2 * Copyright (c) 2005, 2006, 2007, 2008 Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2006, 2007 Cisco Systems, Inc. All rights reserved.
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
34 #include <linux/errno.h>
36 #include <linux/scatterlist.h>
37 #include <linux/slab.h>
39 #include <linux/mlx4/cmd.h>
46 * We allocate in as big chunks as we can, up to a maximum of 256 KB
50 MLX4_ICM_ALLOC_SIZE
= 1 << 18,
51 MLX4_TABLE_CHUNK_SIZE
= 1 << 18
54 static void mlx4_free_icm_pages(struct mlx4_dev
*dev
, struct mlx4_icm_chunk
*chunk
)
59 pci_unmap_sg(dev
->pdev
, chunk
->mem
, chunk
->npages
,
60 PCI_DMA_BIDIRECTIONAL
);
62 for (i
= 0; i
< chunk
->npages
; ++i
)
63 __free_pages(sg_page(&chunk
->mem
[i
]),
64 get_order(chunk
->mem
[i
].length
));
67 static void mlx4_free_icm_coherent(struct mlx4_dev
*dev
, struct mlx4_icm_chunk
*chunk
)
71 for (i
= 0; i
< chunk
->npages
; ++i
)
72 dma_free_coherent(&dev
->pdev
->dev
, chunk
->mem
[i
].length
,
73 lowmem_page_address(sg_page(&chunk
->mem
[i
])),
74 sg_dma_address(&chunk
->mem
[i
]));
77 void mlx4_free_icm(struct mlx4_dev
*dev
, struct mlx4_icm
*icm
, int coherent
)
79 struct mlx4_icm_chunk
*chunk
, *tmp
;
84 list_for_each_entry_safe(chunk
, tmp
, &icm
->chunk_list
, list
) {
86 mlx4_free_icm_coherent(dev
, chunk
);
88 mlx4_free_icm_pages(dev
, chunk
);
96 static int mlx4_alloc_icm_pages(struct scatterlist
*mem
, int order
, gfp_t gfp_mask
)
100 page
= alloc_pages(gfp_mask
, order
);
104 sg_set_page(mem
, page
, PAGE_SIZE
<< order
, 0);
108 static int mlx4_alloc_icm_coherent(struct device
*dev
, struct scatterlist
*mem
,
109 int order
, gfp_t gfp_mask
)
111 void *buf
= dma_alloc_coherent(dev
, PAGE_SIZE
<< order
,
112 &sg_dma_address(mem
), gfp_mask
);
116 sg_set_buf(mem
, buf
, PAGE_SIZE
<< order
);
118 sg_dma_len(mem
) = PAGE_SIZE
<< order
;
122 struct mlx4_icm
*mlx4_alloc_icm(struct mlx4_dev
*dev
, int npages
,
123 gfp_t gfp_mask
, int coherent
)
125 struct mlx4_icm
*icm
;
126 struct mlx4_icm_chunk
*chunk
= NULL
;
130 /* We use sg_set_buf for coherent allocs, which assumes low memory */
131 BUG_ON(coherent
&& (gfp_mask
& __GFP_HIGHMEM
));
133 icm
= kmalloc(sizeof *icm
, gfp_mask
& ~(__GFP_HIGHMEM
| __GFP_NOWARN
));
138 INIT_LIST_HEAD(&icm
->chunk_list
);
140 cur_order
= get_order(MLX4_ICM_ALLOC_SIZE
);
144 chunk
= kmalloc(sizeof *chunk
,
145 gfp_mask
& ~(__GFP_HIGHMEM
| __GFP_NOWARN
));
149 sg_init_table(chunk
->mem
, MLX4_ICM_CHUNK_LEN
);
152 list_add_tail(&chunk
->list
, &icm
->chunk_list
);
155 while (1 << cur_order
> npages
)
159 ret
= mlx4_alloc_icm_coherent(&dev
->pdev
->dev
,
160 &chunk
->mem
[chunk
->npages
],
161 cur_order
, gfp_mask
);
163 ret
= mlx4_alloc_icm_pages(&chunk
->mem
[chunk
->npages
],
164 cur_order
, gfp_mask
);
177 else if (chunk
->npages
