1 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
2 * sungem.c: Sun GEM ethernet driver.
4 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
6 * Support for Apple GMAC and assorted PHYs, WOL, Power Management
7 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
8 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
10 * NAPI and NETPOLL support
11 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/types.h>
20 #include <linux/fcntl.h>
21 #include <linux/interrupt.h>
22 #include <linux/ioport.h>
24 #include <linux/sched.h>
25 #include <linux/string.h>
26 #include <linux/delay.h>
27 #include <linux/init.h>
28 #include <linux/errno.h>
29 #include <linux/pci.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/mii.h>
35 #include <linux/ethtool.h>
36 #include <linux/crc32.h>
37 #include <linux/random.h>
38 #include <linux/workqueue.h>
39 #include <linux/if_vlan.h>
40 #include <linux/bitops.h>
42 #include <linux/gfp.h>
44 #include <asm/system.h>
46 #include <asm/byteorder.h>
47 #include <asm/uaccess.h>
51 #include <asm/idprom.h>
55 #ifdef CONFIG_PPC_PMAC
56 #include <asm/pci-bridge.h>
58 #include <asm/machdep.h>
59 #include <asm/pmac_feature.h>
62 #include <linux/sungem_phy.h>
65 /* Stripping FCS is causing problems, disabled for now */
68 #define DEFAULT_MSG (NETIF_MSG_DRV | \
72 #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
73 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
74 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
75 SUPPORTED_Pause | SUPPORTED_Autoneg)
77 #define DRV_NAME "sungem"
78 #define DRV_VERSION "1.0"
79 #define DRV_AUTHOR "David S. Miller <davem@redhat.com>"
81 static char version
[] __devinitdata
=
82 DRV_NAME
".c:v" DRV_VERSION
" " DRV_AUTHOR
"\n";
84 MODULE_AUTHOR(DRV_AUTHOR
);
85 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
86 MODULE_LICENSE("GPL");
88 #define GEM_MODULE_NAME "gem"
90 static DEFINE_PCI_DEVICE_TABLE(gem_pci_tbl
) = {
91 { PCI_VENDOR_ID_SUN
, PCI_DEVICE_ID_SUN_GEM
,
92 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
94 /* These models only differ from the original GEM in
95 * that their tx/rx fifos are of a different size and
96 * they only support 10/100 speeds. -DaveM
98 * Apple's GMAC does support gigabit on machines with
99 * the BCM54xx PHYs. -BenH
101 { PCI_VENDOR_ID_SUN
, PCI_DEVICE_ID_SUN_RIO_GEM
,
102 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
103 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_GMAC
,
104 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
105 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_GMACP
,
106 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
107 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2
,
108 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
109 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_K2_GMAC
,
110 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
111 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_SH_SUNGEM
,
112 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
113 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_IPID2_GMAC
,
114 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
118 MODULE_DEVICE_TABLE(pci
, gem_pci_tbl
);
120 static u16
__phy_read(struct gem
*gp
, int phy_addr
, int reg
)
127 cmd
|= (phy_addr
<< 23) & MIF_FRAME_PHYAD
;
128 cmd
|= (reg
<< 18) & MIF_FRAME_REGAD
;
129 cmd
|= (MIF_FRAME_TAMSB
);
130 writel(cmd
, gp
->regs
+ MIF_FRAME
);
133 cmd
= readl(gp
->regs
+ MIF_FRAME
);
134 if (cmd
& MIF_FRAME_TALSB
)
143 return cmd
& MIF_FRAME_DATA
;
146 static inline int _phy_read(struct net_device
*dev
, int mii_id
, int reg
)
148 struct gem
*gp
= netdev_priv(dev
);
149 return __phy_read(gp
, mii_id
, reg
);
152 static inline u16
phy_read(struct gem
*gp
, int reg
)
154 return __phy_read(gp
, gp
->mii_phy_addr
, reg
);
157 static void __phy_write(struct gem
*gp
, int phy_addr
, int reg
, u16 val
)
164 cmd
|= (phy_addr
<< 23) & MIF_FRAME_PHYAD
;
165 cmd
|= (reg
<< 18) & MIF_FRAME_REGAD
;
166 cmd
|= (MIF_FRAME_TAMSB
);
167 cmd
|= (val
& MIF_FRAME_DATA
);
168 writel(cmd
, gp
->regs
+ MIF_FRAME
);
171 cmd
= readl(gp
->regs
+ MIF_FRAME
);
172 if (cmd
& MIF_FRAME_TALSB
)
179 static inline void _phy_write(struct net_device
*dev
, int mii_id
, int reg
, int val
)
181 struct gem
*gp
= netdev_priv(dev
);
182 __phy_write(gp
, mii_id
, reg
, val
& 0xffff);
185 static inline void phy_write(struct gem
*gp
, int reg
, u16 val
)
187 __phy_write(gp
, gp
->mii_phy_addr
, reg
, val
);
190 static inline void gem_enable_ints(struct gem
*gp
)
192 /* Enable all interrupts but TXDONE */
193 writel(GREG_STAT_TXDONE
, gp
->regs
+ GREG_IMASK
);
196 static inline void gem_disable_ints(struct gem
*gp
)
198 /* Disable all interrupts, including TXDONE */
199 writel(GREG_STAT_NAPI
| GREG_STAT_TXDONE
, gp
->regs
+ GREG_IMASK
);
200 (void)readl(gp
->regs
+ GREG_IMASK
); /* write posting */
203 static void gem_get_cell(struct gem
*gp
)
205 BUG_ON(gp
->cell_enabled
< 0);
207 #ifdef CONFIG_PPC_PMAC
208 if (gp
->cell_enabled
== 1) {
210 pmac_call_feature(PMAC_FTR_GMAC_ENABLE
, gp
->of_node
, 0, 1);
213 #endif /* CONFIG_PPC_PMAC */
216 /* Turn off the chip's clock */
217 static void gem_put_cell(struct gem
*gp
)
219 BUG_ON(gp
->cell_enabled
<= 0);
221 #ifdef CONFIG_PPC_PMAC
222 if (gp
->cell_enabled
== 0) {
224 pmac_call_feature(PMAC_FTR_GMAC_ENABLE
, gp
->of_node
, 0, 0);
227 #endif /* CONFIG_PPC_PMAC */
230 static inline void gem_netif_stop(struct gem
*gp
)
232 gp
->dev
->trans_start
= jiffies
; /* prevent tx timeout */
233 napi_disable(&gp
->napi
);
234 netif_tx_disable(gp
->dev
);
237 static inline void gem_netif_start(struct gem
*gp
)
239 /* NOTE: unconditional netif_wake_queue is only
240 * appropriate so long as all callers are assured to
241 * have free tx slots.
243 netif_wake_queue(gp
->dev
);
244 napi_enable(&gp
->napi
);
247 static void gem_schedule_reset(struct gem
*gp
)
249 gp
->reset_task_pending
= 1;
250 schedule_work(&gp
->reset_task
);
253 static void gem_handle_mif_event(struct gem
*gp
, u32 reg_val
, u32 changed_bits
)
255 if (netif_msg_intr(gp
))
256 printk(KERN_DEBUG
"%s: mif interrupt\n", gp
->dev
->name
);
259 static int gem_pcs_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
261 u32 pcs_istat
= readl(gp
->regs
+ PCS_ISTAT
);
264 if (netif_msg_intr(gp
))
265 printk(KERN_DEBUG
"%s: pcs interrupt, pcs_istat: 0x%x\n",
266 gp
->dev
->name
, pcs_istat
);
268 if (!(pcs_istat
& PCS_ISTAT_LSC
)) {
269 netdev_err(dev
, "PCS irq but no link status change???\n");
273 /* The link status bit latches on zero, so you must
274 * read it twice in such a case to see a transition
275 * to the link being up.
277 pcs_miistat
= readl(gp
->regs
+ PCS_MIISTAT
);
278 if (!(pcs_miistat
& PCS_MIISTAT_LS
))
280 (readl(gp
->regs
+ PCS_MIISTAT
) &
283 if (pcs_miistat
& PCS_MIISTAT_ANC
) {
284 /* The remote-fault indication is only valid
285 * when autoneg has completed.
287 if (pcs_miistat
& PCS_MIISTAT_RF
)
288 netdev_info(dev
, "PCS AutoNEG complete, RemoteFault\n");
290 netdev_info(dev
, "PCS AutoNEG complete\n");
293 if (pcs_miistat
& PCS_MIISTAT_LS
) {
294 netdev_info(dev
, "PCS link is now up\n");
295 netif_carrier_on(gp
->dev
);
297 netdev_info(dev
, "PCS link is now down\n");
298 netif_carrier_off(gp
->dev
);
299 /* If this happens and the link timer is not running,
300 * reset so we re-negotiate.
302 if (!timer_pending(&gp
->link_timer
))
309 static int gem_txmac_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
311 u32 txmac_stat
= readl(gp
->regs
+ MAC_TXSTAT
);
313 if (netif_msg_intr(gp
))
314 printk(KERN_DEBUG
"%s: txmac interrupt, txmac_stat: 0x%x\n",
315 gp
->dev
->name
, txmac_stat
);
317 /* Defer timer expiration is quite normal,
318 * don't even log the event.
320 if ((txmac_stat
& MAC_TXSTAT_DTE
) &&
321 !(txmac_stat
& ~MAC_TXSTAT_DTE
))
324 if (txmac_stat
& MAC_TXSTAT_URUN
) {
325 netdev_err(dev
, "TX MAC xmit underrun\n");
326 dev
->stats
.tx_fifo_errors
++;
329 if (txmac_stat
& MAC_TXSTAT_MPE
) {
330 netdev_err(dev
, "TX MAC max packet size error\n");
331 dev
->stats
.tx_errors
++;
334 /* The rest are all cases of one of the 16-bit TX
337 if (txmac_stat
& MAC_TXSTAT_NCE
)
338 dev
->stats
.collisions
+= 0x10000;
340 if (txmac_stat
& MAC_TXSTAT_ECE
) {
341 dev
->stats
.tx_aborted_errors
+= 0x10000;
342 dev
->stats
.collisions
+= 0x10000;
345 if (txmac_stat
& MAC_TXSTAT_LCE
) {
346 dev
->stats
.tx_aborted_errors
+= 0x10000;
347 dev
->stats
.collisions
+= 0x10000;
350 /* We do not keep track of MAC_TXSTAT_FCE and
351 * MAC_TXSTAT_PCE events.
356 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
357 * so we do the following.
359 * If any part of the reset goes wrong, we return 1 and that causes the
360 * whole chip to be reset.
