spi-topcliff-pch: supports a spi mode setup and bit order setup by IO control
[zen-stable.git] / drivers / net / wireless / ath / ath5k / phy.c
blobe1f8613426a921f05fe294ba1409baaec7e2b954
1 /*
2 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
5 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 /***********************\
22 * PHY related functions *
23 \***********************/
25 #include <linux/delay.h>
26 #include <linux/slab.h>
27 #include <asm/unaligned.h>
29 #include "ath5k.h"
30 #include "reg.h"
31 #include "rfbuffer.h"
32 #include "rfgain.h"
33 #include "../regd.h"
36 /**
37 * DOC: PHY related functions
39 * Here we handle the low-level functions related to baseband
40 * and analog frontend (RF) parts. This is by far the most complex
41 * part of the hw code so make sure you know what you are doing.
43 * Here is a list of what this is all about:
45 * - Channel setting/switching
47 * - Automatic Gain Control (AGC) calibration
49 * - Noise Floor calibration
51 * - I/Q imbalance calibration (QAM correction)
53 * - Calibration due to thermal changes (gain_F)
55 * - Spur noise mitigation
57 * - RF/PHY initialization for the various operating modes and bwmodes
59 * - Antenna control
61 * - TX power control per channel/rate/packet type
63 * Also have in mind we never got documentation for most of these
64 * functions, what we have comes mostly from Atheros's code, reverse
65 * engineering and patent docs/presentations etc.
69 /******************\
70 * Helper functions *
71 \******************/
73 /**
74 * ath5k_hw_radio_revision() - Get the PHY Chip revision
75 * @ah: The &struct ath5k_hw
76 * @band: One of enum ieee80211_band
78 * Returns the revision number of a 2GHz, 5GHz or single chip
79 * radio.
81 u16
82 ath5k_hw_radio_revision(struct ath5k_hw *ah, enum ieee80211_band band)
84 unsigned int i;
85 u32 srev;
86 u16 ret;
89 * Set the radio chip access register
91 switch (band) {
92 case IEEE80211_BAND_2GHZ:
93 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
94 break;
95 case IEEE80211_BAND_5GHZ:
96 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
97 break;
98 default:
99 return 0;
102 usleep_range(2000, 2500);
104 /* ...wait until PHY is ready and read the selected radio revision */
105 ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
107 for (i = 0; i < 8; i++)
108 ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
110 if (ah->ah_version == AR5K_AR5210) {
111 srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
112 ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
113 } else {
114 srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
115 ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
116 ((srev & 0x0f) << 4), 8);
119 /* Reset to the 5GHz mode */
120 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
122 return ret;
126 * ath5k_channel_ok() - Check if a channel is supported by the hw
127 * @ah: The &struct ath5k_hw
128 * @channel: The &struct ieee80211_channel
130 * Note: We don't do any regulatory domain checks here, it's just
131 * a sanity check.
133 bool
134 ath5k_channel_ok(struct ath5k_hw *ah, struct ieee80211_channel *channel)
136 u16 freq = channel->center_freq;
138 /* Check if the channel is in our supported range */
139 if (channel->band == IEEE80211_BAND_2GHZ) {
140 if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
141 (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
142 return true;
143 } else if (channel->band == IEEE80211_BAND_5GHZ)
144 if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
145 (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
146 return true;
148 return false;
152 * ath5k_hw_chan_has_spur_noise() - Check if channel is sensitive to spur noise
153 * @ah: The &struct ath5k_hw
154 * @channel: The &struct ieee80211_channel
156 bool
157 ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
158 struct ieee80211_channel *channel)
160 u8 refclk_freq;
162 if ((ah->ah_radio == AR5K_RF5112) ||
163 (ah->ah_radio == AR5K_RF5413) ||
164 (ah->ah_radio == AR5K_RF2413) ||
165 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
166 refclk_freq = 40;
167 else
168 refclk_freq = 32;
170 if ((channel->center_freq % refclk_freq != 0) &&
171 ((channel->center_freq % refclk_freq < 10) ||
172 (channel->center_freq % refclk_freq > 22)))
173 return true;
174 else
175 return false;
179 * ath5k_hw_rfb_op() - Perform an operation on the given RF Buffer
180 * @ah: The &struct ath5k_hw
181 * @rf_regs: The struct ath5k_rf_reg
182 * @val: New value
183 * @reg_id: RF register ID
184 * @set: Indicate we need to swap data
186 * This is an internal function used to modify RF Banks before
187 * writing them to AR5K_RF_BUFFER. Check out rfbuffer.h for more
188 * infos.
190 static unsigned int
191 ath5k_hw_rfb_op(struct ath5k_hw *ah, const struct ath5k_rf_reg *rf_regs,
192 u32 val, u8 reg_id, bool set)
194 const struct ath5k_rf_reg *rfreg = NULL;
195 u8 offset, bank, num_bits, col, position;
196 u16 entry;
197 u32 mask, data, last_bit, bits_shifted, first_bit;
198 u32 *rfb;
199 s32 bits_left;
200 int i;
202 data = 0;
203 rfb = ah->ah_rf_banks;
205 for (i = 0; i < ah->ah_rf_regs_count; i++) {
206 if (rf_regs[i].index == reg_id) {
207 rfreg = &rf_regs[i];
208 break;
212 if (rfb == NULL || rfreg == NULL) {
213 ATH5K_PRINTF("Rf register not found!\n");
214 /* should not happen */
215 return 0;
218 bank = rfreg->bank;
219 num_bits = rfreg->field.len;
220 first_bit = rfreg->field.pos;
221 col = rfreg->field.col;
223 /* first_bit is an offset from bank's
224 * start. Since we have all banks on
225 * the same array, we use this offset
226 * to mark each bank's start */
227 offset = ah->ah_offset[bank];
229 /* Boundary check */
230 if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
231 ATH5K_PRINTF("invalid values at offset %u\n", offset);
232 return 0;
235 entry = ((first_bit - 1) / 8) + offset;
236 position = (first_bit - 1) % 8;
238 if (set)
239 data = ath5k_hw_bitswap(val, num_bits);
241 for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
242 position = 0, entry++) {
244 last_bit = (position + bits_left > 8) ? 8 :
245 position + bits_left;
247 mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
248 (col * 8);
250 if (set) {
251 rfb[entry] &= ~mask;
252 rfb[entry] |= ((data << position) << (col * 8)) & mask;
253 data >>= (8 - position);
254 } else {
255 data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
256 << bits_shifted;
257 bits_shifted += last_bit - position;
260 bits_left -= 8 - position;
263 data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
265 return data;
269 * ath5k_hw_write_ofdm_timings() - set OFDM timings on AR5212
270 * @ah: the &struct ath5k_hw
271 * @channel: the currently set channel upon reset
273 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
274 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
276 * Since delta slope is floating point we split it on its exponent and
277 * mantissa and provide these values on hw.
279 * For more infos i think this patent is related
280 * "http://www.freepatentsonline.com/7184495.html"
282 static inline int
283 ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
284 struct ieee80211_channel *channel)
286 /* Get exponent and mantissa and set it */
287 u32 coef_scaled, coef_exp, coef_man,
288 ds_coef_exp, ds_coef_man, clock;
290 BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
291 (channel->hw_value == AR5K_MODE_11B));
293 /* Get coefficient
294 * ALGO: coef = (5 * clock / carrier_freq) / 2
295 * we scale coef by shifting clock value by 24 for
296 * better precision since we use integers */
297 switch (ah->ah_bwmode) {
298 case AR5K_BWMODE_40MHZ:
299 clock = 40 * 2;
300 break;
301 case AR5K_BWMODE_10MHZ:
302 clock = 40 / 2;
303 break;
304 case AR5K_BWMODE_5MHZ:
305 clock = 40 / 4;
306 break;
307 default:
308 clock = 40;
309 break;
311 coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
313 /* Get exponent
314 * ALGO: coef_exp = 14 - highest set bit position */
315 coef_exp = ilog2(coef_scaled);
317 /* Doesn't make sense if it's zero*/
318 if (!coef_scaled || !coef_exp)
319 return -EINVAL;
321 /* Note: we've shifted coef_scaled by 24 */
322 coef_exp = 14 - (coef_exp - 24);
325 /* Get mantissa (significant digits)
326 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
327 coef_man = coef_scaled +
328 (1 << (24 - coef_exp - 1));
330 /* Calculate delta slope coefficient exponent
331 * and mantissa (remove scaling) and set them on hw */
332 ds_coef_man = coef_man >> (24 - coef_exp);
333 ds_coef_exp = coef_exp - 16;
335 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
336 AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
337 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
338 AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
340 return 0;
344 * ath5k_hw_phy_disable() - Disable PHY
345 * @ah: The &struct ath5k_hw
347 int ath5k_hw_phy_disable(struct ath5k_hw *ah)
349 /*Just a try M.F.*/
350 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
352 return 0;
356 * ath5k_hw_wait_for_synth() - Wait for synth to settle
357 * @ah: The &struct ath5k_hw
358 * @channel: The &struct ieee80211_channel
360 static void
361 ath5k_hw_wait_for_synth(struct ath5k_hw *ah,
362 struct ieee80211_channel *channel)
365 * On 5211+ read activation -> rx delay
366 * and use it (100ns steps).
