1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2011 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/socket.h>
13 #include <linux/slab.h>
15 #include <linux/tcp.h>
16 #include <linux/udp.h>
17 #include <linux/prefetch.h>
18 #include <linux/moduleparam.h>
20 #include <net/checksum.h>
21 #include "net_driver.h"
25 #include "workarounds.h"
27 /* Number of RX descriptors pushed at once. */
28 #define EFX_RX_BATCH 8
30 /* Maximum size of a buffer sharing a page */
31 #define EFX_RX_HALF_PAGE ((PAGE_SIZE >> 1) - sizeof(struct efx_rx_page_state))
33 /* Size of buffer allocated for skb header area. */
34 #define EFX_SKB_HEADERS 64u
37 * rx_alloc_method - RX buffer allocation method
39 * This driver supports two methods for allocating and using RX buffers:
40 * each RX buffer may be backed by an skb or by an order-n page.
42 * When GRO is in use then the second method has a lower overhead,
43 * since we don't have to allocate then free skbs on reassembled frames.
46 * - RX_ALLOC_METHOD_AUTO = 0
47 * - RX_ALLOC_METHOD_SKB = 1
48 * - RX_ALLOC_METHOD_PAGE = 2
50 * The heuristic for %RX_ALLOC_METHOD_AUTO is a simple hysteresis count
51 * controlled by the parameters below.
53 * - Since pushing and popping descriptors are separated by the rx_queue
54 * size, so the watermarks should be ~rxd_size.
55 * - The performance win by using page-based allocation for GRO is less
56 * than the performance hit of using page-based allocation of non-GRO,
57 * so the watermarks should reflect this.
59 * Per channel we maintain a single variable, updated by each channel:
61 * rx_alloc_level += (gro_performed ? RX_ALLOC_FACTOR_GRO :
62 * RX_ALLOC_FACTOR_SKB)
63 * Per NAPI poll interval, we constrain rx_alloc_level to 0..MAX (which
64 * limits the hysteresis), and update the allocation strategy:
66 * rx_alloc_method = (rx_alloc_level > RX_ALLOC_LEVEL_GRO ?
67 * RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB)
69 static int rx_alloc_method
= RX_ALLOC_METHOD_AUTO
;
71 #define RX_ALLOC_LEVEL_GRO 0x2000
72 #define RX_ALLOC_LEVEL_MAX 0x3000
73 #define RX_ALLOC_FACTOR_GRO 1
74 #define RX_ALLOC_FACTOR_SKB (-2)
76 /* This is the percentage fill level below which new RX descriptors
77 * will be added to the RX descriptor ring.
79 static unsigned int rx_refill_threshold
= 90;
81 /* This is the percentage fill level to which an RX queue will be refilled
82 * when the "RX refill threshold" is reached.
84 static unsigned int rx_refill_limit
= 95;
87 * RX maximum head room required.
89 * This must be at least 1 to prevent overflow and at least 2 to allow
92 #define EFX_RXD_HEAD_ROOM 2
94 /* Offset of ethernet header within page */
95 static inline unsigned int efx_rx_buf_offset(struct efx_nic
*efx
,
96 struct efx_rx_buffer
*buf
)
98 /* Offset is always within one page, so we don't need to consider
101 return (((__force
unsigned long) buf
->dma_addr
& (PAGE_SIZE
- 1)) +
102 efx
->type
->rx_buffer_hash_size
);
104 static inline unsigned int efx_rx_buf_size(struct efx_nic
*efx
)
106 return PAGE_SIZE
<< efx
->rx_buffer_order
;
109 static u8
*efx_rx_buf_eh(struct efx_nic
*efx
, struct efx_rx_buffer
*buf
)
112 return page_address(buf
->u
.page
) + efx_rx_buf_offset(efx
, buf
);
114 return ((u8
*)buf
->u
.skb
->data
+
115 efx
->type
->rx_buffer_hash_size
);
118 static inline u32
