spi-topcliff-pch: supports a spi mode setup and bit order setup by IO control
[zen-stable.git] / drivers / net / ethernet / renesas / sh_eth.c
blob87b650131774ae74646b80143045226ae3a217d1
1 /*
2 * SuperH Ethernet device driver
4 * Copyright (C) 2006-2008 Nobuhiro Iwamatsu
5 * Copyright (C) 2008-2009 Renesas Solutions Corp.
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 * The full GNU General Public License is included in this distribution in
20 * the file called "COPYING".
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/spinlock.h>
27 #include <linux/interrupt.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/etherdevice.h>
30 #include <linux/delay.h>
31 #include <linux/platform_device.h>
32 #include <linux/mdio-bitbang.h>
33 #include <linux/netdevice.h>
34 #include <linux/phy.h>
35 #include <linux/cache.h>
36 #include <linux/io.h>
37 #include <linux/interrupt.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/slab.h>
40 #include <linux/ethtool.h>
41 #include <linux/if_vlan.h>
42 #include <linux/sh_eth.h>
44 #include "sh_eth.h"
46 #define SH_ETH_DEF_MSG_ENABLE \
47 (NETIF_MSG_LINK | \
48 NETIF_MSG_TIMER | \
49 NETIF_MSG_RX_ERR| \
50 NETIF_MSG_TX_ERR)
52 /* There is CPU dependent code */
53 #if defined(CONFIG_CPU_SUBTYPE_SH7724)
54 #define SH_ETH_RESET_DEFAULT 1
55 static void sh_eth_set_duplex(struct net_device *ndev)
57 struct sh_eth_private *mdp = netdev_priv(ndev);
59 if (mdp->duplex) /* Full */
60 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
61 else /* Half */
62 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
65 static void sh_eth_set_rate(struct net_device *ndev)
67 struct sh_eth_private *mdp = netdev_priv(ndev);
69 switch (mdp->speed) {
70 case 10: /* 10BASE */
71 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
72 break;
73 case 100:/* 100BASE */
74 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
75 break;
76 default:
77 break;
81 /* SH7724 */
82 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
83 .set_duplex = sh_eth_set_duplex,
84 .set_rate = sh_eth_set_rate,
86 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
87 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
88 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x01ff009f,
90 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
91 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
92 EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
93 .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
95 .apr = 1,
96 .mpr = 1,
97 .tpauser = 1,
98 .hw_swap = 1,
99 .rpadir = 1,
100 .rpadir_value = 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
102 #elif defined(CONFIG_CPU_SUBTYPE_SH7757)
103 #define SH_ETH_HAS_BOTH_MODULES 1
104 #define SH_ETH_HAS_TSU 1
105 static void sh_eth_set_duplex(struct net_device *ndev)
107 struct sh_eth_private *mdp = netdev_priv(ndev);
109 if (mdp->duplex) /* Full */
110 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
111 else /* Half */
112 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
115 static void sh_eth_set_rate(struct net_device *ndev)
117 struct sh_eth_private *mdp = netdev_priv(ndev);
119 switch (mdp->speed) {
120 case 10: /* 10BASE */
121 sh_eth_write(ndev, 0, RTRATE);
122 break;
123 case 100:/* 100BASE */
124 sh_eth_write(ndev, 1, RTRATE);
125 break;
126 default:
127 break;
131 /* SH7757 */
132 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
133 .set_duplex = sh_eth_set_duplex,
134 .set_rate = sh_eth_set_rate,
136 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
137 .rmcr_value = 0x00000001,
139 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
140 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
141 EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
142 .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
144 .apr = 1,
145 .mpr = 1,
146 .tpauser = 1,
147 .hw_swap = 1,
148 .no_ade = 1,
149 .rpadir = 1,
150 .rpadir_value = 2 << 16,
153 #define SH_GIGA_ETH_BASE 0xfee00000
154 #define GIGA_MALR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
155 #define GIGA_MAHR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
156 static void sh_eth_chip_reset_giga(struct net_device *ndev)
158 int i;
159 unsigned long mahr[2], malr[2];
161 /* save MAHR and MALR */
162 for (i = 0; i < 2; i++) {
163 malr[i] = ioread32((void *)GIGA_MALR(i));
164 mahr[i] = ioread32((void *)GIGA_MAHR(i));
167 /* reset device */
168 iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
169 mdelay(1);
171 /* restore MAHR and MALR */
172 for (i = 0; i < 2; i++) {
173 iowrite32(malr[i], (void *)GIGA_MALR(i));
174 iowrite32(mahr[i], (void *)GIGA_MAHR(i));
178 static int sh_eth_is_gether(struct sh_eth_private *mdp);
179 static void sh_eth_reset(struct net_device *ndev)
181 struct sh_eth_private *mdp = netdev_priv(ndev);
182 int cnt = 100;
184 if (sh_eth_is_gether(mdp)) {
185 sh_eth_write(ndev, 0x03, EDSR);
186 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
187 EDMR);
188 while (cnt > 0) {
189 if (!(sh_eth_read(ndev, EDMR) & 0x3))
190 break;
191 mdelay(1);
192 cnt--;
194 if (cnt < 0)
195 printk(KERN_ERR "Device reset fail\n");
197 /* Table Init */
198 sh_eth_write(ndev, 0x0, TDLAR);
199 sh_eth_write(ndev, 0x0, TDFAR);
200 sh_eth_write(ndev, 0x0, TDFXR);
201 sh_eth_write(ndev, 0x0, TDFFR);
202 sh_eth_write(ndev, 0x0, RDLAR);
203 sh_eth_write(ndev, 0x0, RDFAR);
204 sh_eth_write(ndev, 0x0, RDFXR);
205 sh_eth_write(ndev, 0x0, RDFFR);
206 } else {
207 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
208 EDMR);
209 mdelay(3);
210 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
211 EDMR);
215 static void sh_eth_set_duplex_giga(struct net_device *ndev)
217 struct sh_eth_private *mdp = netdev_priv(ndev);
219 if (mdp->duplex) /* Full */
220 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
221 else /* Half */
222 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
225 static void sh_eth_set_rate_giga(struct net_device *ndev)
227 struct sh_eth_private *mdp = netdev_priv(ndev);
229 switch (mdp->speed) {
230 case 10: /* 10BASE */
231 sh_eth_write(ndev, 0x00000000, GECMR);
232 break;
233 case 100:/* 100BASE */
234 sh_eth_write(ndev, 0x00000010, GECMR);
235 break;
236 case 1000: /* 1000BASE */
237 sh_eth_write(ndev, 0x00000020, GECMR);
238 break;
239 default:
240 break;