368 if (ah->ah_version != AR5K_AR5210) {
369 u32 delay;
370 delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
371 AR5K_PHY_RX_DELAY_M;
372 delay = (channel->hw_value == AR5K_MODE_11B) ?
373 ((delay << 2) / 22) : (delay / 10);
374 if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
375 delay = delay << 1;
376 if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
377 delay = delay << 2;
378 /* XXX: /2 on turbo ? Let's be safe
379 * for now */
380 usleep_range(100 + delay, 100 + (2 * delay));
381 } else {
382 usleep_range(1000, 1500);
387 /**********************\
388 * RF Gain optimization *
389 \**********************/
392 * DOC: RF Gain optimization
394 * This code is used to optimize RF gain on different environments
395 * (temperature mostly) based on feedback from a power detector.
397 * It's only used on RF5111 and RF5112, later RF chips seem to have
398 * auto adjustment on hw -notice they have a much smaller BANK 7 and
399 * no gain optimization ladder-.
401 * For more infos check out this patent doc
402 * "http://www.freepatentsonline.com/7400691.html"
404 * This paper describes power drops as seen on the receiver due to
405 * probe packets
406 * "http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
407 * %20of%20Power%20Control.pdf"
409 * And this is the MadWiFi bug entry related to the above
410 * "http://madwifi-project.org/ticket/1659"
411 * with various measurements and diagrams
415 * ath5k_hw_rfgain_opt_init() - Initialize ah_gain during attach
416 * @ah: The &struct ath5k_hw
418 int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
420 /* Initialize the gain optimization values */
421 switch (ah->ah_radio) {
422 case AR5K_RF5111:
423 ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
424 ah->ah_gain.g_low = 20;
425 ah->ah_gain.g_high = 35;
426 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
427 break;
428 case AR5K_RF5112:
429 ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
430 ah->ah_gain.g_low = 20;
431 ah->ah_gain.g_high = 85;
432 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
433 break;
434 default:
435 return -EINVAL;
438 return 0;
442 * ath5k_hw_request_rfgain_probe() - Request a PAPD probe packet
443 * @ah: The &struct ath5k_hw
445 * Schedules a gain probe check on the next transmitted packet.
446 * That means our next packet is going to be sent with lower
447 * tx power and a Peak to Average Power Detector (PAPD) will try
448 * to measure the gain.
450 * TODO: Force a tx packet (bypassing PCU arbitrator etc)
451 * just after we enable the probe so that we don't mess with
452 * standard traffic.
454 static void
455 ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
458 /* Skip if gain calibration is inactive or
459 * we already handle a probe request */
460 if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
461 return;
463 /* Send the packet with 2dB below max power as
464 * patent doc suggest */
465 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
466 AR5K_PHY_PAPD_PROBE_TXPOWER) |
467 AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
469 ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
474 * ath5k_hw_rf_gainf_corr() - Calculate Gain_F measurement correction
475 * @ah: The &struct ath5k_hw
477 * Calculate Gain_F measurement correction
478 * based on the current step for RF5112 rev. 2
480 static u32
481 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
483 u32 mix, step;
484 u32 *rf;
485 const struct ath5k_gain_opt *go;
486 const struct ath5k_gain_opt_step *g_step;
487 const struct ath5k_rf_reg *rf_regs;
489 /* Only RF5112 Rev. 2 supports it */
490 if ((ah->ah_radio != AR5K_RF5112) ||
491 (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
492 return 0;
494 go = &rfgain_opt_5112;
495 rf_regs = rf_regs_5112a;
496 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
498 g_step = &go->go_step[ah->ah_gain.g_step_idx];
500 if (ah->ah_rf_banks == NULL)
501 return 0;
503 rf = ah->ah_rf_banks;
504 ah->ah_gain.g_f_corr = 0;
506 /* No VGA (Variable Gain Amplifier) override, skip */
507 if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
508 return 0;
510 /* Mix gain stepping */
511 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
513 /* Mix gain override */
514 mix = g_step->gos_param[0];
516 switch (mix) {
517 case 3:
518 ah->ah_gain.g_f_corr = step * 2;
519 break;
520 case 2:
521 ah->ah_gain.g_f_corr = (step - 5) * 2;
522 break;
523 case 1:
524 ah->ah_gain.g_f_corr = step;
525 break;
526 default:
527 ah->ah_gain.g_f_corr = 0;
528 break;
531 return ah->ah_gain.g_f_corr;
535 * ath5k_hw_rf_check_gainf_readback() - Validate Gain_F feedback from detector
536 * @ah: The &struct ath5k_hw
538 * Check if current gain_F measurement is in the range of our
539 * power detector windows. If we get a measurement outside range
540 * we know it's not accurate (detectors can't measure anything outside
541 * their detection window) so we must ignore it.
543 * Returns true if readback was O.K. or false on failure
545 static bool
546 ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
548 const struct ath5k_rf_reg *rf_regs;
549 u32 step, mix_ovr, level[4];
550 u32 *rf;
552 if (ah->ah_rf_banks == NULL)
553 return false;
555 rf = ah->ah_rf_banks;
557 if (ah->ah_radio == AR5K_RF5111) {
559 rf_regs = rf_regs_5111;
560 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
562 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
563 false);
565 level[0] = 0;
566 level[1] = (step == 63) ? 50 : step + 4;
567 level[2] = (step != 63) ? 64 : level[0];
568 level[3] = level[2] + 50;
570 ah->ah_gain.g_high = level[3] -
571 (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
572 ah->ah_gain.g_low = level[0] +
573 (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
574 } else {
576 rf_regs = rf_regs_5112;
577 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
579 mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
580 false);
582 level[0] = level[2] = 0;
584 if (mix_ovr == 1) {
585 level[1] = level[3] = 83;
586 } else {
587 level[1] = level[3] = 107;
588 ah->ah_gain.g_high = 55;
592 return (ah->ah_gain.g_current >= level[0] &&
593 ah->ah_gain.g_current <= level[1]) ||
594 (ah->ah_gain.g_current >= level[2] &&
595 ah->ah_gain.g_current <= level[3]);
599 * ath5k_hw_rf_gainf_adjust() - Perform Gain_F adjustment
600 * @ah: The &struct ath5k_hw
602 * Choose the right target gain based on current gain
603 * and RF gain optimization ladder
605 static s8
606 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
608 const struct ath5k_gain_opt *go;
609 const struct ath5k_gain_opt_step *g_step;
610 int ret = 0;
612 switch (ah->ah_radio) {
613 case AR5K_RF5111:
614 go = &rfgain_opt_5111;
615 break;
616 case AR5K_RF5112:
617 go = &rfgain_opt_5112;
618 break;
619 default:
620 return 0;
623 g_step = &go->go_step[ah->ah_gain.g_step_idx];
625 if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
627 /* Reached maximum */
628 if (ah->ah_gain.g_step_idx == 0)
629 return -1;
631 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
632 ah->ah_gain.g_target >= ah->ah_gain.g_high &&
633 ah->ah_gain.g_step_idx > 0;
634 g_step = &go->go_step[ah->ah_gain.g_step_idx])
635 ah->ah_gain.g_target -= 2 *
636 (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
637 g_step->gos_gain);
639 ret = 1;
640 goto done;
643 if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
645 /* Reached minimum */
646 if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
647 return -2;
649 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
650 ah->ah_gain.g_target <= ah->ah_gain.g_low &&
651 ah->ah_gain.g_step_idx < go->go_steps_count - 1;
652 g_step = &go->go_step[ah->ah_gain.g_step_idx])
653 ah->ah_gain.g_target -= 2 *
654 (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
655 g_step->gos_gain);
657 ret = 2;
658 goto done;
661 done:
662 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
663 "ret %d, gain step %u, current gain %u, target gain %u\n",
664 ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
665 ah->ah_gain.g_target);
667 return ret;
671 * ath5k_hw_gainf_calibrate() - Do a gain_F calibration
672 * @ah: The &struct ath5k_hw
674 * Main callback for thermal RF gain calibration engine
675 * Check for a new gain reading and schedule an adjustment
676 * if needed.
