]) {
1693 struct ipg_rx
*rxfd
= sp
->rxd
+ i
;
1695 dev_kfree_skb_irq(sp
->rx_buff
[i
]);
1696 sp
->rx_buff
[i
] = NULL
;
1697 pci_unmap_single(sp
->pdev
,
1698 le64_to_cpu(rxfd
->frag_info
) & ~IPG_RFI_FRAGLEN
,
1699 sp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1704 static void ipg_tx_clear(struct ipg_nic_private
*sp
)
1708 for (i
= 0; i
< IPG_TFDLIST_LENGTH
; i
++) {
1709 if (sp
->tx_buff
[i
]) {
1710 struct ipg_tx
*txfd
= sp
->txd
+ i
;
1712 pci_unmap_single(sp
->pdev
,
1713 le64_to_cpu(txfd
->frag_info
) & ~IPG_TFI_FRAGLEN
,
1714 sp
->tx_buff
[i
]->len
, PCI_DMA_TODEVICE
);
1716 dev_kfree_skb_irq(sp
->tx_buff
[i
]);
1718 sp
->tx_buff
[i
] = NULL
;
1723 static int ipg_nic_open(struct net_device
*dev
)
1725 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1726 void __iomem
*ioaddr
= sp
->ioaddr
;
1727 struct pci_dev
*pdev
= sp
->pdev
;
1730 IPG_DEBUG_MSG("_nic_open\n");
1732 sp
->rx_buf_sz
= sp
->rxsupport_size
;
1734 /* Check for interrupt line conflicts, and request interrupt
1737 * IMPORTANT: Disable IPG interrupts prior to registering
1740 ipg_w16(0x0000, INT_ENABLE
);
1742 /* Register the interrupt line to be used by the IPG within
1745 rc
= request_irq(pdev
->irq
, ipg_interrupt_handler
, IRQF_SHARED
,
1748 netdev_info(dev
, "Error when requesting interrupt\n");
1752 dev
->irq
= pdev
->irq
;
1756 sp
->rxd
= dma_alloc_coherent(&pdev
->dev
, IPG_RX_RING_BYTES
,
1757 &sp
->rxd_map
, GFP_KERNEL
);
1759 goto err_free_irq_0
;
1761 sp
->txd
= dma_alloc_coherent(&pdev
->dev
, IPG_TX_RING_BYTES
,
1762 &sp
->txd_map
, GFP_KERNEL
);
1766 rc
= init_rfdlist(dev
);
1768 netdev_info(dev
, "Error during configuration\n");
1774 rc
= ipg_io_config(dev
);
1776 netdev_info(dev
, "Error during configuration\n");
1777 goto err_release_tfdlist_3
;
1780 /* Resolve autonegotiation. */
1781 if (ipg_config_autoneg(dev
) < 0)
1782 netdev_info(dev
, "Auto-negotiation error\n");
1784 /* initialize JUMBO Frame control variable */
1785 sp
->jumbo
.found_start
= 0;
1786 sp
->jumbo
.current_size
= 0;
1787 sp
->jumbo
.skb
= NULL
;
1789 /* Enable transmit and receive operation of the IPG. */
1790 ipg_w32((ipg_r32(MAC_CTRL
) | IPG_MC_RX_ENABLE
| IPG_MC_TX_ENABLE
) &
1791 IPG_MC_RSVD_MASK
, MAC_CTRL
);
1793 netif_start_queue(dev
);
1797 err_release_tfdlist_3
:
1801 dma_free_coherent(&pdev
->dev
, IPG_TX_RING_BYTES
, sp
->txd
, sp
->txd_map
);
1803 dma_free_coherent(&pdev
->dev
, IPG_RX_RING_BYTES
, sp
->rxd
, sp
->rxd_map
);
1805 free_irq(pdev
->irq
, dev
);
1809 static int ipg_nic_stop(struct net_device
*dev
)
1811 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1812 void __iomem
*ioaddr
= sp
->ioaddr
;
1813 struct pci_dev
*pdev
= sp
->pdev
;
1815 IPG_DEBUG_MSG("_nic_stop\n");
1817 netif_stop_queue(dev
);
1819 IPG_DUMPTFDLIST(dev
);
1822 (void) ipg_r16(INT_STATUS_ACK
);
1824 ipg_reset(dev
, IPG_AC_GLOBAL_RESET
| IPG_AC_HOST
| IPG_AC_DMA
);
1826 synchronize_irq(pdev
->irq
);
1827 } while (ipg_r16(INT_ENABLE
) & IPG_IE_RSVD_MASK
);
1833 pci_free_consistent(pdev
, IPG_RX_RING_BYTES
, sp
->rxd
, sp
->rxd_map
);
1834 pci_free_consistent(pdev
, IPG_TX_RING_BYTES
, sp
->txd
, sp
->txd_map
);
1836 free_irq(pdev
->irq
, dev
);
1841 static netdev_tx_t
ipg_nic_hard_start_xmit(struct sk_buff
*skb
,
1842 struct net_device
*dev
)
1844 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1845 void __iomem
*ioaddr
= sp
->ioaddr
;
1846 unsigned int entry
= sp
->tx_current
% IPG_TFDLIST_LENGTH
;
1847 unsigned long flags
;
1848 struct ipg_tx
*txfd
;
1850 IPG_DDEBUG_MSG("_nic_hard_start_xmit\n");
1852 /* If in 10Mbps mode, stop the transmit queue so
1853 * no more transmit frames are accepted.