efx_rx_buf_hash(const u8
*eh
)
120 /* The ethernet header is always directly after any hash. */
121 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || NET_IP_ALIGN % 4 == 0
122 return __le32_to_cpup((const __le32
*)(eh
- 4));
124 const u8
*data
= eh
- 4;
125 return ((u32
)data
[0] |
133 * efx_init_rx_buffers_skb - create EFX_RX_BATCH skb-based RX buffers
135 * @rx_queue: Efx RX queue
137 * This allocates EFX_RX_BATCH skbs, maps them for DMA, and populates a
138 * struct efx_rx_buffer for each one. Return a negative error code or 0
139 * on success. May fail having only inserted fewer than EFX_RX_BATCH
142 static int efx_init_rx_buffers_skb(struct efx_rx_queue
*rx_queue
)
144 struct efx_nic
*efx
= rx_queue
->efx
;
145 struct net_device
*net_dev
= efx
->net_dev
;
146 struct efx_rx_buffer
*rx_buf
;
148 int skb_len
= efx
->rx_buffer_len
;
149 unsigned index
, count
;
151 for (count
= 0; count
< EFX_RX_BATCH
; ++count
) {
152 index
= rx_queue
->added_count
& rx_queue
->ptr_mask
;
153 rx_buf
= efx_rx_buffer(rx_queue
, index
);
155 rx_buf
->u
.skb
= skb
= netdev_alloc_skb(net_dev
, skb_len
);
159 /* Adjust the SKB for padding */
160 skb_reserve(skb
, NET_IP_ALIGN
);
161 rx_buf
->len
= skb_len
- NET_IP_ALIGN
;
162 rx_buf
->is_page
= false;
164 rx_buf
->dma_addr
= pci_map_single(efx
->pci_dev
,
165 skb
->data
, rx_buf
->len
,
167 if (unlikely(pci_dma_mapping_error(efx
->pci_dev
,
168 rx_buf
->dma_addr
))) {
169 dev_kfree_skb_any(skb
);
170 rx_buf
->u
.skb
= NULL
;
174 ++rx_queue
->added_count
;
175 ++rx_queue
->alloc_skb_count
;
182 * efx_init_rx_buffers_page - create EFX_RX_BATCH page-based RX buffers
184 * @rx_queue: Efx RX queue
186 * This allocates memory for EFX_RX_BATCH receive buffers, maps them for DMA,
187 * and populates struct efx_rx_buffers for each one. Return a negative error
188 * code or 0 on success. If a single page can be split between two buffers,
189 * then the page will either be inserted fully, or not at at all.
191 static int efx_init_rx_buffers_page(struct efx_rx_queue
*rx_queue
)
193 struct efx_nic
*efx
= rx_queue
->efx
;
194 struct efx_rx_buffer
*rx_buf
;
197 struct efx_rx_page_state
*state
;
199 unsigned index
, count
;
201 /* We can split a page between two buffers */
202 BUILD_BUG_ON(EFX_RX_BATCH
& 1);
204 for (count
= 0; count
< EFX_RX_BATCH
; ++count
) {
205 page
= alloc_pages(__GFP_COLD
| __GFP_COMP
| GFP_ATOMIC
,
206 efx
->rx_buffer_order
);
207 if (unlikely(page
== NULL
))
209 dma_addr
= pci_map_page(efx
->pci_dev
, page
, 0,
210 efx_rx_buf_size(efx
),
212 if (unlikely(pci_dma_mapping_error(efx
->pci_dev
, dma_addr
))) {
213 __free_pages(page
, efx
->rx_buffer_order
);
216 page_addr
= page_address(page
);
219 state
->dma_addr
= dma_addr
;
221 page_addr
+= sizeof(struct efx_rx_page_state
);
222 dma_addr
+= sizeof(struct efx_rx_page_state
);
225 index
= rx_queue
->added_count
& rx_queue
->ptr_mask
;
226 rx_buf
= efx_rx_buffer(rx_queue
, index
);
227 rx_buf
->dma_addr
= dma_addr
+ EFX_PAGE_IP_ALIGN
;
228 rx_buf
->u
.page
= page
;
229 rx_buf
->len
= efx
->rx_buffer_len
- EFX_PAGE_IP_ALIGN
;
230 rx_buf
->is_page
= true;
231 ++rx_queue
->added_count
;
232 ++rx_queue
->alloc_page_count
;
235 if ((~count
& 1) && (efx
->rx_buffer_len
<= EFX_RX_HALF_PAGE
)) {
236 /* Use the second half of the page */
238 dma_addr
+= (PAGE_SIZE
>> 1);
239 page_addr
