spi-topcliff-pch: supports a spi mode setup and bit order setup by IO control
[zen-stable.git] / drivers / net / sungem_phy.c
blob58f13adaa5490793ebb01be90b38482ee92ec53b
1 /*
2 * PHY drivers for the sungem ethernet driver.
4 * This file could be shared with other drivers.
6 * (c) 2002-2007, Benjamin Herrenscmidt (benh@kernel.crashing.org)
8 * TODO:
9 * - Add support for PHYs that provide an IRQ line
10 * - Eventually moved the entire polling state machine in
11 * there (out of the eth driver), so that it can easily be
12 * skipped on PHYs that implement it in hardware.
13 * - On LXT971 & BCM5201, Apple uses some chip specific regs
14 * to read the link status. Figure out why and if it makes
15 * sense to do the same (magic aneg ?)
16 * - Apple has some additional power management code for some
17 * Broadcom PHYs that they "hide" from the OpenSource version
18 * of darwin, still need to reverse engineer that
22 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/types.h>
26 #include <linux/netdevice.h>
27 #include <linux/etherdevice.h>
28 #include <linux/mii.h>
29 #include <linux/ethtool.h>
30 #include <linux/delay.h>
32 #ifdef CONFIG_PPC_PMAC
33 #include <asm/prom.h>
34 #endif
36 #include <linux/sungem_phy.h>
38 /* Link modes of the BCM5400 PHY */
39 static const int phy_BCM5400_link_table[8][3] = {
40 { 0, 0, 0 }, /* No link */
41 { 0, 0, 0 }, /* 10BT Half Duplex */
42 { 1, 0, 0 }, /* 10BT Full Duplex */
43 { 0, 1, 0 }, /* 100BT Half Duplex */
44 { 0, 1, 0 }, /* 100BT Half Duplex */
45 { 1, 1, 0 }, /* 100BT Full Duplex*/
46 { 1, 0, 1 }, /* 1000BT */
47 { 1, 0, 1 }, /* 1000BT */
50 static inline int __phy_read(struct mii_phy* phy, int id, int reg)
52 return phy->mdio_read(phy->dev, id, reg);
55 static inline void __phy_write(struct mii_phy* phy, int id, int reg, int val)
57 phy->mdio_write(phy->dev, id, reg, val);
60 static inline int phy_read(struct mii_phy* phy, int reg)
62 return phy->mdio_read(phy->dev, phy->mii_id, reg);
65 static inline void phy_write(struct mii_phy* phy, int reg, int val)
67 phy->mdio_write(phy->dev, phy->mii_id, reg, val);
70 static int reset_one_mii_phy(struct mii_phy* phy, int phy_id)
72 u16 val;
73 int limit = 10000;
75 val = __phy_read(phy, phy_id, MII_BMCR);
76 val &= ~(BMCR_ISOLATE | BMCR_PDOWN);
77 val |= BMCR_RESET;
78 __phy_write(phy, phy_id, MII_BMCR, val);
80 udelay(100);
82 while (--limit) {
83 val = __phy_read(phy, phy_id, MII_BMCR);
84 if ((val & BMCR_RESET) == 0)
85 break;
86 udelay(10);
88 if ((val & BMCR_ISOLATE) && limit > 0)
89 __phy_write(phy, phy_id, MII_BMCR, val & ~BMCR_ISOLATE);
91 return limit <= 0;
94 static int bcm5201_init(struct mii_phy* phy)
96 u16 data;
98 data = phy_read(phy, MII_BCM5201_MULTIPHY);
99 data &= ~MII_BCM5201_MULTIPHY_SUPERISOLATE;
100 phy_write(phy, MII_BCM5201_MULTIPHY, data);
102 phy_write(phy, MII_BCM5201_INTERRUPT, 0);
104 return 0;
107 static int bcm5201_suspend(struct mii_phy* phy)
109 phy_write(phy, MII_BCM5201_INTERRUPT, 0);
110 phy_write(phy, MII_BCM5201_MULTIPHY, MII_BCM5201_MULTIPHY_SUPERISOLATE);
112 return 0;
115 static int bcm5221_init(struct mii_phy* phy)
117 u16 data;
119 data = phy_read(phy, MII_BCM5221_TEST);
120 phy_write(phy, MII_BCM5221_TEST,
121 data | MII_BCM5221_TEST_ENABLE_SHADOWS);
123 data = phy_read(phy, MII_BCM5221_SHDOW_AUX_STAT2);
124 phy_write(phy, MII_BCM5221_SHDOW_AUX_STAT2,
125 data | MII_BCM5221_SHDOW_AUX_STAT2_APD);
127 data = phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
128 phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
129 data | MII_BCM5221_SHDOW_AUX_MODE4_CLKLOPWR);
131 data = phy_read(phy, MII_BCM5221_TEST);
132 phy_write(phy, MII_BCM5221_TEST,
133 data & ~MII_BCM5221_TEST_ENABLE_SHADOWS);
135 return 0;
138 static int bcm5221_suspend(struct mii_phy* phy)
140 u16 data;
142 data = phy_read(phy, MII_BCM5221_TEST);
143 phy_write(phy, MII_BCM5221_TEST,
144 data | MII_BCM5221_TEST_ENABLE_SHADOWS);
146 data = phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
