spi-topcliff-pch: supports a spi mode setup and bit order setup by IO control
[zen-stable.git] / drivers / net / hippi / rrunner.c
blobe68c941926f16cf44feebe7ef103947592b0263e
1 /*
2 * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
4 * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
6 * Thanks to Essential Communication for providing us with hardware
7 * and very comprehensive documentation without which I would not have
8 * been able to write this driver. A special thank you to John Gibbon
9 * for sorting out the legal issues, with the NDA, allowing the code to
10 * be released under the GPL.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
18 * stupid bugs in my code.
20 * Softnet support and various other patches from Val Henson of
21 * ODS/Essential.
23 * PCI DMA mapping code partly based on work by Francois Romieu.
27 #define DEBUG 1
28 #define RX_DMA_SKBUFF 1
29 #define PKT_COPY_THRESHOLD 512
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/errno.h>
34 #include <linux/ioport.h>
35 #include <linux/pci.h>
36 #include <linux/kernel.h>
37 #include <linux/netdevice.h>
38 #include <linux/hippidevice.h>
39 #include <linux/skbuff.h>
40 #include <linux/init.h>
41 #include <linux/delay.h>
42 #include <linux/mm.h>
43 #include <linux/slab.h>
44 #include <net/sock.h>
46 #include <asm/system.h>
47 #include <asm/cache.h>
48 #include <asm/byteorder.h>
49 #include <asm/io.h>
50 #include <asm/irq.h>
51 #include <asm/uaccess.h>
53 #define rr_if_busy(dev) netif_queue_stopped(dev)
54 #define rr_if_running(dev) netif_running(dev)
56 #include "rrunner.h"
58 #define RUN_AT(x) (jiffies + (x))
61 MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
62 MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
63 MODULE_LICENSE("GPL");
65 static char version[] __devinitdata = "rrunner.c: v0.50 11/11/2002 Jes Sorensen (jes@wildopensource.com)\n";
68 static const struct net_device_ops rr_netdev_ops = {
69 .ndo_open = rr_open,
70 .ndo_stop = rr_close,
71 .ndo_do_ioctl = rr_ioctl,
72 .ndo_start_xmit = rr_start_xmit,
73 .ndo_change_mtu = hippi_change_mtu,
74 .ndo_set_mac_address = hippi_mac_addr,
78 * Implementation notes:
80 * The DMA engine only allows for DMA within physical 64KB chunks of
81 * memory. The current approach of the driver (and stack) is to use
82 * linear blocks of memory for the skbuffs. However, as the data block
83 * is always the first part of the skb and skbs are 2^n aligned so we
84 * are guarantted to get the whole block within one 64KB align 64KB
85 * chunk.
87 * On the long term, relying on being able to allocate 64KB linear
88 * chunks of memory is not feasible and the skb handling code and the
89 * stack will need to know about I/O vectors or something similar.
92 static int __devinit rr_init_one(struct pci_dev *pdev,
93 const struct pci_device_id *ent)
95 struct net_device *dev;
96 static int version_disp;
97 u8 pci_latency;
98 struct rr_private *rrpriv;
99 void *tmpptr;
100 dma_addr_t ring_dma;
101 int ret = -ENOMEM;
103 dev = alloc_hippi_dev(sizeof(struct rr_private));
104 if (!dev)
105 goto out3;
107 ret = pci_enable_device(pdev);
108 if (ret) {
109 ret = -ENODEV;
110 goto out2;
113 rrpriv = netdev_priv(dev);
115 SET_NETDEV_DEV(dev, &pdev->dev);
117 if (pci_request_regions(pdev, "rrunner")) {
118 ret = -EIO;
119 goto out;
122 pci_set_drvdata(pdev, dev);
124 rrpriv->pci_dev = pdev;
126 spin_lock_init(&rrpriv->lock);
128 dev->irq = pdev->irq;
129 dev->netdev_ops = &rr_netdev_ops;
131 dev->base_addr = pci_resource_start(pdev, 0);
133 /* display version info if adapter is found */
134 if (!version_disp) {
135 /* set display flag to TRUE so that */
136 /* we only display this string ONCE */
137 version_disp = 1;
138 printk(version);
141 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
142 if (pci_latency <= 0x58){
143 pci_latency = 0x58;
144 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
147 pci_set_master(pdev);
149 printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
150 "at 0x%08lx, irq %i, PCI latency %i\n", dev->name,
151 dev->base_addr, dev->irq, pci_latency);
154 * Remap the regs into kernel space.
157 rrpriv->regs = ioremap(dev->base_addr, 0x1000);
159 if (!rrpriv->regs){
160 printk(KERN_ERR "%s: Unable to map I/O register, "
161 "RoadRunner will be disabled.\n", dev->name);
162 ret = -EIO;
163 goto out;
166 tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
167 rrpriv->tx_ring = tmpptr;
168 rrpriv->tx_ring_dma = ring_dma;
170 if (!tmpptr) {
171 ret = -ENOMEM;
172 goto out;
175 tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
176 rrpriv->rx_ring = tmpptr;
177 rrpriv->rx_ring_dma = ring_dma;
179 if (!tmpptr) {
180 ret = -ENOMEM;
181 goto out;
184 tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma);
185 rrpriv->evt_ring = tmpptr;
186 rrpriv->evt_ring_dma = ring_dma;
188 if (!tmpptr) {
189 ret = -ENOMEM;
190 goto out;
194 * Don't access any register before this point!
196 #ifdef __BIG_ENDIAN
197 writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
198 &rrpriv->regs->HostCtrl);
199 #endif
201 * Need to add a case for little-endian 64-bit hosts here.
204 rr_init(dev);
206 dev->base_addr = 0;
208 ret = register_netdev(dev);
209 if (ret)
210 goto out;
211 return 0;
213 out:
214 if (rrpriv->rx_ring)
215 pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring,
216 rrpriv->rx_ring_dma);
217 if (rrpriv->tx_ring)
218 pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring,
219 rrpriv->tx_ring_dma);
220 if (rrpriv->regs)
221 iounmap(rrpriv->regs);
222 if (pdev) {
223 pci_release_regions(pdev);
224 pci_set_drvdata(pdev, NULL);
226 out2:
227 free_netdev(dev);
228 out3:
229 return ret;
232 static void __devexit rr_remove_one (struct pci_dev *pdev)
234 struct net_device *dev = pci_get_drvdata(pdev);
236 if (dev) {
237 struct rr_private *rr = netdev_priv(dev);
239 if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)){
240 printk(KERN_ERR "%s: trying to unload running NIC\n",
241 dev->name);
242 writel(HALT_NIC, &rr->regs->HostCtrl);
245 pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring,
246 rr->evt_ring_dma);
247 pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring,
248 rr->rx_ring_dma);
249 pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring,
250 rr->tx_ring_dma);
251 unregister_netdev(dev);
252 iounmap(rr->regs);
253 free_netdev(dev);
254 pci_release_regions(pdev);
255 pci_disable_device(pdev);
256 pci_set_drvdata(pdev, NULL);
262 * Commands are considered to be slow, thus there is no reason to
263 * inline this.