+= (PAGE_SIZE
>> 1);
248 static void efx_unmap_rx_buffer(struct efx_nic
*efx
,
249 struct efx_rx_buffer
*rx_buf
)
251 if (rx_buf
->is_page
&& rx_buf
->u
.page
) {
252 struct efx_rx_page_state
*state
;
254 state
= page_address(rx_buf
->u
.page
);
255 if (--state
->refcnt
== 0) {
256 pci_unmap_page(efx
->pci_dev
,
258 efx_rx_buf_size(efx
),
261 } else if (!rx_buf
->is_page
&& rx_buf
->u
.skb
) {
262 pci_unmap_single(efx
->pci_dev
, rx_buf
->dma_addr
,
263 rx_buf
->len
, PCI_DMA_FROMDEVICE
);
267 static void efx_free_rx_buffer(struct efx_nic
*efx
,
268 struct efx_rx_buffer
*rx_buf
)
270 if (rx_buf
->is_page
&& rx_buf
->u
.page
) {
271 __free_pages(rx_buf
->u
.page
, efx
->rx_buffer_order
);
272 rx_buf
->u
.page
= NULL
;
273 } else if (!rx_buf
->is_page
&& rx_buf
->u
.skb
) {
274 dev_kfree_skb_any(rx_buf
->u
.skb
);
275 rx_buf
->u
.skb
= NULL
;
279 static void efx_fini_rx_buffer(struct efx_rx_queue
*rx_queue
,
280 struct efx_rx_buffer
*rx_buf
)
282 efx_unmap_rx_buffer(rx_queue
->efx
, rx_buf
);
283 efx_free_rx_buffer(rx_queue
->efx
, rx_buf
);
286 /* Attempt to resurrect the other receive buffer that used to share this page,
287 * which had previously been passed up to the kernel and freed. */
288 static void efx_resurrect_rx_buffer(struct efx_rx_queue
*rx_queue
,
289 struct efx_rx_buffer
*rx_buf
)
291 struct efx_rx_page_state
*state
= page_address(rx_buf
->u
.page
);
292 struct efx_rx_buffer
*new_buf
;
293 unsigned fill_level
, index
;
295 /* +1 because efx_rx_packet() incremented removed_count. +1 because
296 * we'd like to insert an additional descriptor whilst leaving
297 * EFX_RXD_HEAD_ROOM for the non-recycle path */
298 fill_level
= (rx_queue
->added_count
- rx_queue
->removed_count
+ 2);
299 if (unlikely(fill_level
> rx_queue
->max_fill
)) {
300 /* We could place "state" on a list, and drain the list in
301 * efx_fast_push_rx_descriptors(). For now, this will do. */
306 get_page(rx_buf
->u
.page
);
308 index
= rx_queue
->added_count
& rx_queue
->ptr_mask
;
309 new_buf
= efx_rx_buffer(rx_queue
, index
);
310 new_buf
->dma_addr
= rx_buf
->dma_addr
^ (PAGE_SIZE
>> 1);
311 new_buf
->u
.page
= rx_buf
->u
.page
;
312 new_buf
->len
= rx_buf
->len
;
313 new_buf
->is_page
= true;
314 ++rx_queue
->added_count
;
317 /* Recycle the given rx buffer directly back into the rx_queue. There is
318 * always room to add this buffer, because we've just popped a buffer. */
319 static void efx_recycle_rx_buffer(struct efx_channel
*channel
,
320 struct efx_rx_buffer
*rx_buf
)
322 struct efx_nic
*efx
= channel
->efx
;
323 struct efx_rx_queue
*rx_queue
= efx_channel_get_rx_queue(channel
);
324 struct efx_rx_buffer
*new_buf
;
327 if (rx_buf
->is_page
&& efx
->rx_buffer_len
<= EFX_RX_HALF_PAGE
&&
328 page_count(rx_buf
->u
.page
) == 1)
329 efx_resurrect_rx_buffer(rx_queue
, rx_buf
);
331 index
= rx_queue
->added_count
& rx_queue
->ptr_mask
;
332 new_buf
= efx_rx_buffer(rx_queue
, index
);
334 memcpy(new_buf
, rx_buf
, sizeof(*new_buf
));
335 rx_buf
->u
.page
= NULL
;
336 ++rx_queue
->added_count
;
340 * efx_fast_push_rx_descriptors - push new RX descriptors quickly
341 * @rx_queue: RX descriptor queue
342 * This will aim to fill the RX descriptor queue up to
343 * @rx_queue->@fast_fill_limit. If there is insufficient atomic
344 * memory to do so, a slow fill will be scheduled.
