spi-topcliff-pch: supports a spi mode setup and bit order setup by IO control
[zen-stable.git] / drivers / net / ethernet / intel / igb / e1000_mac.c
blobf57338afd71f47681a3436ee769d6fb02cd14b06
1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2012 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/if_ether.h>
29 #include <linux/delay.h>
30 #include <linux/pci.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
34 #include "e1000_mac.h"
36 #include "igb.h"
38 static s32 igb_set_default_fc(struct e1000_hw *hw);
39 static s32 igb_set_fc_watermarks(struct e1000_hw *hw);
41 /**
42 * igb_get_bus_info_pcie - Get PCIe bus information
43 * @hw: pointer to the HW structure
45 * Determines and stores the system bus information for a particular
46 * network interface. The following bus information is determined and stored:
47 * bus speed, bus width, type (PCIe), and PCIe function.
48 **/
49 s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
51 struct e1000_bus_info *bus = &hw->bus;
52 s32 ret_val;
53 u32 reg;
54 u16 pcie_link_status;
56 bus->type = e1000_bus_type_pci_express;
58 ret_val = igb_read_pcie_cap_reg(hw,
59 PCI_EXP_LNKSTA,
60 &pcie_link_status);
61 if (ret_val) {
62 bus->width = e1000_bus_width_unknown;
63 bus->speed = e1000_bus_speed_unknown;
64 } else {
65 switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) {
66 case PCI_EXP_LNKSTA_CLS_2_5GB:
67 bus->speed = e1000_bus_speed_2500;
68 break;
69 case PCI_EXP_LNKSTA_CLS_5_0GB:
70 bus->speed = e1000_bus_speed_5000;
71 break;
72 default:
73 bus->speed = e1000_bus_speed_unknown;
74 break;
77 bus->width = (enum e1000_bus_width)((pcie_link_status &
78 PCI_EXP_LNKSTA_NLW) >>
79 PCI_EXP_LNKSTA_NLW_SHIFT);
82 reg = rd32(E1000_STATUS);
83 bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
85 return 0;
88 /**
89 * igb_clear_vfta - Clear VLAN filter table
90 * @hw: pointer to the HW structure
92 * Clears the register array which contains the VLAN filter table by
93 * setting all the values to 0.
94 **/
95 void igb_clear_vfta(struct e1000_hw *hw)
97 u32 offset;
99 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
100 array_wr32(E1000_VFTA, offset, 0);
101 wrfl();
106 * igb_write_vfta - Write value to VLAN filter table
107 * @hw: pointer to the HW structure
108 * @offset: register offset in VLAN filter table
109 * @value: register value written to VLAN filter table
111 * Writes value at the given offset in the register array which stores
112 * the VLAN filter table.
114 static void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
116 array_wr32(E1000_VFTA, offset, value);
117 wrfl();
120 /* Due to a hw errata, if the host tries to configure the VFTA register
121 * while performing queries from the BMC or DMA, then the VFTA in some
122 * cases won't be written.
126 * igb_clear_vfta_i350 - Clear VLAN filter table
127 * @hw: pointer to the HW structure
129 * Clears the register array which contains the VLAN filter table by
130 * setting all the values to 0.
132 void igb_clear_vfta_i350(struct e1000_hw *hw)
134 u32 offset;
135 int i;
137 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
138 for (i = 0; i < 10; i++)
139 array_wr32(E1000_VFTA, offset, 0);
141 wrfl();
146 * igb_write_vfta_i350 - Write value to VLAN filter table
147 * @hw: pointer to the HW structure
148 * @offset: register offset in VLAN filter table
149 * @value: register value written to VLAN filter table
151 * Writes value at the given offset in the register array which stores
152 * the VLAN filter table.
154 static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
156 int i;
158 for (i = 0; i < 10; i++)
159 array_wr32(E1000_VFTA, offset, value);
161 wrfl();
165 * igb_init_rx_addrs - Initialize receive address's
166 * @hw: pointer to the HW structure
167 * @rar_count: receive address registers
169 * Setups the receive address registers by setting the base receive address
170 * register to the devices MAC address and clearing all the other receive
171 * address registers to 0.
173 void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
175 u32 i;
176 u8 mac_addr[ETH_ALEN] = {0};
178 /* Setup the receive address */
179 hw_dbg("Programming MAC Address into RAR[0]\n");
181 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
183 /* Zero out the other (rar_entry_count - 1) receive addresses */
184 hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
185 for (i = 1; i < rar_count; i++)
186 hw->mac.ops.rar_set(hw, mac_addr, i);
190 * igb_vfta_set - enable or disable vlan in VLAN filter table
191 * @hw: pointer to the HW structure
192 * @vid: VLAN id to add or remove
193 * @add: if true add filter, if false remove
195 * Sets or clears a bit in the VLAN filter table array based on VLAN id
196 * and if we are adding or removing the filter
198 s32 igb_vfta_set(struct e1000_hw *hw, u32 vid, bool add)
200 u32 index = (vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK;
201 u32 mask = 1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
202 u32 vfta;
203 struct igb_adapter *adapter = hw->back;
204 s32 ret_val = 0;
206 vfta = adapter->shadow_vfta[index];
208 /* bit was set/cleared before we started */
209 if ((!!(vfta & mask)) == add) {
210 ret_val = -E1000_ERR_CONFIG;
211 } else {
212 if (add)
213 vfta |= mask;
214 else
215 vfta &= ~mask;
217 if (hw->mac.type == e1000_i350)
218 igb_write_vfta_i350(hw, index, vfta);
219 else
220 igb_write_vfta(hw, index, vfta);
221 adapter->shadow_vfta[index] = vfta;
223 return ret_val;
227 * igb_check_alt_mac_addr - Check for alternate MAC addr
228 * @hw: pointer to the HW structure
230 * Checks the nvm for an alternate MAC address. An alternate MAC address
231 * can be setup by pre-boot software and must be treated like a permanent
232 * address and must override the actual permanent MAC address. If an
233 * alternate MAC address is fopund it is saved in the hw struct and
234 * prgrammed into RAR0 and the cuntion returns success, otherwise the
235 * function returns an error.