678 * Returns one of enum ath5k_rfgain codes
680 enum ath5k_rfgain
681 ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
683 u32 data, type;
684 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
686 if (ah->ah_rf_banks == NULL ||
687 ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
688 return AR5K_RFGAIN_INACTIVE;
690 /* No check requested, either engine is inactive
691 * or an adjustment is already requested */
692 if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
693 goto done;
695 /* Read the PAPD (Peak to Average Power Detector)
696 * register */
697 data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
699 /* No probe is scheduled, read gain_F measurement */
700 if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
701 ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
702 type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
704 /* If tx packet is CCK correct the gain_F measurement
705 * by cck ofdm gain delta */
706 if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
707 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
708 ah->ah_gain.g_current +=
709 ee->ee_cck_ofdm_gain_delta;
710 else
711 ah->ah_gain.g_current +=
712 AR5K_GAIN_CCK_PROBE_CORR;
715 /* Further correct gain_F measurement for
716 * RF5112A radios */
717 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
718 ath5k_hw_rf_gainf_corr(ah);
719 ah->ah_gain.g_current =
720 ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
721 (ah->ah_gain.g_current - ah->ah_gain.g_f_corr) :
725 /* Check if measurement is ok and if we need
726 * to adjust gain, schedule a gain adjustment,
727 * else switch back to the active state */
728 if (ath5k_hw_rf_check_gainf_readback(ah) &&
729 AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
730 ath5k_hw_rf_gainf_adjust(ah)) {
731 ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
732 } else {
733 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
737 done:
738 return ah->ah_gain.g_state;
742 * ath5k_hw_rfgain_init() - Write initial RF gain settings to hw
743 * @ah: The &struct ath5k_hw
744 * @band: One of enum ieee80211_band
746 * Write initial RF gain table to set the RF sensitivity.
748 * NOTE: This one works on all RF chips and has nothing to do
749 * with Gain_F calibration
751 static int
752 ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum ieee80211_band band)
754 const struct ath5k_ini_rfgain *ath5k_rfg;
755 unsigned int i, size, index;
757 switch (ah->ah_radio) {
758 case AR5K_RF5111:
759 ath5k_rfg = rfgain_5111;
760 size = ARRAY_SIZE(rfgain_5111);
761 break;
762 case AR5K_RF5112:
763 ath5k_rfg = rfgain_5112;
764 size = ARRAY_SIZE(rfgain_5112);
765 break;
766 case AR5K_RF2413:
767 ath5k_rfg = rfgain_2413;
768 size = ARRAY_SIZE(rfgain_2413);
769 break;
770 case AR5K_RF2316:
771 ath5k_rfg = rfgain_2316;
772 size = ARRAY_SIZE(rfgain_2316);
773 break;
774 case AR5K_RF5413:
775 ath5k_rfg = rfgain_5413;
776 size = ARRAY_SIZE(rfgain_5413);
777 break;
778 case AR5K_RF2317:
779 case AR5K_RF2425:
780 ath5k_rfg = rfgain_2425;
781 size = ARRAY_SIZE(rfgain_2425);
782 break;
783 default:
784 return -EINVAL;
787 index = (band == IEEE80211_BAND_2GHZ) ? 1 : 0;
789 for (i = 0; i < size; i++) {
790 AR5K_REG_WAIT(i);
791 ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index],
792 (u32)ath5k_rfg[i].rfg_register);
795 return 0;
799 /********************\
800 * RF Registers setup *
801 \********************/
804 * ath5k_hw_rfregs_init() - Initialize RF register settings
805 * @ah: The &struct ath5k_hw
806 * @channel: The &struct ieee80211_channel
807 * @mode: One of enum ath5k_driver_mode
809 * Setup RF registers by writing RF buffer on hw. For
810 * more infos on this, check out rfbuffer.h
812 static int
813 ath5k_hw_rfregs_init(struct ath5k_hw *ah,
814 struct ieee80211_channel *channel,
815 unsigned int mode)
817 const struct ath5k_rf_reg *rf_regs;
818 const struct ath5k_ini_rfbuffer *ini_rfb;
819 const struct ath5k_gain_opt *go = NULL;
820 const struct ath5k_gain_opt_step *g_step;
821 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
822 u8 ee_mode = 0;
823 u32 *rfb;
824 int i, obdb = -1, bank = -1;
826 switch (ah->ah_radio) {
827 case AR5K_RF5111:
828 rf_regs = rf_regs_5111;
829 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
830 ini_rfb = rfb_5111;
831 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
832 go = &rfgain_opt_5111;
833 break;
834 case AR5K_RF5112:
835 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
836 rf_regs = rf_regs_5112a;
837 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
838 ini_rfb = rfb_5112a;
839 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
840 } else {
841 rf_regs = rf_regs_5112;
842 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
843 ini_rfb = rfb_5112;
844 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
846 go = &rfgain_opt_5112;
847 break;
848 case AR5K_RF2413:
849 rf_regs = rf_regs_2413;
850 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
851 ini_rfb = rfb_2413;
852 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
853 break;
854 case AR5K_RF2316:
855 rf_regs = rf_regs_2316;
856 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
857 ini_rfb = rfb_2316;
858 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
859 break;
860 case AR5K_RF5413:
861 rf_regs = rf_regs_5413;
862 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
863 ini_rfb = rfb_5413;
864 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
865 break;
866 case AR5K_RF2317:
867 rf_regs = rf_regs_2425;
868 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
869 ini_rfb = rfb_2317;
870 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
871 break;
872 case AR5K_RF2425:
873 rf_regs = rf_regs_2425;
874 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
875 if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
876 ini_rfb = rfb_2425;
877 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
878 } else {
879 ini_rfb = rfb_2417;
880 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
882 break;
883 default:
884 return -EINVAL;
887 /* If it's the first time we set RF buffer, allocate
888 * ah->ah_rf_banks based on ah->ah_rf_banks_size
889 * we set above */
890 if (ah->ah_rf_banks == NULL) {
891 ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
892 GFP_KERNEL);
893 if (ah->ah_rf_banks == NULL) {
894 ATH5K_ERR(ah, "out of memory\n");
895 return -ENOMEM;
899 /* Copy values to modify them */
900 rfb = ah->ah_rf_banks;
902 for (i = 0; i < ah->ah_rf_banks_size; i++) {
903 if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
904 ATH5K_ERR(ah, "invalid bank\n");
905 return -EINVAL;
908 /* Bank changed, write down the offset */
909 if (bank != ini_rfb[i].rfb_bank) {
910 bank = ini_rfb[i].rfb_bank;
911 ah->ah_offset[bank] = i;
914 rfb[i] = ini_rfb[i].rfb_mode_data[mode];
917 /* Set Output and Driver bias current (OB/DB) */
918 if (channel->band == IEEE80211_BAND_2GHZ) {
920 if (channel->hw_value == AR5K_MODE_11B)
921 ee_mode = AR5K_EEPROM_MODE_11B;
922 else
923 ee_mode = AR5K_EEPROM_MODE_11G;
925 /* For RF511X/RF211X combination we
926 * use b_OB and b_DB parameters stored
927 * in eeprom on ee->ee_ob[ee_mode][0]
929 * For all other chips we use OB/DB for 2GHz
930 * stored in the b/g modal section just like
931 * 802.11a on ee->ee_ob[ee_mode][1] */
932 if ((ah->ah_radio == AR5K_RF5111) ||
933 (ah->ah_radio == AR5K_RF5112))
934 obdb = 0;
935 else
936 obdb = 1;
938 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
939 AR5K_RF_OB_2GHZ, true);
941 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
942 AR5K_RF_DB_2GHZ, true);
944 /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