147 phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
148 data | MII_BCM5221_SHDOW_AUX_MODE4_IDDQMODE);
150 return 0;
153 static int bcm5241_init(struct mii_phy* phy)
155 u16 data;
157 data = phy_read(phy, MII_BCM5221_TEST);
158 phy_write(phy, MII_BCM5221_TEST,
159 data | MII_BCM5221_TEST_ENABLE_SHADOWS);
161 data = phy_read(phy, MII_BCM5221_SHDOW_AUX_STAT2);
162 phy_write(phy, MII_BCM5221_SHDOW_AUX_STAT2,
163 data | MII_BCM5221_SHDOW_AUX_STAT2_APD);
165 data = phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
166 phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
167 data & ~MII_BCM5241_SHDOW_AUX_MODE4_STANDBYPWR);
169 data = phy_read(phy, MII_BCM5221_TEST);
170 phy_write(phy, MII_BCM5221_TEST,
171 data & ~MII_BCM5221_TEST_ENABLE_SHADOWS);
173 return 0;
176 static int bcm5241_suspend(struct mii_phy* phy)
178 u16 data;
180 data = phy_read(phy, MII_BCM5221_TEST);
181 phy_write(phy, MII_BCM5221_TEST,
182 data | MII_BCM5221_TEST_ENABLE_SHADOWS);
184 data = phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
185 phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
186 data | MII_BCM5241_SHDOW_AUX_MODE4_STANDBYPWR);
188 return 0;
191 static int bcm5400_init(struct mii_phy* phy)
193 u16 data;
195 /* Configure for gigabit full duplex */
196 data = phy_read(phy, MII_BCM5400_AUXCONTROL);
197 data |= MII_BCM5400_AUXCONTROL_PWR10BASET;
198 phy_write(phy, MII_BCM5400_AUXCONTROL, data);
200 data = phy_read(phy, MII_BCM5400_GB_CONTROL);
201 data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
202 phy_write(phy, MII_BCM5400_GB_CONTROL, data);
204 udelay(100);
206 /* Reset and configure cascaded 10/100 PHY */
207 (void)reset_one_mii_phy(phy, 0x1f);
209 data = __phy_read(phy, 0x1f, MII_BCM5201_MULTIPHY);
210 data |= MII_BCM5201_MULTIPHY_SERIALMODE;
211 __phy_write(phy, 0x1f, MII_BCM5201_MULTIPHY, data);
213 data = phy_read(phy, MII_BCM5400_AUXCONTROL);
214 data &= ~MII_BCM5400_AUXCONTROL_PWR10BASET;
215 phy_write(phy, MII_BCM5400_AUXCONTROL, data);
217 return 0;
220 static int bcm5400_suspend(struct mii_phy* phy)
222 #if 0 /* Commented out in Darwin... someone has those dawn docs ? */
223 phy_write(phy, MII_BMCR, BMCR_PDOWN);
224 #endif
225 return 0;
228 static int bcm5401_init(struct mii_phy* phy)
230 u16 data;
231 int rev;
233 rev = phy_read(phy, MII_PHYSID2) & 0x000f;
234 if (rev == 0 || rev == 3) {
235 /* Some revisions of 5401 appear to need this
236 * initialisation sequence to disable, according
237 * to OF, "tap power management"
239 * WARNING ! OF and Darwin don't agree on the
240 * register addresses. OF seem to interpret the
241 * register numbers below as decimal
243 * Note: This should (and does) match tg3_init_5401phy_dsp
244 * in the tg3.c driver. -DaveM
246 phy_write(phy, 0x18, 0x0c20);
247 phy_write(phy, 0x17, 0x0012);
248 phy_write(phy, 0x15, 0x1804);
249 phy_write(phy, 0x17, 0x0013);
250 phy_write(phy, 0x15, 0x1204);
251 phy_write(phy, 0x17, 0x8006);
252 phy_write(phy, 0x15, 0x0132);
253 phy_write(phy, 0x17, 0x8006);
254 phy_write(phy, 0x15, 0x0232);
255 phy_write(phy, 0x17, 0x201f);
256 phy_write(phy, 0x15, 0x0a20);
259 /* Configure for gigabit full duplex */
260 data = phy_read(phy, MII_BCM5400_GB_CONTROL);
261 data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
262 phy_write(phy, MII_BCM5400_GB_CONTROL, data);
264 udelay(10);
266 /* Reset and configure cascaded 10/100 PHY */
267 (void)reset_one_mii_phy(phy, 0x1f);
269 data = __phy_read(phy, 0x1f, MII_BCM5201_MULTIPHY);
270 data |= MII_BCM5201_MULTIPHY_SERIALMODE;
271 __phy_write(phy, 0x1f, MII_BCM5201_MULTIPHY, data);
273 return 0;
276 static int bcm5401_suspend(struct mii_phy* phy)
278 #if 0 /* Commented out in Darwin... someone has those dawn docs ? */
279 phy_write(phy, MII_BMCR, BMCR_PDOWN);
280 #endif
281 return 0;
284 static int bcm5411_init(struct mii_phy* phy)
286 u16 data;
288 /* Here's some more Apple black magic to setup
289 * some voltage stuffs.