346 * The caller must provide serialisation (none is used here). In practise,
347 * this means this function must run from the NAPI handler, or be called
348 * when NAPI is disabled.
350 void efx_fast_push_rx_descriptors(struct efx_rx_queue
*rx_queue
)
352 struct efx_channel
*channel
= efx_rx_queue_channel(rx_queue
);
356 /* Calculate current fill level, and exit if we don't need to fill */
357 fill_level
= (rx_queue
->added_count
- rx_queue
->removed_count
);
358 EFX_BUG_ON_PARANOID(fill_level
> rx_queue
->efx
->rxq_entries
);
359 if (fill_level
>= rx_queue
->fast_fill_trigger
)
362 /* Record minimum fill level */
363 if (unlikely(fill_level
< rx_queue
->min_fill
)) {
365 rx_queue
->min_fill
= fill_level
;
368 space
= rx_queue
->fast_fill_limit
- fill_level
;
369 if (space
< EFX_RX_BATCH
)
372 netif_vdbg(rx_queue
->efx
, rx_status
, rx_queue
->efx
->net_dev
,
373 "RX queue %d fast-filling descriptor ring from"
374 " level %d to level %d using %s allocation\n",
375 efx_rx_queue_index(rx_queue
), fill_level
,
376 rx_queue
->fast_fill_limit
,
377 channel
->rx_alloc_push_pages
? "page" : "skb");
380 if (channel
->rx_alloc_push_pages
)
381 rc
= efx_init_rx_buffers_page(rx_queue
);
383 rc
= efx_init_rx_buffers_skb(rx_queue
);
385 /* Ensure that we don't leave the rx queue empty */
386 if (rx_queue
->added_count
== rx_queue
->removed_count
)
387 efx_schedule_slow_fill(rx_queue
);
390 } while ((space
-= EFX_RX_BATCH
) >= EFX_RX_BATCH
);
392 netif_vdbg(rx_queue
->efx
, rx_status
, rx_queue
->efx
->net_dev
,
393 "RX queue %d fast-filled descriptor ring "
394 "to level %d\n", efx_rx_queue_index(rx_queue
),
395 rx_queue
->added_count
- rx_queue
->removed_count
);
398 if (rx_queue
->notified_count
!= rx_queue
->added_count
)
399 efx_nic_notify_rx_desc(rx_queue
);
402 void efx_rx_slow_fill(unsigned long context
)
404 struct efx_rx_queue
*rx_queue
= (struct efx_rx_queue
*)context
;
405 struct efx_channel
*channel
= efx_rx_queue_channel(rx_queue
);
407 /* Post an event to cause NAPI to run and refill the queue */
408 efx_nic_generate_fill_event(channel
);
409 ++rx_queue
->slow_fill_count
;
412 static void efx_rx_packet__check_len(struct efx_rx_queue
*rx_queue
,
413 struct efx_rx_buffer
*rx_buf
,
414 int len
, bool *discard
,
417 struct efx_nic
*efx
= rx_queue
->efx
;
418 unsigned max_len
= rx_buf
->len
- efx
->type
->rx_buffer_padding
;
420 if (likely(len
<= max_len
))
423 /* The packet must be discarded, but this is only a fatal error
424 * if the caller indicated it was
428 if ((len
> rx_buf
->len
) && EFX_WORKAROUND_8071(efx
)) {
430 netif_err(efx
, rx_err
, efx
->net_dev
,
431 " RX queue %d seriously overlength "
432 "RX event (0x%x > 0x%x+0x%x). Leaking\n",
433 efx_rx_queue_index(rx_queue
), len
, max_len
,
434 efx
->type
->rx_buffer_padding
);
435 /* If this buffer was skb-allocated, then the meta
436 * data at the end of the skb will be trashed. So
437 * we have no choice but to leak the fragment.