945 } else if ((channel->band == IEEE80211_BAND_5GHZ) ||
946 (ah->ah_radio == AR5K_RF5111)) {
948 /* For 11a, Turbo and XR we need to choose
949 * OB/DB based on frequency range */
950 ee_mode = AR5K_EEPROM_MODE_11A;
951 obdb = channel->center_freq >= 5725 ? 3 :
952 (channel->center_freq >= 5500 ? 2 :
953 (channel->center_freq >= 5260 ? 1 :
954 (channel->center_freq > 4000 ? 0 : -1)));
956 if (obdb < 0)
957 return -EINVAL;
959 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
960 AR5K_RF_OB_5GHZ, true);
962 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
963 AR5K_RF_DB_5GHZ, true);
966 g_step = &go->go_step[ah->ah_gain.g_step_idx];
968 /* Set turbo mode (N/A on RF5413) */
969 if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
970 (ah->ah_radio != AR5K_RF5413))
971 ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false);
973 /* Bank Modifications (chip-specific) */
974 if (ah->ah_radio == AR5K_RF5111) {
976 /* Set gain_F settings according to current step */
977 if (channel->hw_value != AR5K_MODE_11B) {
979 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
980 AR5K_PHY_FRAME_CTL_TX_CLIP,
981 g_step->gos_param[0]);
983 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
984 AR5K_RF_PWD_90, true);
986 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
987 AR5K_RF_PWD_84, true);
989 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
990 AR5K_RF_RFGAIN_SEL, true);
992 /* We programmed gain_F parameters, switch back
993 * to active state */
994 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
998 /* Bank 6/7 setup */
1000 ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
1001 AR5K_RF_PWD_XPD, true);
1003 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
1004 AR5K_RF_XPD_GAIN, true);
1006 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1007 AR5K_RF_GAIN_I, true);
1009 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
1010 AR5K_RF_PLO_SEL, true);
1012 /* Tweak power detectors for half/quarter rate support */
1013 if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1014 ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1015 u8 wait_i;
1017 ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
1018 AR5K_RF_WAIT_S, true);
1020 wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1021 0x1f : 0x10;
1023 ath5k_hw_rfb_op(ah, rf_regs, wait_i,
1024 AR5K_RF_WAIT_I, true);
1025 ath5k_hw_rfb_op(ah, rf_regs, 3,
1026 AR5K_RF_MAX_TIME, true);
1031 if (ah->ah_radio == AR5K_RF5112) {
1033 /* Set gain_F settings according to current step */
1034 if (channel->hw_value != AR5K_MODE_11B) {
1036 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
1037 AR5K_RF_MIXGAIN_OVR, true);
1039 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
1040 AR5K_RF_PWD_138, true);
1042 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
1043 AR5K_RF_PWD_137, true);
1045 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
1046 AR5K_RF_PWD_136, true);
1048 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
1049 AR5K_RF_PWD_132, true);
1051 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
1052 AR5K_RF_PWD_131, true);
1054 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
1055 AR5K_RF_PWD_130, true);
1057 /* We programmed gain_F parameters, switch back
1058 * to active state */
1059 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
1062 /* Bank 6/7 setup */
1064 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
1065 AR5K_RF_XPD_SEL, true);
1067 if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
1068 /* Rev. 1 supports only one xpd */
1069 ath5k_hw_rfb_op(ah, rf_regs,
1070 ee->ee_x_gain[ee_mode],
1071 AR5K_RF_XPD_GAIN, true);
1073 } else {
1074 u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
1075 if (ee->ee_pd_gains[ee_mode] > 1) {
1076 ath5k_hw_rfb_op(ah, rf_regs,
1077 pdg_curve_to_idx[0],
1078 AR5K_RF_PD_GAIN_LO, true);
1079 ath5k_hw_rfb_op(ah, rf_regs,
1080 pdg_curve_to_idx[1],
1081 AR5K_RF_PD_GAIN_HI, true);
1082 } else {
1083 ath5k_hw_rfb_op(ah, rf_regs,
1084 pdg_curve_to_idx[0],
1085 AR5K_RF_PD_GAIN_LO, true);
1086 ath5k_hw_rfb_op(ah, rf_regs,
1087 pdg_curve_to_idx[0],
1088 AR5K_RF_PD_GAIN_HI, true);
1091 /* Lower synth voltage on Rev 2 */
1092 if (ah->ah_radio == AR5K_RF5112 &&
1093 (ah->ah_radio_5ghz_revision & AR5K_SREV_REV) > 0) {
1094 ath5k_hw_rfb_op(ah, rf_regs, 2,
1095 AR5K_RF_HIGH_VC_CP, true);
1097 ath5k_hw_rfb_op(ah, rf_regs, 2,
1098 AR5K_RF_MID_VC_CP, true);
1100 ath5k_hw_rfb_op(ah, rf_regs, 2,
1101 AR5K_RF_LOW_VC_CP, true);
1103 ath5k_hw_rfb_op(ah, rf_regs, 2,
1104 AR5K_RF_PUSH_UP, true);
1107 /* Decrease power consumption on 5213+ BaseBand */
1108 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
1109 ath5k_hw_rfb_op(ah, rf_regs, 1,
1110 AR5K_RF_PAD2GND, true);
1112 ath5k_hw_rfb_op(ah, rf_regs, 1,
1113 AR5K_RF_XB2_LVL, true);
1115 ath5k_hw_rfb_op(ah, rf_regs, 1,
1116 AR5K_RF_XB5_LVL, true);
1118 ath5k_hw_rfb_op(ah, rf_regs, 1,
1119 AR5K_RF_PWD_167, true);
1121 ath5k_hw_rfb_op(ah, rf_regs, 1,
1122 AR5K_RF_PWD_166, true);
1126 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1127 AR5K_RF_GAIN_I, true);
1129 /* Tweak power detector for half/quarter rates */
1130 if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1131 ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1132 u8 pd_delay;
1134 pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1135 0xf : 0x8;
1137 ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
1138 AR5K_RF_PD_PERIOD_A, true);
1139 ath5k_hw_rfb_op(ah, rf_regs, 0xf,
1140 AR5K_RF_PD_DELAY_A, true);
1145 if (ah->ah_radio == AR5K_RF5413 &&
1146 channel->band == IEEE80211_BAND_2GHZ) {
1148 ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
1149 true);
1151 /* Set optimum value for early revisions (on pci-e chips) */
1152 if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
1153 ah->ah_mac_srev < AR5K_SREV_AR5413)
1154 ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
1155 AR5K_RF_PWD_ICLOBUF_2G, true);
1159 /* Write RF banks on hw */
1160 for (i = 0; i < ah->ah_rf_banks_size; i++) {
1161 AR5K_REG_WAIT(i);
1162 ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
1165 return 0;
1169 /**************************\
1170 PHY/RF channel functions
1171 \**************************/
1174 * ath5k_hw_rf5110_chan2athchan() - Convert channel freq on RF5110
1175 * @channel: The &struct ieee80211_channel
1177 * Map channel frequency to IEEE channel number and convert it
1178 * to an internal channel value used by the RF5110 chipset.
1180 static u32
1181 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
1183 u32 athchan;
1185 athchan = (ath5k_hw_bitswap(
1186 (ieee80211_frequency_to_channel(
1187 channel->center_freq) - 24) / 2, 5)
1188 << 1) | (1 << 6) | 0x1;
1189 return athchan;
1193 * ath5k_hw_rf5110_channel() - Set channel frequency on RF5110
1194 * @ah: The &struct ath5k_hw
1195 * @channel: The &struct ieee80211_channel
1197 static int
1198 ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
1199 struct ieee80211_channel *channel)
1201 u32 data;
1204 * Set the channel and wait
1206 data = ath5k_hw_rf5110_chan2athchan(channel);
1207 ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
1208 ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
1209 usleep_range(1000, 1500);
1211 return 0;
1215 * ath5k_hw_rf5111_chan2athchan() - Handle 2GHz channels on RF5111/2111
1216 * @ieee: IEEE channel number
1217 * @athchan: The &struct ath5k_athchan_2ghz
1219 * In order to enable the RF2111 frequency converter on RF5111/2111 setups
1220 * we need to add some offsets and extra flags to the data values we pass
1221 * on to the PHY. So for every 2GHz channel this function gets called
1222 * to do the conversion.