291 phy_write(phy, 0x1c, 0x8c23);
292 phy_write(phy, 0x1c, 0x8ca3);
293 phy_write(phy, 0x1c, 0x8c23);
295 /* Here, Apple seems to want to reset it, do
296 * it as well
298 phy_write(phy, MII_BMCR, BMCR_RESET);
299 phy_write(phy, MII_BMCR, 0x1340);
301 data = phy_read(phy, MII_BCM5400_GB_CONTROL);
302 data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
303 phy_write(phy, MII_BCM5400_GB_CONTROL, data);
305 udelay(10);
307 /* Reset and configure cascaded 10/100 PHY */
308 (void)reset_one_mii_phy(phy, 0x1f);
310 return 0;
313 static int genmii_setup_aneg(struct mii_phy *phy, u32 advertise)
315 u16 ctl, adv;
317 phy->autoneg = 1;
318 phy->speed = SPEED_10;
319 phy->duplex = DUPLEX_HALF;
320 phy->pause = 0;
321 phy->advertising = advertise;
323 /* Setup standard advertise */
324 adv = phy_read(phy, MII_ADVERTISE);
325 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
326 if (advertise & ADVERTISED_10baseT_Half)
327 adv |= ADVERTISE_10HALF;
328 if (advertise & ADVERTISED_10baseT_Full)
329 adv |= ADVERTISE_10FULL;
330 if (advertise & ADVERTISED_100baseT_Half)
331 adv |= ADVERTISE_100HALF;
332 if (advertise & ADVERTISED_100baseT_Full)
333 adv |= ADVERTISE_100FULL;
334 phy_write(phy, MII_ADVERTISE, adv);
336 /* Start/Restart aneg */
337 ctl = phy_read(phy, MII_BMCR);
338 ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
339 phy_write(phy, MII_BMCR, ctl);
341 return 0;
344 static int genmii_setup_forced(struct mii_phy *phy, int speed, int fd)
346 u16 ctl;
348 phy->autoneg = 0;
349 phy->speed = speed;
350 phy->duplex = fd;
351 phy->pause = 0;
353 ctl = phy_read(phy, MII_BMCR);
354 ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_ANENABLE);
356 /* First reset the PHY */
357 phy_write(phy, MII_BMCR, ctl | BMCR_RESET);
359 /* Select speed & duplex */
360 switch(speed) {
361 case SPEED_10:
362 break;
363 case SPEED_100:
364 ctl |= BMCR_SPEED100;
365 break;
366 case SPEED_1000:
367 default:
368 return -EINVAL;
370 if (fd == DUPLEX_FULL)
371 ctl |= BMCR_FULLDPLX;
372 phy_write(phy, MII_BMCR, ctl);
374 return 0;
377 static int genmii_poll_link(struct mii_phy *phy)
379 u16 status;
381 (void)phy_read(phy, MII_BMSR);
382 status = phy_read(phy, MII_BMSR);
383 if ((status & BMSR_LSTATUS) == 0)
384 return 0;
385 if (phy->autoneg && !(status & BMSR_ANEGCOMPLETE))
386 return 0;
387 return 1;
390 static int genmii_read_link(struct mii_phy *phy)
392 u16 lpa;
394 if (phy->autoneg) {
395 lpa = phy_read(phy, MII_LPA);
397 if (lpa & (LPA_10FULL | LPA_100FULL))
398 phy->duplex = DUPLEX_FULL;
399 else
400 phy->duplex = DUPLEX_HALF;
401 if (lpa & (LPA_100FULL | LPA_100HALF))
402 phy->speed = SPEED_100;
403 else
404 phy->speed = SPEED_10;
405 phy->pause = 0;
407 /* On non-aneg, we assume what we put in BMCR is the speed,
408 * though magic-aneg shouldn't prevent this case from occurring
411 return 0;
414 static int generic_suspend(struct mii_phy* phy)
416 phy_write(phy, MII_BMCR, BMCR_PDOWN);
418 return 0;
421 static int bcm5421_init(struct mii_phy* phy)
423 u16 data;
424 unsigned int id;
426 id = (phy_read(phy, MII_PHYSID1) << 16 | phy_read(phy, MII_PHYSID2));
428 /* Revision 0 of 5421 needs some fixups */
429 if (id == 0x002060e0) {
430 /* This is borrowed from MacOS
432 phy_write(phy, 0x18, 0x1007);
433 data = phy_read(phy, 0x18);
434 phy_write(phy, 0x18, data | 0x0400);
435 phy_write(phy, 0x18, 0x0007);
436 data = phy_read(phy, 0x18);
437 phy_write(phy, 0x18, data | 0x0800);
438 phy_write(phy, 0x17, 0x000a);
439 data = phy_read(phy, 0x15);
440 phy_write(phy, 0x15, data | 0x0200);
443 /* Pick up some init code from OF for K2 version */
444 if ((id & 0xfffffff0) == 0x002062e0) {
445 phy_write(phy, 4, 0x01e1);
446 phy_write(phy, 9, 0x0300);
449 /* Check if we can enable automatic low power */
450 #ifdef CONFIG_PPC_PMAC
451 if (phy->platform_data) {
452 struct device_node *np = of_get_parent(phy->platform_data);
453 int can_low_power = 1;
454 if (np == NULL || of_get_property(np, "no-autolowpower", NULL))
455 can_low_power = 0;