1855 if (sp
->tenmbpsmode
)
1856 netif_stop_queue(dev
);
1858 if (sp
->reset_current_tfd
) {
1859 sp
->reset_current_tfd
= 0;
1863 txfd
= sp
->txd
+ entry
;
1865 sp
->tx_buff
[entry
] = skb
;
1867 /* Clear all TFC fields, except TFDDONE. */
1868 txfd
->tfc
= cpu_to_le64(IPG_TFC_TFDDONE
);
1870 /* Specify the TFC field within the TFD. */
1871 txfd
->tfc
|= cpu_to_le64(IPG_TFC_WORDALIGNDISABLED
|
1872 (IPG_TFC_FRAMEID
& sp
->tx_current
) |
1873 (IPG_TFC_FRAGCOUNT
& (1 << 24)));
1875 * 16--17 (WordAlign) <- 3 (disable),
1876 * 0--15 (FrameId) <- sp->tx_current,
1877 * 24--27 (FragCount) <- 1
1880 /* Request TxComplete interrupts at an interval defined
1881 * by the constant IPG_FRAMESBETWEENTXCOMPLETES.
1882 * Request TxComplete interrupt for every frame
1883 * if in 10Mbps mode to accommodate problem with 10Mbps
1886 if (sp
->tenmbpsmode
)
1887 txfd
->tfc
|= cpu_to_le64(IPG_TFC_TXINDICATE
);
1888 txfd
->tfc
|= cpu_to_le64(IPG_TFC_TXDMAINDICATE
);
1889 /* Based on compilation option, determine if FCS is to be
1890 * appended to transmit frame by IPG.
1892 if (!(IPG_APPEND_FCS_ON_TX
))
1893 txfd
->tfc
|= cpu_to_le64(IPG_TFC_FCSAPPENDDISABLE
);
1895 /* Based on compilation option, determine if IP, TCP and/or
1896 * UDP checksums are to be added to transmit frame by IPG.
1898 if (IPG_ADD_IPCHECKSUM_ON_TX
)
1899 txfd
->tfc
|= cpu_to_le64(IPG_TFC_IPCHECKSUMENABLE
);
1901 if (IPG_ADD_TCPCHECKSUM_ON_TX
)
1902 txfd
->tfc
|= cpu_to_le64(IPG_TFC_TCPCHECKSUMENABLE
);
1904 if (IPG_ADD_UDPCHECKSUM_ON_TX
)
1905 txfd
->tfc
|= cpu_to_le64(IPG_TFC_UDPCHECKSUMENABLE
);
1907 /* Based on compilation option, determine if VLAN tag info is to be
1908 * inserted into transmit frame by IPG.
1910 if (IPG_INSERT_MANUAL_VLAN_TAG
) {
1911 txfd
->tfc
|= cpu_to_le64(IPG_TFC_VLANTAGINSERT
|
1912 ((u64
) IPG_MANUAL_VLAN_VID
<< 32) |
1913 ((u64
) IPG_MANUAL_VLAN_CFI
<< 44) |
1914 ((u64
) IPG_MANUAL_VLAN_USERPRIORITY
<< 45));
1917 /* The fragment start location within system memory is defined
1918 * by the sk_buff structure's data field. The physical address
1919 * of this location within the system's virtual memory space
1920 * is determined using the IPG_HOST2BUS_MAP function.