1224 static int
1225 ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
1226 struct ath5k_athchan_2ghz *athchan)
1228 int channel;
1230 /* Cast this value to catch negative channel numbers (>= -19) */
1231 channel = (int)ieee;
1234 * Map 2GHz IEEE channel to 5GHz Atheros channel
1236 if (channel <= 13) {
1237 athchan->a2_athchan = 115 + channel;
1238 athchan->a2_flags = 0x46;
1239 } else if (channel == 14) {
1240 athchan->a2_athchan = 124;
1241 athchan->a2_flags = 0x44;
1242 } else if (channel >= 15 && channel <= 26) {
1243 athchan->a2_athchan = ((channel - 14) * 4) + 132;
1244 athchan->a2_flags = 0x46;
1245 } else
1246 return -EINVAL;
1248 return 0;
1252 * ath5k_hw_rf5111_channel() - Set channel frequency on RF5111/2111
1253 * @ah: The &struct ath5k_hw
1254 * @channel: The &struct ieee80211_channel
1256 static int
1257 ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
1258 struct ieee80211_channel *channel)
1260 struct ath5k_athchan_2ghz ath5k_channel_2ghz;
1261 unsigned int ath5k_channel =
1262 ieee80211_frequency_to_channel(channel->center_freq);
1263 u32 data0, data1, clock;
1264 int ret;
1267 * Set the channel on the RF5111 radio
1269 data0 = data1 = 0;
1271 if (channel->band == IEEE80211_BAND_2GHZ) {
1272 /* Map 2GHz channel to 5GHz Atheros channel ID */
1273 ret = ath5k_hw_rf5111_chan2athchan(
1274 ieee80211_frequency_to_channel(channel->center_freq),
1275 &ath5k_channel_2ghz);
1276 if (ret)
1277 return ret;
1279 ath5k_channel = ath5k_channel_2ghz.a2_athchan;
1280 data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
1281 << 5) | (1 << 4);
1284 if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
1285 clock = 1;
1286 data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
1287 (clock << 1) | (1 << 10) | 1;
1288 } else {
1289 clock = 0;
1290 data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
1291 << 2) | (clock << 1) | (1 << 10) | 1;
1294 ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
1295 AR5K_RF_BUFFER);
1296 ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
1297 AR5K_RF_BUFFER_CONTROL_3);
1299 return 0;
1303 * ath5k_hw_rf5112_channel() - Set channel frequency on 5112 and newer
1304 * @ah: The &struct ath5k_hw
1305 * @channel: The &struct ieee80211_channel
1307 * On RF5112/2112 and newer we don't need to do any conversion.
1308 * We pass the frequency value after a few modifications to the
1309 * chip directly.
1311 * NOTE: Make sure channel frequency given is within our range or else
1312 * we might damage the chip ! Use ath5k_channel_ok before calling this one.
1314 static int
1315 ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
1316 struct ieee80211_channel *channel)
1318 u32 data, data0, data1, data2;
1319 u16 c;
1321 data = data0 = data1 = data2 = 0;
1322 c = channel->center_freq;
1324 /* My guess based on code:
1325 * 2GHz RF has 2 synth modes, one with a Local Oscillator
1326 * at 2224Hz and one with a LO at 2192Hz. IF is 1520Hz
1327 * (3040/2). data0 is used to set the PLL divider and data1
1328 * selects synth mode. */
1329 if (c < 4800) {
1330 /* Channel 14 and all frequencies with 2Hz spacing
1331 * below/above (non-standard channels) */
1332 if (!((c - 2224) % 5)) {
1333 /* Same as (c - 2224) / 5 */
1334 data0 = ((2 * (c - 704)) - 3040) / 10;
1335 data1 = 1;
1336 /* Channel 1 and all frequencies with 5Hz spacing
1337 * below/above (standard channels without channel 14) */
1338 } else if (!((c - 2192) % 5)) {
1339 /* Same as (c - 2192) / 5 */
1340 data0 = ((2 * (c - 672)) - 3040) / 10;
1341 data1 = 0;
1342 } else
1343 return -EINVAL;
1345 data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
1346 /* This is more complex, we have a single synthesizer with
1347 * 4 reference clock settings (?) based on frequency spacing
1348 * and set using data2. LO is at 4800Hz and data0 is again used
1349 * to set some divider.
1351 * NOTE: There is an old atheros presentation at Stanford
1352 * that mentions a method called dual direct conversion
1353 * with 1GHz sliding IF for RF5110. Maybe that's what we
1354 * have here, or an updated version. */
1355 } else if ((c % 5) != 2 || c > 5435) {
1356 if (!(c % 20) && c >= 5120) {
1357 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1358 data2 = ath5k_hw_bitswap(3, 2);
1359 } else if (!(c % 10)) {
1360 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1361 data2 = ath5k_hw_bitswap(2, 2);
1362 } else if (!(c % 5)) {
1363 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1364 data2 = ath5k_hw_bitswap(1, 2);
1365 } else
1366 return -EINVAL;
1367 } else {
1368 data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1369 data2 = ath5k_hw_bitswap(0, 2);
1372 data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1374 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1375 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1377 return 0;
1381 * ath5k_hw_rf2425_channel() - Set channel frequency on RF2425
1382 * @ah: The &struct ath5k_hw
1383 * @channel: The &struct ieee80211_channel
1385 * AR2425/2417 have a different 2GHz RF so code changes
1386 * a little bit from RF5112.
1388 static int
1389 ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1390 struct ieee80211_channel *channel)
1392 u32 data, data0, data2;
1393 u16 c;
1395 data = data0 = data2 = 0;
1396 c = channel->center_freq;
1398 if (c < 4800) {
1399 data0 = ath5k_hw_bitswap((c - 2272), 8);
1400 data2 = 0;
1401 /* ? 5GHz ? */
1402 } else if ((c % 5) != 2 || c > 5435) {
1403 if (!(c % 20) && c < 5120)
1404 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1405 else if (!(c % 10))
1406 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1407 else if (!(c % 5))
1408 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1409 else
1410 return -EINVAL;
1411 data2 = ath5k_hw_bitswap(1, 2);
1412 } else {
1413 data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1414 data2 = ath5k_hw_bitswap(0, 2);
1417 data = (data0 << 4) | data2 << 2 | 0x1001;
1419 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1420 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1422 return 0;
1426 * ath5k_hw_channel() - Set a channel on the radio chip
1427 * @ah: The &struct ath5k_hw
1428 * @channel: The &struct ieee80211_channel
1430 * This is the main function called to set a channel on the
1431 * radio chip based on the radio chip version.
1433 static int
1434 ath5k_hw_channel(struct ath5k_hw *ah,
1435 struct ieee80211_channel *channel)
1437 int ret;
1439 * Check bounds supported by the PHY (we don't care about regulatory
1440 * restrictions at this point).
1442 if (!ath5k_channel_ok(ah, channel)) {
1443 ATH5K_ERR(ah,
1444 "channel frequency (%u MHz) out of supported "
1445 "band range\n",
1446 channel->center_freq);
1447 return -EINVAL;
1451 * Set the channel and wait
1453 switch (ah->ah_radio) {
1454 case AR5K_RF5110:
1455 ret = ath5k_hw_rf5110_channel(ah, channel);
1456 break;
1457 case AR5K_RF5111:
1458 ret = ath5k_hw_rf5111_channel(ah, channel);
1459 break;
1460 case AR5K_RF2317:
1461 case AR5K_RF2425:
1462 ret = ath5k_hw_rf2425_channel(ah, channel);
1463 break;
1464 default:
1465 ret = ath5k_hw_rf5112_channel(ah, channel);
1466 break;
1469 if (ret)
1470 return ret;
1472 /* Set JAPAN setting for channel 14 */
1473 if (channel->center_freq == 2484) {
1474 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1475 AR5K_PHY_CCKTXCTL_JAPAN);
1476 } else {
1477 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1478 AR5K_PHY_CCKTXCTL_WORLD);
1481 ah->ah_current_channel = channel;
1483 return 0;
1487 /*****************\
1488 PHY calibration
1489 \*****************/
1492 * DOC: PHY Calibration routines
1494 * Noise floor calibration: When we tell the hardware to
1495 * perform a noise floor calibration by setting the
1496 * AR5K_PHY_AGCCTL_NF bit on AR5K_PHY_AGCCTL, it will periodically
1497 * sample-and-hold the minimum noise level seen at the antennas.
1498 * This value is then stored in a ring buffer of recently measured
1499 * noise floor values so we have a moving window of the last few
1500 * samples. The median of the values in the history is then loaded
1501 * into the hardware for its own use for RSSI and CCA measurements.
1502 * This type of calibration doesn't interfere with traffic.
1504 * AGC calibration: When we tell the hardware to perform
1505 * an AGC (Automatic Gain Control) calibration by setting the
1506 * AR5K_PHY_AGCCTL_CAL, hw disconnects the antennas and does
1507 * a calibration on the DC offsets of ADCs. During this period
1508 * rx/tx gets disabled so we have to deal with it on the driver
1509 * part.
1511 * I/Q calibration: When we tell the hardware to perform
1512 * an I/Q calibration, it tries to correct I/Q imbalance and
1513 * fix QAM constellation by sampling data from rxed frames.