456 if (can_low_power) {
457 /* Enable automatic low-power */
458 phy_write(phy, 0x1c, 0x9002);
459 phy_write(phy, 0x1c, 0xa821);
460 phy_write(phy, 0x1c, 0x941d);
463 #endif /* CONFIG_PPC_PMAC */
465 return 0;
468 static int bcm54xx_setup_aneg(struct mii_phy *phy, u32 advertise)
470 u16 ctl, adv;
472 phy->autoneg = 1;
473 phy->speed = SPEED_10;
474 phy->duplex = DUPLEX_HALF;
475 phy->pause = 0;
476 phy->advertising = advertise;
478 /* Setup standard advertise */
479 adv = phy_read(phy, MII_ADVERTISE);
480 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
481 if (advertise & ADVERTISED_10baseT_Half)
482 adv |= ADVERTISE_10HALF;
483 if (advertise & ADVERTISED_10baseT_Full)
484 adv |= ADVERTISE_10FULL;
485 if (advertise & ADVERTISED_100baseT_Half)
486 adv |= ADVERTISE_100HALF;
487 if (advertise & ADVERTISED_100baseT_Full)
488 adv |= ADVERTISE_100FULL;
489 if (advertise & ADVERTISED_Pause)
490 adv |= ADVERTISE_PAUSE_CAP;
491 if (advertise & ADVERTISED_Asym_Pause)
492 adv |= ADVERTISE_PAUSE_ASYM;
493 phy_write(phy, MII_ADVERTISE, adv);
495 /* Setup 1000BT advertise */
496 adv = phy_read(phy, MII_1000BASETCONTROL);
497 adv &= ~(MII_1000BASETCONTROL_FULLDUPLEXCAP|MII_1000BASETCONTROL_HALFDUPLEXCAP);
498 if (advertise & SUPPORTED_1000baseT_Half)
499 adv |= MII_1000BASETCONTROL_HALFDUPLEXCAP;
500 if (advertise & SUPPORTED_1000baseT_Full)
501 adv |= MII_1000BASETCONTROL_FULLDUPLEXCAP;
502 phy_write(phy, MII_1000BASETCONTROL, adv);
504 /* Start/Restart aneg */
505 ctl = phy_read(phy, MII_BMCR);
506 ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
507 phy_write(phy, MII_BMCR, ctl);
509 return 0;
512 static int bcm54xx_setup_forced(struct mii_phy *phy, int speed, int fd)
514 u16 ctl;
516 phy->autoneg = 0;
517 phy->speed = speed;
518 phy->duplex = fd;
519 phy->pause = 0;
521 ctl = phy_read(phy, MII_BMCR);
522 ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_SPD2|BMCR_ANENABLE);
524 /* First reset the PHY */
525 phy_write(phy, MII_BMCR, ctl | BMCR_RESET);
527 /* Select speed & duplex */
528 switch(speed) {
529 case SPEED_10:
530 break;
531 case SPEED_100:
532 ctl |= BMCR_SPEED100;
533 break;
534 case SPEED_1000:
535 ctl |= BMCR_SPD2;
537 if (fd == DUPLEX_FULL)
538 ctl |= BMCR_FULLDPLX;
540 // XXX Should we set the sungem to GII now on 1000BT ?
542 phy_write(phy, MII_BMCR, ctl);
544 return 0;
547 static int bcm54xx_read_link(struct mii_phy *phy)
549 int link_mode;
550 u16 val;
552 if (phy->autoneg) {
553 val = phy_read(phy, MII_BCM5400_AUXSTATUS);
554 link_mode = ((val & MII_BCM5400_AUXSTATUS_LINKMODE_MASK) >>
555 MII_BCM5400_AUXSTATUS_LINKMODE_SHIFT);
556 phy->duplex = phy_BCM5400_link_table[link_mode][0] ?
557 DUPLEX_FULL : DUPLEX_HALF;
558 phy->speed = phy_BCM5400_link_table[link_mode][2] ?
559 SPEED_1000 :
560 (phy_BCM5400_link_table[link_mode][1] ?
561 SPEED_100 : SPEED_10);
562 val = phy_read(phy, MII_LPA);
563 phy->pause = (phy->duplex == DUPLEX_FULL) &&
564 ((val & LPA_PAUSE) != 0);
566 /* On non-aneg, we assume what we put in BMCR is the speed,
567 * though magic-aneg shouldn't prevent this case from occurring
570 return 0;
573 static int marvell88e1111_init(struct mii_phy* phy)
575 u16 rev;
577 /* magic init sequence for rev 0 */
578 rev = phy_read(phy, MII_PHYSID2) & 0x000f;
579 if (rev == 0) {
580 phy_write(phy, 0x1d, 0x000a);
581 phy_write(phy, 0x1e, 0x0821);
583 phy_write(phy, 0x1d, 0x0006);
584 phy_write(phy, 0x1e, 0x8600);
586 phy_write(phy, 0x1d, 0x000b);
587 phy_write(phy, 0x1e, 0x0100);
589 phy_write(phy, 0x1d, 0x0004);
590 phy_write(phy, 0x1e, 0x4850);
592 return 0;
595 #define BCM5421_MODE_MASK (1 << 5)
597 static int bcm5421_poll_link(struct mii_phy* phy)
599 u32 phy_reg;
600 int mode;
602 /* find out in what mode we are */
603 phy_write(phy, MII_NCONFIG, 0x1000);
604 phy_reg = phy_read(phy, MII_NCONFIG);
606 mode = (phy_reg & BCM5421_MODE_MASK) >> 5;
608 if ( mode == BCM54XX_COPPER)
609 return genmii_poll_link(phy);
611 /* try to find out wether we have a link */