362 static int gem_rxmac_reset(struct gem
*gp
)
364 struct net_device
*dev
= gp
->dev
;
369 /* First, reset & disable MAC RX. */
370 writel(MAC_RXRST_CMD
, gp
->regs
+ MAC_RXRST
);
371 for (limit
= 0; limit
< 5000; limit
++) {
372 if (!(readl(gp
->regs
+ MAC_RXRST
) & MAC_RXRST_CMD
))
377 netdev_err(dev
, "RX MAC will not reset, resetting whole chip\n");
381 writel(gp
->mac_rx_cfg
& ~MAC_RXCFG_ENAB
,
382 gp
->regs
+ MAC_RXCFG
);
383 for (limit
= 0; limit
< 5000; limit
++) {
384 if (!(readl(gp
->regs
+ MAC_RXCFG
) & MAC_RXCFG_ENAB
))
389 netdev_err(dev
, "RX MAC will not disable, resetting whole chip\n");
393 /* Second, disable RX DMA. */
394 writel(0, gp
->regs
+ RXDMA_CFG
);
395 for (limit
= 0; limit
< 5000; limit
++) {
396 if (!(readl(gp
->regs
+ RXDMA_CFG
) & RXDMA_CFG_ENABLE
))
401 netdev_err(dev
, "RX DMA will not disable, resetting whole chip\n");
407 /* Execute RX reset command. */
408 writel(gp
->swrst_base
| GREG_SWRST_RXRST
,
409 gp
->regs
+ GREG_SWRST
);
410 for (limit
= 0; limit
< 5000; limit
++) {
411 if (!(readl(gp
->regs
+ GREG_SWRST
) & GREG_SWRST_RXRST
))
416 netdev_err(dev
, "RX reset command will not execute, resetting whole chip\n");
420 /* Refresh the RX ring. */
421 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
422 struct gem_rxd
*rxd
= &gp
->init_block
->rxd
[i
];
424 if (gp
->rx_skbs
[i
] == NULL
) {
425 netdev_err(dev
, "Parts of RX ring empty, resetting whole chip\n");
429 rxd
->status_word
= cpu_to_le64(RXDCTRL_FRESH(gp
));
431 gp
->rx_new
= gp
->rx_old
= 0;
433 /* Now we must reprogram the rest of RX unit. */
434 desc_dma
= (u64
) gp
->gblock_dvma
;
435 desc_dma
+= (INIT_BLOCK_TX_RING_SIZE
* sizeof(struct gem_txd
));
436 writel(desc_dma
>> 32, gp
->regs
+ RXDMA_DBHI
);
437 writel(desc_dma
& 0xffffffff, gp
->regs
+ RXDMA_DBLOW
);
438 writel(RX_RING_SIZE
- 4, gp
->regs
+ RXDMA_KICK
);
439 val
= (RXDMA_CFG_BASE
| (RX_OFFSET
<< 10) |
440 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128
);
441 writel(val
, gp
->regs
+ RXDMA_CFG
);
442 if (readl(gp
->regs
+ GREG_BIFCFG
) & GREG_BIFCFG_M66EN
)
443 writel(((5 & RXDMA_BLANK_IPKTS
) |
444 ((8 << 12) & RXDMA_BLANK_ITIME
)),
445 gp
->regs
+ RXDMA_BLANK
);
447 writel(((5 & RXDMA_BLANK_IPKTS
) |
448 ((4 << 12) & RXDMA_BLANK_ITIME
)),
449 gp
->regs
+ RXDMA_BLANK
);
450 val
= (((gp
->rx_pause_off
/ 64) << 0) & RXDMA_PTHRESH_OFF
);
451 val
|= (((gp
->rx_pause_on
/ 64) << 12) & RXDMA_PTHRESH_ON
);
452 writel(val
, gp
->regs
+ RXDMA_PTHRESH
);
453 val
= readl(gp
->regs
+ RXDMA_CFG
);
454 writel(val
| RXDMA_CFG_ENABLE
, gp
->regs
+ RXDMA_CFG
);
455 writel(MAC_RXSTAT_RCV
, gp
->regs
+ MAC_RXMASK
);
456 val
= readl(gp
->regs
+ MAC_RXCFG
);
457 writel(val
| MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
462 static int gem_rxmac_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
464 u32 rxmac_stat
= readl(gp
->regs
+ MAC_RXSTAT
);
467 if (netif_msg_intr(gp
))
468 printk(KERN_DEBUG
"%s: rxmac interrupt, rxmac_stat: 0x%x\n",
469 gp
->dev
->name
, rxmac_stat
);
471 if (rxmac_stat
& MAC_RXSTAT_OFLW
) {
472 u32 smac
= readl(gp
->regs
+ MAC_SMACHINE
);
474 netdev_err(dev
, "RX MAC fifo overflow smac[%08x]\n", smac
);
475 dev
->stats
.rx_over_errors
++;
476 dev
->stats
.rx_fifo_errors
++;
478 ret
= gem_rxmac_reset(gp
);
481 if (rxmac_stat
& MAC_RXSTAT_ACE
)
482 dev
->stats
.rx_frame_errors
+= 0x10000;
484 if (rxmac_stat
& MAC_RXSTAT_CCE
)
485 dev
->stats
.rx_crc_errors
+= 0x10000;
487 if (rxmac_stat
& MAC_RXSTAT_LCE
)
488 dev
->stats
.rx_length_errors
+= 0x10000;
490 /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
496 static int gem_mac_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
498 u32 mac_cstat
= readl(gp
->regs
+ MAC_CSTAT
);
500 if (netif_msg_intr(gp
))
501 printk(KERN_DEBUG
"%s: mac interrupt, mac_cstat: 0x%x\n",
502 gp
->dev
->name
, mac_cstat
);
504 /* This interrupt is just for pause frame and pause
505 * tracking. It is useful for diagnostics and debug
506 * but probably by default we will mask these events.
508 if (mac_cstat
& MAC_CSTAT_PS
)
511 if (mac_cstat
& MAC_CSTAT_PRCV
)
512 gp
->pause_last_time_recvd
= (mac_cstat
>> 16);
517 static int gem_mif_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
519 u32 mif_status
= readl(gp
->regs
+ MIF_STATUS
);
520 u32 reg_val
, changed_bits
;
522 reg_val
= (mif_status
& MIF_STATUS_DATA
) >> 16;
523 changed_bits
= (mif_status
& MIF_STATUS_STAT
);
525 gem_handle_mif_event(gp
, reg_val
, changed_bits
);
530 static int gem_pci_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
532 u32 pci_estat
= readl(gp
->regs
+ GREG_PCIESTAT
);
534 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
535 gp
->pdev
->device
== PCI_DEVICE_ID_SUN_GEM
) {
536 netdev_err(dev
, "PCI error [%04x]", pci_estat
);
538 if (pci_estat
& GREG_PCIESTAT_BADACK
)
539 pr_cont(" <No ACK64# during ABS64 cycle>");
540 if (pci_estat
& GREG_PCIESTAT_DTRTO
)
541 pr_cont(" <Delayed transaction timeout>");
542 if (pci_estat
& GREG_PCIESTAT_OTHER
)
546 pci_estat
|= GREG_PCIESTAT_OTHER
;
547 netdev_err(dev
, "PCI error\n");
550 if (pci_estat
& GREG_PCIESTAT_OTHER
) {
553 /* Interrogate PCI config space for the
556 pci_read_config_word(gp
->pdev
, PCI_STATUS
,
558 netdev_err(dev
, "Read PCI cfg space status [%04x]\n",
560 if (pci_cfg_stat
& PCI_STATUS_PARITY
)
561 netdev_err(dev
, "PCI parity error detected\n");
562 if (pci_cfg_stat
& PCI_STATUS_SIG_TARGET_ABORT
)
563 netdev_err(dev
, "PCI target abort\n");
564 if (pci_cfg_stat
& PCI_STATUS_REC_TARGET_ABORT
)
565 netdev_err(dev
, "PCI master acks target abort\n");
566 if (pci_cfg_stat
& PCI_STATUS_REC_MASTER_ABORT
)
567 netdev_err(dev
, "PCI master abort\n");
568 if (pci_cfg_stat
& PCI_STATUS_SIG_SYSTEM_ERROR
)
569 netdev_err(dev
, "PCI system error SERR#\n");
570 if (pci_cfg_stat
& PCI_STATUS_DETECTED_PARITY
)
571 netdev_err(dev
, "PCI parity error\n");
573 /* Write the error bits back to clear them. */
574 pci_cfg_stat
&= (PCI_STATUS_PARITY
|
575 PCI_STATUS_SIG_TARGET_ABORT
|
576 PCI_STATUS_REC_TARGET_ABORT
|
577 PCI_STATUS_REC_MASTER_ABORT
|
578 PCI_STATUS_SIG_SYSTEM_ERROR
|
579 PCI_STATUS_DETECTED_PARITY
);
580 pci_write_config_word(gp
->pdev
,
581 PCI_STATUS
, pci_cfg_stat
);
584 /* For all PCI errors, we should reset the chip. */
588 /* All non-normal interrupt conditions get serviced here.
589 * Returns non-zero if we should just exit the interrupt
590 * handler right now (ie. if we reset the card which invalidates
591 * all of the other original irq status bits).
593 static int gem_abnormal_irq(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
595 if (gem_status
& GREG_STAT_RXNOBUF
) {
596 /* Frame arrived, no free RX buffers available. */
597 if (netif_msg_rx_err(gp
))
598 printk(KERN_DEBUG
"%s: no buffer for rx frame\n",
600 dev
->stats
.rx_dropped
++;
603 if (gem_status
& GREG_STAT_RXTAGERR
) {
604 /* corrupt RX tag framing */
605 if (netif_msg_rx_err(gp
))
606 printk(KERN_DEBUG
"%s: corrupt rx tag framing\n",
608 dev
->stats
.rx_errors
++;
613 if (gem_status
& GREG_STAT_PCS
) {
614 if (gem_pcs_interrupt(dev
, gp
, gem_status
))
618 if (gem_status
& GREG_STAT_TXMAC
) {
619 if (gem_txmac_interrupt(dev
, gp
, gem_status
))
623 if (gem_status
& GREG_STAT_RXMAC
) {
624 if (gem_rxmac_interrupt(dev
, gp
, gem_status
))
628 if (gem_status
& GREG_STAT_MAC
) {
629 if (gem_mac_interrupt(dev
, gp
, gem_status
))
633 if (gem_status
& GREG_STAT_MIF
) {
634 if (gem_mif_interrupt(dev
, gp
, gem_status
))
638 if (gem_status
& GREG_STAT_PCIERR
) {
639 if (gem_pci_interrupt(dev
, gp
, gem_status
))
646 static __inline__
void gem_tx(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
651 limit
= ((gem_status
& GREG_STAT_TXNR
) >> GREG_STAT_TXNR_SHIFT
);
652 while (entry
!= limit
) {
659 if (netif_msg_tx_done(gp
))
660 printk(KERN_DEBUG
"%s: tx done, slot %d\n",
661 gp
->dev
->name
, entry
);
662 skb
= gp
->tx_skbs
[entry
];
663 if (skb_shinfo(skb
)->nr_frags
) {
664 int last
= entry
+ skb_shinfo(skb
)->nr_frags
;
668 last
&= (TX_RING_SIZE
- 1);
670 walk
= NEXT_TX(walk
);
679 gp
->tx_skbs
[entry
] = NULL
;
680 dev
->stats
.tx_bytes
+= skb
->len
;
682 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
683 txd
= &gp
->init_block
->txd
[entry
];
685 dma_addr
= le64_to_cpu(txd
->buffer
);
686 dma_len
= le64_to_cpu(txd
->control_word
) & TXDCTRL_BUFSZ
;
688 pci_unmap_page(gp
->pdev
, dma_addr
, dma_len
, PCI_DMA_TODEVICE
);
689 entry
= NEXT_TX(entry
);
692 dev
->stats
.tx_packets
++;
697 /* Need to make the tx_old update visible to gem_start_xmit()
698 * before checking for netif_queue_stopped(). Without the
699 * memory barrier, there is a small possibility that gem_start_xmit()
700 * will miss it and cause the queue to be stopped forever.
704 if (unlikely(netif_queue_stopped(dev
) &&
705 TX_BUFFS_AVAIL(gp
) > (MAX_SKB_FRAGS
+ 1))) {
706 struct netdev_queue
*txq
= netdev_get_tx_queue(dev
, 0);
708 __netif_tx_lock(txq
, smp_processor_id());
709 if (netif_queue_stopped(dev
) &&
710 TX_BUFFS_AVAIL(gp
) > (MAX_SKB_FRAGS
+ 1))
711 netif_wake_queue(dev
);
712 __netif_tx_unlock(txq
);
716 static __inline__
void gem_post_rxds(struct gem
*gp
, int limit
)
718 int cluster_start
, curr
, count
, kick
;
720 cluster_start
= curr
= (gp
->rx_new
& ~(4 - 1));
724 while (curr
!= limit
) {
725 curr
= NEXT_RX(curr
);
727 struct gem_rxd
*rxd
=
728 &gp
->init_block
->rxd
[cluster_start
];
730 rxd
->status_word
= cpu_to_le64(RXDCTRL_FRESH(gp
));
732 cluster_start
= NEXT_RX(cluster_start
);
733 if (cluster_start
== curr
)
742 writel(kick
, gp
->regs
+ RXDMA_KICK
);
746 #define ALIGNED_RX_SKB_ADDR(addr) \
747 ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr))
748 static __inline__
struct sk_buff
*gem_alloc_skb(struct net_device
*dev
, int size
,
751 struct sk_buff
*skb
= alloc_skb(size
+ 64, gfp_flags
);
754 unsigned long offset
= ALIGNED_RX_SKB_ADDR(skb
->data
);
755 skb_reserve(skb
, offset
);
761 static int gem_rx(struct gem
*gp
, int work_to_do
)
763 struct net_device
*dev
= gp
->dev
;
764 int entry
, drops
, work_done
= 0;
768 if (netif_msg_rx_status(gp
))
769 printk(KERN_DEBUG
"%s: rx interrupt, done: %d, rx_new: %d\n",
770 gp
->dev
->name
, readl(gp
->regs
+ RXDMA_DONE
), gp
->rx_new
);
774 done
= readl(gp
->regs
+ RXDMA_DONE
);
776 struct gem_rxd
*rxd
= &gp
->init_block
->rxd
[entry
];
778 u64 status
= le64_to_cpu(rxd
->status_word
);
782 if ((status
& RXDCTRL_OWN
) != 0)
785 if (work_done
>= RX_RING_SIZE
|| work_done
>= work_to_do
)
788 /* When writing back RX descriptor, GEM writes status
789 * then buffer address, possibly in separate transactions.
790 * If we don't wait for the chip to write both, we could
791 * post a new buffer to this descriptor then have GEM spam
792 * on the buffer address. We sync on the RX completion
793 * register to prevent this from happening.