1514 * It doesn't interfere with traffic.
1516 * For more infos on AGC and I/Q calibration check out patent doc
1517 * #03/094463.
1521 * ath5k_hw_read_measured_noise_floor() - Read measured NF from hw
1522 * @ah: The &struct ath5k_hw
1524 static s32
1525 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1527 s32 val;
1529 val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1530 return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
1534 * ath5k_hw_init_nfcal_hist() - Initialize NF calibration history buffer
1535 * @ah: The &struct ath5k_hw
1537 void
1538 ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1540 int i;
1542 ah->ah_nfcal_hist.index = 0;
1543 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1544 ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1548 * ath5k_hw_update_nfcal_hist() - Update NF calibration history buffer
1549 * @ah: The &struct ath5k_hw
1550 * @noise_floor: The NF we got from hw
1552 static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1554 struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1555 hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX - 1);
1556 hist->nfval[hist->index] = noise_floor;
1560 * ath5k_hw_get_median_noise_floor() - Get median NF from history buffer
1561 * @ah: The &struct ath5k_hw
1563 static s16
1564 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1566 s16 sort[ATH5K_NF_CAL_HIST_MAX];
1567 s16 tmp;
1568 int i, j;
1570 memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1571 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1572 for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1573 if (sort[j] > sort[j - 1]) {
1574 tmp = sort[j];
1575 sort[j] = sort[j - 1];
1576 sort[j - 1] = tmp;
1580 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1581 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1582 "cal %d:%d\n", i, sort[i]);
1584 return sort[(ATH5K_NF_CAL_HIST_MAX - 1) / 2];
1588 * ath5k_hw_update_noise_floor() - Update NF on hardware
1589 * @ah: The &struct ath5k_hw
1591 * This is the main function we call to perform a NF calibration,
1592 * it reads NF from hardware, calculates the median and updates
1593 * NF on hw.
1595 void
1596 ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1598 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1599 u32 val;
1600 s16 nf, threshold;
1601 u8 ee_mode;
1603 /* keep last value if calibration hasn't completed */
1604 if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1605 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1606 "NF did not complete in calibration window\n");
1608 return;
1611 ah->ah_cal_mask |= AR5K_CALIBRATION_NF;
1613 ee_mode = ath5k_eeprom_mode_from_channel(ah->ah_current_channel);
1615 /* completed NF calibration, test threshold */
1616 nf = ath5k_hw_read_measured_noise_floor(ah);
1617 threshold = ee->ee_noise_floor_thr[ee_mode];
1619 if (nf > threshold) {
1620 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1621 "noise floor failure detected; "
1622 "read %d, threshold %d\n",
1623 nf, threshold);
1625 nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1628 ath5k_hw_update_nfcal_hist(ah, nf);
1629 nf = ath5k_hw_get_median_noise_floor(ah);
1631 /* load noise floor (in .5 dBm) so the hardware will use it */
1632 val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1633 val |= (nf * 2) & AR5K_PHY_NF_M;
1634 ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1636 AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1637 ~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1639 ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1640 0, false);
1643 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1644 * so that we're not capped by the median we just loaded.
1645 * This will be used as the initial value for the next noise
1646 * floor calibration.
1648 val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1649 ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1650 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1651 AR5K_PHY_AGCCTL_NF_EN |
1652 AR5K_PHY_AGCCTL_NF_NOUPDATE |
1653 AR5K_PHY_AGCCTL_NF);
1655 ah->ah_noise_floor = nf;
1657 ah->ah_cal_mask &= ~AR5K_CALIBRATION_NF;
1659 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1660 "noise floor calibrated: %d\n", nf);
1664 * ath5k_hw_rf5110_calibrate() - Perform a PHY calibration on RF5110
1665 * @ah: The &struct ath5k_hw
1666 * @channel: The &struct ieee80211_channel
1668 * Do a complete PHY calibration (AGC + NF + I/Q) on RF5110
1670 static int
1671 ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1672 struct ieee80211_channel *channel)
1674 u32 phy_sig, phy_agc, phy_sat, beacon;
1675 int ret;
1677 if (!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL))
1678 return 0;
1681 * Disable beacons and RX/TX queues, wait
1683 AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1684 AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1685 beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1686 ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1688 usleep_range(2000, 2500);
1691 * Set the channel (with AGC turned off)
1693 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1694 udelay(10);
1695 ret = ath5k_hw_channel(ah, channel);
1698 * Activate PHY and wait
1700 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1701 usleep_range(1000, 1500);
1703 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1705 if (ret)
1706 return ret;
1709 * Calibrate the radio chip
1712 /* Remember normal state */
1713 phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1714 phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1715 phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1717 /* Update radio registers */
1718 ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1719 AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1721 ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1722 AR5K_PHY_AGCCOARSE_LO)) |
1723 AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1724 AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1726 ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1727 AR5K_PHY_ADCSAT_THR)) |
1728 AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1729 AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1731 udelay(20);
1733 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1734 udelay(10);
1735 ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1736 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1738 usleep_range(1000, 1500);
1741 * Enable calibration and wait until completion
1743 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1745 ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1746 AR5K_PHY_AGCCTL_CAL, 0, false);
1748 /* Reset to normal state */
1749 ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1750 ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1751 ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1753 if (ret) {
1754 ATH5K_ERR(ah, "calibration timeout (%uMHz)\n",
1755 channel->center_freq);
1756 return ret;
1760 * Re-enable RX/TX and beacons
1762 AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1763 AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1764 ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1766 return 0;
1770 * ath5k_hw_rf511x_iq_calibrate() - Perform I/Q calibration on RF5111 and newer
1771 * @ah: The &struct ath5k_hw
1773 static int
1774 ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
1776 u32 i_pwr, q_pwr;
1777 s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1778 int i;
1780 /* Skip if I/Q calibration is not needed or if it's still running */
1781 if (!ah->ah_iq_cal_needed)
1782 return -EINVAL;
1783 else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN) {
1784 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1785 "I/Q calibration still running");
1786 return -EBUSY;
1789 /* Calibration has finished, get the results and re-run */
1791 /* Work around for empty results which can apparently happen on 5212:
1792 * Read registers up to 10 times until we get both i_pr and q_pwr */
1793 for (i = 0; i <= 10; i++) {
1794 iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1795 i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1796 q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1797 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1798 "iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1799 if (i_pwr && q_pwr)
1800 break;
1803 i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1805 if (ah->ah_version == AR5K_AR5211)
1806 q_coffd = q_pwr >> 6;
1807 else
1808 q_coffd = q_pwr >> 7;
1810 /* In case i_coffd became zero, cancel calibration
1811 * not only it's too small, it'll also result a divide
1812 * by zero later on. */
1813 if (i_coffd == 0 || q_coffd < 2)
1814 return -ECANCELED;
1816 /* Protect against loss of sign bits */
1818 i_coff = (-iq_corr) / i_coffd;
1819 i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1821 if (ah->ah_version == AR5K_AR5211)
1822 q_coff = (i_pwr / q_coffd) - 64;
1823 else
1824 q_coff = (i_pwr / q_coffd) - 128;
1825 q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1827 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1828 "new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1829 i_coff, q_coff, i_coffd, q_coffd);
1831 /* Commit new I/Q values (set enable bit last to match HAL sources) */
1832 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1833 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1834 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1836 /* Re-enable calibration -if we don't we'll commit
1837 * the same values again and again */
1838 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1839 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1840 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1842 return 0;
1846 * ath5k_hw_phy_calibrate() - Perform a PHY calibration
1847 * @ah: The &struct ath5k_hw
1848 * @channel: The &struct ieee80211_channel
1850 * The main function we call from above to perform
1851 * a short or full PHY calibration based on RF chip
1852 * and current channel
1855 ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1856 struct ieee80211_channel *channel)
1858 int ret;
1860 if (ah->ah_radio == AR5K_RF5110)
1861 return ath5k_hw_rf5110_calibrate(ah, channel);
1863 ret = ath5k_hw_rf511x_iq_calibrate(ah);
1864 if (ret) {
1865 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1866 "No I/Q correction performed (%uMHz)\n",