612 phy_write(phy, MII_NCONFIG, 0x2000);
613 phy_reg = phy_read(phy, MII_NCONFIG);
615 if (phy_reg & 0x0020)
616 return 0;
617 else
618 return 1;
621 static int bcm5421_read_link(struct mii_phy* phy)
623 u32 phy_reg;
624 int mode;
626 /* find out in what mode we are */
627 phy_write(phy, MII_NCONFIG, 0x1000);
628 phy_reg = phy_read(phy, MII_NCONFIG);
630 mode = (phy_reg & BCM5421_MODE_MASK ) >> 5;
632 if ( mode == BCM54XX_COPPER)
633 return bcm54xx_read_link(phy);
635 phy->speed = SPEED_1000;
637 /* find out wether we are running half- or full duplex */
638 phy_write(phy, MII_NCONFIG, 0x2000);
639 phy_reg = phy_read(phy, MII_NCONFIG);
641 if ( (phy_reg & 0x0080) >> 7)
642 phy->duplex |= DUPLEX_HALF;
643 else
644 phy->duplex |= DUPLEX_FULL;
646 return 0;
649 static int bcm5421_enable_fiber(struct mii_phy* phy, int autoneg)
651 /* enable fiber mode */
652 phy_write(phy, MII_NCONFIG, 0x9020);
653 /* LEDs active in both modes, autosense prio = fiber */
654 phy_write(phy, MII_NCONFIG, 0x945f);
656 if (!autoneg) {
657 /* switch off fibre autoneg */
658 phy_write(phy, MII_NCONFIG, 0xfc01);
659 phy_write(phy, 0x0b, 0x0004);
662 phy->autoneg = autoneg;
664 return 0;
667 #define BCM5461_FIBER_LINK (1 << 2)
668 #define BCM5461_MODE_MASK (3 << 1)
670 static int bcm5461_poll_link(struct mii_phy* phy)
672 u32 phy_reg;
673 int mode;
675 /* find out in what mode we are */
676 phy_write(phy, MII_NCONFIG, 0x7c00);
677 phy_reg = phy_read(phy, MII_NCONFIG);
679 mode = (phy_reg & BCM5461_MODE_MASK ) >> 1;
681 if ( mode == BCM54XX_COPPER)
682 return genmii_poll_link(phy);
684 /* find out wether we have a link */
685 phy_write(phy, MII_NCONFIG, 0x7000);
686 phy_reg = phy_read(phy, MII_NCONFIG);
688 if (phy_reg & BCM5461_FIBER_LINK)
689 return 1;
690 else
691 return 0;
694 #define BCM5461_FIBER_DUPLEX (1 << 3)
696 static int bcm5461_read_link(struct mii_phy* phy)
698 u32 phy_reg;
699 int mode;
701 /* find out in what mode we are */
702 phy_write(phy, MII_NCONFIG, 0x7c00);
703 phy_reg = phy_read(phy, MII_NCONFIG);
705 mode = (phy_reg & BCM5461_MODE_MASK ) >> 1;
707 if ( mode == BCM54XX_COPPER) {
708 return bcm54xx_read_link(phy);
711 phy->speed = SPEED_1000;
713 /* find out wether we are running half- or full duplex */
714 phy_write(phy, MII_NCONFIG, 0x7000);
715 phy_reg = phy_read(phy, MII_NCONFIG);
717 if (phy_reg & BCM5461_FIBER_DUPLEX)
718 phy->duplex |= DUPLEX_FULL;
719 else
720 phy->duplex |= DUPLEX_HALF;
722 return 0;
725 static int bcm5461_enable_fiber(struct mii_phy* phy, int autoneg)
727 /* select fiber mode, enable 1000 base-X registers */
728 phy_write(phy, MII_NCONFIG, 0xfc0b);
730 if (autoneg) {
731 /* enable fiber with no autonegotiation */
732 phy_write(phy, MII_ADVERTISE, 0x01e0);
733 phy_write(phy, MII_BMCR, 0x1140);
734 } else {
735 /* enable fiber with autonegotiation */
736 phy_write(phy, MII_BMCR, 0x0140);
739 phy->autoneg = autoneg;
741 return 0;
744 static int marvell_setup_aneg(struct mii_phy *phy, u32 advertise)
746 u16 ctl, adv;
748 phy->autoneg = 1;
749 phy->speed = SPEED_10;
750 phy->duplex = DUPLEX_HALF;
751 phy->pause = 0;
752 phy->advertising = advertise;
754 /* Setup standard advertise */
755 adv = phy_read(phy, MII_ADVERTISE);
756 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
757 if (advertise & ADVERTISED_10baseT_Half)
758 adv |= ADVERTISE_10HALF;
759 if (advertise & ADVERTISED_10baseT_Full)
760 adv |= ADVERTISE_10FULL;
761 if (advertise & ADVERTISED_100baseT_Half)
762 adv |= ADVERTISE_100HALF;
763 if (advertise & ADVERTISED_100baseT_Full)
764 adv |= ADVERTISE_100FULL;
765 if (advertise & ADVERTISED_Pause)
766 adv |= ADVERTISE_PAUSE_CAP;
767 if (advertise & ADVERTISED_Asym_Pause)
768 adv |= ADVERTISE_PAUSE_ASYM;
769 phy_write(phy, MII_ADVERTISE, adv);
771 /* Setup 1000BT advertise & enable crossover detect
772 * XXX How do we advertise 1000BT ? Darwin source is
773 * confusing here, they read from specific control and
774 * write to control... Someone has specs for those
775 * beasts ?