796 done
= readl(gp
->regs
+ RXDMA_DONE
);
801 /* We can now account for the work we're about to do */
804 skb
= gp
->rx_skbs
[entry
];
806 len
= (status
& RXDCTRL_BUFSZ
) >> 16;
807 if ((len
< ETH_ZLEN
) || (status
& RXDCTRL_BAD
)) {
808 dev
->stats
.rx_errors
++;
810 dev
->stats
.rx_length_errors
++;
811 if (len
& RXDCTRL_BAD
)
812 dev
->stats
.rx_crc_errors
++;
814 /* We'll just return it to GEM. */
816 dev
->stats
.rx_dropped
++;
820 dma_addr
= le64_to_cpu(rxd
->buffer
);
821 if (len
> RX_COPY_THRESHOLD
) {
822 struct sk_buff
*new_skb
;
824 new_skb
= gem_alloc_skb(dev
, RX_BUF_ALLOC_SIZE(gp
), GFP_ATOMIC
);
825 if (new_skb
== NULL
) {
829 pci_unmap_page(gp
->pdev
, dma_addr
,
830 RX_BUF_ALLOC_SIZE(gp
),
832 gp
->rx_skbs
[entry
] = new_skb
;
833 skb_put(new_skb
, (gp
->rx_buf_sz
+ RX_OFFSET
));
834 rxd
->buffer
= cpu_to_le64(pci_map_page(gp
->pdev
,
835 virt_to_page(new_skb
->data
),
836 offset_in_page(new_skb
->data
),
837 RX_BUF_ALLOC_SIZE(gp
),
838 PCI_DMA_FROMDEVICE
));
839 skb_reserve(new_skb
, RX_OFFSET
);
841 /* Trim the original skb for the netif. */
844 struct sk_buff
*copy_skb
= netdev_alloc_skb(dev
, len
+ 2);
846 if (copy_skb
== NULL
) {
851 skb_reserve(copy_skb
, 2);
852 skb_put(copy_skb
, len
);
853 pci_dma_sync_single_for_cpu(gp
->pdev
, dma_addr
, len
, PCI_DMA_FROMDEVICE
);
854 skb_copy_from_linear_data(skb
, copy_skb
->data
, len
);
855 pci_dma_sync_single_for_device(gp
->pdev
, dma_addr
, len
, PCI_DMA_FROMDEVICE
);
857 /* We'll reuse the original ring buffer. */
861 csum
= (__force __sum16
)htons((status
& RXDCTRL_TCPCSUM
) ^ 0xffff);
862 skb
->csum
= csum_unfold(csum
);
863 skb
->ip_summed
= CHECKSUM_COMPLETE
;
864 skb
->protocol
= eth_type_trans(skb
, gp
->dev
);
866 napi_gro_receive(&gp
->napi
, skb
);
868 dev
->stats
.rx_packets
++;
869 dev
->stats
.rx_bytes
+= len
;
872 entry
= NEXT_RX(entry
);
875 gem_post_rxds(gp
, entry
);
880 netdev_info(gp
->dev
, "Memory squeeze, deferring packet\n");
885 static int gem_poll(struct napi_struct
*napi
, int budget
)
887 struct gem
*gp
= container_of(napi
, struct gem
, napi
);
888 struct net_device
*dev
= gp
->dev
;
893 /* Handle anomalies */
894 if (unlikely(gp
->status
& GREG_STAT_ABNORMAL
)) {
895 struct netdev_queue
*txq
= netdev_get_tx_queue(dev
, 0);
898 /* We run the abnormal interrupt handling code with
899 * the Tx lock. It only resets the Rx portion of the
900 * chip, but we need to guard it against DMA being
901 * restarted by the link poll timer
903 __netif_tx_lock(txq
, smp_processor_id());
904 reset
= gem_abnormal_irq(dev
, gp
, gp
->status
);
905 __netif_tx_unlock(txq
);
907 gem_schedule_reset(gp
);
913 /* Run TX completion thread */
914 gem_tx(dev
, gp
, gp
->status
);
916 /* Run RX thread. We don't use any locking here,
917 * code willing to do bad things - like cleaning the
918 * rx ring - must call napi_disable(), which
919 * schedule_timeout()'s if polling is already disabled.
921 work_done
+= gem_rx(gp
, budget
- work_done
);
923 if (work_done
>= budget
)
926 gp
->status
= readl(gp
->regs
+ GREG_STAT
);
927 } while (gp
->status
& GREG_STAT_NAPI
);
935 static irqreturn_t
gem_interrupt(int irq
, void *dev_id
)
937 struct net_device
*dev
= dev_id
;
938 struct gem
*gp
= netdev_priv(dev
);
940 if (napi_schedule_prep(&gp
->napi
)) {
941 u32 gem_status
= readl(gp
->regs
+ GREG_STAT
);
943 if (unlikely(gem_status
== 0)) {
944 napi_enable(&gp
->napi
);
947 if (netif_msg_intr(gp
))
948 printk(KERN_DEBUG
"%s: gem_interrupt() gem_status: 0x%x\n",
949 gp
->dev
->name
, gem_status
);
951 gp
->status
= gem_status
;
952 gem_disable_ints(gp
);
953 __napi_schedule(&gp
->napi
);
956 /* If polling was disabled at the time we received that
957 * interrupt, we may return IRQ_HANDLED here while we
958 * should return IRQ_NONE. No big deal...
963 #ifdef CONFIG_NET_POLL_CONTROLLER
964 static void gem_poll_controller(struct net_device
*dev
)
966 struct gem
*gp
= netdev_priv(dev
);
968 disable_irq(gp
->pdev
->irq
);
969 gem_interrupt(gp
->pdev
->irq
, dev
);
970 enable_irq(gp
->pdev
->irq
);
974 static void gem_tx_timeout(struct net_device
*dev
)
976 struct gem
*gp
= netdev_priv(dev
);
978 netdev_err(dev
, "transmit timed out, resetting\n");
980 netdev_err(dev
, "TX_STATE[%08x:%08x:%08x]\n",
981 readl(gp
->regs
+ TXDMA_CFG
),
982 readl(gp
->regs
+ MAC_TXSTAT
),
983 readl(gp
->regs
+ MAC_TXCFG
));
984 netdev_err(dev
, "RX_STATE[%08x:%08x:%08x]\n",
985 readl(gp
->regs
+ RXDMA_CFG
),
986 readl(gp
->regs
+ MAC_RXSTAT
),
987 readl(gp
->regs
+ MAC_RXCFG
));
989 gem_schedule_reset(gp
);
992 static __inline__
int gem_intme(int entry
)
994 /* Algorithm: IRQ every 1/2 of descriptors. */
995 if (!(entry
& ((TX_RING_SIZE
>>1)-1)))
1001 static netdev_tx_t
gem_start_xmit(struct sk_buff
*skb
,
1002 struct net_device
*dev
)
1004 struct gem
*gp
= netdev_priv(dev
);
1009 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1010 const u64 csum_start_off
= skb_checksum_start_offset(skb
);
1011 const u64 csum_stuff_off
= csum_start_off
+ skb
->csum_offset
;
1013 ctrl
= (TXDCTRL_CENAB
|
1014 (csum_start_off
<< 15) |
1015 (csum_stuff_off
<< 21));
1018 if (unlikely(TX_BUFFS_AVAIL(gp
) <= (skb_shinfo(skb
)->nr_frags
+ 1))) {
1019 /* This is a hard error, log it. */
1020 if (!netif_queue_stopped(dev
)) {
1021 netif_stop_queue(dev
);
1022 netdev_err(dev
, "BUG! Tx Ring full when queue awake!\n");
1024 return NETDEV_TX_BUSY
;
1028 gp
->tx_skbs
[entry
] = skb
;
1030 if (skb_shinfo(skb
)->nr_frags
== 0) {
1031 struct gem_txd
*txd
= &gp
->init_block
->txd
[entry
];
1036 mapping
= pci_map_page(gp
->pdev
,
1037 virt_to_page(skb
->data
),
1038 offset_in_page(skb
->data
),
1039 len
, PCI_DMA_TODEVICE
);
1040 ctrl
|= TXDCTRL_SOF
| TXDCTRL_EOF
| len
;
1041 if (gem_intme(entry
))
1042 ctrl
|= TXDCTRL_INTME
;
1043 txd
->buffer
= cpu_to_le64(mapping
);
1045 txd
->control_word
= cpu_to_le64(ctrl
);
1046 entry
= NEXT_TX(entry
);
1048 struct gem_txd
*txd
;
1051 dma_addr_t first_mapping
;
1052 int frag
, first_entry
= entry
;
1055 if (gem_intme(entry
))
1056 intme
|= TXDCTRL_INTME
;
1058 /* We must give this initial chunk to the device last.
1059 * Otherwise we could race with the device.
1061 first_len
= skb_headlen(skb
);
1062 first_mapping
= pci_map_page(gp
->pdev
, virt_to_page(skb
->data
),
1063 offset_in_page(skb
->data
),
1064 first_len
, PCI_DMA_TODEVICE
);
1065 entry
= NEXT_TX(entry
);
1067 for (frag
= 0; frag
< skb_shinfo(skb
)->nr_frags
; frag
++) {
1068 const skb_frag_t
*this_frag
= &skb_shinfo(skb
)->frags
[frag
];
1073 len
= skb_frag_size(this_frag
);
1074 mapping
= skb_frag_dma_map(&gp
->pdev
->dev
, this_frag
,
1075 0, len
, DMA_TO_DEVICE
);
1077 if (frag
== skb_shinfo(skb
)->nr_frags
- 1)
1078 this_ctrl
|= TXDCTRL_EOF
;
1080 txd
= &gp
->init_block
->txd
[entry
];
1081 txd
->buffer
= cpu_to_le64(mapping
);
1083 txd
->control_word
= cpu_to_le64(this_ctrl
| len
);
1085 if (gem_intme(entry
))
1086 intme
|= TXDCTRL_INTME
;
1088 entry
= NEXT_TX(entry
);
1090 txd
= &gp
->init_block
->txd
[first_entry
];
1091 txd
->buffer
= cpu_to_le64(first_mapping
);
1094 cpu_to_le64(ctrl
| TXDCTRL_SOF
| intme
| first_len
);
1098 if (unlikely(TX_BUFFS_AVAIL(gp
) <= (MAX_SKB_FRAGS
+ 1))) {
1099 netif_stop_queue(dev
);
1101 /* netif_stop_queue() must be done before checking
1102 * checking tx index in TX_BUFFS_AVAIL() below, because
1103 * in gem_tx(), we update tx_old before checking for
1104 * netif_queue_stopped().
1107 if (TX_BUFFS_AVAIL(gp
) > (MAX_SKB_FRAGS
+ 1))
1108 netif_wake_queue(dev
);
1110 if (netif_msg_tx_queued(gp
))
1111 printk(KERN_DEBUG
"%s: tx queued, slot %d, skblen %d\n",
1112 dev
->name
, entry
, skb
->len
);
1114 writel(gp
->tx_new
, gp
->regs
+ TXDMA_KICK
);
1116 return NETDEV_TX_OK
;
1119 static void gem_pcs_reset(struct gem
*gp
)
1124 /* Reset PCS unit. */
1125 val
= readl(gp
->regs
+ PCS_MIICTRL
);
1126 val
|= PCS_MIICTRL_RST
;
1127 writel(val
, gp
->regs
+ PCS_MIICTRL
);
1130 while (readl(gp
->regs
+ PCS_MIICTRL
) & PCS_MIICTRL_RST
) {
1136 netdev_warn(gp
->dev
, "PCS reset bit would not clear\n");
1139 static void gem_pcs_reinit_adv(struct gem
*gp
)
1143 /* Make sure PCS is disabled while changing advertisement
1146 val
= readl(gp
->regs
+ PCS_CFG
);
1147 val
&= ~(PCS_CFG_ENABLE
| PCS_CFG_TO
);
1148 writel(val
, gp
->regs
+ PCS_CFG
);
1150 /* Advertise all capabilities except asymmetric
1153 val
= readl(gp
->regs
+ PCS_MIIADV
);
1154 val
|= (PCS_MIIADV_FD
| PCS_MIIADV_HD
|
1155 PCS_MIIADV_SP
| PCS_MIIADV_AP
);
1156 writel(val
, gp
->regs
+ PCS_MIIADV
);
1158 /* Enable and restart auto-negotiation, disable wrapback/loopback,
1159 * and re-enable PCS.
1161 val
= readl(gp
->regs
+ PCS_MIICTRL
);
1162 val
|= (PCS_MIICTRL_RAN
| PCS_MIICTRL_ANE
);
1163 val
&= ~PCS_MIICTRL_WB
;
1164 writel(val
, gp
->regs
+ PCS_MIICTRL
);
1166 val
= readl(gp
->regs
+ PCS_CFG
);
1167 val
|= PCS_CFG_ENABLE
;
1168 writel(val
, gp
->regs
+ PCS_CFG
);
1170 /* Make sure serialink loopback is off. The meaning
1171 * of this bit is logically inverted based upon whether
1172 * you are in Serialink or SERDES mode.