237 s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
239 u32 i;
240 s32 ret_val = 0;
241 u16 offset, nvm_alt_mac_addr_offset, nvm_data;
242 u8 alt_mac_addr[ETH_ALEN];
245 * Alternate MAC address is handled by the option ROM for 82580
246 * and newer. SW support not required.
248 if (hw->mac.type >= e1000_82580)
249 goto out;
251 ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
252 &nvm_alt_mac_addr_offset);
253 if (ret_val) {
254 hw_dbg("NVM Read Error\n");
255 goto out;
258 if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
259 (nvm_alt_mac_addr_offset == 0x0000))
260 /* There is no Alternate MAC Address */
261 goto out;
263 if (hw->bus.func == E1000_FUNC_1)
264 nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
265 if (hw->bus.func == E1000_FUNC_2)
266 nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
268 if (hw->bus.func == E1000_FUNC_3)
269 nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
270 for (i = 0; i < ETH_ALEN; i += 2) {
271 offset = nvm_alt_mac_addr_offset + (i >> 1);
272 ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
273 if (ret_val) {
274 hw_dbg("NVM Read Error\n");
275 goto out;
278 alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
279 alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
282 /* if multicast bit is set, the alternate address will not be used */
283 if (is_multicast_ether_addr(alt_mac_addr)) {
284 hw_dbg("Ignoring Alternate Mac Address with MC bit set\n");
285 goto out;
289 * We have a valid alternate MAC address, and we want to treat it the
290 * same as the normal permanent MAC address stored by the HW into the
291 * RAR. Do this by mapping this address into RAR0.
293 hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
295 out:
296 return ret_val;
300 * igb_rar_set - Set receive address register
301 * @hw: pointer to the HW structure
302 * @addr: pointer to the receive address
303 * @index: receive address array register
305 * Sets the receive address array register at index to the address passed
306 * in by addr.
308 void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
310 u32 rar_low, rar_high;
313 * HW expects these in little endian so we reverse the byte order
314 * from network order (big endian) to little endian
316 rar_low = ((u32) addr[0] |
317 ((u32) addr[1] << 8) |
318 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
320 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
322 /* If MAC address zero, no need to set the AV bit */
323 if (rar_low || rar_high)
324 rar_high |= E1000_RAH_AV;
327 * Some bridges will combine consecutive 32-bit writes into
328 * a single burst write, which will malfunction on some parts.
329 * The flushes avoid this.
331 wr32(E1000_RAL(index), rar_low);
332 wrfl();
333 wr32(E1000_RAH(index), rar_high);
334 wrfl();
338 * igb_mta_set - Set multicast filter table address
339 * @hw: pointer to the HW structure
340 * @hash_value: determines the MTA register and bit to set
342 * The multicast table address is a register array of 32-bit registers.
343 * The hash_value is used to determine what register the bit is in, the
344 * current value is read, the new bit is OR'd in and the new value is
345 * written back into the register.
347 void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
349 u32 hash_bit, hash_reg, mta;
352 * The MTA is a register array of 32-bit registers. It is
353 * treated like an array of (32*mta_reg_count) bits. We want to
354 * set bit BitArray[hash_value]. So we figure out what register
355 * the bit is in, read it, OR in the new bit, then write
356 * back the new value. The (hw->mac.mta_reg_count - 1) serves as a
357 * mask to bits 31:5 of the hash value which gives us the
358 * register we're modifying. The hash bit within that register
359 * is determined by the lower 5 bits of the hash value.
361 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
362 hash_bit = hash_value & 0x1F;
364 mta = array_rd32(E1000_MTA, hash_reg);
366 mta |= (1 << hash_bit);
368 array_wr32(E1000_MTA, hash_reg, mta);
369 wrfl();
373 * igb_hash_mc_addr - Generate a multicast hash value
374 * @hw: pointer to the HW structure
375 * @mc_addr: pointer to a multicast address
377 * Generates a multicast address hash value which is used to determine
378 * the multicast filter table array address and new table value. See
379 * igb_mta_set()
381 static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
383 u32 hash_value, hash_mask;
384 u8 bit_shift = 0;
386 /* Register count multiplied by bits per register */
387 hash_mask = (hw->mac.mta_reg_count * 32) - 1;
390 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
391 * where 0xFF would still fall within the hash mask.
393 while (hash_mask >> bit_shift != 0xFF)
394 bit_shift++;
397 * The portion of the address that is used for the hash table
398 * is determined by the mc_filter_type setting.