265 static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
267 struct rr_regs __iomem *regs;
268 u32 idx;
270 regs = rrpriv->regs;
272 * This is temporary - it will go away in the final version.
273 * We probably also want to make this function inline.
275 if (readl(&regs->HostCtrl) & NIC_HALTED){
276 printk("issuing command for halted NIC, code 0x%x, "
277 "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
278 if (readl(&regs->Mode) & FATAL_ERR)
279 printk("error codes Fail1 %02x, Fail2 %02x\n",
280 readl(&regs->Fail1), readl(&regs->Fail2));
283 idx = rrpriv->info->cmd_ctrl.pi;
285 writel(*(u32*)(cmd), &regs->CmdRing[idx]);
286 wmb();
288 idx = (idx - 1) % CMD_RING_ENTRIES;
289 rrpriv->info->cmd_ctrl.pi = idx;
290 wmb();
292 if (readl(&regs->Mode) & FATAL_ERR)
293 printk("error code %02x\n", readl(&regs->Fail1));
298 * Reset the board in a sensible manner. The NIC is already halted
299 * when we get here and a spin-lock is held.
301 static int rr_reset(struct net_device *dev)
303 struct rr_private *rrpriv;
304 struct rr_regs __iomem *regs;
305 u32 start_pc;
306 int i;
308 rrpriv = netdev_priv(dev);
309 regs = rrpriv->regs;
311 rr_load_firmware(dev);
313 writel(0x01000000, &regs->TX_state);
314 writel(0xff800000, &regs->RX_state);
315 writel(0, &regs->AssistState);
316 writel(CLEAR_INTA, &regs->LocalCtrl);
317 writel(0x01, &regs->BrkPt);
318 writel(0, &regs->Timer);
319 writel(0, &regs->TimerRef);
320 writel(RESET_DMA, &regs->DmaReadState);
321 writel(RESET_DMA, &regs->DmaWriteState);
322 writel(0, &regs->DmaWriteHostHi);
323 writel(0, &regs->DmaWriteHostLo);
324 writel(0, &regs->DmaReadHostHi);
325 writel(0, &regs->DmaReadHostLo);
326 writel(0, &regs->DmaReadLen);
327 writel(0, &regs->DmaWriteLen);
328 writel(0, &regs->DmaWriteLcl);
329 writel(0, &regs->DmaWriteIPchecksum);
330 writel(0, &regs->DmaReadLcl);
331 writel(0, &regs->DmaReadIPchecksum);
332 writel(0, &regs->PciState);
333 #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
334 writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
335 #elif (BITS_PER_LONG == 64)
336 writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
337 #else
338 writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
339 #endif
341 #if 0
343 * Don't worry, this is just black magic.
345 writel(0xdf000, &regs->RxBase);
346 writel(0xdf000, &regs->RxPrd);
347 writel(0xdf000, &regs->RxCon);
348 writel(0xce000, &regs->TxBase);
349 writel(0xce000, &regs->TxPrd);
350 writel(0xce000, &regs->TxCon);
351 writel(0, &regs->RxIndPro);
352 writel(0, &regs->RxIndCon);
353 writel(0, &regs->RxIndRef);
354 writel(0, &regs->TxIndPro);
355 writel(0, &regs->TxIndCon);
356 writel(0, &regs->TxIndRef);
357 writel(0xcc000, &regs->pad10[0]);
358 writel(0, &regs->DrCmndPro);
359 writel(0, &regs->DrCmndCon);
360 writel(0, &regs->DwCmndPro);
361 writel(0, &regs->DwCmndCon);
362 writel(0, &regs->DwCmndRef);
363 writel(0, &regs->DrDataPro);
364 writel(0, &regs->DrDataCon);
365 writel(0, &regs->DrDataRef);
366 writel(0, &regs->DwDataPro);
367 writel(0, &regs->DwDataCon);
368 writel(0, &regs->DwDataRef);
369 #endif
371 writel(0xffffffff, &regs->MbEvent);
372 writel(0, &regs->Event);
374 writel(0, &regs->TxPi);
375 writel(0, &regs->IpRxPi);
377 writel(0, &regs->EvtCon);
378 writel(0, &regs->EvtPrd);
380 rrpriv->info->evt_ctrl.pi = 0;
382 for (i = 0; i < CMD_RING_ENTRIES; i++)
383 writel(0, &regs->CmdRing[i]);
386 * Why 32 ? is this not cache line size dependent?
388 writel(RBURST_64|WBURST_64, &regs->PciState);
389 wmb();
391 start_pc = rr_read_eeprom_word(rrpriv,
392 offsetof(struct eeprom, rncd_info.FwStart));
394 #if (DEBUG > 1)
395 printk("%s: Executing firmware at address 0x%06x\n",
396 dev->name, start_pc);
397 #endif
399 writel(start_pc + 0x800, &regs->Pc);
400 wmb();
401 udelay(5);
403 writel(start_pc, &regs->Pc);
404 wmb();
406 return 0;
411 * Read a string from the EEPROM.
413 static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
414 unsigned long offset,
415 unsigned char *buf,
416 unsigned long length)
418 struct rr_regs __iomem *regs = rrpriv->regs;
419 u32 misc, io, host, i;
421 io = readl(&regs->ExtIo);
422 writel(0, &regs->ExtIo);
423 misc = readl(&regs->LocalCtrl);
424 writel(0, &regs->LocalCtrl);
425 host = readl(&regs->HostCtrl);
426 writel(host | HALT_NIC, &regs->HostCtrl);
427 mb();
429 for (i = 0; i < length; i++){
430 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
431 mb();
432 buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
433 mb();
436 writel(host, &regs->HostCtrl);
437 writel(misc, &regs->LocalCtrl);
438 writel(io, &regs->ExtIo);
439 mb();
440 return i;
445 * Shortcut to read one word (4 bytes) out of the EEPROM and convert
446 * it to our CPU byte-order.