244 /* SH7757(GETHERC) */
245 static struct sh_eth_cpu_data sh_eth_my_cpu_data_giga = {
246 .chip_reset = sh_eth_chip_reset_giga,
247 .set_duplex = sh_eth_set_duplex_giga,
248 .set_rate = sh_eth_set_rate_giga,
250 .ecsr_value = ECSR_ICD | ECSR_MPD,
251 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
252 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
254 .tx_check = EESR_TC1 | EESR_FTC,
255 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
256 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
257 EESR_ECI,
258 .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
259 EESR_TFE,
260 .fdr_value = 0x0000072f,
261 .rmcr_value = 0x00000001,
263 .apr = 1,
264 .mpr = 1,
265 .tpauser = 1,
266 .bculr = 1,
267 .hw_swap = 1,
268 .rpadir = 1,
269 .rpadir_value = 2 << 16,
270 .no_trimd = 1,
271 .no_ade = 1,
274 static struct sh_eth_cpu_data *sh_eth_get_cpu_data(struct sh_eth_private *mdp)
276 if (sh_eth_is_gether(mdp))
277 return &sh_eth_my_cpu_data_giga;
278 else
279 return &sh_eth_my_cpu_data;
282 #elif defined(CONFIG_CPU_SUBTYPE_SH7763)
283 #define SH_ETH_HAS_TSU 1
284 static void sh_eth_chip_reset(struct net_device *ndev)
286 struct sh_eth_private *mdp = netdev_priv(ndev);
288 /* reset device */
289 sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
290 mdelay(1);
293 static void sh_eth_reset(struct net_device *ndev)
295 int cnt = 100;
297 sh_eth_write(ndev, EDSR_ENALL, EDSR);
298 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR);
299 while (cnt > 0) {
300 if (!(sh_eth_read(ndev, EDMR) & 0x3))
301 break;
302 mdelay(1);
303 cnt--;
305 if (cnt == 0)
306 printk(KERN_ERR "Device reset fail\n");
308 /* Table Init */
309 sh_eth_write(ndev, 0x0, TDLAR);
310 sh_eth_write(ndev, 0x0, TDFAR);
311 sh_eth_write(ndev, 0x0, TDFXR);
312 sh_eth_write(ndev, 0x0, TDFFR);
313 sh_eth_write(ndev, 0x0, RDLAR);
314 sh_eth_write(ndev, 0x0, RDFAR);
315 sh_eth_write(ndev, 0x0, RDFXR);
316 sh_eth_write(ndev, 0x0, RDFFR);
319 static void sh_eth_set_duplex(struct net_device *ndev)
321 struct sh_eth_private *mdp = netdev_priv(ndev);
323 if (mdp->duplex) /* Full */
324 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
325 else /* Half */
326 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
329 static void sh_eth_set_rate(struct net_device *ndev)
331 struct sh_eth_private *mdp = netdev_priv(ndev);
333 switch (mdp->speed) {
334 case 10: /* 10BASE */
335 sh_eth_write(ndev, GECMR_10, GECMR);
336 break;
337 case 100:/* 100BASE */
338 sh_eth_write(ndev, GECMR_100, GECMR);
339 break;
340 case 1000: /* 1000BASE */
341 sh_eth_write(ndev, GECMR_1000, GECMR);
342 break;
343 default:
344 break;
348 /* sh7763 */
349 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
350 .chip_reset = sh_eth_chip_reset,
351 .set_duplex = sh_eth_set_duplex,
352 .set_rate = sh_eth_set_rate,
354 .ecsr_value = ECSR_ICD | ECSR_MPD,
355 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
356 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
358 .tx_check = EESR_TC1 | EESR_FTC,
359 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
360 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
361 EESR_ECI,
362 .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
363 EESR_TFE,
365 .apr = 1,
366 .mpr = 1,
367 .tpauser = 1,
368 .bculr = 1,
369 .hw_swap = 1,
370 .no_trimd = 1,
371 .no_ade = 1,
372 .tsu = 1,
375 #elif defined(CONFIG_CPU_SUBTYPE_SH7619)
376 #define SH_ETH_RESET_DEFAULT 1
377 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
378 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
380 .apr = 1,
381 .mpr = 1,
382 .tpauser = 1,
383 .hw_swap = 1,
385 #elif defined(CONFIG_CPU_SUBTYPE_SH7710) || defined(CONFIG_CPU_SUBTYPE_SH7712)
386 #define SH_ETH_RESET_DEFAULT 1
387 #define SH_ETH_HAS_TSU 1
388 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
389 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
390 .tsu = 1,
392 #endif
394 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
396 if (!cd->ecsr_value)
397 cd->ecsr_value = DEFAULT_ECSR_INIT;
399 if (!cd->ecsipr_value)
400 cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
402 if (!cd->fcftr_value)
403 cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | \
404 DEFAULT_FIFO_F_D_RFD;
406 if (!cd->fdr_value)
407 cd->fdr_value = DEFAULT_FDR_INIT;
409 if (!cd->rmcr_value)
410 cd->rmcr_value = DEFAULT_RMCR_VALUE;
412 if (!cd->tx_check)
413 cd->tx_check = DEFAULT_TX_CHECK;
415 if (!cd->eesr_err_check)
416 cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
418 if (!cd->tx_error_check)
419 cd->tx_error_check = DEFAULT_TX_ERROR_CHECK;
422 #if defined(SH_ETH_RESET_DEFAULT)
423 /* Chip Reset */
424 static void sh_eth_reset(struct net_device *ndev)
426 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER, EDMR);
427 mdelay(3);
428 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER, EDMR);
430 #endif
432 #if defined(CONFIG_CPU_SH4)
433 static void sh_eth_set_receive_align(struct sk_buff *skb)
435 int reserve;
437 reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
438 if (reserve)
439 skb_reserve(skb, reserve);
441 #else
442 static void sh_eth_set_receive_align(struct sk_buff *skb)
444 skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
446 #endif
449 /* CPU <-> EDMAC endian convert */
450 static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
452 switch (mdp->edmac_endian) {
453 case EDMAC_LITTLE_ENDIAN:
454 return cpu_to_le32(x);
455 case EDMAC_BIG_ENDIAN:
456 return cpu_to_be32(x);
458 return x;
461 static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
463 switch (mdp->edmac_endian) {
464 case EDMAC_LITTLE_ENDIAN:
465 return le32_to_cpu(x);
466 case EDMAC_BIG_ENDIAN:
467 return be32_to_cpu(x);
469 return x;
473 * Program the hardware MAC address from dev->dev_addr.
475 static void update_mac_address(struct net_device *ndev)
477 sh_eth_write(ndev,
478 (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
479 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
480 sh_eth_write(ndev,
481 (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
485 * Get MAC address from SuperH MAC address register
487 * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
488 * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
489 * When you want use this device, you must set MAC address in bootloader.