439 *leak_packet
= !rx_buf
->is_page
;
440 efx_schedule_reset(efx
, RESET_TYPE_RX_RECOVERY
);
443 netif_err(efx
, rx_err
, efx
->net_dev
,
444 " RX queue %d overlength RX event "
446 efx_rx_queue_index(rx_queue
), len
, max_len
);
449 efx_rx_queue_channel(rx_queue
)->n_rx_overlength
++;
452 /* Pass a received packet up through the generic GRO stack
454 * Handles driverlink veto, and passes the fragment up via
455 * the appropriate GRO method
457 static void efx_rx_packet_gro(struct efx_channel
*channel
,
458 struct efx_rx_buffer
*rx_buf
,
459 const u8
*eh
, bool checksummed
)
461 struct napi_struct
*napi
= &channel
->napi_str
;
462 gro_result_t gro_result
;
464 /* Pass the skb/page into the GRO engine */
465 if (rx_buf
->is_page
) {
466 struct efx_nic
*efx
= channel
->efx
;
467 struct page
*page
= rx_buf
->u
.page
;
470 rx_buf
->u
.page
= NULL
;
472 skb
= napi_get_frags(napi
);
478 if (efx
->net_dev
->features
& NETIF_F_RXHASH
)
479 skb
->rxhash
= efx_rx_buf_hash(eh
);
481 skb_fill_page_desc(skb
, 0, page
,
482 efx_rx_buf_offset(efx
, rx_buf
), rx_buf
->len
);
484 skb
->len
= rx_buf
->len
;
485 skb
->data_len
= rx_buf
->len
;
486 skb
->truesize
+= rx_buf
->len
;
488 checksummed
? CHECKSUM_UNNECESSARY
: CHECKSUM_NONE
;
490 skb_record_rx_queue(skb
, channel
->channel
);
492 gro_result
= napi_gro_frags(napi
);
494 struct sk_buff
*skb
= rx_buf
->u
.skb
;
496 EFX_BUG_ON_PARANOID(!checksummed
);
497 rx_buf
->u
.skb
= NULL
;
498 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
500 gro_result
= napi_gro_receive(napi
, skb
);
503 if (gro_result
== GRO_NORMAL
) {
504 channel
->rx_alloc_level
+= RX_ALLOC_FACTOR_SKB
;
505 } else if (gro_result
!= GRO_DROP
) {
506 channel
->rx_alloc_level
+= RX_ALLOC_FACTOR_GRO
;
507 channel
->irq_mod_score
+= 2;
511 void efx_rx_packet(struct efx_rx_queue
*rx_queue
, unsigned int index
,
512 unsigned int len
, bool checksummed
, bool discard
)
514 struct efx_nic
*efx
= rx_queue
->efx
;
515 struct efx_channel
*channel
= efx_rx_queue_channel(rx_queue
);
516 struct efx_rx_buffer
*rx_buf
;
517 bool leak_packet
= false;
519 rx_buf
= efx_rx_buffer(rx_queue
, index
);
521 /* This allows the refill path to post another buffer.
522 * EFX_RXD_HEAD_ROOM ensures that the slot we are using
523 * isn't overwritten yet.