448 static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
449 size_t offset)
451 __be32 word;
453 if ((rr_read_eeprom(rrpriv, offset,
454 (unsigned char *)&word, 4) == 4))
455 return be32_to_cpu(word);
456 return 0;
461 * Write a string to the EEPROM.
463 * This is only called when the firmware is not running.
465 static unsigned int write_eeprom(struct rr_private *rrpriv,
466 unsigned long offset,
467 unsigned char *buf,
468 unsigned long length)
470 struct rr_regs __iomem *regs = rrpriv->regs;
471 u32 misc, io, data, i, j, ready, error = 0;
473 io = readl(&regs->ExtIo);
474 writel(0, &regs->ExtIo);
475 misc = readl(&regs->LocalCtrl);
476 writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
477 mb();
479 for (i = 0; i < length; i++){
480 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
481 mb();
482 data = buf[i] << 24;
484 * Only try to write the data if it is not the same
485 * value already.
487 if ((readl(&regs->WinData) & 0xff000000) != data){
488 writel(data, &regs->WinData);
489 ready = 0;
490 j = 0;
491 mb();
492 while(!ready){
493 udelay(20);
494 if ((readl(&regs->WinData) & 0xff000000) ==
495 data)
496 ready = 1;
497 mb();
498 if (j++ > 5000){
499 printk("data mismatch: %08x, "
500 "WinData %08x\n", data,
501 readl(&regs->WinData));
502 ready = 1;
503 error = 1;
509 writel(misc, &regs->LocalCtrl);
510 writel(io, &regs->ExtIo);
511 mb();
513 return error;
517 static int __devinit rr_init(struct net_device *dev)
519 struct rr_private *rrpriv;
520 struct rr_regs __iomem *regs;
521 u32 sram_size, rev;
523 rrpriv = netdev_priv(dev);
524 regs = rrpriv->regs;
526 rev = readl(&regs->FwRev);
527 rrpriv->fw_rev = rev;
528 if (rev > 0x00020024)
529 printk(" Firmware revision: %i.%i.%i\n", (rev >> 16),
530 ((rev >> 8) & 0xff), (rev & 0xff));
531 else if (rev >= 0x00020000) {
532 printk(" Firmware revision: %i.%i.%i (2.0.37 or "
533 "later is recommended)\n", (rev >> 16),
534 ((rev >> 8) & 0xff), (rev & 0xff));
535 }else{
536 printk(" Firmware revision too old: %i.%i.%i, please "
537 "upgrade to 2.0.37 or later.\n",
538 (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
541 #if (DEBUG > 2)
542 printk(" Maximum receive rings %i\n", readl(&regs->MaxRxRng));
543 #endif
546 * Read the hardware address from the eeprom. The HW address
547 * is not really necessary for HIPPI but awfully convenient.
548 * The pointer arithmetic to put it in dev_addr is ugly, but
549 * Donald Becker does it this way for the GigE version of this
550 * card and it's shorter and more portable than any
551 * other method I've seen. -VAL
554 *(__be16 *)(dev->dev_addr) =
555 htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA)));
556 *(__be32 *)(dev->dev_addr+2) =
557 htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4])));
559 printk(" MAC: %pM\n", dev->dev_addr);
561 sram_size = rr_read_eeprom_word(rrpriv, 8);
562 printk(" SRAM size 0x%06x\n", sram_size);
564 return 0;
568 static int rr_init1(struct net_device *dev)
570 struct rr_private *rrpriv;
571 struct rr_regs __iomem *regs;
572 unsigned long myjif, flags;
573 struct cmd cmd;
574 u32 hostctrl;
575 int ecode = 0;
576 short i;
578 rrpriv = netdev_priv(dev);
579 regs = rrpriv->regs;
581 spin_lock_irqsave(&rrpriv->lock, flags);
583 hostctrl = readl(&regs->HostCtrl);
584 writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
585 wmb();
587 if (hostctrl & PARITY_ERR){
588 printk("%s: Parity error halting NIC - this is serious!\n",
589 dev->name);
590 spin_unlock_irqrestore(&rrpriv->lock, flags);
591 ecode = -EFAULT;
592 goto error;
595 set_rxaddr(regs, rrpriv->rx_ctrl_dma);
596 set_infoaddr(regs, rrpriv->info_dma);
598 rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
599 rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
600 rrpriv->info->evt_ctrl.mode = 0;
601 rrpriv->info->evt_ctrl.pi = 0;
602 set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
604 rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
605 rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
606 rrpriv->info->cmd_ctrl.mode = 0;
607 rrpriv->info->cmd_ctrl.pi = 15;
609 for (i = 0; i < CMD_RING_ENTRIES; i++) {
610 writel(0, &regs->CmdRing[i]);
613 for (i = 0; i < TX_RING_ENTRIES; i++) {
614 rrpriv->tx_ring[i].size = 0;
615 set_rraddr(&rrpriv->tx_ring[i].addr, 0);
616 rrpriv->tx_skbuff[i] = NULL;
618 rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
619 rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
620 rrpriv->info->tx_ctrl.mode = 0;
621 rrpriv->info->tx_ctrl.pi = 0;
622 set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
625 * Set dirty_tx before we start receiving interrupts, otherwise
626 * the interrupt handler might think it is supposed to process
627 * tx ints before we are up and running, which may cause a null
628 * pointer access in the int handler.
630 rrpriv->tx_full = 0;
631 rrpriv->cur_rx = 0;
632 rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
634 rr_reset(dev);
636 /* Tuning values */
637 writel(0x5000, &regs->ConRetry);
638 writel(0x100, &regs->ConRetryTmr);
639 writel(0x500000, &regs->ConTmout);
640 writel(0x60, &regs->IntrTmr);
641 writel(0x500000, &regs->TxDataMvTimeout);
642 writel(0x200000, &regs->RxDataMvTimeout);
643 writel(0x80, &regs->WriteDmaThresh);
644 writel(0x80, &regs->ReadDmaThresh);
646 rrpriv->fw_running = 0;
647 wmb();
649 hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
650 writel(hostctrl, &regs->HostCtrl);
651 wmb();
653 spin_unlock_irqrestore(&rrpriv->lock, flags);
655 for (i = 0; i < RX_RING_ENTRIES; i++) {
656 struct sk_buff *skb;
657 dma_addr_t addr;
659 rrpriv->rx_ring[i].mode = 0;
660 skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
661 if (!skb) {
662 printk(KERN_WARNING "%s: Unable to allocate memory "
663 "for receive ring - halting NIC\n", dev->name);
664 ecode = -ENOMEM;
665 goto error;
667 rrpriv->rx_skbuff[i] = skb;
668 addr = pci_map_single(rrpriv->pci_dev, skb->data,
669 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
671 * Sanity test to see if we conflict with the DMA
672 * limitations of the Roadrunner.