492 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
494 if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
495 memcpy(ndev->dev_addr, mac, 6);
496 } else {
497 ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
498 ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
499 ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
500 ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
501 ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
502 ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
506 static int sh_eth_is_gether(struct sh_eth_private *mdp)
508 if (mdp->reg_offset == sh_eth_offset_gigabit)
509 return 1;
510 else
511 return 0;
514 static unsigned long sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
516 if (sh_eth_is_gether(mdp))
517 return EDTRR_TRNS_GETHER;
518 else
519 return EDTRR_TRNS_ETHER;
522 struct bb_info {
523 void (*set_gate)(void *addr);
524 struct mdiobb_ctrl ctrl;
525 void *addr;
526 u32 mmd_msk;/* MMD */
527 u32 mdo_msk;
528 u32 mdi_msk;
529 u32 mdc_msk;
532 /* PHY bit set */
533 static void bb_set(void *addr, u32 msk)
535 iowrite32(ioread32(addr) | msk, addr);
538 /* PHY bit clear */
539 static void bb_clr(void *addr, u32 msk)
541 iowrite32((ioread32(addr) & ~msk), addr);
544 /* PHY bit read */
545 static int bb_read(void *addr, u32 msk)
547 return (ioread32(addr) & msk) != 0;
550 /* Data I/O pin control */
551 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
553 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
555 if (bitbang->set_gate)
556 bitbang->set_gate(bitbang->addr);
558 if (bit)
559 bb_set(bitbang->addr, bitbang->mmd_msk);
560 else
561 bb_clr(bitbang->addr, bitbang->mmd_msk);
564 /* Set bit data*/
565 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
567 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
569 if (bitbang->set_gate)
570 bitbang->set_gate(bitbang->addr);
572 if (bit)
573 bb_set(bitbang->addr, bitbang->mdo_msk);
574 else
575 bb_clr(bitbang->addr, bitbang->mdo_msk);
578 /* Get bit data*/
579 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
581 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
583 if (bitbang->set_gate)
584 bitbang->set_gate(bitbang->addr);
586 return bb_read(bitbang->addr, bitbang->mdi_msk);
589 /* MDC pin control */
590 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
592 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
594 if (bitbang->set_gate)
595 bitbang->set_gate(bitbang->addr);
597 if (bit)
598 bb_set(bitbang->addr, bitbang->mdc_msk);
599 else
600 bb_clr(bitbang->addr, bitbang->mdc_msk);
603 /* mdio bus control struct */
604 static struct mdiobb_ops bb_ops = {
605 .owner = THIS_MODULE,
606 .set_mdc = sh_mdc_ctrl,
607 .set_mdio_dir = sh_mmd_ctrl,
608 .set_mdio_data = sh_set_mdio,
609 .get_mdio_data = sh_get_mdio,
612 /* free skb and descriptor buffer */
613 static void sh_eth_ring_free(struct net_device *ndev)
615 struct sh_eth_private *mdp = netdev_priv(ndev);
616 int i;
618 /* Free Rx skb ringbuffer */
619 if (mdp->rx_skbuff) {
620 for (i = 0; i < RX_RING_SIZE; i++) {
621 if (mdp->rx_skbuff[i])
622 dev_kfree_skb(mdp->rx_skbuff[i]);
625 kfree(mdp->rx_skbuff);
627 /* Free Tx skb ringbuffer */
628 if (mdp->tx_skbuff) {
629 for (i = 0; i < TX_RING_SIZE; i++) {
630 if (mdp->tx_skbuff[i])
631 dev_kfree_skb(mdp->tx_skbuff[i]);
634 kfree(mdp->tx_skbuff);
637 /* format skb and descriptor buffer */
638 static void sh_eth_ring_format(struct net_device *ndev)
640 struct sh_eth_private *mdp = netdev_priv(ndev);
641 int i;
642 struct sk_buff *skb;
643 struct sh_eth_rxdesc *rxdesc = NULL;
644 struct sh_eth_txdesc *txdesc = NULL;
645 int rx_ringsize = sizeof(*rxdesc) * RX_RING_SIZE;
646 int tx_ringsize = sizeof(*txdesc) * TX_RING_SIZE;
648 mdp->cur_rx = mdp->cur_tx = 0;
649 mdp->dirty_rx = mdp->dirty_tx = 0;
651 memset(mdp->rx_ring, 0, rx_ringsize);
653 /* build Rx ring buffer */
654 for (i = 0; i < RX_RING_SIZE; i++) {
655 /* skb */
656 mdp->rx_skbuff[i] = NULL;
657 skb = dev_alloc_skb(mdp->rx_buf_sz);
658 mdp->rx_skbuff[i] = skb;
659 if (skb == NULL)
660 break;
661 dma_map_single(&ndev->dev, skb->tail, mdp->rx_buf_sz,
662 DMA_FROM_DEVICE);
663 skb->dev = ndev; /* Mark as being used by this device. */
664 sh_eth_set_receive_align(skb);
666 /* RX descriptor */
667 rxdesc = &mdp->rx_ring[i];
668 rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
669 rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
671 /* The size of the buffer is 16 byte boundary. */
672 rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
673 /* Rx descriptor address set */
674 if (i == 0) {
675 sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
676 if (sh_eth_is_gether(mdp))
677 sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
681 mdp->dirty_rx = (u32) (i - RX_RING_SIZE);
683 /* Mark the last entry as wrapping the ring. */
684 rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
686 memset(mdp->tx_ring, 0, tx_ringsize);
688 /* build Tx ring buffer */
689 for (i = 0; i < TX_RING_SIZE; i++) {
690 mdp->tx_skbuff[i] = NULL;
691 txdesc = &mdp->tx_ring[i];
692 txdesc->status = cpu_to_edmac(mdp, TD_TFP);
693 txdesc->buffer_length = 0;
694 if (i == 0) {
695 /* Tx descriptor address set */
696 sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
697 if (sh_eth_is_gether(mdp))
698 sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
702 txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
705 /* Get skb and descriptor buffer */
706 static int sh_eth_ring_init(struct net_device *ndev)
708 struct sh_eth_private *mdp = netdev_priv(ndev);
709 int rx_ringsize, tx_ringsize, ret = 0;
712 * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
713 * card needs room to do 8 byte alignment, +2 so we can reserve
714 * the first 2 bytes, and +16 gets room for the status word from the
715 * card.
717 mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
718 (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
719 if (mdp->cd->rpadir)
720 mdp->rx_buf_sz += NET_IP_ALIGN;
722 /* Allocate RX and TX skb rings */
723 mdp->rx_skbuff = kmalloc(sizeof(*mdp->rx_skbuff) * RX_RING_SIZE,
724 GFP_KERNEL);
725 if (!mdp->rx_skbuff) {
726 dev_err(&ndev->dev, "Cannot allocate Rx skb\n");
727 ret = -ENOMEM;
728 return ret;
731 mdp->tx_skbuff = kmalloc(sizeof(*mdp->tx_skbuff) * TX_RING_SIZE,
732 GFP_KERNEL);
733 if (!mdp->tx_skbuff) {
734 dev_err(&ndev->dev, "Cannot allocate Tx skb\n");
735 ret = -ENOMEM;
736 goto skb_ring_free;
739 /* Allocate all Rx descriptors. */
740 rx_ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
741 mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