1174 val
= readl(gp
->regs
+ PCS_SCTRL
);
1175 if (gp
->phy_type
== phy_serialink
)
1176 val
&= ~PCS_SCTRL_LOOP
;
1178 val
|= PCS_SCTRL_LOOP
;
1179 writel(val
, gp
->regs
+ PCS_SCTRL
);
1182 #define STOP_TRIES 32
1184 static void gem_reset(struct gem
*gp
)
1189 /* Make sure we won't get any more interrupts */
1190 writel(0xffffffff, gp
->regs
+ GREG_IMASK
);
1192 /* Reset the chip */
1193 writel(gp
->swrst_base
| GREG_SWRST_TXRST
| GREG_SWRST_RXRST
,
1194 gp
->regs
+ GREG_SWRST
);
1200 val
= readl(gp
->regs
+ GREG_SWRST
);
1203 } while (val
& (GREG_SWRST_TXRST
| GREG_SWRST_RXRST
));
1206 netdev_err(gp
->dev
, "SW reset is ghetto\n");
1208 if (gp
->phy_type
== phy_serialink
|| gp
->phy_type
== phy_serdes
)
1209 gem_pcs_reinit_adv(gp
);
1212 static void gem_start_dma(struct gem
*gp
)
1216 /* We are ready to rock, turn everything on. */
1217 val
= readl(gp
->regs
+ TXDMA_CFG
);
1218 writel(val
| TXDMA_CFG_ENABLE
, gp
->regs
+ TXDMA_CFG
);
1219 val
= readl(gp
->regs
+ RXDMA_CFG
);
1220 writel(val
| RXDMA_CFG_ENABLE
, gp
->regs
+ RXDMA_CFG
);
1221 val
= readl(gp
->regs
+ MAC_TXCFG
);
1222 writel(val
| MAC_TXCFG_ENAB
, gp
->regs
+ MAC_TXCFG
);
1223 val
= readl(gp
->regs
+ MAC_RXCFG
);
1224 writel(val
| MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
1226 (void) readl(gp
->regs
+ MAC_RXCFG
);
1229 gem_enable_ints(gp
);
1231 writel(RX_RING_SIZE
- 4, gp
->regs
+ RXDMA_KICK
);
1234 /* DMA won't be actually stopped before about 4ms tho ...
1236 static void gem_stop_dma(struct gem
*gp
)
1240 /* We are done rocking, turn everything off. */
1241 val
= readl(gp
->regs
+ TXDMA_CFG
);
1242 writel(val
& ~TXDMA_CFG_ENABLE
, gp
->regs
+ TXDMA_CFG
);
1243 val
= readl(gp
->regs
+ RXDMA_CFG
);
1244 writel(val
& ~RXDMA_CFG_ENABLE
, gp
->regs
+ RXDMA_CFG
);
1245 val
= readl(gp
->regs
+ MAC_TXCFG
);
1246 writel(val
& ~MAC_TXCFG_ENAB
, gp
->regs
+ MAC_TXCFG
);
1247 val
= readl(gp
->regs
+ MAC_RXCFG
);
1248 writel(val
& ~MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
1250 (void) readl(gp
->regs
+ MAC_RXCFG
);
1252 /* Need to wait a bit ... done by the caller */
1256 // XXX dbl check what that function should do when called on PCS PHY
1257 static void gem_begin_auto_negotiation(struct gem
*gp
, struct ethtool_cmd
*ep
)
1259 u32 advertise
, features
;
1264 if (gp
->phy_type
!= phy_mii_mdio0
&&
1265 gp
->phy_type
!= phy_mii_mdio1
)
1268 /* Setup advertise */
1269 if (found_mii_phy(gp
))
1270 features
= gp
->phy_mii
.def
->features
;
1274 advertise
= features
& ADVERTISE_MASK
;
1275 if (gp
->phy_mii
.advertising
!= 0)
1276 advertise
&= gp
->phy_mii
.advertising
;
1278 autoneg
= gp
->want_autoneg
;
1279 speed
= gp
->phy_mii
.speed
;
1280 duplex
= gp
->phy_mii
.duplex
;
1282 /* Setup link parameters */
1285 if (ep
->autoneg
== AUTONEG_ENABLE
) {
1286 advertise
= ep
->advertising
;
1290 speed
= ethtool_cmd_speed(ep
);
1291 duplex
= ep
->duplex
;
1295 /* Sanitize settings based on PHY capabilities */
1296 if ((features
& SUPPORTED_Autoneg
) == 0)
1298 if (speed
== SPEED_1000
&&
1299 !(features
& (SUPPORTED_1000baseT_Half
| SUPPORTED_1000baseT_Full
)))
1301 if (speed
== SPEED_100
&&
1302 !(features
& (SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
)))
1304 if (duplex
== DUPLEX_FULL
&&
1305 !(features
& (SUPPORTED_1000baseT_Full
|
1306 SUPPORTED_100baseT_Full
|
1307 SUPPORTED_10baseT_Full
)))
1308 duplex
= DUPLEX_HALF
;
1312 /* If we are asleep, we don't try to actually setup the PHY, we
1313 * just store the settings
1315 if (!netif_device_present(gp
->dev
)) {
1316 gp
->phy_mii
.autoneg
= gp
->want_autoneg
= autoneg
;
1317 gp
->phy_mii
.speed
= speed
;
1318 gp
->phy_mii
.duplex
= duplex
;
1322 /* Configure PHY & start aneg */
1323 gp
->want_autoneg
= autoneg
;
1325 if (found_mii_phy(gp
))
1326 gp
->phy_mii
.def
->ops
->setup_aneg(&gp
->phy_mii
, advertise
);
1327 gp
->lstate
= link_aneg
;
1329 if (found_mii_phy(gp
))
1330 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
, speed
, duplex
);
1331 gp
->lstate
= link_force_ok
;
1335 gp
->timer_ticks
= 0;
1336 mod_timer(&gp
->link_timer
, jiffies
+ ((12 * HZ
) / 10));
1339 /* A link-up condition has occurred, initialize and enable the
1342 static int gem_set_link_modes(struct gem
*gp
)
1344 struct netdev_queue
*txq
= netdev_get_tx_queue(gp
->dev
, 0);
1345 int full_duplex
, speed
, pause
;
1352 if (found_mii_phy(gp
)) {
1353 if (gp
->phy_mii
.def
->ops
->read_link(&gp
->phy_mii
))
1355 full_duplex
= (gp
->phy_mii
.duplex
== DUPLEX_FULL
);
1356 speed
= gp
->phy_mii
.speed
;
1357 pause
= gp
->phy_mii
.pause
;
1358 } else if (gp
->phy_type
== phy_serialink
||
1359 gp
->phy_type
== phy_serdes
) {
1360 u32 pcs_lpa
= readl(gp
->regs
+ PCS_MIILP
);
1362 if ((pcs_lpa
& PCS_MIIADV_FD
) || gp
->phy_type
== phy_serdes
)
1367 netif_info(gp
, link
, gp
->dev
, "Link is up at %d Mbps, %s-duplex\n",
1368 speed
, (full_duplex
? "full" : "half"));
1371 /* We take the tx queue lock to avoid collisions between
1372 * this code, the tx path and the NAPI-driven error path
1374 __netif_tx_lock(txq
, smp_processor_id());
1376 val
= (MAC_TXCFG_EIPG0
| MAC_TXCFG_NGU
);
1378 val
|= (MAC_TXCFG_ICS
| MAC_TXCFG_ICOLL
);
1380 /* MAC_TXCFG_NBO must be zero. */
1382 writel(val
, gp
->regs
+ MAC_TXCFG
);
1384 val
= (MAC_XIFCFG_OE
| MAC_XIFCFG_LLED
);
1386 (gp
->phy_type
== phy_mii_mdio0
||
1387 gp
->phy_type
== phy_mii_mdio1
)) {
1388 val
|= MAC_XIFCFG_DISE
;
1389 } else if (full_duplex
) {
1390 val
|= MAC_XIFCFG_FLED
;
1393 if (speed
== SPEED_1000
)
1394 val
|= (MAC_XIFCFG_GMII
);
1396 writel(val
, gp
->regs
+ MAC_XIFCFG
);
1398 /* If gigabit and half-duplex, enable carrier extension
1399 * mode. Else, disable it.
1401 if (speed
== SPEED_1000
&& !full_duplex
) {
1402 val
= readl(gp
->regs
+ MAC_TXCFG
);
1403 writel(val
| MAC_TXCFG_TCE
, gp
->regs
+ MAC_TXCFG
);
1405 val
= readl(gp
->regs
+ MAC_RXCFG
);
1406 writel(val
| MAC_RXCFG_RCE
, gp
->regs
+ MAC_RXCFG
);
1408 val
= readl(gp
->regs
+ MAC_TXCFG
);
1409 writel(val
& ~MAC_TXCFG_TCE
, gp
->regs
+ MAC_TXCFG
);
1411 val
= readl(gp
->regs
+ MAC_RXCFG
);
1412 writel(val
& ~MAC_RXCFG_RCE
, gp
->regs
+ MAC_RXCFG
);
1415 if (gp
->phy_type
== phy_serialink
||
1416 gp
->phy_type
== phy_serdes
) {
1417 u32 pcs_lpa
= readl(gp
->regs
+ PCS_MIILP
);
1419 if (pcs_lpa
& (PCS_MIIADV_SP
| PCS_MIIADV_AP
))
1424 writel(512, gp
->regs
+ MAC_STIME
);
1426 writel(64, gp
->regs
+ MAC_STIME
);
1427 val
= readl(gp
->regs
+ MAC_MCCFG
);
1429 val
|= (MAC_MCCFG_SPE
| MAC_MCCFG_RPE
);
1431 val
&= ~(MAC_MCCFG_SPE
| MAC_MCCFG_RPE
);
1432 writel(val
, gp
->regs
+ MAC_MCCFG
);
1436 __netif_tx_unlock(txq
);
1438 if (netif_msg_link(gp
)) {
1440 netdev_info(gp
->dev
,
1441 "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
1446 netdev_info(gp
->dev
, "Pause is disabled\n");
1453 static int gem_mdio_link_not_up(struct gem
*gp
)
1455 switch (gp
->lstate
) {
1456 case link_force_ret
:
1457 netif_info(gp
, link
, gp
->dev
,
1458 "Autoneg failed again, keeping forced mode\n");
1459 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
,
1460 gp
->last_forced_speed
, DUPLEX_HALF
);
1461 gp
->timer_ticks
= 5;
1462 gp
->lstate
= link_force_ok
;
1465 /* We try forced modes after a failed aneg only on PHYs that don't
1466 * have "magic_aneg" bit set, which means they internally do the
1467 * while forced-mode thingy. On these, we just restart aneg
1469 if (gp
->phy_mii
.def
->magic_aneg
)
1471 netif_info(gp
, link
, gp
->dev
, "switching to forced 100bt\n");
1472 /* Try forced modes. */
1473 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
, SPEED_100
,
1475 gp
->timer_ticks
= 5;
1476 gp
->lstate
= link_force_try
;
1478 case link_force_try
:
1479 /* Downgrade from 100 to 10 Mbps if necessary.
1480 * If already at 10Mbps, warn user about the
1481 * situation every 10 ticks.