1922 txfd
->frag_info
= cpu_to_le64(pci_map_single(sp
->pdev
, skb
->data
,
1923 skb
->len
, PCI_DMA_TODEVICE
));
1925 /* The length of the fragment within system memory is defined by
1926 * the sk_buff structure's len field.
1928 txfd
->frag_info
|= cpu_to_le64(IPG_TFI_FRAGLEN
&
1929 ((u64
) (skb
->len
& 0xffff) << 48));
1931 /* Clear the TFDDone bit last to indicate the TFD is ready
1932 * for transfer to the IPG.
1934 txfd
->tfc
&= cpu_to_le64(~IPG_TFC_TFDDONE
);
1936 spin_lock_irqsave(&sp
->lock
, flags
);
1942 ipg_w32(IPG_DC_TX_DMA_POLL_NOW
, DMA_CTRL
);
1944 if (sp
->tx_current
== (sp
->tx_dirty
+ IPG_TFDLIST_LENGTH
))
1945 netif_stop_queue(dev
);
1947 spin_unlock_irqrestore(&sp
->lock
, flags
);
1949 return NETDEV_TX_OK
;
1952 static void ipg_set_phy_default_param(unsigned char rev
,
1953 struct net_device
*dev
, int phy_address
)
1955 unsigned short length
;
1956 unsigned char revision
;
1957 const unsigned short *phy_param
;
1958 unsigned short address
, value
;
1960 phy_param
= &DefaultPhyParam
[0];
1961 length
= *phy_param
& 0x00FF;
1962 revision
= (unsigned char)((*phy_param
) >> 8);
1964 while (length
!= 0) {
1965 if (rev
== revision
) {
1966 while (length
> 1) {
1967 address
= *phy_param
;
1968 value
= *(phy_param
+ 1);
1970 mdio_write(dev
, phy_address
, address
, value
);
1975 phy_param
+= length
/ 2;
1976 length
= *phy_param
& 0x00FF;
1977 revision
= (unsigned char)((*phy_param
) >> 8);
1983 static int read_eeprom(struct net_device
*dev
, int eep_addr
)
1985 void __iomem
*ioaddr
= ipg_ioaddr(dev
);
1990 value
= IPG_EC_EEPROM_READOPCODE
| (eep_addr
& 0xff);
1991 ipg_w16(value
, EEPROM_CTRL
);
1993 for (i
= 0; i
< 1000; i
++) {
1997 data
= ipg_r16(EEPROM_CTRL
);
1998 if (!(data
& IPG_EC_EEPROM_BUSY
)) {
1999 ret
= ipg_r16(EEPROM_DATA
);
2006 static void ipg_init_mii(struct net_device
*dev
)
2008 struct ipg_nic_private
*sp
= netdev_priv(dev
);
2009 struct mii_if_info
*mii_if
= &sp
->mii_if
;
2013 mii_if
->mdio_read
= mdio_read
;
2014 mii_if
->mdio_write
= mdio_write
;
2015 mii_if
->phy_id_mask
= 0x1f;
2016 mii_if
->reg_num_mask
= 0x1f;
2018 mii_if
->phy_id
= phyaddr
= ipg_find_phyaddr(dev
);
2020 if (phyaddr
!= 0x1f) {
2021 u16 mii_phyctrl
, mii_1000cr
;
2023 mii_1000cr
= mdio_read(dev
, phyaddr
, MII_CTRL1000
);
2024 mii_1000cr
|= ADVERTISE_1000FULL
| ADVERTISE_1000HALF
|
2025 GMII_PHY_1000BASETCONTROL_PreferMaster
;
2026 mdio_write(dev
, phyaddr
, MII_CTRL1000
, mii_1000cr
);
2028 mii_phyctrl
= mdio_read(dev
, phyaddr
, MII_BMCR
);
2030 /* Set default phyparam */
2031 ipg_set_phy_default_param(sp
->pdev
->revision
, dev
, phyaddr
);
2034 mii_phyctrl
|= BMCR_RESET
| BMCR_ANRESTART
;
2035 mdio_write(dev
, phyaddr
, MII_BMCR
, mii_phyctrl
);
2040 static int ipg_hw_init(struct net_device
*dev
)
2042 struct ipg_nic_private
*sp
= netdev_priv(dev
);
2043 void __iomem
*ioaddr
= sp
->ioaddr
;
2047 /* Read/Write and Reset EEPROM Value */
2048 /* Read LED Mode Configuration from EEPROM */
2049 sp
->led_mode
= read_eeprom(dev
, 6);
2051 /* Reset all functions within the IPG. Do not assert
2052 * RST_OUT as not compatible with some PHYs.