742 GFP_KERNEL);
744 if (!mdp->rx_ring) {
745 dev_err(&ndev->dev, "Cannot allocate Rx Ring (size %d bytes)\n",
746 rx_ringsize);
747 ret = -ENOMEM;
748 goto desc_ring_free;
751 mdp->dirty_rx = 0;
753 /* Allocate all Tx descriptors. */
754 tx_ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
755 mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
756 GFP_KERNEL);
757 if (!mdp->tx_ring) {
758 dev_err(&ndev->dev, "Cannot allocate Tx Ring (size %d bytes)\n",
759 tx_ringsize);
760 ret = -ENOMEM;
761 goto desc_ring_free;
763 return ret;
765 desc_ring_free:
766 /* free DMA buffer */
767 dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
769 skb_ring_free:
770 /* Free Rx and Tx skb ring buffer */
771 sh_eth_ring_free(ndev);
773 return ret;
776 static int sh_eth_dev_init(struct net_device *ndev)
778 int ret = 0;
779 struct sh_eth_private *mdp = netdev_priv(ndev);
780 u_int32_t rx_int_var, tx_int_var;
781 u32 val;
783 /* Soft Reset */
784 sh_eth_reset(ndev);
786 /* Descriptor format */
787 sh_eth_ring_format(ndev);
788 if (mdp->cd->rpadir)
789 sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
791 /* all sh_eth int mask */
792 sh_eth_write(ndev, 0, EESIPR);
794 #if defined(__LITTLE_ENDIAN__)
795 if (mdp->cd->hw_swap)
796 sh_eth_write(ndev, EDMR_EL, EDMR);
797 else
798 #endif
799 sh_eth_write(ndev, 0, EDMR);
801 /* FIFO size set */
802 sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
803 sh_eth_write(ndev, 0, TFTR);
805 /* Frame recv control */
806 sh_eth_write(ndev, mdp->cd->rmcr_value, RMCR);
808 rx_int_var = mdp->rx_int_var = DESC_I_RINT8 | DESC_I_RINT5;
809 tx_int_var = mdp->tx_int_var = DESC_I_TINT2;
810 sh_eth_write(ndev, rx_int_var | tx_int_var, TRSCER);
812 if (mdp->cd->bculr)
813 sh_eth_write(ndev, 0x800, BCULR); /* Burst sycle set */
815 sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
817 if (!mdp->cd->no_trimd)
818 sh_eth_write(ndev, 0, TRIMD);
820 /* Recv frame limit set register */
821 sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
822 RFLR);
824 sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
825 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
827 /* PAUSE Prohibition */
828 val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
829 ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
831 sh_eth_write(ndev, val, ECMR);
833 if (mdp->cd->set_rate)
834 mdp->cd->set_rate(ndev);
836 /* E-MAC Status Register clear */
837 sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
839 /* E-MAC Interrupt Enable register */
840 sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
842 /* Set MAC address */
843 update_mac_address(ndev);
845 /* mask reset */
846 if (mdp->cd->apr)
847 sh_eth_write(ndev, APR_AP, APR);
848 if (mdp->cd->mpr)
849 sh_eth_write(ndev, MPR_MP, MPR);
850 if (mdp->cd->tpauser)
851 sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
853 /* Setting the Rx mode will start the Rx process. */
854 sh_eth_write(ndev, EDRRR_R, EDRRR);
856 netif_start_queue(ndev);
858 return ret;
861 /* free Tx skb function */
862 static int sh_eth_txfree(struct net_device *ndev)
864 struct sh_eth_private *mdp = netdev_priv(ndev);
865 struct sh_eth_txdesc *txdesc;
866 int freeNum = 0;
867 int entry = 0;
869 for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
870 entry = mdp->dirty_tx % TX_RING_SIZE;
871 txdesc = &mdp->tx_ring[entry];
872 if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
873 break;
874 /* Free the original skb. */
875 if (mdp->tx_skbuff[entry]) {
876 dma_unmap_single(&ndev->dev, txdesc->addr,
877 txdesc->buffer_length, DMA_TO_DEVICE);
878 dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
879 mdp->tx_skbuff[entry] = NULL;
880 freeNum++;
882 txdesc->status = cpu_to_edmac(mdp, TD_TFP);
883 if (entry >= TX_RING_SIZE - 1)
884 txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
886 mdp->stats.tx_packets++;
887 mdp->stats.tx_bytes += txdesc->buffer_length;
889 return freeNum;
892 /* Packet receive function */
893 static int sh_eth_rx(struct net_device *ndev)
895 struct sh_eth_private *mdp = netdev_priv(ndev);
896 struct sh_eth_rxdesc *rxdesc;
898 int entry = mdp->cur_rx % RX_RING_SIZE;
899 int boguscnt = (mdp->dirty_rx + RX_RING_SIZE) - mdp->cur_rx;
900 struct sk_buff *skb;
901 u16 pkt_len = 0;
902 u32 desc_status;
904 rxdesc = &mdp->rx_ring[entry];
905 while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
906 desc_status = edmac_to_cpu(mdp, rxdesc->status);
907 pkt_len = rxdesc->frame_length;
909 if (--boguscnt < 0)
910 break;
912 if (!(desc_status & RDFEND))
913 mdp->stats.rx_length_errors++;
915 if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
916 RD_RFS5 | RD_RFS6 | RD_RFS10)) {
917 mdp->stats.rx_errors++;
918 if (desc_status & RD_RFS1)
919 mdp->stats.rx_crc_errors++;
920 if (desc_status & RD_RFS2)
921 mdp->stats.rx_frame_errors++;
922 if (desc_status & RD_RFS3)
923 mdp->stats.rx_length_errors++;
924 if (desc_status & RD_RFS4)
925 mdp->stats.rx_length_errors++;
926 if (desc_status & RD_RFS6)
927 mdp->stats.rx_missed_errors++;
928 if (desc_status & RD_RFS10)
929 mdp->stats.rx_over_errors++;
930 } else {
931 if (!mdp->cd->hw_swap)
932 sh_eth_soft_swap(
933 phys_to_virt(ALIGN(rxdesc->addr, 4)),
934 pkt_len + 2);
935 skb = mdp->rx_skbuff[entry];
936 mdp->rx_skbuff[entry] = NULL;
937 if (mdp->cd->rpadir)
938 skb_reserve(skb, NET_IP_ALIGN);
939 skb_put(skb, pkt_len);
940 skb->protocol = eth_type_trans(skb, ndev);
941 netif_rx(skb);
942 mdp->stats.rx_packets++;
943 mdp->stats.rx_bytes += pkt_len;
945 rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
946 entry = (++mdp->cur_rx) % RX_RING_SIZE;
947 rxdesc = &mdp->rx_ring[entry];
950 /* Refill the Rx ring buffers. */
951 for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
952 entry = mdp->dirty_rx % RX_RING_SIZE;
953 rxdesc = &mdp->rx_ring[entry];
954 /* The size of the buffer is 16 byte boundary. */
955 rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
957 if (mdp->rx_skbuff[entry] == NULL) {
958 skb = dev_alloc_skb(mdp->rx_buf_sz);
959 mdp->rx_skbuff[entry] = skb;
960 if (skb == NULL)
961 break; /* Better luck next round. */
962 dma_map_single(&ndev->dev, skb->tail, mdp->rx_buf_sz,
963 DMA_FROM_DEVICE);
964 skb->dev = ndev;
965 sh_eth_set_receive_align(skb);
967 skb_checksum_none_assert(skb);
968 rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
970 if (entry >= RX_RING_SIZE - 1)
971 rxdesc->status |=
972 cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
973 else
974 rxdesc->status |=
975 cpu_to_edmac(mdp, RD_RACT | RD_RFP);
978 /* Restart Rx engine if stopped. */
979 /* If we don't need to check status, don't. -KDU */