674 if ((((unsigned long)skb->data) & 0xfff) > ~65320)
675 printk("skb alloc error\n");
677 set_rraddr(&rrpriv->rx_ring[i].addr, addr);
678 rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
681 rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
682 rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
683 rrpriv->rx_ctrl[4].mode = 8;
684 rrpriv->rx_ctrl[4].pi = 0;
685 wmb();
686 set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
688 udelay(1000);
691 * Now start the FirmWare.
693 cmd.code = C_START_FW;
694 cmd.ring = 0;
695 cmd.index = 0;
697 rr_issue_cmd(rrpriv, &cmd);
700 * Give the FirmWare time to chew on the `get running' command.
702 myjif = jiffies + 5 * HZ;
703 while (time_before(jiffies, myjif) && !rrpriv->fw_running)
704 cpu_relax();
706 netif_start_queue(dev);
708 return ecode;
710 error:
712 * We might have gotten here because we are out of memory,
713 * make sure we release everything we allocated before failing
715 for (i = 0; i < RX_RING_ENTRIES; i++) {
716 struct sk_buff *skb = rrpriv->rx_skbuff[i];
718 if (skb) {
719 pci_unmap_single(rrpriv->pci_dev,
720 rrpriv->rx_ring[i].addr.addrlo,
721 dev->mtu + HIPPI_HLEN,
722 PCI_DMA_FROMDEVICE);
723 rrpriv->rx_ring[i].size = 0;
724 set_rraddr(&rrpriv->rx_ring[i].addr, 0);
725 dev_kfree_skb(skb);
726 rrpriv->rx_skbuff[i] = NULL;
729 return ecode;
734 * All events are considered to be slow (RX/TX ints do not generate
735 * events) and are handled here, outside the main interrupt handler,
736 * to reduce the size of the handler.
738 static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
740 struct rr_private *rrpriv;
741 struct rr_regs __iomem *regs;
742 u32 tmp;
744 rrpriv = netdev_priv(dev);
745 regs = rrpriv->regs;
747 while (prodidx != eidx){
748 switch (rrpriv->evt_ring[eidx].code){
749 case E_NIC_UP:
750 tmp = readl(&regs->FwRev);
751 printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
752 "up and running\n", dev->name,
753 (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
754 rrpriv->fw_running = 1;
755 writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
756 wmb();
757 break;
758 case E_LINK_ON:
759 printk(KERN_INFO "%s: Optical link ON\n", dev->name);
760 break;
761 case E_LINK_OFF:
762 printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
763 break;
764 case E_RX_IDLE:
765 printk(KERN_WARNING "%s: RX data not moving\n",
766 dev->name);
767 goto drop;
768 case E_WATCHDOG:
769 printk(KERN_INFO "%s: The watchdog is here to see "
770 "us\n", dev->name);
771 break;
772 case E_INTERN_ERR:
773 printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
774 dev->name);
775 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
776 &regs->HostCtrl);
777 wmb();
778 break;
779 case E_HOST_ERR:
780 printk(KERN_ERR "%s: Host software error\n",
781 dev->name);
782 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
783 &regs->HostCtrl);
784 wmb();
785 break;
787 * TX events.
789 case E_CON_REJ:
790 printk(KERN_WARNING "%s: Connection rejected\n",
791 dev->name);
792 dev->stats.tx_aborted_errors++;
793 break;
794 case E_CON_TMOUT:
795 printk(KERN_WARNING "%s: Connection timeout\n",
796 dev->name);
797 break;
798 case E_DISC_ERR:
799 printk(KERN_WARNING "%s: HIPPI disconnect error\n",
800 dev->name);
801 dev->stats.tx_aborted_errors++;
802 break;
803 case E_INT_PRTY:
804 printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
805 dev->name);
806 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
807 &regs->HostCtrl);
808 wmb();
809 break;
810 case E_TX_IDLE:
811 printk(KERN_WARNING "%s: Transmitter idle\n",
812 dev->name);
813 break;
814 case E_TX_LINK_DROP:
815 printk(KERN_WARNING "%s: Link lost during transmit\n",
816 dev->name);
817 dev->stats.tx_aborted_errors++;
818 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
819 &regs->HostCtrl);
820 wmb();
821 break;
822 case E_TX_INV_RNG:
823 printk(KERN_ERR "%s: Invalid send ring block\n",
824 dev->name);
825 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
826 &regs->HostCtrl);
827 wmb();
828 break;
829 case E_TX_INV_BUF:
830 printk(KERN_ERR "%s: Invalid send buffer address\n",
831 dev->name);
832 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
833 &regs->HostCtrl);
834 wmb();
835 break;
836 case E_TX_INV_DSC:
837 printk(KERN_ERR "%s: Invalid descriptor address\n",
838 dev->name);
839 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
840 &regs->HostCtrl);
841 wmb();
842 break;
844 * RX events.
846 case E_RX_RNG_OUT:
847 printk(KERN_INFO "%s: Receive ring full\n", dev->name);
848 break;
850 case E_RX_PAR_ERR:
851 printk(KERN_WARNING "%s: Receive parity error\n",
852 dev->name);
853 goto drop;
854 case E_RX_LLRC_ERR:
855 printk(KERN_WARNING "%s: Receive LLRC error\n",
856 dev->name);
857 goto drop;
858 case E_PKT_LN_ERR:
859 printk(KERN_WARNING "%s: Receive packet length "
860 "error\n", dev->name);
861 goto drop;
862 case E_DTA_CKSM_ERR:
863 printk(KERN_WARNING "%s: Data checksum error\n",
864 dev->name);
865 goto drop;
866 case E_SHT_BST:
867 printk(KERN_WARNING "%s: Unexpected short burst "
868 "error\n", dev->name);
869 goto drop;
870 case E_STATE_ERR:
871 printk(KERN_WARNING "%s: Recv. state transition"
872 " error\n", dev->name);
873 goto drop;
874 case E_UNEXP_DATA:
875 printk(KERN_WARNING "%s: Unexpected data error\n",
876 dev->name);
877 goto drop;
878 case E_LST_LNK_ERR:
879 printk(KERN_WARNING "%s: Link lost error\n",
880 dev->name);
881 goto drop;
882 case E_FRM_ERR:
883 printk(KERN_WARNING "%s: Framming Error\n",
884 dev->name);
885 goto drop;
886 case E_FLG_SYN_ERR:
887 printk(KERN_WARNING "%s: Flag sync. lost during "
888 "packet\n", dev->name);
889 goto drop;
890 case E_RX_INV_BUF:
891 printk(KERN_ERR "%s: Invalid receive buffer "
892 "address\n", dev->name);
893 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
894 &regs->HostCtrl);
895 wmb();
896 break;
897 case E_RX_INV_DSC:
898 printk(KERN_ERR "%s: Invalid receive descriptor "
899 "address\n", dev->name);
900 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
901 &regs->HostCtrl);
902 wmb();
903 break;
904 case E_RNG_BLK:
905 printk(KERN_ERR "%s: Invalid ring block\n",
906 dev->name);
907 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
908 &regs->HostCtrl);
909 wmb();
910 break;
911 drop:
912 /* Label packet to be dropped.