777 adv = phy_read(phy, MII_M1011_PHY_SPEC_CONTROL);
778 adv |= MII_M1011_PHY_SPEC_CONTROL_AUTO_MDIX;
779 adv &= ~(MII_1000BASETCONTROL_FULLDUPLEXCAP |
780 MII_1000BASETCONTROL_HALFDUPLEXCAP);
781 if (advertise & SUPPORTED_1000baseT_Half)
782 adv |= MII_1000BASETCONTROL_HALFDUPLEXCAP;
783 if (advertise & SUPPORTED_1000baseT_Full)
784 adv |= MII_1000BASETCONTROL_FULLDUPLEXCAP;
785 phy_write(phy, MII_1000BASETCONTROL, adv);
787 /* Start/Restart aneg */
788 ctl = phy_read(phy, MII_BMCR);
789 ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
790 phy_write(phy, MII_BMCR, ctl);
792 return 0;
795 static int marvell_setup_forced(struct mii_phy *phy, int speed, int fd)
797 u16 ctl, ctl2;
799 phy->autoneg = 0;
800 phy->speed = speed;
801 phy->duplex = fd;
802 phy->pause = 0;
804 ctl = phy_read(phy, MII_BMCR);
805 ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_SPD2|BMCR_ANENABLE);
806 ctl |= BMCR_RESET;
808 /* Select speed & duplex */
809 switch(speed) {
810 case SPEED_10:
811 break;
812 case SPEED_100:
813 ctl |= BMCR_SPEED100;
814 break;
815 /* I'm not sure about the one below, again, Darwin source is
816 * quite confusing and I lack chip specs
818 case SPEED_1000:
819 ctl |= BMCR_SPD2;
821 if (fd == DUPLEX_FULL)
822 ctl |= BMCR_FULLDPLX;
824 /* Disable crossover. Again, the way Apple does it is strange,
825 * though I don't assume they are wrong ;)
827 ctl2 = phy_read(phy, MII_M1011_PHY_SPEC_CONTROL);
828 ctl2 &= ~(MII_M1011_PHY_SPEC_CONTROL_MANUAL_MDIX |
829 MII_M1011_PHY_SPEC_CONTROL_AUTO_MDIX |
830 MII_1000BASETCONTROL_FULLDUPLEXCAP |
831 MII_1000BASETCONTROL_HALFDUPLEXCAP);
832 if (speed == SPEED_1000)
833 ctl2 |= (fd == DUPLEX_FULL) ?
834 MII_1000BASETCONTROL_FULLDUPLEXCAP :
835 MII_1000BASETCONTROL_HALFDUPLEXCAP;
836 phy_write(phy, MII_1000BASETCONTROL, ctl2);
838 // XXX Should we set the sungem to GII now on 1000BT ?
840 phy_write(phy, MII_BMCR, ctl);
842 return 0;
845 static int marvell_read_link(struct mii_phy *phy)
847 u16 status, pmask;
849 if (phy->autoneg) {
850 status = phy_read(phy, MII_M1011_PHY_SPEC_STATUS);
851 if ((status & MII_M1011_PHY_SPEC_STATUS_RESOLVED) == 0)
852 return -EAGAIN;
853 if (status & MII_M1011_PHY_SPEC_STATUS_1000)
854 phy->speed = SPEED_1000;
855 else if (status & MII_M1011_PHY_SPEC_STATUS_100)
856 phy->speed = SPEED_100;
857 else
858 phy->speed = SPEED_10;
859 if (status & MII_M1011_PHY_SPEC_STATUS_FULLDUPLEX)
860 phy->duplex = DUPLEX_FULL;
861 else
862 phy->duplex = DUPLEX_HALF;
863 pmask = MII_M1011_PHY_SPEC_STATUS_TX_PAUSE |
864 MII_M1011_PHY_SPEC_STATUS_RX_PAUSE;
865 phy->pause = (status & pmask) == pmask;
867 /* On non-aneg, we assume what we put in BMCR is the speed,
868 * though magic-aneg shouldn't prevent this case from occurring
871 return 0;
874 #define MII_BASIC_FEATURES \
875 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
876 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
877 SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII | \
878 SUPPORTED_Pause)
880 /* On gigabit capable PHYs, we advertise Pause support but not asym pause
881 * support for now as I'm not sure it's supported and Darwin doesn't do
882 * it neither. --BenH.