980 if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R))
981 sh_eth_write(ndev, EDRRR_R, EDRRR);
983 return 0;
986 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
988 /* disable tx and rx */
989 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
990 ~(ECMR_RE | ECMR_TE), ECMR);
993 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
995 /* enable tx and rx */
996 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
997 (ECMR_RE | ECMR_TE), ECMR);
1000 /* error control function */
1001 static void sh_eth_error(struct net_device *ndev, int intr_status)
1003 struct sh_eth_private *mdp = netdev_priv(ndev);
1004 u32 felic_stat;
1005 u32 link_stat;
1006 u32 mask;
1008 if (intr_status & EESR_ECI) {
1009 felic_stat = sh_eth_read(ndev, ECSR);
1010 sh_eth_write(ndev, felic_stat, ECSR); /* clear int */
1011 if (felic_stat & ECSR_ICD)
1012 mdp->stats.tx_carrier_errors++;
1013 if (felic_stat & ECSR_LCHNG) {
1014 /* Link Changed */
1015 if (mdp->cd->no_psr || mdp->no_ether_link) {
1016 if (mdp->link == PHY_DOWN)
1017 link_stat = 0;
1018 else
1019 link_stat = PHY_ST_LINK;
1020 } else {
1021 link_stat = (sh_eth_read(ndev, PSR));
1022 if (mdp->ether_link_active_low)
1023 link_stat = ~link_stat;
1025 if (!(link_stat & PHY_ST_LINK))
1026 sh_eth_rcv_snd_disable(ndev);
1027 else {
1028 /* Link Up */
1029 sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
1030 ~DMAC_M_ECI, EESIPR);
1031 /*clear int */
1032 sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
1033 ECSR);
1034 sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
1035 DMAC_M_ECI, EESIPR);
1036 /* enable tx and rx */
1037 sh_eth_rcv_snd_enable(ndev);
1042 if (intr_status & EESR_TWB) {
1043 /* Write buck end. unused write back interrupt */
1044 if (intr_status & EESR_TABT) /* Transmit Abort int */
1045 mdp->stats.tx_aborted_errors++;
1046 if (netif_msg_tx_err(mdp))
1047 dev_err(&ndev->dev, "Transmit Abort\n");
1050 if (intr_status & EESR_RABT) {
1051 /* Receive Abort int */
1052 if (intr_status & EESR_RFRMER) {
1053 /* Receive Frame Overflow int */
1054 mdp->stats.rx_frame_errors++;
1055 if (netif_msg_rx_err(mdp))
1056 dev_err(&ndev->dev, "Receive Abort\n");
1060 if (intr_status & EESR_TDE) {
1061 /* Transmit Descriptor Empty int */
1062 mdp->stats.tx_fifo_errors++;
1063 if (netif_msg_tx_err(mdp))
1064 dev_err(&ndev->dev, "Transmit Descriptor Empty\n");
1067 if (intr_status & EESR_TFE) {
1068 /* FIFO under flow */
1069 mdp->stats.tx_fifo_errors++;
1070 if (netif_msg_tx_err(mdp))
1071 dev_err(&ndev->dev, "Transmit FIFO Under flow\n");
1074 if (intr_status & EESR_RDE) {
1075 /* Receive Descriptor Empty int */
1076 mdp->stats.rx_over_errors++;
1078 if (sh_eth_read(ndev, EDRRR) ^ EDRRR_R)
1079 sh_eth_write(ndev, EDRRR_R, EDRRR);
1080 if (netif_msg_rx_err(mdp))
1081 dev_err(&ndev->dev, "Receive Descriptor Empty\n");
1084 if (intr_status & EESR_RFE) {
1085 /* Receive FIFO Overflow int */
1086 mdp->stats.rx_fifo_errors++;
1087 if (netif_msg_rx_err(mdp))
1088 dev_err(&ndev->dev, "Receive FIFO Overflow\n");
1091 if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1092 /* Address Error */
1093 mdp->stats.tx_fifo_errors++;
1094 if (netif_msg_tx_err(mdp))
1095 dev_err(&ndev->dev, "Address Error\n");
1098 mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1099 if (mdp->cd->no_ade)
1100 mask &= ~EESR_ADE;
1101 if (intr_status & mask) {
1102 /* Tx error */
1103 u32 edtrr = sh_eth_read(ndev, EDTRR);
1104 /* dmesg */
1105 dev_err(&ndev->dev, "TX error. status=%8.8x cur_tx=%8.8x ",
1106 intr_status, mdp->cur_tx);
1107 dev_err(&ndev->dev, "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1108 mdp->dirty_tx, (u32) ndev->state, edtrr);
1109 /* dirty buffer free */
1110 sh_eth_txfree(ndev);
1112 /* SH7712 BUG */
1113 if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1114 /* tx dma start */
1115 sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1117 /* wakeup */
1118 netif_wake_queue(ndev);
1122 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1124 struct net_device *ndev = netdev;
1125 struct sh_eth_private *mdp = netdev_priv(ndev);
1126 struct sh_eth_cpu_data *cd = mdp->cd;
1127 irqreturn_t ret = IRQ_NONE;
1128 u32 intr_status = 0;
1130 spin_lock(&mdp->lock);
1132 /* Get interrpt stat */
1133 intr_status = sh_eth_read(ndev, EESR);
1134 /* Clear interrupt */
1135 if (intr_status & (EESR_FRC | EESR_RMAF | EESR_RRF |
1136 EESR_RTLF | EESR_RTSF | EESR_PRE | EESR_CERF |
1137 cd->tx_check | cd->eesr_err_check)) {
1138 sh_eth_write(ndev, intr_status, EESR);
1139 ret = IRQ_HANDLED;
1140 } else
1141 goto other_irq;
1143 if (intr_status & (EESR_FRC | /* Frame recv*/
1144 EESR_RMAF | /* Multi cast address recv*/
1145 EESR_RRF | /* Bit frame recv */
1146 EESR_RTLF | /* Long frame recv*/
1147 EESR_RTSF | /* short frame recv */
1148 EESR_PRE | /* PHY-LSI recv error */
1149 EESR_CERF)){ /* recv frame CRC error */
1150 sh_eth_rx(ndev);
1153 /* Tx Check */
1154 if (intr_status & cd->tx_check) {
1155 sh_eth_txfree(ndev);
1156 netif_wake_queue(ndev);
1159 if (intr_status & cd->eesr_err_check)
1160 sh_eth_error(ndev, intr_status);
1162 other_irq:
1163 spin_unlock(&mdp->lock);
1165 return ret;
1168 static void sh_eth_timer(unsigned long data)
1170 struct net_device *ndev = (struct net_device *)data;
1171 struct sh_eth_private *mdp = netdev_priv(ndev);
1173 mod_timer(&mdp->timer, jiffies + (10 * HZ));
1176 /* PHY state control function */
1177 static void sh_eth_adjust_link(struct net_device *ndev)
1179 struct sh_eth_private *mdp = netdev_priv(ndev);
1180 struct phy_device *phydev = mdp->phydev;
1181 int new_state = 0;
1183 if (phydev->link != PHY_DOWN) {
1184 if (phydev->duplex != mdp->duplex) {
1185 new_state = 1;
1186 mdp->duplex = phydev->duplex;
1187 if (mdp->cd->set_duplex)
1188 mdp->cd->set_duplex(ndev);
1191 if (phydev->speed != mdp->speed) {
1192 new_state = 1;
1193 mdp->speed = phydev->speed;
1194 if (mdp->cd->set_rate)
1195 mdp->cd->set_rate(ndev);
1197 if (mdp->link == PHY_DOWN) {
1198 sh_eth_write(ndev,
1199 (sh_eth_read(ndev, ECMR) & ~ECMR_TXF), ECMR);
1200 new_state = 1;
1201 mdp->link = phydev->link;
1203 } else if (mdp->link) {
1204 new_state = 1;
1205 mdp->link = PHY_DOWN;
1206 mdp->speed = 0;
1207 mdp->duplex = -1;
1210 if (new_state && netif_msg_link(mdp))
1211 phy_print_status(phydev);
1214 /* PHY init function */
1215 static int sh_eth_phy_init(struct net_device *ndev)
1217 struct sh_eth_private *mdp = netdev_priv(ndev);
1218 char phy_id[MII_BUS_ID_SIZE + 3];
1219 struct phy_device *phydev = NULL;
1221 snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1222 mdp->mii_bus->id , mdp->phy_id);