== MLX4_ICM_CHUNK_LEN
) {
178 chunk
->nsg
= pci_map_sg(dev
->pdev
, chunk
->mem
,
180 PCI_DMA_BIDIRECTIONAL
);
186 if (chunk
->npages
== MLX4_ICM_CHUNK_LEN
)
189 npages
-= 1 << cur_order
;
192 if (!coherent
&& chunk
) {
193 chunk
->nsg
= pci_map_sg(dev
->pdev
, chunk
->mem
,
195 PCI_DMA_BIDIRECTIONAL
);
204 mlx4_free_icm(dev
, icm
, coherent
);
208 static int mlx4_MAP_ICM(struct mlx4_dev
*dev
, struct mlx4_icm
*icm
, u64 virt
)
210 return mlx4_map_cmd(dev
, MLX4_CMD_MAP_ICM
, icm
, virt
);
213 static int mlx4_UNMAP_ICM(struct mlx4_dev
*dev
, u64 virt
, u32 page_count
)
215 return mlx4_cmd(dev
, virt
, page_count
, 0, MLX4_CMD_UNMAP_ICM
,
216 MLX4_CMD_TIME_CLASS_B
, MLX4_CMD_NATIVE
);
219 int mlx4_MAP_ICM_AUX(struct mlx4_dev
*dev
, struct mlx4_icm
*icm
)
221 return mlx4_map_cmd(dev
, MLX4_CMD_MAP_ICM_AUX
, icm
, -1);
224 int mlx4_UNMAP_ICM_AUX(struct mlx4_dev
*dev
)
226 return mlx4_cmd(dev
, 0, 0, 0, MLX4_CMD_UNMAP_ICM_AUX
,
227 MLX4_CMD_TIME_CLASS_B
, MLX4_CMD_NATIVE
);
230 int mlx4_table_get(struct mlx4_dev
*dev
, struct mlx4_icm_table
*table
, int obj
)
232 int i
= (obj
& (table
->num_obj
- 1)) / (MLX4_TABLE_CHUNK_SIZE
/ table
->obj_size
);
235 mutex_lock(&table
->mutex
);
238 ++table
->icm
[i
]->refcount
;
242 table
->icm
[i
] = mlx4_alloc_icm(dev
, MLX4_TABLE_CHUNK_SIZE
>> PAGE_SHIFT
,
243 (table
->lowmem
? GFP_KERNEL
: GFP_HIGHUSER
) |
244 __GFP_NOWARN
, table
->coherent
);
245 if (!table
->icm
[i
]) {
250 if (mlx4_MAP_ICM(dev
, table
->icm
[i
], table
->virt
+
251 (u64
) i
* MLX4_TABLE_CHUNK_SIZE
)) {
252 mlx4_free_icm(dev
, table
->icm
[i
], table
->coherent
);
253 table
->icm
[i
] = NULL
;
258 ++table
->icm
[i
]->refcount
;
261 mutex_unlock(&table
->mutex
);
265 void mlx4_table_put(struct mlx4_dev
*dev
, struct mlx4_icm_table
*table
, int obj
)
269 i
= (obj
& (table
->num_obj
- 1)) / (MLX4_TABLE_CHUNK_SIZE
/ table
->obj_size
);
271 mutex_lock(&table
->mutex
);
273 if (--table
->icm
[i
]->refcount
== 0) {
274 mlx4_UNMAP_ICM(dev
, table
->virt
+ i
* MLX4_TABLE_CHUNK_SIZE
,
275 MLX4_TABLE_CHUNK_SIZE
/ MLX4_ICM_PAGE_SIZE
);
276 mlx4_free_icm(dev
, table
->icm
[i
], table
->coherent
);
277 table
->icm
[i
] = NULL
;
280 mutex_unlock(&table
->mutex
);
283 void *mlx4_table_find(struct mlx4_icm_table
*table
, int obj
, dma_addr_t
*dma_handle
)
285 int idx
, offset
, dma_offset
, i
;
286 struct mlx4_icm_chunk
*chunk
;
287 struct mlx4_icm
*icm
;
288 struct page
*page
= NULL
;
293 mutex_lock(&table
->mutex
);
295 idx
= (obj
& (table
->num_obj
- 1)) * table
->obj_size
;
296 icm
= table
->icm
[idx
/ MLX4_TABLE_CHUNK_SIZE
];
297 dma_offset
= offset
= idx
% MLX4_TABLE_CHUNK_SIZE
;
302 list_for_each_entry(chunk
, &icm
->chunk_list
, list
) {
303 for (i
= 0; i
< chunk
->npages
; ++i
) {
304 if (dma_handle
&& dma_offset
>= 0) {