399 * The algorithm is such that there is a total of 8 bits of shifting.
400 * The bit_shift for a mc_filter_type of 0 represents the number of
401 * left-shifts where the MSB of mc_addr[5] would still fall within
402 * the hash_mask. Case 0 does this exactly. Since there are a total
403 * of 8 bits of shifting, then mc_addr[4] will shift right the
404 * remaining number of bits. Thus 8 - bit_shift. The rest of the
405 * cases are a variation of this algorithm...essentially raising the
406 * number of bits to shift mc_addr[5] left, while still keeping the
407 * 8-bit shifting total.
409 * For example, given the following Destination MAC Address and an
410 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
411 * we can see that the bit_shift for case 0 is 4. These are the hash
412 * values resulting from each mc_filter_type...
413 * [0] [1] [2] [3] [4] [5]
414 * 01 AA 00 12 34 56
415 * LSB MSB
417 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
418 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
419 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
420 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
422 switch (hw->mac.mc_filter_type) {
423 default:
424 case 0:
425 break;
426 case 1:
427 bit_shift += 1;
428 break;
429 case 2:
430 bit_shift += 2;
431 break;
432 case 3:
433 bit_shift += 4;
434 break;
437 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
438 (((u16) mc_addr[5]) << bit_shift)));
440 return hash_value;
444 * igb_update_mc_addr_list - Update Multicast addresses
445 * @hw: pointer to the HW structure
446 * @mc_addr_list: array of multicast addresses to program
447 * @mc_addr_count: number of multicast addresses to program
449 * Updates entire Multicast Table Array.
450 * The caller must have a packed mc_addr_list of multicast addresses.
452 void igb_update_mc_addr_list(struct e1000_hw *hw,
453 u8 *mc_addr_list, u32 mc_addr_count)
455 u32 hash_value, hash_bit, hash_reg;
456 int i;
458 /* clear mta_shadow */
459 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
461 /* update mta_shadow from mc_addr_list */
462 for (i = 0; (u32) i < mc_addr_count; i++) {
463 hash_value = igb_hash_mc_addr(hw, mc_addr_list);
465 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
466 hash_bit = hash_value & 0x1F;
468 hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
469 mc_addr_list += (ETH_ALEN);
472 /* replace the entire MTA table */
473 for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
474 array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]);
475 wrfl();
479 * igb_clear_hw_cntrs_base - Clear base hardware counters
480 * @hw: pointer to the HW structure
482 * Clears the base hardware counters by reading the counter registers.
484 void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
486 rd32(E1000_CRCERRS);
487 rd32(E1000_SYMERRS);
488 rd32(E1000_MPC);
489 rd32(E1000_SCC);
490 rd32(E1000_ECOL);
491 rd32(E1000_MCC);
492 rd32(E1000_LATECOL);
493 rd32(E1000_COLC);
494 rd32(E1000_DC);
495 rd32(E1000_SEC);
496 rd32(E1000_RLEC);
497 rd32(E1000_XONRXC);
498 rd32(E1000_XONTXC);
499 rd32(E1000_XOFFRXC);
500 rd32(E1000_XOFFTXC);
501 rd32(E1000_FCRUC);
502 rd32(E1000_GPRC);
503 rd32(E1000_BPRC);
504 rd32(E1000_MPRC);
505 rd32(E1000_GPTC);
506 rd32(E1000_GORCL);
507 rd32(E1000_GORCH);
508 rd32(E1000_GOTCL);
509 rd32(E1000_GOTCH);
510 rd32(E1000_RNBC);
511 rd32(E1000_RUC);
512 rd32(E1000_RFC);
513 rd32(E1000_ROC);
514 rd32(E1000_RJC);
515 rd32(E1000_TORL);
516 rd32(E1000_TORH);
517 rd32(E1000_TOTL);
518 rd32(E1000_TOTH);
519 rd32(E1000_TPR);
520 rd32(E1000_TPT);
521 rd32(E1000_MPTC);
522 rd32(E1000_BPTC);
526 * igb_check_for_copper_link - Check for link (Copper)
527 * @hw: pointer to the HW structure
529 * Checks to see of the link status of the hardware has changed. If a
530 * change in link status has been detected, then we read the PHY registers
531 * to get the current speed/duplex if link exists.
533 s32 igb_check_for_copper_link(struct e1000_hw *hw)
535 struct e1000_mac_info *mac = &hw->mac;
536 s32 ret_val;
537 bool link;
540 * We only want to go out to the PHY registers to see if Auto-Neg
541 * has completed and/or if our link status has changed. The
542 * get_link_status flag is set upon receiving a Link Status
543 * Change or Rx Sequence Error interrupt.
545 if (!mac->get_link_status) {
546 ret_val = 0;
547 goto out;
551 * First we want to see if the MII Status Register reports
552 * link. If so, then we want to get the current speed/duplex
553 * of the PHY.
555 ret_val = igb_phy_has_link(hw, 1, 0, &link);
556 if (ret_val)
557 goto out;
559 if (!link)
560 goto out; /* No link detected */
562 mac->get_link_status = false;
565 * Check if there was DownShift, must be checked
566 * immediately after link-up
568 igb_check_downshift(hw);
571 * If we are forcing speed/duplex, then we simply return since
572 * we have already determined whether we have link or not.