913 * Actual dropping occurs in rx
914 * handling.
916 * The index of packet we get to drop is
917 * the index of the packet following
918 * the bad packet. -kbf
921 u16 index = rrpriv->evt_ring[eidx].index;
922 index = (index + (RX_RING_ENTRIES - 1)) %
923 RX_RING_ENTRIES;
924 rrpriv->rx_ring[index].mode |=
925 (PACKET_BAD | PACKET_END);
927 break;
928 default:
929 printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
930 dev->name, rrpriv->evt_ring[eidx].code);
932 eidx = (eidx + 1) % EVT_RING_ENTRIES;
935 rrpriv->info->evt_ctrl.pi = eidx;
936 wmb();
937 return eidx;
941 static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
943 struct rr_private *rrpriv = netdev_priv(dev);
944 struct rr_regs __iomem *regs = rrpriv->regs;
946 do {
947 struct rx_desc *desc;
948 u32 pkt_len;
950 desc = &(rrpriv->rx_ring[index]);
951 pkt_len = desc->size;
952 #if (DEBUG > 2)
953 printk("index %i, rxlimit %i\n", index, rxlimit);
954 printk("len %x, mode %x\n", pkt_len, desc->mode);
955 #endif
956 if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
957 dev->stats.rx_dropped++;
958 goto defer;
961 if (pkt_len > 0){
962 struct sk_buff *skb, *rx_skb;
964 rx_skb = rrpriv->rx_skbuff[index];
966 if (pkt_len < PKT_COPY_THRESHOLD) {
967 skb = alloc_skb(pkt_len, GFP_ATOMIC);
968 if (skb == NULL){
969 printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
970 dev->stats.rx_dropped++;
971 goto defer;
972 } else {
973 pci_dma_sync_single_for_cpu(rrpriv->pci_dev,
974 desc->addr.addrlo,
975 pkt_len,
976 PCI_DMA_FROMDEVICE);
978 memcpy(skb_put(skb, pkt_len),
979 rx_skb->data, pkt_len);
981 pci_dma_sync_single_for_device(rrpriv->pci_dev,
982 desc->addr.addrlo,
983 pkt_len,
984 PCI_DMA_FROMDEVICE);
986 }else{
987 struct sk_buff *newskb;
989 newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
990 GFP_ATOMIC);
991 if (newskb){
992 dma_addr_t addr;
994 pci_unmap_single(rrpriv->pci_dev,
995 desc->addr.addrlo, dev->mtu +
996 HIPPI_HLEN, PCI_DMA_FROMDEVICE);
997 skb = rx_skb;
998 skb_put(skb, pkt_len);
999 rrpriv->rx_skbuff[index] = newskb;
1000 addr = pci_map_single(rrpriv->pci_dev,
1001 newskb->data,
1002 dev->mtu + HIPPI_HLEN,
1003 PCI_DMA_FROMDEVICE);
1004 set_rraddr(&desc->addr, addr);
1005 } else {
1006 printk("%s: Out of memory, deferring "
1007 "packet\n", dev->name);
1008 dev->stats.rx_dropped++;
1009 goto defer;
1012 skb->protocol = hippi_type_trans(skb, dev);
1014 netif_rx(skb); /* send it up */
1016 dev->stats.rx_packets++;
1017 dev->stats.rx_bytes += pkt_len;
1019 defer:
1020 desc->mode = 0;
1021 desc->size = dev->mtu + HIPPI_HLEN;
1023 if ((index & 7) == 7)
1024 writel(index, &regs->IpRxPi);
1026 index = (index + 1) % RX_RING_ENTRIES;
1027 } while(index != rxlimit);
1029 rrpriv->cur_rx = index;
1030 wmb();
1034 static irqreturn_t rr_interrupt(int irq, void *dev_id)
1036 struct rr_private *rrpriv;
1037 struct rr_regs __iomem *regs;
1038 struct net_device *dev = (struct net_device *)dev_id;
1039 u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1041 rrpriv = netdev_priv(dev);
1042 regs = rrpriv->regs;
1044 if (!(readl(&regs->HostCtrl) & RR_INT))
1045 return IRQ_NONE;
1047 spin_lock(&rrpriv->lock);
1049 prodidx = readl(&regs->EvtPrd);
1050 txcsmr = (prodidx >> 8) & 0xff;
1051 rxlimit = (prodidx >> 16) & 0xff;
1052 prodidx &= 0xff;
1054 #if (DEBUG > 2)
1055 printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1056 prodidx, rrpriv->info->evt_ctrl.pi);
1057 #endif
1059 * Order here is important. We must handle events
1060 * before doing anything else in order to catch
1061 * such things as LLRC errors, etc -kbf
1064 eidx = rrpriv->info->evt_ctrl.pi;
1065 if (prodidx != eidx)
1066 eidx = rr_handle_event(dev, prodidx, eidx);
1068 rxindex = rrpriv->cur_rx;
1069 if (rxindex != rxlimit)
1070 rx_int(dev, rxlimit, rxindex);
1072 txcon = rrpriv->dirty_tx;
1073 if (txcsmr != txcon) {
1074 do {
1075 /* Due to occational firmware TX producer/consumer out
1076 * of sync. error need to check entry in ring -kbf
1078 if(rrpriv->tx_skbuff[txcon]){
1079 struct tx_desc *desc;
1080 struct sk_buff *skb;
1082 desc = &(rrpriv->tx_ring[txcon]);
1083 skb = rrpriv->tx_skbuff[txcon];
1085 dev->stats.tx_packets++;
1086 dev->stats.tx_bytes += skb->len;
1088 pci_unmap_single(rrpriv->pci_dev,
1089 desc->addr.addrlo, skb->len,
1090 PCI_DMA_TODEVICE);
1091 dev_kfree_skb_irq(skb);
1093 rrpriv->tx_skbuff[txcon] = NULL;
1094 desc->size = 0;
1095 set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1096 desc->mode = 0;
1098 txcon = (txcon + 1) % TX_RING_ENTRIES;
1099 } while (txcsmr != txcon);
1100 wmb();
1102 rrpriv->dirty_tx = txcon;
1103 if (rrpriv->tx_full && rr_if_busy(dev) &&
1104 (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1105 != rrpriv->dirty_tx)){
1106 rrpriv->tx_full = 0;
1107 netif_wake_queue(dev);
1111 eidx |= ((txcsmr << 8) | (rxlimit << 16));
1112 writel(eidx, &regs->EvtCon);
1113 wmb();
1115 spin_unlock(&rrpriv->lock);
1116 return IRQ_HANDLED;
1119 static inline void rr_raz_tx(struct rr_private *rrpriv,
1120 struct net_device *dev)
1122 int i;
1124 for (i = 0; i < TX_RING_ENTRIES; i++) {
1125 struct sk_buff *skb = rrpriv->tx_skbuff[i];
1127 if (skb) {
1128 struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1130 pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1131 skb->len, PCI_DMA_TODEVICE);
1132 desc->size = 0;
1133 set_rraddr(&desc->addr, 0);
1134 dev_kfree_skb(skb);
1135 rrpriv->tx_skbuff[i] = NULL;
1141 static inline void rr_raz_rx(struct rr_private *rrpriv,
1142 struct net_device *dev)
1144 int i;
1146 for (i = 0; i < RX_RING_ENTRIES; i++) {
1147 struct sk_buff *skb = rrpriv->rx_skbuff[i];
1149 if (skb) {