305 if (sg_dma_len(&chunk
->mem
[i
]) > dma_offset
)
306 *dma_handle
= sg_dma_address(&chunk
->mem
[i
]) +
308 dma_offset
-= sg_dma_len(&chunk
->mem
[i
]);
311 * DMA mapping can merge pages but not split them,
312 * so if we found the page, dma_handle has already
315 if (chunk
->mem
[i
].length
> offset
) {
316 page
= sg_page(&chunk
->mem
[i
]);
319 offset
-= chunk
->mem
[i
].length
;
324 mutex_unlock(&table
->mutex
);
325 return page
? lowmem_page_address(page
) + offset
: NULL
;
328 int mlx4_table_get_range(struct mlx4_dev
*dev
, struct mlx4_icm_table
*table
,
331 int inc
= MLX4_TABLE_CHUNK_SIZE
/ table
->obj_size
;
334 for (i
= start
; i
<= end
; i
+= inc
) {
335 err
= mlx4_table_get(dev
, table
, i
);
345 mlx4_table_put(dev
, table
, i
);
351 void mlx4_table_put_range(struct mlx4_dev
*dev
, struct mlx4_icm_table
*table
,
356 for (i
= start
; i
<= end
; i
+= MLX4_TABLE_CHUNK_SIZE
/ table
->obj_size
)
357 mlx4_table_put(dev
, table
, i
);
360 int mlx4_init_icm_table(struct mlx4_dev
*dev
, struct mlx4_icm_table
*table
,
361 u64 virt
, int obj_size
, int nobj
, int reserved
,
362 int use_lowmem
, int use_coherent
)
369 obj_per_chunk
= MLX4_TABLE_CHUNK_SIZE
/ obj_size
;
370 num_icm
= (nobj
+ obj_per_chunk
- 1) / obj_per_chunk
;
372 table
->icm
= kcalloc(num_icm
, sizeof *table
->icm
, GFP_KERNEL
);
376 table
->num_icm
= num_icm
;
377 table
->num_obj
= nobj
;
378 table
->obj_size
= obj_size
;
379 table
->lowmem
= use_lowmem
;
380 table
->coherent
= use_coherent
;
381 mutex_init(&table
->mutex
);
383 for (i
= 0; i
* MLX4_TABLE_CHUNK_SIZE
< reserved
* obj_size
; ++i
) {
384 chunk_size
= MLX4_TABLE_CHUNK_SIZE
;
385 if ((i
+ 1) * MLX4_TABLE_CHUNK_SIZE
> nobj
* obj_size
)
386 chunk_size
= PAGE_ALIGN(nobj
* obj_size
- i
* MLX4_TABLE_CHUNK_SIZE
);
388 table
->icm
[i
] = mlx4_alloc_icm(dev
, chunk_size
>> PAGE_SHIFT
,
389 (use_lowmem
? GFP_KERNEL
: GFP_HIGHUSER
) |
390 __GFP_NOWARN
, use_coherent
);
393 if (mlx4_MAP_ICM(dev
, table
->icm
[i
], virt
+ i
* MLX4_TABLE_CHUNK_SIZE
)) {
394 mlx4_free_icm(dev
, table
->icm
[i
], use_coherent
);
395 table
->icm
[i
] = NULL
;
400 * Add a reference to this ICM chunk so that it never
401 * gets freed (since it contains reserved firmware objects).
403 ++table
->icm
[i
]->refcount
;
409 for (i
= 0; i
< num_icm
; ++i
)
411 mlx4_UNMAP_ICM(dev
, virt
+ i
* MLX4_TABLE_CHUNK_SIZE
,
412 MLX4_TABLE_CHUNK_SIZE
/ MLX4_ICM_PAGE_SIZE
);
413 mlx4_free_icm(dev
, table
->icm
[i
], use_coherent
);
419 void mlx4_cleanup_icm_table(struct mlx4_dev
*dev
, struct mlx4_icm_table
*table
)
423 for (i
= 0; i
< table
->num_icm
; ++i
)
425 mlx4_UNMAP_ICM(dev
, table
->virt
+ i
* MLX4_TABLE_CHUNK_SIZE
,
426 MLX4_TABLE_CHUNK_SIZE
/ MLX4_ICM_PAGE_SIZE
);
427 mlx4_free_icm(dev
, table
->icm
[i
], table
->coherent
);