574 if (!mac->autoneg) {
575 ret_val = -E1000_ERR_CONFIG;
576 goto out;
580 * Auto-Neg is enabled. Auto Speed Detection takes care
581 * of MAC speed/duplex configuration. So we only need to
582 * configure Collision Distance in the MAC.
584 igb_config_collision_dist(hw);
587 * Configure Flow Control now that Auto-Neg has completed.
588 * First, we need to restore the desired flow control
589 * settings because we may have had to re-autoneg with a
590 * different link partner.
592 ret_val = igb_config_fc_after_link_up(hw);
593 if (ret_val)
594 hw_dbg("Error configuring flow control\n");
596 out:
597 return ret_val;
601 * igb_setup_link - Setup flow control and link settings
602 * @hw: pointer to the HW structure
604 * Determines which flow control settings to use, then configures flow
605 * control. Calls the appropriate media-specific link configuration
606 * function. Assuming the adapter has a valid link partner, a valid link
607 * should be established. Assumes the hardware has previously been reset
608 * and the transmitter and receiver are not enabled.
610 s32 igb_setup_link(struct e1000_hw *hw)
612 s32 ret_val = 0;
615 * In the case of the phy reset being blocked, we already have a link.
616 * We do not need to set it up again.
618 if (igb_check_reset_block(hw))
619 goto out;
622 * If requested flow control is set to default, set flow control
623 * based on the EEPROM flow control settings.
625 if (hw->fc.requested_mode == e1000_fc_default) {
626 ret_val = igb_set_default_fc(hw);
627 if (ret_val)
628 goto out;
632 * We want to save off the original Flow Control configuration just
633 * in case we get disconnected and then reconnected into a different
634 * hub or switch with different Flow Control capabilities.
636 hw->fc.current_mode = hw->fc.requested_mode;
638 hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
640 /* Call the necessary media_type subroutine to configure the link. */
641 ret_val = hw->mac.ops.setup_physical_interface(hw);
642 if (ret_val)
643 goto out;
646 * Initialize the flow control address, type, and PAUSE timer
647 * registers to their default values. This is done even if flow
648 * control is disabled, because it does not hurt anything to
649 * initialize these registers.
651 hw_dbg("Initializing the Flow Control address, type and timer regs\n");
652 wr32(E1000_FCT, FLOW_CONTROL_TYPE);
653 wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
654 wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
656 wr32(E1000_FCTTV, hw->fc.pause_time);
658 ret_val = igb_set_fc_watermarks(hw);
660 out:
661 return ret_val;
665 * igb_config_collision_dist - Configure collision distance
666 * @hw: pointer to the HW structure
668 * Configures the collision distance to the default value and is used
669 * during link setup. Currently no func pointer exists and all
670 * implementations are handled in the generic version of this function.
672 void igb_config_collision_dist(struct e1000_hw *hw)
674 u32 tctl;
676 tctl = rd32(E1000_TCTL);
678 tctl &= ~E1000_TCTL_COLD;
679 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
681 wr32(E1000_TCTL, tctl);
682 wrfl();
686 * igb_set_fc_watermarks - Set flow control high/low watermarks
687 * @hw: pointer to the HW structure
689 * Sets the flow control high/low threshold (watermark) registers. If
690 * flow control XON frame transmission is enabled, then set XON frame
691 * tansmission as well.
693 static s32 igb_set_fc_watermarks(struct e1000_hw *hw)
695 s32 ret_val = 0;
696 u32 fcrtl = 0, fcrth = 0;
699 * Set the flow control receive threshold registers. Normally,
700 * these registers will be set to a default threshold that may be
701 * adjusted later by the driver's runtime code. However, if the
702 * ability to transmit pause frames is not enabled, then these
703 * registers will be set to 0.
705 if (hw->fc.current_mode & e1000_fc_tx_pause) {
707 * We need to set up the Receive Threshold high and low water
708 * marks as well as (optionally) enabling the transmission of
709 * XON frames.
711 fcrtl = hw->fc.low_water;
712 if (hw->fc.send_xon)
713 fcrtl |= E1000_FCRTL_XONE;
715 fcrth = hw->fc.high_water;
717 wr32(E1000_FCRTL, fcrtl);
718 wr32(E1000_FCRTH, fcrth);
720 return ret_val;
724 * igb_set_default_fc - Set flow control default values
725 * @hw: pointer to the HW structure
727 * Read the EEPROM for the default values for flow control and store the
728 * values.
730 static s32 igb_set_default_fc(struct e1000_hw *hw)
732 s32 ret_val = 0;
733 u16 nvm_data;
736 * Read and store word 0x0F of the EEPROM. This word contains bits
737 * that determine the hardware's default PAUSE (flow control) mode,
738 * a bit that determines whether the HW defaults to enabling or
739 * disabling auto-negotiation, and the direction of the
740 * SW defined pins. If there is no SW over-ride of the flow
741 * control setting, then the variable hw->fc will
742 * be initialized based on a value in the EEPROM.