525 rx_queue
->removed_count
++;
527 /* Validate the length encoded in the event vs the descriptor pushed */
528 efx_rx_packet__check_len(rx_queue
, rx_buf
, len
,
529 &discard
, &leak_packet
);
531 netif_vdbg(efx
, rx_status
, efx
->net_dev
,
532 "RX queue %d received id %x at %llx+%x %s%s\n",
533 efx_rx_queue_index(rx_queue
), index
,
534 (unsigned long long)rx_buf
->dma_addr
, len
,
535 (checksummed
? " [SUMMED]" : ""),
536 (discard
? " [DISCARD]" : ""));
538 /* Discard packet, if instructed to do so */
539 if (unlikely(discard
)) {
540 if (unlikely(leak_packet
))
541 channel
->n_skbuff_leaks
++;
543 efx_recycle_rx_buffer(channel
, rx_buf
);
545 /* Don't hold off the previous receive */
550 /* Release card resources - assumes all RX buffers consumed in-order
553 efx_unmap_rx_buffer(efx
, rx_buf
);
555 /* Prefetch nice and early so data will (hopefully) be in cache by
556 * the time we look at it.
558 prefetch(efx_rx_buf_eh(efx
, rx_buf
));
560 /* Pipeline receives so that we give time for packet headers to be
561 * prefetched into cache.
563 rx_buf
->len
= len
- efx
->type
->rx_buffer_hash_size
;
566 __efx_rx_packet(channel
,
567 channel
->rx_pkt
, channel
->rx_pkt_csummed
);
568 channel
->rx_pkt
= rx_buf
;
569 channel
->rx_pkt_csummed
= checksummed
;
572 /* Handle a received packet. Second half: Touches packet payload. */
573 void __efx_rx_packet(struct efx_channel
*channel
,
574 struct efx_rx_buffer
*rx_buf
, bool checksummed
)
576 struct efx_nic
*efx
= channel
->efx
;
578 u8
*eh
= efx_rx_buf_eh(efx
, rx_buf
);
580 /* If we're in loopback test, then pass the packet directly to the
581 * loopback layer, and free the rx_buf here
583 if (unlikely(efx
->loopback_selftest
)) {
584 efx_loopback_rx_packet(efx
, eh
, rx_buf
->len
);
585 efx_free_rx_buffer(efx
, rx_buf
);
589 if (!rx_buf
->is_page
) {
592 prefetch(skb_shinfo(skb
));
594 skb_reserve(skb
, efx
->type
->rx_buffer_hash_size
);
595 skb_put(skb
, rx_buf
->len
);
597 if (efx
->net_dev
->features
& NETIF_F_RXHASH
)
598 skb
->rxhash
= efx_rx_buf_hash(eh
);
600 /* Move past the ethernet header. rx_buf->data still points
601 * at the ethernet header */
602 skb
->protocol
= eth_type_trans(skb
, efx
->net_dev
);
604 skb_record_rx_queue(skb
, channel
->channel
);
607 if (unlikely(!(efx
->net_dev
->features
& NETIF_F_RXCSUM
)))
610 if (likely(checksummed
|| rx_buf
->is_page
)) {
611 efx_rx_packet_gro(channel
, rx_buf
, eh
, checksummed
);
615 /* We now own the SKB */
617 rx_buf
->u
.skb
= NULL
;
619 /* Set the SKB flags */
620 skb_checksum_none_assert(skb
);
622 /* Pass the packet up */
623 netif_receive_skb(skb
);
625 /* Update allocation strategy method */
626 channel
->rx_alloc_level
+= RX_ALLOC_FACTOR_SKB
;
629 void efx_rx_strategy(struct efx_channel
*channel
)
631 enum efx_rx_alloc_method method
= rx_alloc_method
;
633 /* Only makes sense to use page based allocation if GRO is enabled */
634 if (!(channel
->efx
->net_dev
->features
& NETIF_F_GRO
)) {
635 method
= RX_ALLOC_METHOD_SKB
;
636 } else if (method
== RX_ALLOC_METHOD_AUTO
) {
637 /* Constrain the rx_alloc_level */
638 if (channel
->rx_alloc_level
< 0)
639 channel
->rx_alloc_level
= 0;
640 else if (channel
->rx_alloc_level
> RX_ALLOC_LEVEL_MAX
)
641 channel
->rx_alloc_level
= RX_ALLOC_LEVEL_MAX
;
643 /* Decide on the allocation method */
644 method
= ((channel
->rx_alloc_level
> RX_ALLOC_LEVEL_GRO
) ?