2054 rc
= ipg_reset(dev
, IPG_RESET_MASK
);
2060 /* Read MAC Address from EEPROM */
2061 for (i
= 0; i
< 3; i
++)
2062 sp
->station_addr
[i
] = read_eeprom(dev
, 16 + i
);
2064 for (i
= 0; i
< 3; i
++)
2065 ipg_w16(sp
->station_addr
[i
], STATION_ADDRESS_0
+ 2*i
);
2067 /* Set station address in ethernet_device structure. */
2068 dev
->dev_addr
[0] = ipg_r16(STATION_ADDRESS_0
) & 0x00ff;
2069 dev
->dev_addr
[1] = (ipg_r16(STATION_ADDRESS_0
) & 0xff00) >> 8;
2070 dev
->dev_addr
[2] = ipg_r16(STATION_ADDRESS_1
) & 0x00ff;
2071 dev
->dev_addr
[3] = (ipg_r16(STATION_ADDRESS_1
) & 0xff00) >> 8;
2072 dev
->dev_addr
[4] = ipg_r16(STATION_ADDRESS_2
) & 0x00ff;
2073 dev
->dev_addr
[5] = (ipg_r16(STATION_ADDRESS_2
) & 0xff00) >> 8;
2078 static int ipg_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
2080 struct ipg_nic_private
*sp
= netdev_priv(dev
);
2083 mutex_lock(&sp
->mii_mutex
);
2084 rc
= generic_mii_ioctl(&sp
->mii_if
, if_mii(ifr
), cmd
, NULL
);
2085 mutex_unlock(&sp
->mii_mutex
);
2090 static int ipg_nic_change_mtu(struct net_device
*dev
, int new_mtu
)
2092 struct ipg_nic_private
*sp
= netdev_priv(dev
);
2095 /* Function to accommodate changes to Maximum Transfer Unit
2096 * (or MTU) of IPG NIC. Cannot use default function since
2097 * the default will not allow for MTU > 1500 bytes.
2100 IPG_DEBUG_MSG("_nic_change_mtu\n");
2103 * Check that the new MTU value is between 68 (14 byte header, 46 byte
2104 * payload, 4 byte FCS) and 10 KB, which is the largest supported MTU.
2106 if (new_mtu
< 68 || new_mtu
> 10240)
2109 err
= ipg_nic_stop(dev
);
2115 sp
->max_rxframe_size
= new_mtu
;
2117 sp
->rxfrag_size
= new_mtu
;
2118 if (sp
->rxfrag_size
> 4088)
2119 sp
->rxfrag_size
= 4088;
2121 sp
->rxsupport_size
= sp
->max_rxframe_size
;
2123 if (new_mtu
> 0x0600)
2124 sp
->is_jumbo
= true;
2126 sp
->is_jumbo
= false;
2128 return ipg_nic_open(dev
);
2131 static int ipg_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
2133 struct ipg_nic_private
*sp
= netdev_priv(dev
);
2136 mutex_lock(&sp
->mii_mutex
);
2137 rc
= mii_ethtool_gset(&sp
->mii_if
, cmd
);
2138 mutex_unlock(&sp
->mii_mutex
);
2143 static int ipg_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
2145 struct ipg_nic_private
*sp
= netdev_priv(dev
);
2148 mutex_lock(&sp
->mii_mutex
);
2149 rc
= mii_ethtool_sset(&sp
->mii_if
, cmd
);
2150 mutex_unlock(&sp
->mii_mutex
);
2155 static int ipg_nway_reset(struct net_device
*dev
)
2157 struct ipg_nic_private
*sp
= netdev_priv(dev
);
2160 mutex_lock(&sp
->mii_mutex
);
2161 rc
= mii_nway_restart(&sp
->mii_if
);
2162 mutex_unlock(&sp
->mii_mutex
);
2167 static const struct ethtool_ops ipg_ethtool_ops
= {
2168 .get_settings
= ipg_get_settings
,
2169 .set_settings
= ipg_set_settings
,
2170 .nway_reset
= ipg_nway_reset
,
2173 static void __devexit
ipg_remove(struct pci_dev
*pdev
)
2175 struct net_device
*dev
= pci_get_drvdata(pdev
);
2176 struct ipg_nic_private
*sp
= netdev_priv(dev
);