744 ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
746 if (ret_val) {
747 hw_dbg("NVM Read Error\n");
748 goto out;
751 if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
752 hw->fc.requested_mode = e1000_fc_none;
753 else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
754 NVM_WORD0F_ASM_DIR)
755 hw->fc.requested_mode = e1000_fc_tx_pause;
756 else
757 hw->fc.requested_mode = e1000_fc_full;
759 out:
760 return ret_val;
764 * igb_force_mac_fc - Force the MAC's flow control settings
765 * @hw: pointer to the HW structure
767 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
768 * device control register to reflect the adapter settings. TFCE and RFCE
769 * need to be explicitly set by software when a copper PHY is used because
770 * autonegotiation is managed by the PHY rather than the MAC. Software must
771 * also configure these bits when link is forced on a fiber connection.
773 s32 igb_force_mac_fc(struct e1000_hw *hw)
775 u32 ctrl;
776 s32 ret_val = 0;
778 ctrl = rd32(E1000_CTRL);
781 * Because we didn't get link via the internal auto-negotiation
782 * mechanism (we either forced link or we got link via PHY
783 * auto-neg), we have to manually enable/disable transmit an
784 * receive flow control.
786 * The "Case" statement below enables/disable flow control
787 * according to the "hw->fc.current_mode" parameter.
789 * The possible values of the "fc" parameter are:
790 * 0: Flow control is completely disabled
791 * 1: Rx flow control is enabled (we can receive pause
792 * frames but not send pause frames).
793 * 2: Tx flow control is enabled (we can send pause frames
794 * frames but we do not receive pause frames).
795 * 3: Both Rx and TX flow control (symmetric) is enabled.
796 * other: No other values should be possible at this point.
798 hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
800 switch (hw->fc.current_mode) {
801 case e1000_fc_none:
802 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
803 break;
804 case e1000_fc_rx_pause:
805 ctrl &= (~E1000_CTRL_TFCE);
806 ctrl |= E1000_CTRL_RFCE;
807 break;
808 case e1000_fc_tx_pause:
809 ctrl &= (~E1000_CTRL_RFCE);
810 ctrl |= E1000_CTRL_TFCE;
811 break;
812 case e1000_fc_full:
813 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
814 break;
815 default:
816 hw_dbg("Flow control param set incorrectly\n");
817 ret_val = -E1000_ERR_CONFIG;
818 goto out;
821 wr32(E1000_CTRL, ctrl);
823 out:
824 return ret_val;
828 * igb_config_fc_after_link_up - Configures flow control after link
829 * @hw: pointer to the HW structure
831 * Checks the status of auto-negotiation after link up to ensure that the
832 * speed and duplex were not forced. If the link needed to be forced, then
833 * flow control needs to be forced also. If auto-negotiation is enabled
834 * and did not fail, then we configure flow control based on our link
835 * partner.
837 s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
839 struct e1000_mac_info *mac = &hw->mac;
840 s32 ret_val = 0;
841 u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
842 u16 speed, duplex;
845 * Check for the case where we have fiber media and auto-neg failed
846 * so we had to force link. In this case, we need to force the
847 * configuration of the MAC to match the "fc" parameter.
849 if (mac->autoneg_failed) {
850 if (hw->phy.media_type == e1000_media_type_internal_serdes)
851 ret_val = igb_force_mac_fc(hw);
852 } else {
853 if (hw->phy.media_type == e1000_media_type_copper)
854 ret_val = igb_force_mac_fc(hw);
857 if (ret_val) {
858 hw_dbg("Error forcing flow control settings\n");
859 goto out;
863 * Check for the case where we have copper media and auto-neg is
864 * enabled. In this case, we need to check and see if Auto-Neg
865 * has completed, and if so, how the PHY and link partner has
866 * flow control configured.
868 if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
870 * Read the MII Status Register and check to see if AutoNeg
871 * has completed. We read this twice because this reg has
872 * some "sticky" (latched) bits.
874 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
875 &mii_status_reg);
876 if (ret_val)
877 goto out;
878 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
879 &mii_status_reg);
880 if (ret_val)
881 goto out;
883 if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
884 hw_dbg("Copper PHY and Auto Neg "
885 "has not completed.\n");
886 goto out;
890 * The AutoNeg process has completed, so we now need to
891 * read both the Auto Negotiation Advertisement
892 * Register (Address 4) and the Auto_Negotiation Base
893 * Page Ability Register (Address 5) to determine how
894 * flow control was negotiated.
896 ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
897 &mii_nway_adv_reg);
898 if (ret_val)
899 goto out;
900 ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
901 &mii_nway_lp_ability_reg);
902 if (ret_val)
903 goto out;
906 * Two bits in the Auto Negotiation Advertisement Register
907 * (Address 4) and two bits in the Auto Negotiation Base
908 * Page Ability Register (Address 5) determine flow control
909 * for both the PHY and the link partner. The following
910 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
911 * 1999, describes these PAUSE resolution bits and how flow
912 * control is determined based upon these settings.
913 * NOTE: DC = Don't Care
915 * LOCAL DEVICE | LINK PARTNER
916 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
917 *-------|---------|-------|---------|--------------------
918 * 0 | 0 | DC | DC | e1000_fc_none
919 * 0 | 1 | 0 | DC | e1000_fc_none
920 * 0 | 1 | 1 | 0 | e1000_fc_none
921 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
922 * 1 | 0 | 0 | DC | e1000_fc_none
923 * 1 | DC | 1 | DC | e1000_fc_full
924 * 1 | 1 | 0 | 0 | e1000_fc_none
925 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
927 * Are both PAUSE bits set to 1? If so, this implies
928 * Symmetric Flow Control is enabled at both ends. The
929 * ASM_DIR bits are irrelevant per the spec.