1867 channel->center_freq);
1869 /* Happens all the time if there is not much
1870 * traffic, consider it normal behaviour. */
1871 ret = 0;
1874 /* On full calibration do an AGC calibration and
1875 * request a PAPD probe for gainf calibration if
1876 * needed */
1877 if (ah->ah_cal_mask & AR5K_CALIBRATION_FULL) {
1879 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1880 AR5K_PHY_AGCCTL_CAL);
1882 ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1883 AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF,
1884 0, false);
1885 if (ret) {
1886 ATH5K_ERR(ah,
1887 "gain calibration timeout (%uMHz)\n",
1888 channel->center_freq);
1891 if ((ah->ah_radio == AR5K_RF5111 ||
1892 ah->ah_radio == AR5K_RF5112)
1893 && (channel->hw_value != AR5K_MODE_11B))
1894 ath5k_hw_request_rfgain_probe(ah);
1897 /* Update noise floor
1898 * XXX: Only do this after AGC calibration */
1899 if (!(ah->ah_cal_mask & AR5K_CALIBRATION_NF))
1900 ath5k_hw_update_noise_floor(ah);
1902 return ret;
1906 /***************************\
1907 * Spur mitigation functions *
1908 \***************************/
1911 * ath5k_hw_set_spur_mitigation_filter() - Configure SPUR filter
1912 * @ah: The &struct ath5k_hw
1913 * @channel: The &struct ieee80211_channel
1915 * This function gets called during PHY initialization to
1916 * configure the spur filter for the given channel. Spur is noise
1917 * generated due to "reflection" effects, for more information on this
1918 * method check out patent US7643810
1920 static void
1921 ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1922 struct ieee80211_channel *channel)
1924 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1925 u32 mag_mask[4] = {0, 0, 0, 0};
1926 u32 pilot_mask[2] = {0, 0};
1927 /* Note: fbin values are scaled up by 2 */
1928 u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1929 s32 spur_delta_phase, spur_freq_sigma_delta;
1930 s32 spur_offset, num_symbols_x16;
1931 u8 num_symbol_offsets, i, freq_band;
1933 /* Convert current frequency to fbin value (the same way channels
1934 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1935 * up by 2 so we can compare it later */
1936 if (channel->band == IEEE80211_BAND_2GHZ) {
1937 chan_fbin = (channel->center_freq - 2300) * 10;
1938 freq_band = AR5K_EEPROM_BAND_2GHZ;
1939 } else {
1940 chan_fbin = (channel->center_freq - 4900) * 10;
1941 freq_band = AR5K_EEPROM_BAND_5GHZ;
1944 /* Check if any spur_chan_fbin from EEPROM is
1945 * within our current channel's spur detection range */
1946 spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1947 spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1948 /* XXX: Half/Quarter channels ?*/
1949 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
1950 spur_detection_window *= 2;
1952 for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1953 spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1955 /* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1956 * so it's zero if we got nothing from EEPROM */
1957 if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1958 spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1959 break;
1962 if ((chan_fbin - spur_detection_window <=
1963 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1964 (chan_fbin + spur_detection_window >=
1965 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1966 spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1967 break;
1971 /* We need to enable spur filter for this channel */
1972 if (spur_chan_fbin) {
1973 spur_offset = spur_chan_fbin - chan_fbin;
1975 * Calculate deltas:
1976 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1977 * spur_delta_phase -> spur_offset / chip_freq << 11
1978 * Note: Both values have 100Hz resolution
1980 switch (ah->ah_bwmode) {
1981 case AR5K_BWMODE_40MHZ:
1982 /* Both sample_freq and chip_freq are 80MHz */
1983 spur_delta_phase = (spur_offset << 16) / 25;
1984 spur_freq_sigma_delta = (spur_delta_phase >> 10);
1985 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
1986 break;
1987 case AR5K_BWMODE_10MHZ:
1988 /* Both sample_freq and chip_freq are 20MHz (?) */
1989 spur_delta_phase = (spur_offset << 18) / 25;
1990 spur_freq_sigma_delta = (spur_delta_phase >> 10);
1991 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
1992 case AR5K_BWMODE_5MHZ:
1993 /* Both sample_freq and chip_freq are 10MHz (?) */
1994 spur_delta_phase = (spur_offset << 19) / 25;
1995 spur_freq_sigma_delta = (spur_delta_phase >> 10);
1996 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
1997 default:
1998 if (channel->band == IEEE80211_BAND_5GHZ) {
1999 /* Both sample_freq and chip_freq are 40MHz */
2000 spur_delta_phase = (spur_offset << 17) / 25;
2001 spur_freq_sigma_delta =
2002 (spur_delta_phase >> 10);
2003 symbol_width =
2004 AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
2005 } else {
2006 /* sample_freq -> 40MHz chip_freq -> 44MHz
2007 * (for b compatibility) */
2008 spur_delta_phase = (spur_offset << 17) / 25;
2009 spur_freq_sigma_delta =
2010 (spur_offset << 8) / 55;
2011 symbol_width =
2012 AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
2014 break;
2017 /* Calculate pilot and magnitude masks */
2019 /* Scale up spur_offset by 1000 to switch to 100HZ resolution
2020 * and divide by symbol_width to find how many symbols we have
2021 * Note: number of symbols is scaled up by 16 */
2022 num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
2024 /* Spur is on a symbol if num_symbols_x16 % 16 is zero */
2025 if (!(num_symbols_x16 & 0xF))
2026 /* _X_ */
2027 num_symbol_offsets = 3;
2028 else
2029 /* _xx_ */
2030 num_symbol_offsets = 4;
2032 for (i = 0; i < num_symbol_offsets; i++) {
2034 /* Calculate pilot mask */
2035 s32 curr_sym_off =
2036 (num_symbols_x16 / 16) + i + 25;
2038 /* Pilot magnitude mask seems to be a way to
2039 * declare the boundaries for our detection
2040 * window or something, it's 2 for the middle
2041 * value(s) where the symbol is expected to be
2042 * and 1 on the boundary values */
2043 u8 plt_mag_map =
2044 (i == 0 || i == (num_symbol_offsets - 1))
2045 ? 1 : 2;
2047 if (curr_sym_off >= 0 && curr_sym_off <= 32) {
2048 if (curr_sym_off <= 25)
2049 pilot_mask[0] |= 1 << curr_sym_off;
2050 else if (curr_sym_off >= 27)
2051 pilot_mask[0] |= 1 << (curr_sym_off - 1);
2052 } else if (curr_sym_off >= 33 && curr_sym_off <= 52)
2053 pilot_mask[1] |= 1 << (curr_sym_off - 33);
2055 /* Calculate magnitude mask (for viterbi decoder) */
2056 if (curr_sym_off >= -1 && curr_sym_off <= 14)
2057 mag_mask[0] |=
2058 plt_mag_map << (curr_sym_off + 1) * 2;
2059 else if (curr_sym_off >= 15 && curr_sym_off <= 30)
2060 mag_mask[1] |=
2061 plt_mag_map << (curr_sym_off - 15) * 2;
2062 else if (curr_sym_off >= 31 && curr_sym_off <= 46)
2063 mag_mask[2] |=
2064 plt_mag_map << (curr_sym_off - 31) * 2;
2065 else if (curr_sym_off >= 47 && curr_sym_off <= 53)
2066 mag_mask[3] |=
2067 plt_mag_map << (curr_sym_off - 47) * 2;
2071 /* Write settings on hw to enable spur filter */
2072 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2073 AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
2074 /* XXX: Self correlator also ? */
2075 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
2076 AR5K_PHY_IQ_PILOT_MASK_EN |
2077 AR5K_PHY_IQ_CHAN_MASK_EN |
2078 AR5K_PHY_IQ_SPUR_FILT_EN);
2080 /* Set delta phase and freq sigma delta */
2081 ath5k_hw_reg_write(ah,
2082 AR5K_REG_SM(spur_delta_phase,
2083 AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
2084 AR5K_REG_SM(spur_freq_sigma_delta,
2085 AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
2086 AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
2087 AR5K_PHY_TIMING_11);
2089 /* Write pilot masks */
2090 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
2091 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
2092 AR5K_PHY_TIMING_8_PILOT_MASK_2,
2093 pilot_mask[1]);
2095 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
2096 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
2097 AR5K_PHY_TIMING_10_PILOT_MASK_2,
2098 pilot_mask[1]);
2100 /* Write magnitude masks */
2101 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
2102 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
2103 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
2104 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2105 AR5K_PHY_BIN_MASK_CTL_MASK_4,
2106 mag_mask[3]);
2108 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
2109 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
2110 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
2111 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
2112 AR5K_PHY_BIN_MASK2_4_MASK_4,
2113 mag_mask[3]);
2115 } else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
2116 AR5K_PHY_IQ_SPUR_FILT_EN) {
2117 /* Clean up spur mitigation settings and disable filter */
2118 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2119 AR5K_PHY_BIN_MASK_CTL_RATE, 0);
2120 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
2121 AR5K_PHY_IQ_PILOT_MASK_EN |
2122 AR5K_PHY_IQ_CHAN_MASK_EN |
2123 AR5K_PHY_IQ_SPUR_FILT_EN);
2124 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
2126 /* Clear pilot masks */
2127 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
2128 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
2129 AR5K_PHY_TIMING_8_PILOT_MASK_2,
2132 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
2133 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
2134 AR5K_PHY_TIMING_10_PILOT_MASK_2,
2137 /* Clear magnitude masks */
2138 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
2139 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
2140 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
2141 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2142 AR5K_PHY_BIN_MASK_CTL_MASK_4,
2145 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
2146 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
2147 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
2148 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
2149 AR5K_PHY_BIN_MASK2_4_MASK_4,
2155 /*****************\
2156 * Antenna control *
2157 \*****************/
2160 * DOC: Antenna control
2162 * Hw supports up to 14 antennas ! I haven't found any card that implements
2163 * that. The maximum number of antennas I've seen is up to 4 (2 for 2GHz and 2
2164 * for 5GHz). Antenna 1 (MAIN) should be omnidirectional, 2 (AUX)
2165 * omnidirectional or sectorial and antennas 3-14 sectorial (or directional).