1150 struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1152 pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1153 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
1154 desc->size = 0;
1155 set_rraddr(&desc->addr, 0);
1156 dev_kfree_skb(skb);
1157 rrpriv->rx_skbuff[i] = NULL;
1162 static void rr_timer(unsigned long data)
1164 struct net_device *dev = (struct net_device *)data;
1165 struct rr_private *rrpriv = netdev_priv(dev);
1166 struct rr_regs __iomem *regs = rrpriv->regs;
1167 unsigned long flags;
1169 if (readl(&regs->HostCtrl) & NIC_HALTED){
1170 printk("%s: Restarting nic\n", dev->name);
1171 memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1172 memset(rrpriv->info, 0, sizeof(struct rr_info));
1173 wmb();
1175 rr_raz_tx(rrpriv, dev);
1176 rr_raz_rx(rrpriv, dev);
1178 if (rr_init1(dev)) {
1179 spin_lock_irqsave(&rrpriv->lock, flags);
1180 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1181 &regs->HostCtrl);
1182 spin_unlock_irqrestore(&rrpriv->lock, flags);
1185 rrpriv->timer.expires = RUN_AT(5*HZ);
1186 add_timer(&rrpriv->timer);
1190 static int rr_open(struct net_device *dev)
1192 struct rr_private *rrpriv = netdev_priv(dev);
1193 struct pci_dev *pdev = rrpriv->pci_dev;
1194 struct rr_regs __iomem *regs;
1195 int ecode = 0;
1196 unsigned long flags;
1197 dma_addr_t dma_addr;
1199 regs = rrpriv->regs;
1201 if (rrpriv->fw_rev < 0x00020000) {
1202 printk(KERN_WARNING "%s: trying to configure device with "
1203 "obsolete firmware\n", dev->name);
1204 ecode = -EBUSY;
1205 goto error;
1208 rrpriv->rx_ctrl = pci_alloc_consistent(pdev,
1209 256 * sizeof(struct ring_ctrl),
1210 &dma_addr);
1211 if (!rrpriv->rx_ctrl) {
1212 ecode = -ENOMEM;
1213 goto error;
1215 rrpriv->rx_ctrl_dma = dma_addr;
1216 memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl));
1218 rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info),
1219 &dma_addr);
1220 if (!rrpriv->info) {
1221 ecode = -ENOMEM;
1222 goto error;
1224 rrpriv->info_dma = dma_addr;
1225 memset(rrpriv->info, 0, sizeof(struct rr_info));
1226 wmb();
1228 spin_lock_irqsave(&rrpriv->lock, flags);
1229 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1230 readl(&regs->HostCtrl);
1231 spin_unlock_irqrestore(&rrpriv->lock, flags);
1233 if (request_irq(dev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1234 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1235 dev->name, dev->irq);
1236 ecode = -EAGAIN;
1237 goto error;
1240 if ((ecode = rr_init1(dev)))
1241 goto error;
1243 /* Set the timer to switch to check for link beat and perhaps switch
1244 to an alternate media type. */
1245 init_timer(&rrpriv->timer);
1246 rrpriv->timer.expires = RUN_AT(5*HZ); /* 5 sec. watchdog */
1247 rrpriv->timer.data = (unsigned long)dev;
1248 rrpriv->timer.function = rr_timer; /* timer handler */
1249 add_timer(&rrpriv->timer);
1251 netif_start_queue(dev);
1253 return ecode;
1255 error:
1256 spin_lock_irqsave(&rrpriv->lock, flags);
1257 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1258 spin_unlock_irqrestore(&rrpriv->lock, flags);
1260 if (rrpriv->info) {
1261 pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1262 rrpriv->info_dma);
1263 rrpriv->info = NULL;
1265 if (rrpriv->rx_ctrl) {
1266 pci_free_consistent(pdev, sizeof(struct ring_ctrl),
1267 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1268 rrpriv->rx_ctrl = NULL;
1271 netif_stop_queue(dev);
1273 return ecode;
1277 static void rr_dump(struct net_device *dev)
1279 struct rr_private *rrpriv;
1280 struct rr_regs __iomem *regs;
1281 u32 index, cons;
1282 short i;
1283 int len;
1285 rrpriv = netdev_priv(dev);
1286 regs = rrpriv->regs;
1288 printk("%s: dumping NIC TX rings\n", dev->name);
1290 printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1291 readl(&regs->RxPrd), readl(&regs->TxPrd),
1292 readl(&regs->EvtPrd), readl(&regs->TxPi),
1293 rrpriv->info->tx_ctrl.pi);
1295 printk("Error code 0x%x\n", readl(&regs->Fail1));
1297 index = (((readl(&regs->EvtPrd) >> 8) & 0xff) - 1) % TX_RING_ENTRIES;
1298 cons = rrpriv->dirty_tx;
1299 printk("TX ring index %i, TX consumer %i\n",
1300 index, cons);
1302 if (rrpriv->tx_skbuff[index]){
1303 len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1304 printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1305 for (i = 0; i < len; i++){
1306 if (!(i & 7))
1307 printk("\n");
1308 printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1310 printk("\n");
1313 if (rrpriv->tx_skbuff[cons]){
1314 len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1315 printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1316 printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n",
1317 rrpriv->tx_ring[cons].mode,
1318 rrpriv->tx_ring[cons].size,
1319 (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1320 (unsigned long)rrpriv->tx_skbuff[cons]->data,
1321 (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1322 for (i = 0; i < len; i++){
1323 if (!(i & 7))
1324 printk("\n");
1325 printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1327 printk("\n");
1330 printk("dumping TX ring info:\n");
1331 for (i = 0; i < TX_RING_ENTRIES; i++)
1332 printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1333 rrpriv->tx_ring[i].mode,
1334 rrpriv->tx_ring[i].size,
1335 (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1340 static int rr_close(struct net_device *dev)
1342 struct rr_private *rrpriv;
1343 struct rr_regs __iomem *regs;
1344 unsigned long flags;
1345 u32 tmp;
1346 short i;
1348 netif_stop_queue(dev);
1350 rrpriv = netdev_priv(dev);
1351 regs = rrpriv->regs;
1354 * Lock to make sure we are not cleaning up while another CPU
1355 * is handling interrupts.