931 * For Symmetric Flow Control:
933 * LOCAL DEVICE | LINK PARTNER
934 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
935 *-------|---------|-------|---------|--------------------
936 * 1 | DC | 1 | DC | E1000_fc_full
939 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
940 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
942 * Now we need to check if the user selected RX ONLY
943 * of pause frames. In this case, we had to advertise
944 * FULL flow control because we could not advertise RX
945 * ONLY. Hence, we must now check to see if we need to
946 * turn OFF the TRANSMISSION of PAUSE frames.
948 if (hw->fc.requested_mode == e1000_fc_full) {
949 hw->fc.current_mode = e1000_fc_full;
950 hw_dbg("Flow Control = FULL.\r\n");
951 } else {
952 hw->fc.current_mode = e1000_fc_rx_pause;
953 hw_dbg("Flow Control = "
954 "RX PAUSE frames only.\r\n");
958 * For receiving PAUSE frames ONLY.
960 * LOCAL DEVICE | LINK PARTNER
961 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
962 *-------|---------|-------|---------|--------------------
963 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
965 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
966 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
967 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
968 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
969 hw->fc.current_mode = e1000_fc_tx_pause;
970 hw_dbg("Flow Control = TX PAUSE frames only.\r\n");
973 * For transmitting PAUSE frames ONLY.
975 * LOCAL DEVICE | LINK PARTNER
976 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
977 *-------|---------|-------|---------|--------------------
978 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
980 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
981 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
982 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
983 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
984 hw->fc.current_mode = e1000_fc_rx_pause;
985 hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
988 * Per the IEEE spec, at this point flow control should be
989 * disabled. However, we want to consider that we could
990 * be connected to a legacy switch that doesn't advertise
991 * desired flow control, but can be forced on the link
992 * partner. So if we advertised no flow control, that is
993 * what we will resolve to. If we advertised some kind of
994 * receive capability (Rx Pause Only or Full Flow Control)
995 * and the link partner advertised none, we will configure
996 * ourselves to enable Rx Flow Control only. We can do
997 * this safely for two reasons: If the link partner really
998 * didn't want flow control enabled, and we enable Rx, no
999 * harm done since we won't be receiving any PAUSE frames
1000 * anyway. If the intent on the link partner was to have
1001 * flow control enabled, then by us enabling RX only, we
1002 * can at least receive pause frames and process them.
1003 * This is a good idea because in most cases, since we are
1004 * predominantly a server NIC, more times than not we will
1005 * be asked to delay transmission of packets than asking
1006 * our link partner to pause transmission of frames.
1008 else if ((hw->fc.requested_mode == e1000_fc_none ||
1009 hw->fc.requested_mode == e1000_fc_tx_pause) ||
1010 hw->fc.strict_ieee) {
1011 hw->fc.current_mode = e1000_fc_none;
1012 hw_dbg("Flow Control = NONE.\r\n");
1013 } else {
1014 hw->fc.current_mode = e1000_fc_rx_pause;
1015 hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
1019 * Now we need to do one last check... If we auto-
1020 * negotiated to HALF DUPLEX, flow control should not be
1021 * enabled per IEEE 802.3 spec.
1023 ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
1024 if (ret_val) {
1025 hw_dbg("Error getting link speed and duplex\n");
1026 goto out;
1029 if (duplex == HALF_DUPLEX)
1030 hw->fc.current_mode = e1000_fc_none;
1033 * Now we call a subroutine to actually force the MAC
1034 * controller to use the correct flow control settings.
1036 ret_val = igb_force_mac_fc(hw);
1037 if (ret_val) {
1038 hw_dbg("Error forcing flow control settings\n");
1039 goto out;
1043 out:
1044 return ret_val;
1048 * igb_get_speed_and_duplex_copper - Retrieve current speed/duplex
1049 * @hw: pointer to the HW structure
1050 * @speed: stores the current speed
1051 * @duplex: stores the current duplex
1053 * Read the status register for the current speed/duplex and store the current
1054 * speed and duplex for copper connections.