1224 mdp->link = PHY_DOWN;
1225 mdp->speed = 0;
1226 mdp->duplex = -1;
1228 /* Try connect to PHY */
1229 phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1230 0, mdp->phy_interface);
1231 if (IS_ERR(phydev)) {
1232 dev_err(&ndev->dev, "phy_connect failed\n");
1233 return PTR_ERR(phydev);
1236 dev_info(&ndev->dev, "attached phy %i to driver %s\n",
1237 phydev->addr, phydev->drv->name);
1239 mdp->phydev = phydev;
1241 return 0;
1244 /* PHY control start function */
1245 static int sh_eth_phy_start(struct net_device *ndev)
1247 struct sh_eth_private *mdp = netdev_priv(ndev);
1248 int ret;
1250 ret = sh_eth_phy_init(ndev);
1251 if (ret)
1252 return ret;
1254 /* reset phy - this also wakes it from PDOWN */
1255 phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
1256 phy_start(mdp->phydev);
1258 return 0;
1261 static int sh_eth_get_settings(struct net_device *ndev,
1262 struct ethtool_cmd *ecmd)
1264 struct sh_eth_private *mdp = netdev_priv(ndev);
1265 unsigned long flags;
1266 int ret;
1268 spin_lock_irqsave(&mdp->lock, flags);
1269 ret = phy_ethtool_gset(mdp->phydev, ecmd);
1270 spin_unlock_irqrestore(&mdp->lock, flags);
1272 return ret;
1275 static int sh_eth_set_settings(struct net_device *ndev,
1276 struct ethtool_cmd *ecmd)
1278 struct sh_eth_private *mdp = netdev_priv(ndev);
1279 unsigned long flags;
1280 int ret;
1282 spin_lock_irqsave(&mdp->lock, flags);
1284 /* disable tx and rx */
1285 sh_eth_rcv_snd_disable(ndev);
1287 ret = phy_ethtool_sset(mdp->phydev, ecmd);
1288 if (ret)
1289 goto error_exit;
1291 if (ecmd->duplex == DUPLEX_FULL)
1292 mdp->duplex = 1;
1293 else
1294 mdp->duplex = 0;
1296 if (mdp->cd->set_duplex)
1297 mdp->cd->set_duplex(ndev);
1299 error_exit:
1300 mdelay(1);
1302 /* enable tx and rx */
1303 sh_eth_rcv_snd_enable(ndev);
1305 spin_unlock_irqrestore(&mdp->lock, flags);
1307 return ret;
1310 static int sh_eth_nway_reset(struct net_device *ndev)
1312 struct sh_eth_private *mdp = netdev_priv(ndev);
1313 unsigned long flags;
1314 int ret;
1316 spin_lock_irqsave(&mdp->lock, flags);
1317 ret = phy_start_aneg(mdp->phydev);
1318 spin_unlock_irqrestore(&mdp->lock, flags);
1320 return ret;
1323 static u32 sh_eth_get_msglevel(struct net_device *ndev)
1325 struct sh_eth_private *mdp = netdev_priv(ndev);
1326 return mdp->msg_enable;
1329 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
1331 struct sh_eth_private *mdp = netdev_priv(ndev);
1332 mdp->msg_enable = value;
1335 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
1336 "rx_current", "tx_current",
1337 "rx_dirty", "tx_dirty",
1339 #define SH_ETH_STATS_LEN ARRAY_SIZE(sh_eth_gstrings_stats)
1341 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
1343 switch (sset) {
1344 case ETH_SS_STATS:
1345 return SH_ETH_STATS_LEN;
1346 default:
1347 return -EOPNOTSUPP;
1351 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
1352 struct ethtool_stats *stats, u64 *data)
1354 struct sh_eth_private *mdp = netdev_priv(ndev);
1355 int i = 0;
1357 /* device-specific stats */
1358 data[i++] = mdp->cur_rx;
1359 data[i++] = mdp->cur_tx;
1360 data[i++] = mdp->dirty_rx;
1361 data[i++] = mdp->dirty_tx;
1364 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1366 switch (stringset) {
1367 case ETH_SS_STATS:
1368 memcpy(data, *sh_eth_gstrings_stats,
1369 sizeof(sh_eth_gstrings_stats));
1370 break;
1374 static const struct ethtool_ops sh_eth_ethtool_ops = {
1375 .get_settings = sh_eth_get_settings,
1376 .set_settings = sh_eth_set_settings,
1377 .nway_reset = sh_eth_nway_reset,
1378 .get_msglevel = sh_eth_get_msglevel,
1379 .set_msglevel = sh_eth_set_msglevel,
1380 .get_link = ethtool_op_get_link,
1381 .get_strings = sh_eth_get_strings,
1382 .get_ethtool_stats = sh_eth_get_ethtool_stats,
1383 .get_sset_count = sh_eth_get_sset_count,
1386 /* network device open function */
1387 static int sh_eth_open(struct net_device *ndev)
1389 int ret = 0;
1390 struct sh_eth_private *mdp = netdev_priv(ndev);
1392 pm_runtime_get_sync(&mdp->pdev->dev);
1394 ret = request_irq(ndev->irq, sh_eth_interrupt,
1395 #if defined(CONFIG_CPU_SUBTYPE_SH7763) || \
1396 defined(CONFIG_CPU_SUBTYPE_SH7764) || \
1397 defined(CONFIG_CPU_SUBTYPE_SH7757)
1398 IRQF_SHARED,
1399 #else
1401 #endif
1402 ndev->name, ndev);
1403 if (ret) {
1404 dev_err(&ndev->dev, "Can not assign IRQ number\n");
1405 return ret;
1408 /* Descriptor set */
1409 ret = sh_eth_ring_init(ndev);
1410 if (ret)
1411 goto out_free_irq;
1413 /* device init */
1414 ret = sh_eth_dev_init(ndev);
1415 if (ret)
1416 goto out_free_irq;
1418 /* PHY control start*/
1419 ret = sh_eth_phy_start(ndev);
1420 if (ret)
1421 goto out_free_irq;
1423 /* Set the timer to check for link beat. */
1424 init_timer(&mdp->timer);
1425 mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
1426 setup_timer(&mdp->timer, sh_eth_timer, (unsigned long)ndev);
1428 return ret;
1430 out_free_irq:
1431 free_irq(ndev->irq, ndev);
1432 pm_runtime_put_sync(&mdp->pdev->dev);
1433 return ret;
1436 /* Timeout function */
1437 static void sh_eth_tx_timeout(struct net_device *ndev)
1439 struct sh_eth_private *mdp = netdev_priv(ndev);
1440 struct sh_eth_rxdesc *rxdesc;
1441 int i;
1443 netif_stop_queue(ndev);
1445 if (netif_msg_timer(mdp))
1446 dev_err(&ndev->dev, "%s: transmit timed out, status %8.8x,"
1447 " resetting...\n", ndev->name, (int)sh_eth_read(ndev, EESR));
1449 /* tx_errors count up */
1450 mdp->stats.tx_errors++;
1452 /* timer off */
1453 del_timer_sync(&mdp->timer);
1455 /* Free all the skbuffs in the Rx queue. */
1456 for (i = 0; i < RX_RING_SIZE; i++) {
1457 rxdesc = &mdp->rx_ring[i];
1458 rxdesc->status = 0;
1459 rxdesc->addr = 0xBADF00D0;
1460 if (mdp->rx_skbuff[i])
1461 dev_kfree_skb(mdp->rx_skbuff[i]);
1462 mdp->rx_skbuff[i] = NULL;
1464 for (i = 0; i < TX_RING_SIZE; i++) {
1465 if (mdp->tx_skbuff[i])
1466 dev_kfree_skb(mdp->tx_skbuff[i]);
1467 mdp->tx_skbuff[i] = NULL;
1470 /* device init */
1471 sh_eth_dev_init(ndev);
1473 /* timer on */
1474 mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
1475 add_timer(&mdp->timer);
1478 /* Packet transmit function */
1479 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1481 struct sh_eth_private *mdp = netdev_priv(ndev);
1482 struct sh_eth_txdesc *txdesc;
1483 u32 entry;
1484 unsigned long flags;
1486 spin_lock_irqsave(&mdp->lock, flags);
1487 if ((mdp->cur_tx - mdp->dirty_tx) >= (TX_RING_SIZE - 4)) {
1488 if (!sh_eth_txfree(ndev)) {
1489 if (netif_msg_tx_queued(mdp))
1490 dev_warn(&ndev->dev, "TxFD exhausted.\n");
1491 netif_stop_queue(ndev);
1492 spin_unlock_irqrestore(&mdp->lock, flags);