1483 if (gp
->phy_mii
.speed
== SPEED_100
) {
1484 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
, SPEED_10
,
1486 gp
->timer_ticks
= 5;
1487 netif_info(gp
, link
, gp
->dev
,
1488 "switching to forced 10bt\n");
1497 static void gem_link_timer(unsigned long data
)
1499 struct gem
*gp
= (struct gem
*) data
;
1500 struct net_device
*dev
= gp
->dev
;
1501 int restart_aneg
= 0;
1503 /* There's no point doing anything if we're going to be reset */
1504 if (gp
->reset_task_pending
)
1507 if (gp
->phy_type
== phy_serialink
||
1508 gp
->phy_type
== phy_serdes
) {
1509 u32 val
= readl(gp
->regs
+ PCS_MIISTAT
);
1511 if (!(val
& PCS_MIISTAT_LS
))
1512 val
= readl(gp
->regs
+ PCS_MIISTAT
);
1514 if ((val
& PCS_MIISTAT_LS
) != 0) {
1515 if (gp
->lstate
== link_up
)
1518 gp
->lstate
= link_up
;
1519 netif_carrier_on(dev
);
1520 (void)gem_set_link_modes(gp
);
1524 if (found_mii_phy(gp
) && gp
->phy_mii
.def
->ops
->poll_link(&gp
->phy_mii
)) {
1525 /* Ok, here we got a link. If we had it due to a forced
1526 * fallback, and we were configured for autoneg, we do
1527 * retry a short autoneg pass. If you know your hub is
1528 * broken, use ethtool ;)
1530 if (gp
->lstate
== link_force_try
&& gp
->want_autoneg
) {
1531 gp
->lstate
= link_force_ret
;
1532 gp
->last_forced_speed
= gp
->phy_mii
.speed
;
1533 gp
->timer_ticks
= 5;
1534 if (netif_msg_link(gp
))
1536 "Got link after fallback, retrying autoneg once...\n");
1537 gp
->phy_mii
.def
->ops
->setup_aneg(&gp
->phy_mii
, gp
->phy_mii
.advertising
);
1538 } else if (gp
->lstate
!= link_up
) {
1539 gp
->lstate
= link_up
;
1540 netif_carrier_on(dev
);
1541 if (gem_set_link_modes(gp
))
1545 /* If the link was previously up, we restart the
1548 if (gp
->lstate
== link_up
) {
1549 gp
->lstate
= link_down
;
1550 netif_info(gp
, link
, dev
, "Link down\n");
1551 netif_carrier_off(dev
);
1552 gem_schedule_reset(gp
);
1553 /* The reset task will restart the timer */
1555 } else if (++gp
->timer_ticks
> 10) {
1556 if (found_mii_phy(gp
))
1557 restart_aneg
= gem_mdio_link_not_up(gp
);
1563 gem_begin_auto_negotiation(gp
, NULL
);
1567 mod_timer(&gp
->link_timer
, jiffies
+ ((12 * HZ
) / 10));
1570 static void gem_clean_rings(struct gem
*gp
)
1572 struct gem_init_block
*gb
= gp
->init_block
;
1573 struct sk_buff
*skb
;
1575 dma_addr_t dma_addr
;
1577 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1578 struct gem_rxd
*rxd
;
1581 if (gp
->rx_skbs
[i
] != NULL
) {
1582 skb
= gp
->rx_skbs
[i
];
1583 dma_addr
= le64_to_cpu(rxd
->buffer
);
1584 pci_unmap_page(gp
->pdev
, dma_addr
,
1585 RX_BUF_ALLOC_SIZE(gp
),
1586 PCI_DMA_FROMDEVICE
);
1587 dev_kfree_skb_any(skb
);
1588 gp
->rx_skbs
[i
] = NULL
;
1590 rxd
->status_word
= 0;
1595 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1596 if (gp
->tx_skbs
[i
] != NULL
) {
1597 struct gem_txd
*txd
;
1600 skb
= gp
->tx_skbs
[i
];
1601 gp
->tx_skbs
[i
] = NULL
;
1603 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
1604 int ent
= i
& (TX_RING_SIZE
- 1);
1606 txd
= &gb
->txd
[ent
];
1607 dma_addr
= le64_to_cpu(txd
->buffer
);
1608 pci_unmap_page(gp
->pdev
, dma_addr
,
1609 le64_to_cpu(txd
->control_word
) &
1610 TXDCTRL_BUFSZ
, PCI_DMA_TODEVICE
);
1612 if (frag
!= skb_shinfo(skb
)->nr_frags
)
1615 dev_kfree_skb_any(skb
);
1620 static void gem_init_rings(struct gem
*gp
)
1622 struct gem_init_block
*gb
= gp
->init_block
;
1623 struct net_device
*dev
= gp
->dev
;
1625 dma_addr_t dma_addr
;
1627 gp
->rx_new
= gp
->rx_old
= gp
->tx_new
= gp
->tx_old
= 0;
1629 gem_clean_rings(gp
);
1631 gp
->rx_buf_sz
= max(dev
->mtu
+ ETH_HLEN
+ VLAN_HLEN
,
1632 (unsigned)VLAN_ETH_FRAME_LEN
);
1634 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1635 struct sk_buff
*skb
;
1636 struct gem_rxd
*rxd
= &gb
->rxd
[i
];
1638 skb
= gem_alloc_skb(dev
, RX_BUF_ALLOC_SIZE(gp
), GFP_KERNEL
);
1641 rxd
->status_word
= 0;
1645 gp
->rx_skbs
[i
] = skb
;
1646 skb_put(skb
, (gp
->rx_buf_sz
+ RX_OFFSET
));
1647 dma_addr
= pci_map_page(gp
->pdev
,
1648 virt_to_page(skb
->data
),
1649 offset_in_page(skb
->data
),
1650 RX_BUF_ALLOC_SIZE(gp
),
1651 PCI_DMA_FROMDEVICE
);
1652 rxd
->buffer
= cpu_to_le64(dma_addr
);
1654 rxd
->status_word
= cpu_to_le64(RXDCTRL_FRESH(gp
));
1655 skb_reserve(skb
, RX_OFFSET
);
1658 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1659 struct gem_txd
*txd
= &gb
->txd
[i
];
1661 txd
->control_word
= 0;
1668 /* Init PHY interface and start link poll state machine */
1669 static void gem_init_phy(struct gem
*gp
)
1673 /* Revert MIF CFG setting done on stop_phy */
1674 mifcfg
= readl(gp
->regs
+ MIF_CFG
);
1675 mifcfg
&= ~MIF_CFG_BBMODE
;
1676 writel(mifcfg
, gp
->regs
+ MIF_CFG
);
1678 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_APPLE
) {
1681 /* Those delay sucks, the HW seem to love them though, I'll
1682 * serisouly consider breaking some locks here to be able
1683 * to schedule instead
1685 for (i
= 0; i
< 3; i
++) {
1686 #ifdef CONFIG_PPC_PMAC
1687 pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET
, gp
->of_node
, 0, 0);
1690 /* Some PHYs used by apple have problem getting back to us,
1691 * we do an additional reset here
1693 phy_write(gp
, MII_BMCR
, BMCR_RESET
);
1695 if (phy_read(gp
, MII_BMCR
) != 0xffff)
1698 netdev_warn(gp
->dev
, "GMAC PHY not responding !\n");
1702 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
1703 gp
->pdev
->device
== PCI_DEVICE_ID_SUN_GEM
) {
1706 /* Init datapath mode register. */
1707 if (gp
->phy_type
== phy_mii_mdio0
||
1708 gp
->phy_type
== phy_mii_mdio1
) {
1709 val
= PCS_DMODE_MGM
;
1710 } else if (gp
->phy_type
== phy_serialink
) {
1711 val
= PCS_DMODE_SM
| PCS_DMODE_GMOE
;
1713 val
= PCS_DMODE_ESM
;
1716 writel(val
, gp
->regs
+ PCS_DMODE
);
1719 if (gp
->phy_type
== phy_mii_mdio0
||
1720 gp
->phy_type
== phy_mii_mdio1
) {
1721 /* Reset and detect MII PHY */
1722 sungem_phy_probe(&gp
->phy_mii
, gp
->mii_phy_addr
);
1725 if (gp
->phy_mii
.def
&& gp
->phy_mii
.def
->ops
->init
)
1726 gp
->phy_mii
.def
->ops
->init(&gp
->phy_mii
);
1729 gem_pcs_reinit_adv(gp
);
1732 /* Default aneg parameters */
1733 gp
->timer_ticks
= 0;
1734 gp
->lstate
= link_down
;
1735 netif_carrier_off(gp
->dev
);
1737 /* Print things out */
1738 if (gp
->phy_type
== phy_mii_mdio0
||
1739 gp
->phy_type
== phy_mii_mdio1
)
1740 netdev_info(gp
->dev
, "Found %s PHY\n",
1741 gp
->phy_mii
.def
? gp
->phy_mii
.def
->name
: "no");
1743 gem_begin_auto_negotiation(gp
, NULL
);
1746 static void gem_init_dma(struct gem
*gp
)
1748 u64 desc_dma
= (u64
) gp
->gblock_dvma
;
1751 val
= (TXDMA_CFG_BASE
| (0x7ff << 10) | TXDMA_CFG_PMODE
);
1752 writel(val
, gp
->regs
+ TXDMA_CFG
);
1754 writel(desc_dma
>> 32, gp
->regs
+ TXDMA_DBHI
);
1755 writel(desc_dma
& 0xffffffff, gp
->regs
+ TXDMA_DBLOW
);
1756 desc_dma
+= (INIT_BLOCK_TX_RING_SIZE
* sizeof(struct gem_txd
));
1758 writel(0, gp
->regs
+ TXDMA_KICK
);
1760 val
= (RXDMA_CFG_BASE
| (RX_OFFSET
<< 10) |
1761 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128
);
1762 writel(val
, gp
->regs
+ RXDMA_CFG
);
1764 writel(desc_dma
>> 32, gp
->regs
+ RXDMA_DBHI
);
1765 writel(desc_dma
& 0xffffffff, gp
->regs
+ RXDMA_DBLOW
);
1767 writel(RX_RING_SIZE
- 4, gp
->regs
+ RXDMA_KICK
);
1769 val
= (((gp
->rx_pause_off
/ 64) << 0) & RXDMA_PTHRESH_OFF
);
1770 val
|= (((gp
->rx_pause_on
/ 64) << 12) & RXDMA_PTHRESH_ON
);
1771 writel(val
, gp
->regs
+ RXDMA_PTHRESH
);
1773 if (readl(gp
->regs
+ GREG_BIFCFG
) & GREG_BIFCFG_M66EN
)
1774 writel(((5 & RXDMA_BLANK_IPKTS
) |
1775 ((8 << 12) & RXDMA_BLANK_ITIME
)),
1776 gp
->regs
+ RXDMA_BLANK
);
1778 writel(((5 & RXDMA_BLANK_IPKTS
) |
1779 ((4 << 12) & RXDMA_BLANK_ITIME
)),
1780 gp
->regs
+ RXDMA_BLANK
);
1783 static u32
gem_setup_multicast(struct gem
*gp
)
1788 if ((gp
->dev
->flags
& IFF_ALLMULTI
) ||
1789 (netdev_mc_count(gp
->dev
) > 256)) {
1790 for (i
=0; i
<16; i
++)
1791 writel(0xffff, gp
->regs
+ MAC_HASH0
+ (i
<< 2));
1792 rxcfg
|= MAC_RXCFG_HFE
;
1793 } else if (gp
->dev
->flags
& IFF_PROMISC
) {
1794 rxcfg
|= MAC_RXCFG_PROM
;
1798 struct netdev_hw_addr
*ha
;
1801 memset(hash_table
, 0, sizeof(hash_table
));
1802 netdev_for_each_mc_addr(ha
, gp
->dev
) {
1803 crc
= ether_crc_le(6, ha
->addr
);
1805 hash_table
[crc
>> 4] |= 1 << (15 - (crc
& 0xf));
1807 for (i
=0; i
<16; i
++)
1808 writel(hash_table
[i
], gp
->regs
+ MAC_HASH0
+ (i
<< 2));
1809 rxcfg
|= MAC_RXCFG_HFE
;
1815 static void gem_init_mac(struct gem
*gp
)
1817 unsigned char *e
= &gp
->dev
->dev_addr
[0];
1819 writel(0x1bf0, gp
->regs
+ MAC_SNDPAUSE
);
1821 writel(0x00, gp
->regs
+ MAC_IPG0
);
1822 writel(0x08, gp
->regs
+ MAC_IPG1
);
1823 writel(0x04, gp
->regs
+ MAC_IPG2
);
1824 writel(0x40, gp
->regs
+ MAC_STIME
);
1825 writel(0x40, gp
->regs
+ MAC_MINFSZ
);
1827 /* Ethernet payload + header + FCS + optional VLAN tag. */
1828 writel(0x20000000 | (gp
->rx_buf_sz
+ 4), gp
->regs
+ MAC_MAXFSZ
);
1830 writel(0x07, gp
->regs
+ MAC_PASIZE
);
1831 writel(0x04, gp
->regs
+ MAC_JAMSIZE
);
1832 writel(0x10, gp
->regs
+ MAC_ATTLIM
);
1833 writel(0x8808, gp
->regs
+ MAC_MCTYPE
);
1835 writel((e
[5] | (e
[4] << 8)) & 0x3ff, gp
->regs
+ MAC_RANDSEED
);
1837 writel((e
[4] << 8) | e
[5], gp
->regs
+ MAC_ADDR0
);
1838 writel((e
[2] << 8) | e
[3], gp
->regs
+ MAC_ADDR1
);
1839 writel((e
[0] << 8) | e
[1], gp
->regs
+ MAC_ADDR2
);
1841 writel(0, gp
->regs
+ MAC_ADDR3
);
1842 writel(0, gp
->regs
+ MAC_ADDR4
);
1843 writel(0, gp
->regs
+ MAC_ADDR5
);
1845 writel(0x0001, gp
->regs
+ MAC_ADDR6
);
1846 writel(0xc200, gp
->regs
+ MAC_ADDR7
);
1847 writel(0x0180, gp
->regs
+ MAC_ADDR8
);
1849 writel(0, gp
->regs
+ MAC_AFILT0
);
1850 writel(0, gp
->regs
+ MAC_AFILT1
);
1851 writel(0, gp
->regs
+ MAC_AFILT2
);
1852 writel(0, gp
->regs
+ MAC_AF21MSK
);
1853 writel(0, gp
->regs
+ MAC_AF0MSK
);
1855 gp
->mac_rx_cfg
= gem_setup_multicast(gp
);
1857 gp
->mac_rx_cfg
|= MAC_RXCFG_SFCS
;
1859 writel(0, gp
->regs
+ MAC_NCOLL
);
1860 writel(0, gp
->regs
+ MAC_FASUCC
);
1861 writel(0, gp
->regs
+ MAC_ECOLL
);
1862 writel(0, gp
->regs
+ MAC_LCOLL
);
1863 writel(0, gp
->regs
+ MAC_DTIMER
);
1864 writel(0, gp
->regs
+ MAC_PATMPS
);
1865 writel(0, gp
->regs
+ MAC_RFCTR
);
1866 writel(0, gp
->regs
+ MAC_LERR
);
1867 writel(0, gp
->regs
+ MAC_AERR
);
1868 writel(0, gp
->regs
+ MAC_FCSERR
);
1869 writel(0, gp
->regs
+ MAC_RXCVERR
);
1871 /* Clear RX/TX/MAC/XIF config, we will set these up and enable
1872 * them once a link is established.