2178 IPG_DEBUG_MSG("_remove\n");
2180 /* Un-register Ethernet device. */
2181 unregister_netdev(dev
);
2183 pci_iounmap(pdev
, sp
->ioaddr
);
2185 pci_release_regions(pdev
);
2188 pci_disable_device(pdev
);
2189 pci_set_drvdata(pdev
, NULL
);
2192 static const struct net_device_ops ipg_netdev_ops
= {
2193 .ndo_open
= ipg_nic_open
,
2194 .ndo_stop
= ipg_nic_stop
,
2195 .ndo_start_xmit
= ipg_nic_hard_start_xmit
,
2196 .ndo_get_stats
= ipg_nic_get_stats
,
2197 .ndo_set_rx_mode
= ipg_nic_set_multicast_list
,
2198 .ndo_do_ioctl
= ipg_ioctl
,
2199 .ndo_tx_timeout
= ipg_tx_timeout
,
2200 .ndo_change_mtu
= ipg_nic_change_mtu
,
2201 .ndo_set_mac_address
= eth_mac_addr
,
2202 .ndo_validate_addr
= eth_validate_addr
,
2205 static int __devinit
ipg_probe(struct pci_dev
*pdev
,
2206 const struct pci_device_id
*id
)
2208 unsigned int i
= id
->driver_data
;
2209 struct ipg_nic_private
*sp
;
2210 struct net_device
*dev
;
2211 void __iomem
*ioaddr
;
2214 rc
= pci_enable_device(pdev
);
2218 pr_info("%s: %s\n", pci_name(pdev
), ipg_brand_name
[i
]);
2220 pci_set_master(pdev
);
2222 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(40));
2224 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
2226 pr_err("%s: DMA config failed\n", pci_name(pdev
));
2232 * Initialize net device.
2234 dev
= alloc_etherdev(sizeof(struct ipg_nic_private
));
2236 pr_err("%s: alloc_etherdev failed\n", pci_name(pdev
));
2241 sp
= netdev_priv(dev
);
2242 spin_lock_init(&sp
->lock
);
2243 mutex_init(&sp
->mii_mutex
);
2245 sp
->is_jumbo
= IPG_IS_JUMBO
;
2246 sp
->rxfrag_size
= IPG_RXFRAG_SIZE
;
2247 sp
->rxsupport_size
= IPG_RXSUPPORT_SIZE
;
2248 sp
->max_rxframe_size
= IPG_MAX_RXFRAME_SIZE
;
2250 /* Declare IPG NIC functions for Ethernet device methods.
2252 dev
->netdev_ops
= &ipg_netdev_ops
;
2253 SET_NETDEV_DEV(dev
, &pdev
->dev
);
2254 SET_ETHTOOL_OPS(dev
, &ipg_ethtool_ops
);
2256 rc
= pci_request_regions(pdev
, DRV_NAME
);
2258 goto err_free_dev_1
;
2260 ioaddr
= pci_iomap(pdev
, 1, pci_resource_len(pdev
, 1));
2262 pr_err("%s: cannot map MMIO\n", pci_name(pdev
));
2264 goto err_release_regions_2
;
2267 /* Save the pointer to the PCI device information. */
2268 sp
->ioaddr
= ioaddr
;
2272 INIT_DELAYED_WORK(&sp
->task
, ipg_reset_after_host_error
);
2274 pci_set_drvdata(pdev
, dev
);
2276 rc
= ipg_hw_init(dev
);
2280 rc
= register_netdev(dev
);
2284 netdev_info(dev
, "Ethernet device registered\n");
2289 pci_iounmap(pdev
, ioaddr
);
2290 err_release_regions_2
:
2291 pci_release_regions(pdev
);
2295 pci_disable_device(pdev
);
2299 static struct pci_driver ipg_pci_driver
= {
2300 .name
= IPG_DRIVER_NAME
,
2301 .id_table
= ipg_pci_tbl
,
2303 .remove
= __devexit_p(ipg_remove
),
2306 static int __init
ipg_init_module(void)
2308 return pci_register_driver(&ipg_pci_driver
);
2311 static void __exit
ipg_exit_module(void)
2313 pci_unregister_driver(&ipg_pci_driver
);
2316 module_init(ipg_init_module
);
2317 module_exit(ipg_exit_module
);