1493 return NETDEV_TX_BUSY;
1496 spin_unlock_irqrestore(&mdp->lock, flags);
1498 entry = mdp->cur_tx % TX_RING_SIZE;
1499 mdp->tx_skbuff[entry] = skb;
1500 txdesc = &mdp->tx_ring[entry];
1501 /* soft swap. */
1502 if (!mdp->cd->hw_swap)
1503 sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
1504 skb->len + 2);
1505 txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len,
1506 DMA_TO_DEVICE);
1507 if (skb->len < ETHERSMALL)
1508 txdesc->buffer_length = ETHERSMALL;
1509 else
1510 txdesc->buffer_length = skb->len;
1512 if (entry >= TX_RING_SIZE - 1)
1513 txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
1514 else
1515 txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
1517 mdp->cur_tx++;
1519 if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
1520 sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1522 return NETDEV_TX_OK;
1525 /* device close function */
1526 static int sh_eth_close(struct net_device *ndev)
1528 struct sh_eth_private *mdp = netdev_priv(ndev);
1529 int ringsize;
1531 netif_stop_queue(ndev);
1533 /* Disable interrupts by clearing the interrupt mask. */
1534 sh_eth_write(ndev, 0x0000, EESIPR);
1536 /* Stop the chip's Tx and Rx processes. */
1537 sh_eth_write(ndev, 0, EDTRR);
1538 sh_eth_write(ndev, 0, EDRRR);
1540 /* PHY Disconnect */
1541 if (mdp->phydev) {
1542 phy_stop(mdp->phydev);
1543 phy_disconnect(mdp->phydev);
1546 free_irq(ndev->irq, ndev);
1548 del_timer_sync(&mdp->timer);
1550 /* Free all the skbuffs in the Rx queue. */
1551 sh_eth_ring_free(ndev);
1553 /* free DMA buffer */
1554 ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
1555 dma_free_coherent(NULL, ringsize, mdp->rx_ring, mdp->rx_desc_dma);
1557 /* free DMA buffer */
1558 ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
1559 dma_free_coherent(NULL, ringsize, mdp->tx_ring, mdp->tx_desc_dma);
1561 pm_runtime_put_sync(&mdp->pdev->dev);
1563 return 0;
1566 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
1568 struct sh_eth_private *mdp = netdev_priv(ndev);
1570 pm_runtime_get_sync(&mdp->pdev->dev);
1572 mdp->stats.tx_dropped += sh_eth_read(ndev, TROCR);
1573 sh_eth_write(ndev, 0, TROCR); /* (write clear) */
1574 mdp->stats.collisions += sh_eth_read(ndev, CDCR);
1575 sh_eth_write(ndev, 0, CDCR); /* (write clear) */
1576 mdp->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR);
1577 sh_eth_write(ndev, 0, LCCR); /* (write clear) */
1578 if (sh_eth_is_gether(mdp)) {
1579 mdp->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR);
1580 sh_eth_write(ndev, 0, CERCR); /* (write clear) */
1581 mdp->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR);
1582 sh_eth_write(ndev, 0, CEECR); /* (write clear) */
1583 } else {
1584 mdp->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR);
1585 sh_eth_write(ndev, 0, CNDCR); /* (write clear) */
1587 pm_runtime_put_sync(&mdp->pdev->dev);
1589 return &mdp->stats;
1592 /* ioctl to device funciotn*/
1593 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
1594 int cmd)
1596 struct sh_eth_private *mdp = netdev_priv(ndev);
1597 struct phy_device *phydev = mdp->phydev;
1599 if (!netif_running(ndev))
1600 return -EINVAL;
1602 if (!phydev)
1603 return -ENODEV;
1605 return phy_mii_ioctl(phydev, rq, cmd);
1608 #if defined(SH_ETH_HAS_TSU)
1609 /* Multicast reception directions set */
1610 static void sh_eth_set_multicast_list(struct net_device *ndev)
1612 if (ndev->flags & IFF_PROMISC) {
1613 /* Set promiscuous. */
1614 sh_eth_write(ndev, (sh_eth_read(ndev, ECMR) & ~ECMR_MCT) |
1615 ECMR_PRM, ECMR);
1616 } else {
1617 /* Normal, unicast/broadcast-only mode. */
1618 sh_eth_write(ndev, (sh_eth_read(ndev, ECMR) & ~ECMR_PRM) |
1619 ECMR_MCT, ECMR);
1622 #endif /* SH_ETH_HAS_TSU */
1624 /* SuperH's TSU register init function */
1625 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
1627 sh_eth_tsu_write(mdp, 0, TSU_FWEN0); /* Disable forward(0->1) */
1628 sh_eth_tsu_write(mdp, 0, TSU_FWEN1); /* Disable forward(1->0) */
1629 sh_eth_tsu_write(mdp, 0, TSU_FCM); /* forward fifo 3k-3k */
1630 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
1631 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
1632 sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
1633 sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
1634 sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
1635 sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
1636 sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
1637 if (sh_eth_is_gether(mdp)) {
1638 sh_eth_tsu_write(mdp, 0, TSU_QTAG0); /* Disable QTAG(0->1) */
1639 sh_eth_tsu_write(mdp, 0, TSU_QTAG1); /* Disable QTAG(1->0) */
1640 } else {
1641 sh_eth_tsu_write(mdp, 0, TSU_QTAGM0); /* Disable QTAG(0->1) */
1642 sh_eth_tsu_write(mdp, 0, TSU_QTAGM1); /* Disable QTAG(1->0) */
1644 sh_eth_tsu_write(mdp, 0, TSU_FWSR); /* all interrupt status clear */
1645 sh_eth_tsu_write(mdp, 0, TSU_FWINMK); /* Disable all interrupt */
1646 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
1647 sh_eth_tsu_write(mdp, 0, TSU_POST1); /* Disable CAM entry [ 0- 7] */
1648 sh_eth_tsu_write(mdp, 0, TSU_POST2); /* Disable CAM entry [ 8-15] */
1649 sh_eth_tsu_write(mdp, 0, TSU_POST3); /* Disable CAM entry [16-23] */
1650 sh_eth_tsu_write(mdp, 0, TSU_POST4); /* Disable CAM entry [24-31] */
1653 /* MDIO bus release function */
1654 static int sh_mdio_release(struct net_device *ndev)
1656 struct mii_bus *bus = dev_get_drvdata(&ndev->dev);
1658 /* unregister mdio bus */
1659 mdiobus_unregister(bus);
1661 /* remove mdio bus info from net_device */
1662 dev_set_drvdata(&ndev->dev, NULL);
1664 /* free interrupts memory */
1665 kfree(bus->irq);
1667 /* free bitbang info */
1668 free_mdio_bitbang(bus);
1670 return 0;
1673 /* MDIO bus init function */
1674 static int sh_mdio_init(struct net_device *ndev, int id,
1675 struct sh_eth_plat_data *pd)
1677 int ret, i;
1678 struct bb_info *bitbang;
1679 struct sh_eth_private *mdp = netdev_priv(ndev);
1681 /* create bit control struct for PHY */
1682 bitbang = kzalloc(sizeof(struct bb_info), GFP_KERNEL);
1683 if (!bitbang) {
1684 ret = -ENOMEM;
1685 goto out;
1688 /* bitbang init */
1689 bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
1690 bitbang->set_gate = pd->set_mdio_gate;
1691 bitbang->mdi_msk = 0x08;
1692 bitbang->mdo_msk = 0x04;
1693 bitbang->mmd_msk = 0x02;/* MMD */
1694 bitbang->mdc_msk = 0x01;
1695 bitbang->ctrl.ops = &bb_ops;
1697 /* MII controller setting */
1698 mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
1699 if (!mdp->mii_bus) {
1700 ret = -ENOMEM;
1701 goto out_free_bitbang;
1704 /* Hook up MII support for ethtool */
1705 mdp->mii_bus->name = "sh_mii";