1056 s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1057 u16 *duplex)
1059 u32 status;
1061 status = rd32(E1000_STATUS);
1062 if (status & E1000_STATUS_SPEED_1000) {
1063 *speed = SPEED_1000;
1064 hw_dbg("1000 Mbs, ");
1065 } else if (status & E1000_STATUS_SPEED_100) {
1066 *speed = SPEED_100;
1067 hw_dbg("100 Mbs, ");
1068 } else {
1069 *speed = SPEED_10;
1070 hw_dbg("10 Mbs, ");
1073 if (status & E1000_STATUS_FD) {
1074 *duplex = FULL_DUPLEX;
1075 hw_dbg("Full Duplex\n");
1076 } else {
1077 *duplex = HALF_DUPLEX;
1078 hw_dbg("Half Duplex\n");
1081 return 0;
1085 * igb_get_hw_semaphore - Acquire hardware semaphore
1086 * @hw: pointer to the HW structure
1088 * Acquire the HW semaphore to access the PHY or NVM
1090 s32 igb_get_hw_semaphore(struct e1000_hw *hw)
1092 u32 swsm;
1093 s32 ret_val = 0;
1094 s32 timeout = hw->nvm.word_size + 1;
1095 s32 i = 0;
1097 /* Get the SW semaphore */
1098 while (i < timeout) {
1099 swsm = rd32(E1000_SWSM);
1100 if (!(swsm & E1000_SWSM_SMBI))
1101 break;
1103 udelay(50);
1104 i++;
1107 if (i == timeout) {
1108 hw_dbg("Driver can't access device - SMBI bit is set.\n");
1109 ret_val = -E1000_ERR_NVM;
1110 goto out;
1113 /* Get the FW semaphore. */
1114 for (i = 0; i < timeout; i++) {
1115 swsm = rd32(E1000_SWSM);
1116 wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
1118 /* Semaphore acquired if bit latched */
1119 if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
1120 break;
1122 udelay(50);
1125 if (i == timeout) {
1126 /* Release semaphores */
1127 igb_put_hw_semaphore(hw);
1128 hw_dbg("Driver can't access the NVM\n");
1129 ret_val = -E1000_ERR_NVM;
1130 goto out;
1133 out:
1134 return ret_val;
1138 * igb_put_hw_semaphore - Release hardware semaphore
1139 * @hw: pointer to the HW structure
1141 * Release hardware semaphore used to access the PHY or NVM
1143 void igb_put_hw_semaphore(struct e1000_hw *hw)
1145 u32 swsm;
1147 swsm = rd32(E1000_SWSM);
1149 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1151 wr32(E1000_SWSM, swsm);
1155 * igb_get_auto_rd_done - Check for auto read completion
1156 * @hw: pointer to the HW structure
1158 * Check EEPROM for Auto Read done bit.
1160 s32 igb_get_auto_rd_done(struct e1000_hw *hw)
1162 s32 i = 0;
1163 s32 ret_val = 0;
1166 while (i < AUTO_READ_DONE_TIMEOUT) {
1167 if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
1168 break;
1169 msleep(1);
1170 i++;
1173 if (i == AUTO_READ_DONE_TIMEOUT) {
1174 hw_dbg("Auto read by HW from NVM has not completed.\n");
1175 ret_val = -E1000_ERR_RESET;
1176 goto out;
1179 out:
1180 return ret_val;
1184 * igb_valid_led_default - Verify a valid default LED config
1185 * @hw: pointer to the HW structure
1186 * @data: pointer to the NVM (EEPROM)
1188 * Read the EEPROM for the current default LED configuration. If the
1189 * LED configuration is not valid, set to a valid LED configuration.
1191 static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
1193 s32 ret_val;
1195 ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
1196 if (ret_val) {
1197 hw_dbg("NVM Read Error\n");
1198 goto out;
1201 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
1202 switch(hw->phy.media_type) {
1203 case e1000_media_type_internal_serdes:
1204 *data = ID_LED_DEFAULT_82575_SERDES;
1205 break;
1206 case e1000_media_type_copper:
1207 default:
1208 *data = ID_LED_DEFAULT;
1209 break;
1212 out:
1213 return ret_val;
1217 * igb_id_led_init -
1218 * @hw: pointer to the HW structure
1221 s32 igb_id_led_init(struct e1000_hw *hw)
1223 struct e1000_mac_info *mac = &hw->mac;
1224 s32 ret_val;
1225 const u32 ledctl_mask = 0x000000FF;
1226 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1227 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1228 u16 data, i, temp;
1229 const u16 led_mask = 0x0F;
1231 ret_val = igb_valid_led_default(hw, &data);
1232 if (ret_val)
1233 goto out;
1235 mac->ledctl_default = rd32(E1000_LEDCTL);
1236 mac->ledctl_mode1 = mac->ledctl_default;
1237 mac->ledctl_mode2 = mac->ledctl_default;
1239 for (i = 0; i < 4; i++) {
1240 temp = (data >> (i << 2)) & led_mask;
1241 switch (temp) {
1242 case ID_LED_ON1_DEF2:
1243 case ID_LED_ON1_ON2:
1244 case ID_LED_ON1_OFF2:
1245 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1246 mac->ledctl_mode1 |= ledctl_on << (i << 3);
1247 break;
1248 case ID_LED_OFF1_DEF2:
1249 case ID_LED_OFF1_ON2:
1250 case ID_LED_OFF1_OFF2:
1251 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1252 mac->ledctl_mode1 |= ledctl_off << (i << 3);
1253 break;
1254 default:
1255 /* Do nothing */
1256 break;
1258 switch (temp) {
1259 case ID_LED_DEF1_ON2:
1260 case ID_LED_ON1_ON2:
1261 case ID_LED_OFF1_ON2:
1262 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1263 mac->ledctl_mode2 |= ledctl_on << (i << 3);
1264 break;
1265 case ID_LED_DEF1_OFF2:
1266 case ID_LED_ON1_OFF2:
1267 case ID_LED_OFF1_OFF2:
1268 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1269 mac->ledctl_mode2 |= ledctl_off << (i << 3);
1270 break;
1271 default:
1272 /* Do nothing */
1273 break;
1277 out:
1278 return ret_val;
1282 * igb_cleanup_led - Set LED config to default operation
1283 * @hw: pointer to the HW structure
1285 * Remove the current LED configuration and set the LED configuration
1286 * to the default value, saved from the EEPROM.