1874 writel(0, gp
->regs
+ MAC_TXCFG
);
1875 writel(gp
->mac_rx_cfg
, gp
->regs
+ MAC_RXCFG
);
1876 writel(0, gp
->regs
+ MAC_MCCFG
);
1877 writel(0, gp
->regs
+ MAC_XIFCFG
);
1879 /* Setup MAC interrupts. We want to get all of the interesting
1880 * counter expiration events, but we do not want to hear about
1881 * normal rx/tx as the DMA engine tells us that.
1883 writel(MAC_TXSTAT_XMIT
, gp
->regs
+ MAC_TXMASK
);
1884 writel(MAC_RXSTAT_RCV
, gp
->regs
+ MAC_RXMASK
);
1886 /* Don't enable even the PAUSE interrupts for now, we
1887 * make no use of those events other than to record them.
1889 writel(0xffffffff, gp
->regs
+ MAC_MCMASK
);
1891 /* Don't enable GEM's WOL in normal operations
1894 writel(0, gp
->regs
+ WOL_WAKECSR
);
1897 static void gem_init_pause_thresholds(struct gem
*gp
)
1901 /* Calculate pause thresholds. Setting the OFF threshold to the
1902 * full RX fifo size effectively disables PAUSE generation which
1903 * is what we do for 10/100 only GEMs which have FIFOs too small
1904 * to make real gains from PAUSE.
1906 if (gp
->rx_fifo_sz
<= (2 * 1024)) {
1907 gp
->rx_pause_off
= gp
->rx_pause_on
= gp
->rx_fifo_sz
;
1909 int max_frame
= (gp
->rx_buf_sz
+ 4 + 64) & ~63;
1910 int off
= (gp
->rx_fifo_sz
- (max_frame
* 2));
1911 int on
= off
- max_frame
;
1913 gp
->rx_pause_off
= off
;
1914 gp
->rx_pause_on
= on
;
1918 /* Configure the chip "burst" DMA mode & enable some
1919 * HW bug fixes on Apple version
1922 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_APPLE
)
1923 cfg
|= GREG_CFG_RONPAULBIT
| GREG_CFG_ENBUG2FIX
;
1924 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1925 cfg
|= GREG_CFG_IBURST
;
1927 cfg
|= ((31 << 1) & GREG_CFG_TXDMALIM
);
1928 cfg
|= ((31 << 6) & GREG_CFG_RXDMALIM
);
1929 writel(cfg
, gp
->regs
+ GREG_CFG
);
1931 /* If Infinite Burst didn't stick, then use different
1932 * thresholds (and Apple bug fixes don't exist)
1934 if (!(readl(gp
->regs
+ GREG_CFG
) & GREG_CFG_IBURST
)) {
1935 cfg
= ((2 << 1) & GREG_CFG_TXDMALIM
);
1936 cfg
|= ((8 << 6) & GREG_CFG_RXDMALIM
);
1937 writel(cfg
, gp
->regs
+ GREG_CFG
);
1941 static int gem_check_invariants(struct gem
*gp
)
1943 struct pci_dev
*pdev
= gp
->pdev
;
1946 /* On Apple's sungem, we can't rely on registers as the chip
1947 * was been powered down by the firmware. The PHY is looked
1950 if (pdev
->vendor
== PCI_VENDOR_ID_APPLE
) {
1951 gp
->phy_type
= phy_mii_mdio0
;
1952 gp
->tx_fifo_sz
= readl(gp
->regs
+ TXDMA_FSZ
) * 64;
1953 gp
->rx_fifo_sz
= readl(gp
->regs
+ RXDMA_FSZ
) * 64;
1956 mif_cfg
= readl(gp
->regs
+ MIF_CFG
);
1957 mif_cfg
&= ~(MIF_CFG_PSELECT
|MIF_CFG_POLL
|MIF_CFG_BBMODE
|MIF_CFG_MDI1
);
1958 mif_cfg
|= MIF_CFG_MDI0
;
1959 writel(mif_cfg
, gp
->regs
+ MIF_CFG
);
1960 writel(PCS_DMODE_MGM
, gp
->regs
+ PCS_DMODE
);
1961 writel(MAC_XIFCFG_OE
, gp
->regs
+ MAC_XIFCFG
);
1963 /* We hard-code the PHY address so we can properly bring it out of
1964 * reset later on, we can't really probe it at this point, though
1965 * that isn't an issue.
1967 if (gp
->pdev
->device
== PCI_DEVICE_ID_APPLE_K2_GMAC
)
1968 gp
->mii_phy_addr
= 1;
1970 gp
->mii_phy_addr
= 0;
1975 mif_cfg
= readl(gp
->regs
+ MIF_CFG
);
1977 if (pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
1978 pdev
->device
== PCI_DEVICE_ID_SUN_RIO_GEM
) {
1979 /* One of the MII PHYs _must_ be present
1980 * as this chip has no gigabit PHY.
1982 if ((mif_cfg
& (MIF_CFG_MDI0
| MIF_CFG_MDI1
)) == 0) {
1983 pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n",
1989 /* Determine initial PHY interface type guess. MDIO1 is the
1990 * external PHY and thus takes precedence over MDIO0.
1993 if (mif_cfg
& MIF_CFG_MDI1
) {
1994 gp
->phy_type
= phy_mii_mdio1
;
1995 mif_cfg
|= MIF_CFG_PSELECT
;
1996 writel(mif_cfg
, gp
->regs
+ MIF_CFG
);
1997 } else if (mif_cfg
& MIF_CFG_MDI0
) {
1998 gp
->phy_type
= phy_mii_mdio0
;
1999 mif_cfg
&= ~MIF_CFG_PSELECT
;
2000 writel(mif_cfg
, gp
->regs
+ MIF_CFG
);
2005 p
= of_get_property(gp
->of_node
, "shared-pins", NULL
);
2006 if (p
&& !strcmp(p
, "serdes"))
2007 gp
->phy_type
= phy_serdes
;
2010 gp
->phy_type
= phy_serialink
;
2012 if (gp
->phy_type
== phy_mii_mdio1
||
2013 gp
->phy_type
== phy_mii_mdio0
) {
2016 for (i
= 0; i
< 32; i
++) {
2017 gp
->mii_phy_addr
= i
;
2018 if (phy_read(gp
, MII_BMCR
) != 0xffff)
2022 if (pdev
->device
!= PCI_DEVICE_ID_SUN_GEM
) {
2023 pr_err("RIO MII phy will not respond\n");
2026 gp
->phy_type
= phy_serdes
;
2030 /* Fetch the FIFO configurations now too. */
2031 gp
->tx_fifo_sz
= readl(gp
->regs
+ TXDMA_FSZ
) * 64;
2032 gp
->rx_fifo_sz
= readl(gp
->regs
+ RXDMA_FSZ
) * 64;
2034 if (pdev
->vendor
== PCI_VENDOR_ID_SUN
) {
2035 if (pdev
->device
== PCI_DEVICE_ID_SUN_GEM
) {
2036 if (gp
->tx_fifo_sz
!= (9 * 1024) ||
2037 gp
->rx_fifo_sz
!= (20 * 1024)) {
2038 pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2039 gp
->tx_fifo_sz
, gp
->rx_fifo_sz
);
2044 if (gp
->tx_fifo_sz
!= (2 * 1024) ||
2045 gp
->rx_fifo_sz
!= (2 * 1024)) {
2046 pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2047 gp
->tx_fifo_sz
, gp
->rx_fifo_sz
);
2050 gp
->swrst_base
= (64 / 4) << GREG_SWRST_CACHE_SHIFT
;
2057 static void gem_reinit_chip(struct gem
*gp
)
2059 /* Reset the chip */
2062 /* Make sure ints are disabled */
2063 gem_disable_ints(gp
);
2065 /* Allocate & setup ring buffers */
2068 /* Configure pause thresholds */
2069 gem_init_pause_thresholds(gp
);
2071 /* Init DMA & MAC engines */
2077 static void gem_stop_phy(struct gem
*gp
, int wol
)
2081 /* Let the chip settle down a bit, it seems that helps
2082 * for sleep mode on some models
2086 /* Make sure we aren't polling PHY status change. We
2087 * don't currently use that feature though
2089 mifcfg
= readl(gp
->regs
+ MIF_CFG
);
2090 mifcfg
&= ~MIF_CFG_POLL
;
2091 writel(mifcfg
, gp
->regs
+ MIF_CFG
);
2093 if (wol
&& gp
->has_wol
) {
2094 unsigned char *e
= &gp
->dev
->dev_addr
[0];
2097 /* Setup wake-on-lan for MAGIC packet */
2098 writel(MAC_RXCFG_HFE
| MAC_RXCFG_SFCS
| MAC_RXCFG_ENAB
,
2099 gp
->regs
+ MAC_RXCFG
);
2100 writel((e
[4] << 8) | e
[5], gp
->regs
+ WOL_MATCH0
);
2101 writel((e
[2] << 8) | e
[3], gp
->regs
+ WOL_MATCH1
);
2102 writel((e
[0] << 8) | e
[1], gp
->regs
+ WOL_MATCH2
);
2104 writel(WOL_MCOUNT_N
| WOL_MCOUNT_M
, gp
->regs
+ WOL_MCOUNT
);
2105 csr
= WOL_WAKECSR_ENABLE
;
2106 if ((readl(gp
->regs
+ MAC_XIFCFG
) & MAC_XIFCFG_GMII
) == 0)
2107 csr
|= WOL_WAKECSR_MII
;
2108 writel(csr
, gp
->regs
+ WOL_WAKECSR
);
2110 writel(0, gp
->regs
+ MAC_RXCFG
);
2111 (void)readl(gp
->regs
+ MAC_RXCFG
);
2112 /* Machine sleep will die in strange ways if we
2113 * dont wait a bit here, looks like the chip takes
2114 * some time to really shut down
2119 writel(0, gp
->regs
+ MAC_TXCFG
);
2120 writel(0, gp
->regs
+ MAC_XIFCFG
);
2121 writel(0, gp
->regs
+ TXDMA_CFG
);
2122 writel(0, gp
->regs
+ RXDMA_CFG
);
2126 writel(MAC_TXRST_CMD
, gp
->regs
+ MAC_TXRST
);
2127 writel(MAC_RXRST_CMD
, gp
->regs
+ MAC_RXRST
);
2129 if (found_mii_phy(gp
) && gp
->phy_mii
.def
->ops
->suspend
)
2130 gp
->phy_mii
.def
->ops
->suspend(&gp
->phy_mii
);
2132 /* According to Apple, we must set the MDIO pins to this begnign
2133 * state or we may 1) eat more current, 2) damage some PHYs
2135 writel(mifcfg
| MIF_CFG_BBMODE
, gp
->regs
+ MIF_CFG
);
2136 writel(0, gp
->regs
+ MIF_BBCLK
);
2137 writel(0, gp
->regs
+ MIF_BBDATA
);
2138 writel(0, gp
->regs
+ MIF_BBOENAB
);
2139 writel(MAC_XIFCFG_GMII
| MAC_XIFCFG_LBCK
, gp
->regs
+ MAC_XIFCFG
);
2140 (void) readl(gp
->regs
+ MAC_XIFCFG
);
2144 static int gem_do_start(struct net_device
*dev
)
2146 struct gem
*gp
= netdev_priv(dev
);
2149 /* Enable the cell */
2152 /* Make sure PCI access and bus master are enabled */
2153 rc
= pci_enable_device(gp
->pdev
);
2155 netdev_err(dev
, "Failed to enable chip on PCI bus !\n");
2157 /* Put cell and forget it for now, it will be considered as
2158 * still asleep, a new sleep cycle may bring it back
2163 pci_set_master(gp
->pdev
);
2165 /* Init & setup chip hardware */
2166 gem_reinit_chip(gp
);
2168 /* An interrupt might come in handy */
2169 rc
= request_irq(gp
->pdev
->irq
, gem_interrupt
,
2170 IRQF_SHARED
, dev
->name
, (void *)dev
);
2172 netdev_err(dev
, "failed to request irq !\n");
2175 gem_clean_rings(gp
);
2180 /* Mark us as attached again if we come from resume(), this has
2181 * no effect if we weren't detatched and needs to be done now.