884 #define MII_GBIT_FEATURES \
885 (MII_BASIC_FEATURES | \
886 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)
888 /* Broadcom BCM 5201 */
889 static struct mii_phy_ops bcm5201_phy_ops = {
890 .init = bcm5201_init,
891 .suspend = bcm5201_suspend,
892 .setup_aneg = genmii_setup_aneg,
893 .setup_forced = genmii_setup_forced,
894 .poll_link = genmii_poll_link,
895 .read_link = genmii_read_link,
898 static struct mii_phy_def bcm5201_phy_def = {
899 .phy_id = 0x00406210,
900 .phy_id_mask = 0xfffffff0,
901 .name = "BCM5201",
902 .features = MII_BASIC_FEATURES,
903 .magic_aneg = 1,
904 .ops = &bcm5201_phy_ops
907 /* Broadcom BCM 5221 */
908 static struct mii_phy_ops bcm5221_phy_ops = {
909 .suspend = bcm5221_suspend,
910 .init = bcm5221_init,
911 .setup_aneg = genmii_setup_aneg,
912 .setup_forced = genmii_setup_forced,
913 .poll_link = genmii_poll_link,
914 .read_link = genmii_read_link,
917 static struct mii_phy_def bcm5221_phy_def = {
918 .phy_id = 0x004061e0,
919 .phy_id_mask = 0xfffffff0,
920 .name = "BCM5221",
921 .features = MII_BASIC_FEATURES,
922 .magic_aneg = 1,
923 .ops = &bcm5221_phy_ops
926 /* Broadcom BCM 5241 */
927 static struct mii_phy_ops bcm5241_phy_ops = {
928 .suspend = bcm5241_suspend,
929 .init = bcm5241_init,
930 .setup_aneg = genmii_setup_aneg,
931 .setup_forced = genmii_setup_forced,
932 .poll_link = genmii_poll_link,
933 .read_link = genmii_read_link,
935 static struct mii_phy_def bcm5241_phy_def = {
936 .phy_id = 0x0143bc30,
937 .phy_id_mask = 0xfffffff0,
938 .name = "BCM5241",
939 .features = MII_BASIC_FEATURES,
940 .magic_aneg = 1,
941 .ops = &bcm5241_phy_ops
944 /* Broadcom BCM 5400 */
945 static struct mii_phy_ops bcm5400_phy_ops = {
946 .init = bcm5400_init,
947 .suspend = bcm5400_suspend,
948 .setup_aneg = bcm54xx_setup_aneg,
949 .setup_forced = bcm54xx_setup_forced,
950 .poll_link = genmii_poll_link,
951 .read_link = bcm54xx_read_link,
954 static struct mii_phy_def bcm5400_phy_def = {
955 .phy_id = 0x00206040,
956 .phy_id_mask = 0xfffffff0,
957 .name = "BCM5400",
958 .features = MII_GBIT_FEATURES,
959 .magic_aneg = 1,
960 .ops = &bcm5400_phy_ops
963 /* Broadcom BCM 5401 */
964 static struct mii_phy_ops bcm5401_phy_ops = {
965 .init = bcm5401_init,
966 .suspend = bcm5401_suspend,
967 .setup_aneg = bcm54xx_setup_aneg,
968 .setup_forced = bcm54xx_setup_forced,
969 .poll_link = genmii_poll_link,
970 .read_link = bcm54xx_read_link,
973 static struct mii_phy_def bcm5401_phy_def = {
974 .phy_id = 0x00206050,
975 .phy_id_mask = 0xfffffff0,
976 .name = "BCM5401",
977 .features = MII_GBIT_FEATURES,
978 .magic_aneg = 1,
979 .ops = &bcm5401_phy_ops
982 /* Broadcom BCM 5411 */
983 static struct mii_phy_ops bcm5411_phy_ops = {
984 .init = bcm5411_init,
985 .suspend = generic_suspend,
986 .setup_aneg = bcm54xx_setup_aneg,
987 .setup_forced = bcm54xx_setup_forced,
988 .poll_link = genmii_poll_link,
989 .read_link = bcm54xx_read_link,
992 static struct mii_phy_def bcm5411_phy_def = {
993 .phy_id = 0x00206070,
994 .phy_id_mask = 0xfffffff0,
995 .name = "BCM5411",
996 .features = MII_GBIT_FEATURES,
997 .magic_aneg = 1,
998 .ops = &bcm5411_phy_ops
1001 /* Broadcom BCM 5421 */
1002 static struct mii_phy_ops bcm5421_phy_ops = {
1003 .init = bcm5421_init,
1004 .suspend = generic_suspend,
1005 .setup_aneg = bcm54xx_setup_aneg,
1006 .setup_forced = bcm54xx_setup_forced,
1007 .poll_link = bcm5421_poll_link,
1008 .read_link = bcm5421_read_link,
1009 .enable_fiber = bcm5421_enable_fiber,
1012 static struct mii_phy_def bcm5421_phy_def = {
1013 .phy_id = 0x002060e0,
1014 .phy_id_mask = 0xfffffff0,
1015 .name = "BCM5421",
1016 .features = MII_GBIT_FEATURES,
1017 .magic_aneg = 1,
1018 .ops = &bcm5421_phy_ops
1021 /* Broadcom BCM 5421 built-in K2 */
1022 static struct mii_phy_ops bcm5421k2_phy_ops = {
1023 .init = bcm5421_init,
1024 .suspend = generic_suspend,
1025 .setup_aneg = bcm54xx_setup_aneg,
1026 .setup_forced = bcm54xx_setup_forced,
1027 .poll_link = genmii_poll_link,
1028 .read_link = bcm54xx_read_link,
1031 static struct mii_phy_def bcm5421k2_phy_def = {
1032 .phy_id = 0x002062e0,
1033 .phy_id_mask = 0xfffffff0,
1034 .name = "BCM5421-K2",
1035 .features = MII_GBIT_FEATURES,
1036 .magic_aneg = 1,
1037 .ops = &bcm5421k2_phy_ops
1040 static struct mii_phy_ops bcm5461_phy_ops = {
1041 .init = bcm5421_init,
1042 .suspend = generic_suspend,
1043 .setup_aneg = bcm54xx_setup_aneg,
1044 .setup_forced = bcm54xx_setup_forced,
1045 .poll_link = bcm5461_poll_link,
1046 .read_link = bcm5461_read_link,
1047 .enable_fiber = bcm5461_enable_fiber,
1050 static struct mii_phy_def bcm5461_phy_def = {
1051 .phy_id = 0x002060c0,
1052 .phy_id_mask = 0xfffffff0,
1053 .name = "BCM5461",
1054 .features = MII_GBIT_FEATURES,
1055 .magic_aneg = 1,
1056 .ops = &bcm5461_phy_ops
1059 /* Broadcom BCM 5462 built-in Vesta */
1060 static struct mii_phy_ops bcm5462V_phy_ops = {
1061 .init = bcm5421_init,
1062 .suspend = generic_suspend,
1063 .setup_aneg = bcm54xx_setup_aneg,
1064 .setup_forced = bcm54xx_setup_forced,
1065 .poll_link = genmii_poll_link,
1066 .read_link = bcm54xx_read_link,
1069 static struct mii_phy_def bcm5462V_phy_def = {
1070 .phy_id = 0x002060d0,
1071 .phy_id_mask = 0xfffffff0,
1072 .name = "BCM5462-Vesta",
1073 .features = MII_GBIT_FEATURES,
1074 .magic_aneg = 1,
1075 .ops = &bcm5462V_phy_ops
1078 /* Marvell 88E1101 amd 88E1111 */
1079 static struct mii_phy_ops marvell88e1101_phy_ops = {
1080 .suspend = generic_suspend,
1081 .setup_aneg = marvell_setup_aneg,
1082 .setup_forced = marvell_setup_forced,
1083 .poll_link = genmii_poll_link,
1084 .read_link = marvell_read_link
1087 static struct mii_phy_ops marvell88e1111_phy_ops = {
1088 .init = marvell88e1111_init,
1089 .suspend = generic_suspend,
1090 .setup_aneg = marvell_setup_aneg,
1091 .setup_forced = marvell_setup_forced,
1092 .poll_link = genmii_poll_link,
1093 .read_link = marvell_read_link
1096 /* two revs in darwin for the 88e1101 ... I could use a datasheet
1097 * to get the proper names...