1288 s32 igb_cleanup_led(struct e1000_hw *hw)
1290 wr32(E1000_LEDCTL, hw->mac.ledctl_default);
1291 return 0;
1295 * igb_blink_led - Blink LED
1296 * @hw: pointer to the HW structure
1298 * Blink the led's which are set to be on.
1300 s32 igb_blink_led(struct e1000_hw *hw)
1302 u32 ledctl_blink = 0;
1303 u32 i;
1306 * set the blink bit for each LED that's "on" (0x0E)
1307 * in ledctl_mode2
1309 ledctl_blink = hw->mac.ledctl_mode2;
1310 for (i = 0; i < 4; i++)
1311 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1312 E1000_LEDCTL_MODE_LED_ON)
1313 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
1314 (i * 8));
1316 wr32(E1000_LEDCTL, ledctl_blink);
1318 return 0;
1322 * igb_led_off - Turn LED off
1323 * @hw: pointer to the HW structure
1325 * Turn LED off.
1327 s32 igb_led_off(struct e1000_hw *hw)
1329 switch (hw->phy.media_type) {
1330 case e1000_media_type_copper:
1331 wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
1332 break;
1333 default:
1334 break;
1337 return 0;
1341 * igb_disable_pcie_master - Disables PCI-express master access
1342 * @hw: pointer to the HW structure
1344 * Returns 0 (0) if successful, else returns -10
1345 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not casued
1346 * the master requests to be disabled.
1348 * Disables PCI-Express master access and verifies there are no pending
1349 * requests.
1351 s32 igb_disable_pcie_master(struct e1000_hw *hw)
1353 u32 ctrl;
1354 s32 timeout = MASTER_DISABLE_TIMEOUT;
1355 s32 ret_val = 0;
1357 if (hw->bus.type != e1000_bus_type_pci_express)
1358 goto out;
1360 ctrl = rd32(E1000_CTRL);
1361 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1362 wr32(E1000_CTRL, ctrl);
1364 while (timeout) {
1365 if (!(rd32(E1000_STATUS) &
1366 E1000_STATUS_GIO_MASTER_ENABLE))
1367 break;
1368 udelay(100);
1369 timeout--;
1372 if (!timeout) {
1373 hw_dbg("Master requests are pending.\n");
1374 ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
1375 goto out;
1378 out:
1379 return ret_val;
1383 * igb_validate_mdi_setting - Verify MDI/MDIx settings
1384 * @hw: pointer to the HW structure
1386 * Verify that when not using auto-negotitation that MDI/MDIx is correctly
1387 * set, which is forced to MDI mode only.
1389 s32 igb_validate_mdi_setting(struct e1000_hw *hw)
1391 s32 ret_val = 0;
1393 if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
1394 hw_dbg("Invalid MDI setting detected\n");
1395 hw->phy.mdix = 1;
1396 ret_val = -E1000_ERR_CONFIG;
1397 goto out;
1400 out:
1401 return ret_val;
1405 * igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
1406 * @hw: pointer to the HW structure
1407 * @reg: 32bit register offset such as E1000_SCTL
1408 * @offset: register offset to write to
1409 * @data: data to write at register offset
1411 * Writes an address/data control type register. There are several of these
1412 * and they all have the format address << 8 | data and bit 31 is polled for
1413 * completion.
1415 s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
1416 u32 offset, u8 data)
1418 u32 i, regvalue = 0;
1419 s32 ret_val = 0;
1421 /* Set up the address and data */
1422 regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
1423 wr32(reg, regvalue);
1425 /* Poll the ready bit to see if the MDI read completed */
1426 for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
1427 udelay(5);
1428 regvalue = rd32(reg);
1429 if (regvalue & E1000_GEN_CTL_READY)
1430 break;
1432 if (!(regvalue & E1000_GEN_CTL_READY)) {
1433 hw_dbg("Reg %08x did not indicate ready\n", reg);
1434 ret_val = -E1000_ERR_PHY;
1435 goto out;
1438 out:
1439 return ret_val;
1443 * igb_enable_mng_pass_thru - Enable processing of ARP's
1444 * @hw: pointer to the HW structure
1446 * Verifies the hardware needs to leave interface enabled so that frames can
1447 * be directed to and from the management interface.
1449 bool igb_enable_mng_pass_thru(struct e1000_hw *hw)
1451 u32 manc;
1452 u32 fwsm, factps;
1453 bool ret_val = false;
1455 if (!hw->mac.asf_firmware_present)
1456 goto out;
1458 manc = rd32(E1000_MANC);
1460 if (!(manc & E1000_MANC_RCV_TCO_EN))
1461 goto out;
1463 if (hw->mac.arc_subsystem_valid) {
1464 fwsm = rd32(E1000_FWSM);
1465 factps = rd32(E1000_FACTPS);
1467 if (!(factps & E1000_FACTPS_MNGCG) &&
1468 ((fwsm & E1000_FWSM_MODE_MASK) ==
1469 (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
1470 ret_val = true;
1471 goto out;
1473 } else {
1474 if ((manc & E1000_MANC_SMBUS_EN) &&
1475 !(manc & E1000_MANC_ASF_EN)) {
1476 ret_val = true;
1477 goto out;
1481 out:
1482 return ret_val;