2183 netif_device_attach(dev
);
2185 /* Restart NAPI & queues */
2186 gem_netif_start(gp
);
2188 /* Detect & init PHY, start autoneg etc... this will
2189 * eventually result in starting DMA operations when
2197 static void gem_do_stop(struct net_device
*dev
, int wol
)
2199 struct gem
*gp
= netdev_priv(dev
);
2201 /* Stop NAPI and stop tx queue */
2204 /* Make sure ints are disabled. We don't care about
2205 * synchronizing as NAPI is disabled, thus a stray
2206 * interrupt will do nothing bad (our irq handler
2207 * just schedules NAPI)
2209 gem_disable_ints(gp
);
2211 /* Stop the link timer */
2212 del_timer_sync(&gp
->link_timer
);
2214 /* We cannot cancel the reset task while holding the
2215 * rtnl lock, we'd get an A->B / B->A deadlock stituation
2216 * if we did. This is not an issue however as the reset
2217 * task is synchronized vs. us (rtnl_lock) and will do
2218 * nothing if the device is down or suspended. We do
2219 * still clear reset_task_pending to avoid a spurrious
2220 * reset later on in case we do resume before it gets
2223 gp
->reset_task_pending
= 0;
2225 /* If we are going to sleep with WOL */
2232 /* Get rid of rings */
2233 gem_clean_rings(gp
);
2235 /* No irq needed anymore */
2236 free_irq(gp
->pdev
->irq
, (void *) dev
);
2238 /* Shut the PHY down eventually and setup WOL */
2239 gem_stop_phy(gp
, wol
);
2241 /* Make sure bus master is disabled */
2242 pci_disable_device(gp
->pdev
);
2244 /* Cell not needed neither if no WOL */
2249 static void gem_reset_task(struct work_struct
*work
)
2251 struct gem
*gp
= container_of(work
, struct gem
, reset_task
);
2253 /* Lock out the network stack (essentially shield ourselves
2254 * against a racing open, close, control call, or suspend
2258 /* Skip the reset task if suspended or closed, or if it's
2259 * been cancelled by gem_do_stop (see comment there)
2261 if (!netif_device_present(gp
->dev
) ||
2262 !netif_running(gp
->dev
) ||
2263 !gp
->reset_task_pending
) {
2268 /* Stop the link timer */
2269 del_timer_sync(&gp
->link_timer
);
2271 /* Stop NAPI and tx */
2274 /* Reset the chip & rings */
2275 gem_reinit_chip(gp
);
2276 if (gp
->lstate
== link_up
)
2277 gem_set_link_modes(gp
);
2279 /* Restart NAPI and Tx */
2280 gem_netif_start(gp
);
2283 gp
->reset_task_pending
= 0;
2285 /* If the link is not up, restart autoneg, else restart the
2288 if (gp
->lstate
!= link_up
)
2289 gem_begin_auto_negotiation(gp
, NULL
);
2291 mod_timer(&gp
->link_timer
, jiffies
+ ((12 * HZ
) / 10));
2296 static int gem_open(struct net_device
*dev
)
2298 /* We allow open while suspended, we just do nothing,
2299 * the chip will be initialized in resume()
2301 if (netif_device_present(dev
))
2302 return gem_do_start(dev
);
2306 static int gem_close(struct net_device
*dev
)
2308 if (netif_device_present(dev
))
2309 gem_do_stop(dev
, 0);
2315 static int gem_suspend(struct pci_dev
*pdev
, pm_message_t state
)
2317 struct net_device
*dev
= pci_get_drvdata(pdev
);
2318 struct gem
*gp
= netdev_priv(dev
);
2320 /* Lock the network stack first to avoid racing with open/close,
2321 * reset task and setting calls
2325 /* Not running, mark ourselves non-present, no need for
2328 if (!netif_running(dev
)) {
2329 netif_device_detach(dev
);
2333 netdev_info(dev
, "suspending, WakeOnLan %s\n",
2334 (gp
->wake_on_lan
&& netif_running(dev
)) ?
2335 "enabled" : "disabled");
2337 /* Tell the network stack we're gone. gem_do_stop() below will
2338 * synchronize with TX, stop NAPI etc...
2340 netif_device_detach(dev
);
2342 /* Switch off chip, remember WOL setting */
2343 gp
->asleep_wol
= !!gp
->wake_on_lan
;
2344 gem_do_stop(dev
, gp
->asleep_wol
);
2346 /* Unlock the network stack */
2352 static int gem_resume(struct pci_dev
*pdev
)
2354 struct net_device
*dev
= pci_get_drvdata(pdev
);
2355 struct gem
*gp
= netdev_priv(dev
);
2357 /* See locking comment in gem_suspend */
2360 /* Not running, mark ourselves present, no need for
2363 if (!netif_running(dev
)) {
2364 netif_device_attach(dev
);
2369 /* Restart chip. If that fails there isn't much we can do, we
2370 * leave things stopped.
2374 /* If we had WOL enabled, the cell clock was never turned off during
2375 * sleep, so we end up beeing unbalanced. Fix that here
2380 /* Unlock the network stack */
2385 #endif /* CONFIG_PM */
2387 static struct net_device_stats
*gem_get_stats(struct net_device
*dev
)
2389 struct gem
*gp
= netdev_priv(dev
);
2391 /* I have seen this being called while the PM was in progress,
2392 * so we shield against this. Let's also not poke at registers
2393 * while the reset task is going on.
2395 * TODO: Move stats collection elsewhere (link timer ?) and
2396 * make this a nop to avoid all those synchro issues
2398 if (!netif_device_present(dev
) || !netif_running(dev
))
2401 /* Better safe than sorry... */
2402 if (WARN_ON(!gp
->cell_enabled
))
2405 dev
->stats
.rx_crc_errors
+= readl(gp
->regs
+ MAC_FCSERR
);
2406 writel(0, gp
->regs
+ MAC_FCSERR
);
2408 dev
->stats
.rx_frame_errors
+= readl(gp
->regs
+ MAC_AERR
);
2409 writel(0, gp
->regs
+ MAC_AERR
);
2411 dev
->stats
.rx_length_errors
+= readl(gp
->regs
+ MAC_LERR
);
2412 writel(0, gp
->regs
+ MAC_LERR
);
2414 dev
->stats
.tx_aborted_errors
+= readl(gp
->regs
+ MAC_ECOLL
);
2415 dev
->stats
.collisions
+=
2416 (readl(gp
->regs
+ MAC_ECOLL
) + readl(gp
->regs
+ MAC_LCOLL
));
2417 writel(0, gp
->regs
+ MAC_ECOLL
);
2418 writel(0, gp
->regs
+ MAC_LCOLL
);
2423 static int gem_set_mac_address(struct net_device
*dev
, void *addr
)
2425 struct sockaddr
*macaddr
= (struct sockaddr
*) addr
;
2426 struct gem
*gp
= netdev_priv(dev
);
2427 unsigned char *e
= &dev
->dev_addr
[0];
2429 if (!is_valid_ether_addr(macaddr
->sa_data
))
2430 return -EADDRNOTAVAIL
;
2432 memcpy(dev
->dev_addr
, macaddr
->sa_data
, dev
->addr_len
);
2434 /* We'll just catch it later when the device is up'd or resumed */
2435 if (!netif_running(dev
) || !netif_device_present(dev
))
2438 /* Better safe than sorry... */
2439 if (WARN_ON(!gp
->cell_enabled
))
2442 writel((e
[4] << 8) | e
[5], gp
->regs
+ MAC_ADDR0
);
2443 writel((e
[2] << 8) | e
[3], gp
->regs
+ MAC_ADDR1
);
2444 writel((e
[0] << 8) | e
[1], gp
->regs
+ MAC_ADDR2
);
2449 static void gem_set_multicast(struct net_device
*dev
)
2451 struct gem
*gp
= netdev_priv(dev
);
2452 u32 rxcfg
, rxcfg_new
;
2455 if (!netif_running(dev
) || !netif_device_present(dev
))
2458 /* Better safe than sorry... */
2459 if (gp
->reset_task_pending
|| WARN_ON(!gp
->cell_enabled
))
2462 rxcfg
= readl(gp
->regs
+ MAC_RXCFG
);
2463 rxcfg_new
= gem_setup_multicast(gp
);
2465 rxcfg_new
|= MAC_RXCFG_SFCS
;
2467 gp
->mac_rx_cfg
= rxcfg_new
;
2469 writel(rxcfg
& ~MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
2470 while (readl(gp
->regs
+ MAC_RXCFG
) & MAC_RXCFG_ENAB
) {
2476 rxcfg
&= ~(MAC_RXCFG_PROM
| MAC_RXCFG_HFE
);
2479 writel(rxcfg
, gp
->regs
+ MAC_RXCFG
);
2482 /* Jumbo-grams don't seem to work :-( */
2483 #define GEM_MIN_MTU 68
2485 #define GEM_MAX_MTU 1500
2487 #define GEM_MAX_MTU 9000
2490 static int gem_change_mtu(struct net_device
*dev
, int new_mtu
)
2492 struct gem
*gp
= netdev_priv(dev
);
2494 if (new_mtu
< GEM_MIN_MTU
|| new_mtu
> GEM_MAX_MTU
)
2499 /* We'll just catch it later when the device is up'd or resumed */
2500 if (!netif_running(dev
) || !netif_device_present(dev
))
2503 /* Better safe than sorry... */
2504 if (WARN_ON(!gp
->cell_enabled
))
2508 gem_reinit_chip(gp
);
2509 if (gp
->lstate
== link_up
)
2510 gem_set_link_modes(gp
);
2511 gem_netif_start(gp
);
2516 static void gem_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
2518 struct gem
*gp
= netdev_priv(dev
);
2520 strlcpy(info
->driver
, DRV_NAME
, sizeof(info
->driver
));
2521 strlcpy(info
->version
, DRV_VERSION
, sizeof(info
->version
));
2522 strlcpy(info
->bus_info
, pci_name(gp
->pdev
), sizeof(info
->bus_info
));
2525 static int gem_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
2527 struct gem
*gp
= netdev_priv(dev
);
2529 if (gp
->phy_type
== phy_mii_mdio0
||
2530 gp
->phy_type
== phy_mii_mdio1
) {
2531 if (gp
->phy_mii
.def
)
2532 cmd
->supported
= gp
->phy_mii
.def
->features
;
2534 cmd
->supported
= (SUPPORTED_10baseT_Half
|
2535 SUPPORTED_10baseT_Full
);
2537 /* XXX hardcoded stuff for now */
2538 cmd
->port
= PORT_MII
;
2539 cmd
->transceiver
= XCVR_EXTERNAL
;
2540 cmd
->phy_address
= 0; /* XXX fixed PHYAD */
2542 /* Return current PHY settings */
2543 cmd
->autoneg
= gp
->want_autoneg
;
2544 ethtool_cmd_speed_set(cmd
, gp
->phy_mii
.speed
);
2545 cmd
->duplex
= gp
->phy_mii
.duplex
;
2546 cmd
->advertising
= gp
->phy_mii
.advertising
;
2548 /* If we started with a forced mode, we don't have a default
2549 * advertise set, we need to return something sensible so
2550 * userland can re-enable autoneg properly.
2552 if (cmd
->advertising
== 0)
2553 cmd
->advertising
= cmd
->supported
;
2554 } else { // XXX PCS ?