1357 spin_lock_irqsave(&rrpriv->lock, flags);
1359 tmp = readl(&regs->HostCtrl);
1360 if (tmp & NIC_HALTED){
1361 printk("%s: NIC already halted\n", dev->name);
1362 rr_dump(dev);
1363 }else{
1364 tmp |= HALT_NIC | RR_CLEAR_INT;
1365 writel(tmp, &regs->HostCtrl);
1366 readl(&regs->HostCtrl);
1369 rrpriv->fw_running = 0;
1371 del_timer_sync(&rrpriv->timer);
1373 writel(0, &regs->TxPi);
1374 writel(0, &regs->IpRxPi);
1376 writel(0, &regs->EvtCon);
1377 writel(0, &regs->EvtPrd);
1379 for (i = 0; i < CMD_RING_ENTRIES; i++)
1380 writel(0, &regs->CmdRing[i]);
1382 rrpriv->info->tx_ctrl.entries = 0;
1383 rrpriv->info->cmd_ctrl.pi = 0;
1384 rrpriv->info->evt_ctrl.pi = 0;
1385 rrpriv->rx_ctrl[4].entries = 0;
1387 rr_raz_tx(rrpriv, dev);
1388 rr_raz_rx(rrpriv, dev);
1390 pci_free_consistent(rrpriv->pci_dev, 256 * sizeof(struct ring_ctrl),
1391 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1392 rrpriv->rx_ctrl = NULL;
1394 pci_free_consistent(rrpriv->pci_dev, sizeof(struct rr_info),
1395 rrpriv->info, rrpriv->info_dma);
1396 rrpriv->info = NULL;
1398 free_irq(dev->irq, dev);
1399 spin_unlock_irqrestore(&rrpriv->lock, flags);
1401 return 0;
1405 static netdev_tx_t rr_start_xmit(struct sk_buff *skb,
1406 struct net_device *dev)
1408 struct rr_private *rrpriv = netdev_priv(dev);
1409 struct rr_regs __iomem *regs = rrpriv->regs;
1410 struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1411 struct ring_ctrl *txctrl;
1412 unsigned long flags;
1413 u32 index, len = skb->len;
1414 u32 *ifield;
1415 struct sk_buff *new_skb;
1417 if (readl(&regs->Mode) & FATAL_ERR)
1418 printk("error codes Fail1 %02x, Fail2 %02x\n",
1419 readl(&regs->Fail1), readl(&regs->Fail2));
1422 * We probably need to deal with tbusy here to prevent overruns.
1425 if (skb_headroom(skb) < 8){
1426 printk("incoming skb too small - reallocating\n");
1427 if (!(new_skb = dev_alloc_skb(len + 8))) {
1428 dev_kfree_skb(skb);
1429 netif_wake_queue(dev);
1430 return NETDEV_TX_OK;
1432 skb_reserve(new_skb, 8);
1433 skb_put(new_skb, len);
1434 skb_copy_from_linear_data(skb, new_skb->data, len);
1435 dev_kfree_skb(skb);
1436 skb = new_skb;
1439 ifield = (u32 *)skb_push(skb, 8);
1441 ifield[0] = 0;
1442 ifield[1] = hcb->ifield;
1445 * We don't need the lock before we are actually going to start
1446 * fiddling with the control blocks.
1448 spin_lock_irqsave(&rrpriv->lock, flags);
1450 txctrl = &rrpriv->info->tx_ctrl;
1452 index = txctrl->pi;
1454 rrpriv->tx_skbuff[index] = skb;
1455 set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single(
1456 rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE));
1457 rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1458 rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1459 txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1460 wmb();
1461 writel(txctrl->pi, &regs->TxPi);
1463 if (txctrl->pi == rrpriv->dirty_tx){
1464 rrpriv->tx_full = 1;
1465 netif_stop_queue(dev);
1468 spin_unlock_irqrestore(&rrpriv->lock, flags);
1470 return NETDEV_TX_OK;
1475 * Read the firmware out of the EEPROM and put it into the SRAM
1476 * (or from user space - later)
1478 * This operation requires the NIC to be halted and is performed with
1479 * interrupts disabled and with the spinlock hold.