1706 mdp->mii_bus->parent = &ndev->dev;
1707 snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1708 mdp->pdev->name, id);
1710 /* PHY IRQ */
1711 mdp->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
1712 if (!mdp->mii_bus->irq) {
1713 ret = -ENOMEM;
1714 goto out_free_bus;
1717 for (i = 0; i < PHY_MAX_ADDR; i++)
1718 mdp->mii_bus->irq[i] = PHY_POLL;
1720 /* regist mdio bus */
1721 ret = mdiobus_register(mdp->mii_bus);
1722 if (ret)
1723 goto out_free_irq;
1725 dev_set_drvdata(&ndev->dev, mdp->mii_bus);
1727 return 0;
1729 out_free_irq:
1730 kfree(mdp->mii_bus->irq);
1732 out_free_bus:
1733 free_mdio_bitbang(mdp->mii_bus);
1735 out_free_bitbang:
1736 kfree(bitbang);
1738 out:
1739 return ret;
1742 static const u16 *sh_eth_get_register_offset(int register_type)
1744 const u16 *reg_offset = NULL;
1746 switch (register_type) {
1747 case SH_ETH_REG_GIGABIT:
1748 reg_offset = sh_eth_offset_gigabit;
1749 break;
1750 case SH_ETH_REG_FAST_SH4:
1751 reg_offset = sh_eth_offset_fast_sh4;
1752 break;
1753 case SH_ETH_REG_FAST_SH3_SH2:
1754 reg_offset = sh_eth_offset_fast_sh3_sh2;
1755 break;
1756 default:
1757 printk(KERN_ERR "Unknown register type (%d)\n", register_type);
1758 break;
1761 return reg_offset;
1764 static const struct net_device_ops sh_eth_netdev_ops = {
1765 .ndo_open = sh_eth_open,
1766 .ndo_stop = sh_eth_close,
1767 .ndo_start_xmit = sh_eth_start_xmit,
1768 .ndo_get_stats = sh_eth_get_stats,
1769 #if defined(SH_ETH_HAS_TSU)
1770 .ndo_set_rx_mode = sh_eth_set_multicast_list,
1771 #endif
1772 .ndo_tx_timeout = sh_eth_tx_timeout,
1773 .ndo_do_ioctl = sh_eth_do_ioctl,
1774 .ndo_validate_addr = eth_validate_addr,
1775 .ndo_set_mac_address = eth_mac_addr,
1776 .ndo_change_mtu = eth_change_mtu,
1779 static int sh_eth_drv_probe(struct platform_device *pdev)
1781 int ret, devno = 0;
1782 struct resource *res;
1783 struct net_device *ndev = NULL;
1784 struct sh_eth_private *mdp = NULL;
1785 struct sh_eth_plat_data *pd;
1787 /* get base addr */
1788 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1789 if (unlikely(res == NULL)) {
1790 dev_err(&pdev->dev, "invalid resource\n");
1791 ret = -EINVAL;
1792 goto out;
1795 ndev = alloc_etherdev(sizeof(struct sh_eth_private));
1796 if (!ndev) {
1797 dev_err(&pdev->dev, "Could not allocate device.\n");
1798 ret = -ENOMEM;
1799 goto out;
1802 /* The sh Ether-specific entries in the device structure. */
1803 ndev->base_addr = res->start;
1804 devno = pdev->id;
1805 if (devno < 0)
1806 devno = 0;
1808 ndev->dma = -1;
1809 ret = platform_get_irq(pdev, 0);
1810 if (ret < 0) {
1811 ret = -ENODEV;
1812 goto out_release;
1814 ndev->irq = ret;
1816 SET_NETDEV_DEV(ndev, &pdev->dev);
1818 /* Fill in the fields of the device structure with ethernet values. */
1819 ether_setup(ndev);
1821 mdp = netdev_priv(ndev);
1822 mdp->addr = ioremap(res->start, resource_size(res));
1823 if (mdp->addr == NULL) {
1824 ret = -ENOMEM;
1825 dev_err(&pdev->dev, "ioremap failed.\n");
1826 goto out_release;
1829 spin_lock_init(&mdp->lock);
1830 mdp->pdev = pdev;
1831 pm_runtime_enable(&pdev->dev);
1832 pm_runtime_resume(&pdev->dev);
1834 pd = (struct sh_eth_plat_data *)(pdev->dev.platform_data);
1835 /* get PHY ID */
1836 mdp->phy_id = pd->phy;
1837 mdp->phy_interface = pd->phy_interface;
1838 /* EDMAC endian */
1839 mdp->edmac_endian = pd->edmac_endian;
1840 mdp->no_ether_link = pd->no_ether_link;
1841 mdp->ether_link_active_low = pd->ether_link_active_low;
1842 mdp->reg_offset = sh_eth_get_register_offset(pd->register_type);
1844 /* set cpu data */
1845 #if defined(SH_ETH_HAS_BOTH_MODULES)
1846 mdp->cd = sh_eth_get_cpu_data(mdp);
1847 #else
1848 mdp->cd = &sh_eth_my_cpu_data;
1849 #endif
1850 sh_eth_set_default_cpu_data(mdp->cd);
1852 /* set function */
1853 ndev->netdev_ops = &sh_eth_netdev_ops;
1854 SET_ETHTOOL_OPS(ndev, &sh_eth_ethtool_ops);
1855 ndev->watchdog_timeo = TX_TIMEOUT;
1857 /* debug message level */
1858 mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
1859 mdp->post_rx = POST_RX >> (devno << 1);
1860 mdp->post_fw = POST_FW >> (devno << 1);
1862 /* read and set MAC address */
1863 read_mac_address(ndev, pd->mac_addr);
1865 /* First device only init */
1866 if (!devno) {
1867 if (mdp->cd->tsu) {
1868 struct resource *rtsu;
1869 rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1870 if (!rtsu) {
1871 dev_err(&pdev->dev, "Not found TSU resource\n");
1872 goto out_release;
1874 mdp->tsu_addr = ioremap(rtsu->start,
1875 resource_size(rtsu));
1877 if (mdp->cd->chip_reset)
1878 mdp->cd->chip_reset(ndev);
1880 if (mdp->cd->tsu) {
1881 /* TSU init (Init only)*/
1882 sh_eth_tsu_init(mdp);
1886 /* network device register */
1887 ret = register_netdev(ndev);
1888 if (ret)
1889 goto out_release;
1891 /* mdio bus init */
1892 ret = sh_mdio_init(ndev, pdev->id, pd);
1893 if (ret)
1894 goto out_unregister;
1896 /* print device information */
1897 pr_info("Base address at 0x%x, %pM, IRQ %d.\n",
1898 (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
1900 platform_set_drvdata(pdev, ndev);
1902 return ret;
1904 out_unregister:
1905 unregister_netdev(ndev);
1907 out_release:
1908 /* net_dev free */
1909 if (mdp && mdp->addr)
1910 iounmap(mdp->addr);
1911 if (mdp && mdp->tsu_addr)
1912 iounmap(mdp->tsu_addr);
1913 if (ndev)
1914 free_netdev(ndev);
1916 out:
1917 return ret;
1920 static int sh_eth_drv_remove(struct platform_device *pdev)
1922 struct net_device *ndev = platform_get_drvdata(pdev);
1923 struct sh_eth_private *mdp = netdev_priv(ndev);
1925 iounmap(mdp->tsu_addr);
1926 sh_mdio_release(ndev);
1927 unregister_netdev(ndev);
1928 pm_runtime_disable(&pdev->dev);
1929 iounmap(mdp->addr);
1930 free_netdev(ndev);
1931 platform_set_drvdata(pdev, NULL);
1933 return 0;
1936 static int sh_eth_runtime_nop(struct device *dev)
1939 * Runtime PM callback shared between ->runtime_suspend()
1940 * and ->runtime_resume(). Simply returns success.
1942 * This driver re-initializes all registers after
1943 * pm_runtime_get_sync() anyway so there is no need
1944 * to save and restore registers here.
1946 return 0;
1949 static struct dev_pm_ops sh_eth_dev_pm_ops = {
1950 .runtime_suspend = sh_eth_runtime_nop,
1951 .runtime_resume = sh_eth_runtime_nop,
1954 static struct platform_driver sh_eth_driver = {
1955 .probe = sh_eth_drv_probe,
1956 .remove = sh_eth_drv_remove,
1957 .driver = {
1958 .name = CARDNAME,
1959 .pm = &sh_eth_dev_pm_ops,
1963 module_platform_driver(sh_eth_driver);
1965 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
1966 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
1967 MODULE_LICENSE("GPL v2");