2556 (SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
|
2557 SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
|
2559 cmd
->advertising
= cmd
->supported
;
2560 ethtool_cmd_speed_set(cmd
, 0);
2561 cmd
->duplex
= cmd
->port
= cmd
->phy_address
=
2562 cmd
->transceiver
= cmd
->autoneg
= 0;
2564 /* serdes means usually a Fibre connector, with most fixed */
2565 if (gp
->phy_type
== phy_serdes
) {
2566 cmd
->port
= PORT_FIBRE
;
2567 cmd
->supported
= (SUPPORTED_1000baseT_Half
|
2568 SUPPORTED_1000baseT_Full
|
2569 SUPPORTED_FIBRE
| SUPPORTED_Autoneg
|
2570 SUPPORTED_Pause
| SUPPORTED_Asym_Pause
);
2571 cmd
->advertising
= cmd
->supported
;
2572 cmd
->transceiver
= XCVR_INTERNAL
;
2573 if (gp
->lstate
== link_up
)
2574 ethtool_cmd_speed_set(cmd
, SPEED_1000
);
2575 cmd
->duplex
= DUPLEX_FULL
;
2579 cmd
->maxtxpkt
= cmd
->maxrxpkt
= 0;
2584 static int gem_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
2586 struct gem
*gp
= netdev_priv(dev
);
2587 u32 speed
= ethtool_cmd_speed(cmd
);
2589 /* Verify the settings we care about. */
2590 if (cmd
->autoneg
!= AUTONEG_ENABLE
&&
2591 cmd
->autoneg
!= AUTONEG_DISABLE
)
2594 if (cmd
->autoneg
== AUTONEG_ENABLE
&&
2595 cmd
->advertising
== 0)
2598 if (cmd
->autoneg
== AUTONEG_DISABLE
&&
2599 ((speed
!= SPEED_1000
&&
2600 speed
!= SPEED_100
&&
2601 speed
!= SPEED_10
) ||
2602 (cmd
->duplex
!= DUPLEX_HALF
&&
2603 cmd
->duplex
!= DUPLEX_FULL
)))
2606 /* Apply settings and restart link process. */
2607 if (netif_device_present(gp
->dev
)) {
2608 del_timer_sync(&gp
->link_timer
);
2609 gem_begin_auto_negotiation(gp
, cmd
);
2615 static int gem_nway_reset(struct net_device
*dev
)
2617 struct gem
*gp
= netdev_priv(dev
);
2619 if (!gp
->want_autoneg
)
2622 /* Restart link process */
2623 if (netif_device_present(gp
->dev
)) {
2624 del_timer_sync(&gp
->link_timer
);
2625 gem_begin_auto_negotiation(gp
, NULL
);
2631 static u32
gem_get_msglevel(struct net_device
*dev
)
2633 struct gem
*gp
= netdev_priv(dev
);
2634 return gp
->msg_enable
;
2637 static void gem_set_msglevel(struct net_device
*dev
, u32 value
)
2639 struct gem
*gp
= netdev_priv(dev
);
2640 gp
->msg_enable
= value
;
2644 /* Add more when I understand how to program the chip */
2645 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2647 #define WOL_SUPPORTED_MASK (WAKE_MAGIC)
2649 static void gem_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
2651 struct gem
*gp
= netdev_priv(dev
);
2653 /* Add more when I understand how to program the chip */
2655 wol
->supported
= WOL_SUPPORTED_MASK
;
2656 wol
->wolopts
= gp
->wake_on_lan
;
2663 static int gem_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
2665 struct gem
*gp
= netdev_priv(dev
);
2669 gp
->wake_on_lan
= wol
->wolopts
& WOL_SUPPORTED_MASK
;
2673 static const struct ethtool_ops gem_ethtool_ops
= {
2674 .get_drvinfo
= gem_get_drvinfo
,
2675 .get_link
= ethtool_op_get_link
,
2676 .get_settings
= gem_get_settings
,
2677 .set_settings
= gem_set_settings
,
2678 .nway_reset
= gem_nway_reset
,
2679 .get_msglevel
= gem_get_msglevel
,
2680 .set_msglevel
= gem_set_msglevel
,
2681 .get_wol
= gem_get_wol
,
2682 .set_wol
= gem_set_wol
,
2685 static int gem_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
2687 struct gem
*gp
= netdev_priv(dev
);
2688 struct mii_ioctl_data
*data
= if_mii(ifr
);
2689 int rc
= -EOPNOTSUPP
;
2691 /* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that
2692 * netif_device_present() is true and holds rtnl_lock for us
2693 * so we have nothing to worry about
2697 case SIOCGMIIPHY
: /* Get address of MII PHY in use. */
2698 data
->phy_id
= gp
->mii_phy_addr
;
2699 /* Fallthrough... */
2701 case SIOCGMIIREG
: /* Read MII PHY register. */
2702 data
->val_out
= __phy_read(gp
, data
->phy_id
& 0x1f,
2703 data
->reg_num
& 0x1f);
2707 case SIOCSMIIREG
: /* Write MII PHY register. */
2708 __phy_write(gp
, data
->phy_id
& 0x1f, data
->reg_num
& 0x1f,
2716 #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
2717 /* Fetch MAC address from vital product data of PCI ROM. */
2718 static int find_eth_addr_in_vpd(void __iomem
*rom_base
, int len
, unsigned char *dev_addr
)
2722 for (this_offset
= 0x20; this_offset
< len
; this_offset
++) {
2723 void __iomem
*p
= rom_base
+ this_offset
;
2726 if (readb(p
+ 0) != 0x90 ||
2727 readb(p
+ 1) != 0x00 ||
2728 readb(p
+ 2) != 0x09 ||
2729 readb(p
+ 3) != 0x4e ||
2730 readb(p
+ 4) != 0x41 ||
2731 readb(p
+ 5) != 0x06)
2737 for (i
= 0; i
< 6; i
++)
2738 dev_addr
[i
] = readb(p
+ i
);
2744 static void get_gem_mac_nonobp(struct pci_dev
*pdev
, unsigned char *dev_addr
)
2747 void __iomem
*p
= pci_map_rom(pdev
, &size
);
2752 found
= readb(p
) == 0x55 &&
2753 readb(p
+ 1) == 0xaa &&
2754 find_eth_addr_in_vpd(p
, (64 * 1024), dev_addr
);
2755 pci_unmap_rom(pdev
, p
);
2760 /* Sun MAC prefix then 3 random bytes. */
2764 get_random_bytes(dev_addr
+ 3, 3);
2766 #endif /* not Sparc and not PPC */
2768 static int __devinit
gem_get_device_address(struct gem
*gp
)
2770 #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
2771 struct net_device
*dev
= gp
->dev
;
2772 const unsigned char *addr
;
2774 addr
= of_get_property(gp
->of_node
, "local-mac-address", NULL
);
2777 addr
= idprom
->id_ethaddr
;
2780 pr_err("%s: can't get mac-address\n", dev
->name
);
2784 memcpy(dev
->dev_addr
, addr
, 6);
2786 get_gem_mac_nonobp(gp
->pdev
, gp
->dev
->dev_addr
);
2791 static void gem_remove_one(struct pci_dev
*pdev
)
2793 struct net_device
*dev
= pci_get_drvdata(pdev
);
2796 struct gem
*gp
= netdev_priv(dev
);
2798 unregister_netdev(dev
);
2800 /* Ensure reset task is truely gone */
2801 cancel_work_sync(&gp
->reset_task
);
2803 /* Free resources */
2804 pci_free_consistent(pdev
,
2805 sizeof(struct gem_init_block
),
2809 pci_release_regions(pdev
);
2812 pci_set_drvdata(pdev
, NULL
);
2816 static const struct net_device_ops gem_netdev_ops
= {
2817 .ndo_open
= gem_open
,
2818 .ndo_stop
= gem_close
,
2819 .ndo_start_xmit
= gem_start_xmit
,
2820 .ndo_get_stats
= gem_get_stats
,
2821 .ndo_set_rx_mode
= gem_set_multicast
,
2822 .ndo_do_ioctl
= gem_ioctl
,
2823 .ndo_tx_timeout
= gem_tx_timeout
,
2824 .ndo_change_mtu
= gem_change_mtu
,
2825 .ndo_validate_addr
= eth_validate_addr
,
2826 .ndo_set_mac_address
= gem_set_mac_address
,
2827 #ifdef CONFIG_NET_POLL_CONTROLLER
2828 .ndo_poll_controller
= gem_poll_controller
,
2832 static int __devinit
gem_init_one(struct pci_dev
*pdev
,
2833 const struct pci_device_id
*ent
)
2835 unsigned long gemreg_base
, gemreg_len
;
2836 struct net_device
*dev
;
2838 int err
, pci_using_dac
;
2840 printk_once(KERN_INFO
"%s", version
);
2842 /* Apple gmac note: during probe, the chip is powered up by
2843 * the arch code to allow the code below to work (and to let
2844 * the chip be probed on the config space. It won't stay powered
2845 * up until the interface is brought up however, so we can't rely
2846 * on register configuration done at this point.
2848 err
= pci_enable_device(pdev
);
2850 pr_err("Cannot enable MMIO operation, aborting\n");
2853 pci_set_master(pdev
);
2855 /* Configure DMA attributes. */
2857 /* All of the GEM documentation states that 64-bit DMA addressing
2858 * is fully supported and should work just fine. However the
2859 * front end for RIO based GEMs is different and only supports
2860 * 32-bit addressing.
2862 * For now we assume the various PPC GEMs are 32-bit only as well.
2864 if (pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
2865 pdev
->device
== PCI_DEVICE_ID_SUN_GEM
&&
2866 !pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
2869 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
2871 pr_err("No usable DMA configuration, aborting\n");
2872 goto err_disable_device
;
2877 gemreg_base
= pci_resource_start(pdev
, 0);
2878 gemreg_len
= pci_resource_len(pdev
, 0);
2880 if ((pci_resource_flags(pdev
, 0) & IORESOURCE_IO
) != 0) {
2881 pr_err("Cannot find proper PCI device base address, aborting\n");
2883 goto err_disable_device
;
2886 dev
= alloc_etherdev(sizeof(*gp
));
2888 pr_err("Etherdev alloc failed, aborting\n");
2890 goto err_disable_device
;
2892 SET_NETDEV_DEV(dev
, &pdev
->dev
);
2894 gp
= netdev_priv(dev
);
2896 err
= pci_request_regions(pdev
, DRV_NAME
);
2898 pr_err("Cannot obtain PCI resources, aborting\n");
2899 goto err_out_free_netdev
;
2903 dev
->base_addr
= (long) pdev
;
2906 gp
->msg_enable
= DEFAULT_MSG
;
2908 init_timer(&gp
->link_timer
);
2909 gp
->link_timer
.function
= gem_link_timer
;
2910 gp
->link_timer
.data
= (unsigned long) gp
;
2912 INIT_WORK(&gp
->reset_task
, gem_reset_task
);
2914 gp
->lstate
= link_down
;
2915 gp
->timer_ticks
= 0;
2916 netif_carrier_off(dev
);
2918 gp
->regs
= ioremap(gemreg_base
, gemreg_len
);
2920 pr_err("Cannot map device registers, aborting\n");
2922 goto err_out_free_res
;
2925 /* On Apple, we want a reference to the Open Firmware device-tree
2926 * node. We use it for clock control.
2928 #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
2929 gp
->of_node
= pci_device_to_OF_node(pdev
);
2932 /* Only Apple version supports WOL afaik */
2933 if (pdev
->vendor
== PCI_VENDOR_ID_APPLE
)
2936 /* Make sure cell is enabled */
2939 /* Make sure everything is stopped and in init state */
2942 /* Fill up the mii_phy structure (even if we won't use it) */
2943 gp
->phy_mii
.dev
= dev
;
2944 gp
->phy_mii
.mdio_read
= _phy_read
;
2945 gp
->phy_mii
.mdio_write
= _phy_write
;
2946 #ifdef CONFIG_PPC_PMAC
2947 gp
->phy_mii
.platform_data
= gp
->of_node
;
2949 /* By default, we start with autoneg */
2950 gp
->want_autoneg
= 1;
2952 /* Check fifo sizes, PHY type, etc... */
2953 if (gem_check_invariants(gp
)) {
2955 goto err_out_iounmap
;
2958 /* It is guaranteed that the returned buffer will be at least
2959 * PAGE_SIZE aligned.
2961 gp
->init_block
= (struct gem_init_block
*)
2962 pci_alloc_consistent(pdev
, sizeof(struct gem_init_block
),
2964 if (!gp
->init_block
) {
2965 pr_err("Cannot allocate init block, aborting\n");
2967 goto err_out_iounmap
;
2970 if (gem_get_device_address(gp
))
2971 goto err_out_free_consistent
;
2973 dev
->netdev_ops
= &gem_netdev_ops
;
2974 netif_napi_add(dev
, &gp
->napi
, gem_poll
, 64);
2975 dev
->ethtool_ops
= &gem_ethtool_ops
;
2976 dev
->watchdog_timeo
= 5 * HZ
;
2977 dev
->irq
= pdev
->irq
;
2980 /* Set that now, in case PM kicks in now */
2981 pci_set_drvdata(pdev
, dev
);
2983 /* We can do scatter/gather and HW checksum */
2984 dev
->hw_features
= NETIF_F_SG
| NETIF_F_HW_CSUM
;
2985 dev
->features
|= dev
->hw_features
| NETIF_F_RXCSUM
;
2987 dev
->features
|= NETIF_F_HIGHDMA
;
2989 /* Register with kernel */
2990 if (register_netdev(dev
)) {
2991 pr_err("Cannot register net device, aborting\n");
2993 goto err_out_free_consistent
;
2996 /* Undo the get_cell with appropriate locking (we could use
2997 * ndo_init/uninit but that would be even more clumsy imho)
3003 netdev_info(dev
, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
3007 err_out_free_consistent
:
3008 gem_remove_one(pdev
);
3014 pci_release_regions(pdev
);
3016 err_out_free_netdev
:
3019 pci_disable_device(pdev
);
3025 static struct pci_driver gem_driver
= {
3026 .name
= GEM_MODULE_NAME
,
3027 .id_table
= gem_pci_tbl
,
3028 .probe
= gem_init_one
,
3029 .remove
= gem_remove_one
,
3031 .suspend
= gem_suspend
,
3032 .resume
= gem_resume
,
3033 #endif /* CONFIG_PM */
3036 static int __init
gem_init(void)
3038 return pci_register_driver(&gem_driver
);
3041 static void __exit
gem_cleanup(void)
3043 pci_unregister_driver(&gem_driver
);
3046 module_init(gem_init
);
3047 module_exit(gem_cleanup
);