1481 static int rr_load_firmware(struct net_device *dev)
1483 struct rr_private *rrpriv;
1484 struct rr_regs __iomem *regs;
1485 size_t eptr, segptr;
1486 int i, j;
1487 u32 localctrl, sptr, len, tmp;
1488 u32 p2len, p2size, nr_seg, revision, io, sram_size;
1490 rrpriv = netdev_priv(dev);
1491 regs = rrpriv->regs;
1493 if (dev->flags & IFF_UP)
1494 return -EBUSY;
1496 if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
1497 printk("%s: Trying to load firmware to a running NIC.\n",
1498 dev->name);
1499 return -EBUSY;
1502 localctrl = readl(&regs->LocalCtrl);
1503 writel(0, &regs->LocalCtrl);
1505 writel(0, &regs->EvtPrd);
1506 writel(0, &regs->RxPrd);
1507 writel(0, &regs->TxPrd);
1510 * First wipe the entire SRAM, otherwise we might run into all
1511 * kinds of trouble ... sigh, this took almost all afternoon
1512 * to track down ;-(
1514 io = readl(&regs->ExtIo);
1515 writel(0, &regs->ExtIo);
1516 sram_size = rr_read_eeprom_word(rrpriv, 8);
1518 for (i = 200; i < sram_size / 4; i++){
1519 writel(i * 4, &regs->WinBase);
1520 mb();
1521 writel(0, &regs->WinData);
1522 mb();
1524 writel(io, &regs->ExtIo);
1525 mb();
1527 eptr = rr_read_eeprom_word(rrpriv,
1528 offsetof(struct eeprom, rncd_info.AddrRunCodeSegs));
1529 eptr = ((eptr & 0x1fffff) >> 3);
1531 p2len = rr_read_eeprom_word(rrpriv, 0x83*4);
1532 p2len = (p2len << 2);
1533 p2size = rr_read_eeprom_word(rrpriv, 0x84*4);
1534 p2size = ((p2size & 0x1fffff) >> 3);
1536 if ((eptr < p2size) || (eptr > (p2size + p2len))){
1537 printk("%s: eptr is invalid\n", dev->name);
1538 goto out;
1541 revision = rr_read_eeprom_word(rrpriv,
1542 offsetof(struct eeprom, manf.HeaderFmt));
1544 if (revision != 1){
1545 printk("%s: invalid firmware format (%i)\n",
1546 dev->name, revision);
1547 goto out;
1550 nr_seg = rr_read_eeprom_word(rrpriv, eptr);
1551 eptr +=4;
1552 #if (DEBUG > 1)
1553 printk("%s: nr_seg %i\n", dev->name, nr_seg);
1554 #endif
1556 for (i = 0; i < nr_seg; i++){
1557 sptr = rr_read_eeprom_word(rrpriv, eptr);
1558 eptr += 4;
1559 len = rr_read_eeprom_word(rrpriv, eptr);
1560 eptr += 4;
1561 segptr = rr_read_eeprom_word(rrpriv, eptr);
1562 segptr = ((segptr & 0x1fffff) >> 3);
1563 eptr += 4;
1564 #if (DEBUG > 1)
1565 printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1566 dev->name, i, sptr, len, segptr);
1567 #endif
1568 for (j = 0; j < len; j++){
1569 tmp = rr_read_eeprom_word(rrpriv, segptr);
1570 writel(sptr, &regs->WinBase);
1571 mb();
1572 writel(tmp, &regs->WinData);
1573 mb();
1574 segptr += 4;
1575 sptr += 4;
1579 out:
1580 writel(localctrl, &regs->LocalCtrl);
1581 mb();
1582 return 0;
1586 static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1588 struct rr_private *rrpriv;
1589 unsigned char *image, *oldimage;
1590 unsigned long flags;
1591 unsigned int i;
1592 int error = -EOPNOTSUPP;
1594 rrpriv = netdev_priv(dev);
1596 switch(cmd){
1597 case SIOCRRGFW:
1598 if (!capable(CAP_SYS_RAWIO)){
1599 return -EPERM;
1602 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1603 if (!image){
1604 printk(KERN_ERR "%s: Unable to allocate memory "
1605 "for EEPROM image\n", dev->name);
1606 return -ENOMEM;
1610 if (rrpriv->fw_running){
1611 printk("%s: Firmware already running\n", dev->name);
1612 error = -EPERM;
1613 goto gf_out;
1616 spin_lock_irqsave(&rrpriv->lock, flags);
1617 i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1618 spin_unlock_irqrestore(&rrpriv->lock, flags);
1619 if (i != EEPROM_BYTES){
1620 printk(KERN_ERR "%s: Error reading EEPROM\n",
1621 dev->name);
1622 error = -EFAULT;
1623 goto gf_out;
1625 error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
1626 if (error)
1627 error = -EFAULT;
1628 gf_out:
1629 kfree(image);
1630 return error;
1632 case SIOCRRPFW:
1633 if (!capable(CAP_SYS_RAWIO)){
1634 return -EPERM;
1637 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1638 oldimage = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1639 if (!image || !oldimage) {
1640 printk(KERN_ERR "%s: Unable to allocate memory "
1641 "for EEPROM image\n", dev->name);
1642 error = -ENOMEM;
1643 goto wf_out;
1646 error = copy_from_user(image, rq->ifr_data, EEPROM_BYTES);
1647 if (error) {
1648 error = -EFAULT;
1649 goto wf_out;
1652 if (rrpriv->fw_running){
1653 printk("%s: Firmware already running\n", dev->name);
1654 error = -EPERM;
1655 goto wf_out;
1658 printk("%s: Updating EEPROM firmware\n", dev->name);
1660 spin_lock_irqsave(&rrpriv->lock, flags);
1661 error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1662 if (error)
1663 printk(KERN_ERR "%s: Error writing EEPROM\n",
1664 dev->name);
1666 i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1667 spin_unlock_irqrestore(&rrpriv->lock, flags);
1669 if (i != EEPROM_BYTES)
1670 printk(KERN_ERR "%s: Error reading back EEPROM "
1671 "image\n", dev->name);
1673 error = memcmp(image, oldimage, EEPROM_BYTES);
1674 if (error){
1675 printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1676 dev->name);
1677 error = -EFAULT;
1679 wf_out:
1680 kfree(oldimage);
1681 kfree(image);
1682 return error;
1684 case SIOCRRID:
1685 return put_user(0x52523032, (int __user *)rq->ifr_data);
1686 default:
1687 return error;
1691 static DEFINE_PCI_DEVICE_TABLE(rr_pci_tbl) = {
1692 { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1693 PCI_ANY_ID, PCI_ANY_ID, },
1694 { 0,}
1696 MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1698 static struct pci_driver rr_driver = {
1699 .name = "rrunner",
1700 .id_table = rr_pci_tbl,
1701 .probe = rr_init_one,
1702 .remove = __devexit_p(rr_remove_one),
1705 static int __init rr_init_module(void)
1707 return pci_register_driver(&rr_driver);
1710 static void __exit rr_cleanup_module(void)
1712 pci_unregister_driver(&rr_driver);
1715 module_init(rr_init_module);
1716 module_exit(rr_cleanup_module);