645 RX_ALLOC_METHOD_PAGE
: RX_ALLOC_METHOD_SKB
);
648 /* Push the option */
649 channel
->rx_alloc_push_pages
= (method
== RX_ALLOC_METHOD_PAGE
);
652 int efx_probe_rx_queue(struct efx_rx_queue
*rx_queue
)
654 struct efx_nic
*efx
= rx_queue
->efx
;
655 unsigned int entries
;
658 /* Create the smallest power-of-two aligned ring */
659 entries
= max(roundup_pow_of_two(efx
->rxq_entries
), EFX_MIN_DMAQ_SIZE
);
660 EFX_BUG_ON_PARANOID(entries
> EFX_MAX_DMAQ_SIZE
);
661 rx_queue
->ptr_mask
= entries
- 1;
663 netif_dbg(efx
, probe
, efx
->net_dev
,
664 "creating RX queue %d size %#x mask %#x\n",
665 efx_rx_queue_index(rx_queue
), efx
->rxq_entries
,
668 /* Allocate RX buffers */
669 rx_queue
->buffer
= kcalloc(entries
, sizeof(*rx_queue
->buffer
),
671 if (!rx_queue
->buffer
)
674 rc
= efx_nic_probe_rx(rx_queue
);
676 kfree(rx_queue
->buffer
);
677 rx_queue
->buffer
= NULL
;
682 void efx_init_rx_queue(struct efx_rx_queue
*rx_queue
)
684 struct efx_nic
*efx
= rx_queue
->efx
;
685 unsigned int max_fill
, trigger
, limit
;
687 netif_dbg(rx_queue
->efx
, drv
, rx_queue
->efx
->net_dev
,
688 "initialising RX queue %d\n", efx_rx_queue_index(rx_queue
));
690 /* Initialise ptr fields */
691 rx_queue
->added_count
= 0;
692 rx_queue
->notified_count
= 0;
693 rx_queue
->removed_count
= 0;
694 rx_queue
->min_fill
= -1U;
696 /* Initialise limit fields */
697 max_fill
= efx
->rxq_entries
- EFX_RXD_HEAD_ROOM
;
698 trigger
= max_fill
* min(rx_refill_threshold
, 100U) / 100U;
699 limit
= max_fill
* min(rx_refill_limit
, 100U) / 100U;
701 rx_queue
->max_fill
= max_fill
;
702 rx_queue
->fast_fill_trigger
= trigger
;
703 rx_queue
->fast_fill_limit
= limit
;
705 /* Set up RX descriptor ring */
706 efx_nic_init_rx(rx_queue
);
709 void efx_fini_rx_queue(struct efx_rx_queue
*rx_queue
)
712 struct efx_rx_buffer
*rx_buf
;
714 netif_dbg(rx_queue
->efx
, drv
, rx_queue
->efx
->net_dev
,
715 "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue
));
717 del_timer_sync(&rx_queue
->slow_fill
);
718 efx_nic_fini_rx(rx_queue
);
720 /* Release RX buffers NB start at index 0 not current HW ptr */
721 if (rx_queue
->buffer
) {
722 for (i
= 0; i
<= rx_queue
->ptr_mask
; i
++) {
723 rx_buf
= efx_rx_buffer(rx_queue
, i
);
724 efx_fini_rx_buffer(rx_queue
, rx_buf
);
729 void efx_remove_rx_queue(struct efx_rx_queue
*rx_queue
)
731 netif_dbg(rx_queue
->efx
, drv
, rx_queue
->efx
->net_dev
,
732 "destroying RX queue %d\n", efx_rx_queue_index(rx_queue
));
734 efx_nic_remove_rx(rx_queue
);
736 kfree(rx_queue
->buffer
);
737 rx_queue
->buffer
= NULL
;
741 module_param(rx_alloc_method
, int, 0644);
742 MODULE_PARM_DESC(rx_alloc_method
, "Allocation method used for RX buffers");
744 module_param(rx_refill_threshold
, uint
, 0444);
745 MODULE_PARM_DESC(rx_refill_threshold
,
746 "RX descriptor ring fast/slow fill threshold (%)");