1099 static struct mii_phy_def marvell88e1101v1_phy_def = {
1100 .phy_id = 0x01410c20,
1101 .phy_id_mask = 0xfffffff0,
1102 .name = "Marvell 88E1101v1",
1103 .features = MII_GBIT_FEATURES,
1104 .magic_aneg = 1,
1105 .ops = &marvell88e1101_phy_ops
1107 static struct mii_phy_def marvell88e1101v2_phy_def = {
1108 .phy_id = 0x01410c60,
1109 .phy_id_mask = 0xfffffff0,
1110 .name = "Marvell 88E1101v2",
1111 .features = MII_GBIT_FEATURES,
1112 .magic_aneg = 1,
1113 .ops = &marvell88e1101_phy_ops
1115 static struct mii_phy_def marvell88e1111_phy_def = {
1116 .phy_id = 0x01410cc0,
1117 .phy_id_mask = 0xfffffff0,
1118 .name = "Marvell 88E1111",
1119 .features = MII_GBIT_FEATURES,
1120 .magic_aneg = 1,
1121 .ops = &marvell88e1111_phy_ops
1124 /* Generic implementation for most 10/100 PHYs */
1125 static struct mii_phy_ops generic_phy_ops = {
1126 .setup_aneg = genmii_setup_aneg,
1127 .setup_forced = genmii_setup_forced,
1128 .poll_link = genmii_poll_link,
1129 .read_link = genmii_read_link
1132 static struct mii_phy_def genmii_phy_def = {
1133 .phy_id = 0x00000000,
1134 .phy_id_mask = 0x00000000,
1135 .name = "Generic MII",
1136 .features = MII_BASIC_FEATURES,
1137 .magic_aneg = 0,
1138 .ops = &generic_phy_ops
1141 static struct mii_phy_def* mii_phy_table[] = {
1142 &bcm5201_phy_def,
1143 &bcm5221_phy_def,
1144 &bcm5241_phy_def,
1145 &bcm5400_phy_def,
1146 &bcm5401_phy_def,
1147 &bcm5411_phy_def,
1148 &bcm5421_phy_def,
1149 &bcm5421k2_phy_def,
1150 &bcm5461_phy_def,
1151 &bcm5462V_phy_def,
1152 &marvell88e1101v1_phy_def,
1153 &marvell88e1101v2_phy_def,
1154 &marvell88e1111_phy_def,
1155 &genmii_phy_def,
1156 NULL
1159 int sungem_phy_probe(struct mii_phy *phy, int mii_id)
1161 int rc;
1162 u32 id;
1163 struct mii_phy_def* def;
1164 int i;
1166 /* We do not reset the mii_phy structure as the driver
1167 * may re-probe the PHY regulary
1169 phy->mii_id = mii_id;
1171 /* Take PHY out of isloate mode and reset it. */
1172 rc = reset_one_mii_phy(phy, mii_id);
1173 if (rc)
1174 goto fail;
1176 /* Read ID and find matching entry */
1177 id = (phy_read(phy, MII_PHYSID1) << 16 | phy_read(phy, MII_PHYSID2));
1178 printk(KERN_DEBUG KBUILD_MODNAME ": " "PHY ID: %x, addr: %x\n",
1179 id, mii_id);
1180 for (i=0; (def = mii_phy_table[i]) != NULL; i++)
1181 if ((id & def->phy_id_mask) == def->phy_id)
1182 break;
1183 /* Should never be NULL (we have a generic entry), but... */
1184 if (def == NULL)
1185 goto fail;
1187 phy->def = def;
1189 return 0;
1190 fail:
1191 phy->speed = 0;
1192 phy->duplex = 0;
1193 phy->pause = 0;
1194 phy->advertising = 0;
1195 return -ENODEV;
1198 EXPORT_SYMBOL(sungem_phy_probe);
1199 MODULE_LICENSE("GPL");