2167 * We can have a single antenna for RX and multiple antennas for TX.
2168 * RX antenna is our "default" antenna (usually antenna 1) set on
2169 * DEFAULT_ANTENNA register and TX antenna is set on each TX control descriptor
2170 * (0 for automatic selection, 1 - 14 antenna number).
2172 * We can let hw do all the work doing fast antenna diversity for both
2173 * tx and rx or we can do things manually. Here are the options we have
2174 * (all are bits of STA_ID1 register):
2176 * AR5K_STA_ID1_DEFAULT_ANTENNA -> When 0 is set as the TX antenna on TX
2177 * control descriptor, use the default antenna to transmit or else use the last
2178 * antenna on which we received an ACK.
2180 * AR5K_STA_ID1_DESC_ANTENNA -> Update default antenna after each TX frame to
2181 * the antenna on which we got the ACK for that frame.
2183 * AR5K_STA_ID1_RTS_DEF_ANTENNA -> Use default antenna for RTS or else use the
2184 * one on the TX descriptor.
2186 * AR5K_STA_ID1_SELFGEN_DEF_ANT -> Use default antenna for self generated frames
2187 * (ACKs etc), or else use current antenna (the one we just used for TX).
2189 * Using the above we support the following scenarios:
2191 * AR5K_ANTMODE_DEFAULT -> Hw handles antenna diversity etc automatically
2193 * AR5K_ANTMODE_FIXED_A -> Only antenna A (MAIN) is present
2195 * AR5K_ANTMODE_FIXED_B -> Only antenna B (AUX) is present
2197 * AR5K_ANTMODE_SINGLE_AP -> Sta locked on a single ap
2199 * AR5K_ANTMODE_SECTOR_AP -> AP with tx antenna set on tx desc
2201 * AR5K_ANTMODE_SECTOR_STA -> STA with tx antenna set on tx desc
2203 * AR5K_ANTMODE_DEBUG Debug mode -A -> Rx, B-> Tx-
2205 * Also note that when setting antenna to F on tx descriptor card inverts
2206 * current tx antenna.
2210 * ath5k_hw_set_def_antenna() - Set default rx antenna on AR5211/5212 and newer
2211 * @ah: The &struct ath5k_hw
2212 * @ant: Antenna number
2214 static void
2215 ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
2217 if (ah->ah_version != AR5K_AR5210)
2218 ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
2222 * ath5k_hw_set_fast_div() - Enable/disable fast rx antenna diversity
2223 * @ah: The &struct ath5k_hw
2224 * @ee_mode: One of enum ath5k_driver_mode
2225 * @enable: True to enable, false to disable
2227 static void
2228 ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
2230 switch (ee_mode) {
2231 case AR5K_EEPROM_MODE_11G:
2232 /* XXX: This is set to
2233 * disabled on initvals !!! */
2234 case AR5K_EEPROM_MODE_11A:
2235 if (enable)
2236 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
2237 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2238 else
2239 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
2240 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2241 break;
2242 case AR5K_EEPROM_MODE_11B:
2243 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
2244 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2245 break;
2246 default:
2247 return;
2250 if (enable) {
2251 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
2252 AR5K_PHY_RESTART_DIV_GC, 4);
2254 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
2255 AR5K_PHY_FAST_ANT_DIV_EN);
2256 } else {
2257 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
2258 AR5K_PHY_RESTART_DIV_GC, 0);
2260 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
2261 AR5K_PHY_FAST_ANT_DIV_EN);
2266 * ath5k_hw_set_antenna_switch() - Set up antenna switch table
2267 * @ah: The &struct ath5k_hw
2268 * @ee_mode: One of enum ath5k_driver_mode
2270 * Switch table comes from EEPROM and includes information on controlling
2271 * the 2 antenna RX attenuators
2273 void
2274 ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
2276 u8 ant0, ant1;
2279 * In case a fixed antenna was set as default
2280 * use the same switch table twice.
2282 if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
2283 ant0 = ant1 = AR5K_ANT_SWTABLE_A;
2284 else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
2285 ant0 = ant1 = AR5K_ANT_SWTABLE_B;
2286 else {
2287 ant0 = AR5K_ANT_SWTABLE_A;
2288 ant1 = AR5K_ANT_SWTABLE_B;
2291 /* Set antenna idle switch table */
2292 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
2293 AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
2294 (ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
2295 AR5K_PHY_ANT_CTL_TXRX_EN));
2297 /* Set antenna switch tables */
2298 ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
2299 AR5K_PHY_ANT_SWITCH_TABLE_0);
2300 ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
2301 AR5K_PHY_ANT_SWITCH_TABLE_1);
2305 * ath5k_hw_set_antenna_mode() - Set antenna operating mode
2306 * @ah: The &struct ath5k_hw
2307 * @ant_mode: One of enum ath5k_ant_mode
2309 void
2310 ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
2312 struct ieee80211_channel *channel = ah->ah_current_channel;
2313 bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
2314 bool use_def_for_sg;
2315 int ee_mode;
2316 u8 def_ant, tx_ant;
2317 u32 sta_id1 = 0;
2319 /* if channel is not initialized yet we can't set the antennas
2320 * so just store the mode. it will be set on the next reset */
2321 if (channel == NULL) {
2322 ah->ah_ant_mode = ant_mode;
2323 return;
2326 def_ant = ah->ah_def_ant;
2328 ee_mode = ath5k_eeprom_mode_from_channel(channel);
2329 if (ee_mode < 0) {
2330 ATH5K_ERR(ah,
2331 "invalid channel: %d\n", channel->center_freq);
2332 return;
2335 switch (ant_mode) {
2336 case AR5K_ANTMODE_DEFAULT:
2337 tx_ant = 0;
2338 use_def_for_tx = false;
2339 update_def_on_tx = false;
2340 use_def_for_rts = false;
2341 use_def_for_sg = false;
2342 fast_div = true;
2343 break;
2344 case AR5K_ANTMODE_FIXED_A:
2345 def_ant = 1;
2346 tx_ant = 1;
2347 use_def_for_tx = true;
2348 update_def_on_tx = false;
2349 use_def_for_rts = true;
2350 use_def_for_sg = true;
2351 fast_div = false;
2352 break;
2353 case AR5K_ANTMODE_FIXED_B:
2354 def_ant = 2;
2355 tx_ant = 2;
2356 use_def_for_tx = true;
2357 update_def_on_tx = false;
2358 use_def_for_rts = true;
2359 use_def_for_sg = true;
2360 fast_div = false;
2361 break;
2362 case AR5K_ANTMODE_SINGLE_AP:
2363 def_ant = 1; /* updated on tx */
2364 tx_ant = 0;
2365 use_def_for_tx = true;
2366 update_def_on_tx = true;
2367 use_def_for_rts = true;
2368 use_def_for_sg = true;
2369 fast_div = true;
2370 break;
2371 case AR5K_ANTMODE_SECTOR_AP:
2372 tx_ant = 1; /* variable */
2373 use_def_for_tx = false;
2374 update_def_on_tx = false;
2375 use_def_for_rts = true;
2376 use_def_for_sg = false;
2377 fast_div = false;
2378 break;
2379 case AR5K_ANTMODE_SECTOR_STA:
2380 tx_ant = 1; /* variable */
2381 use_def_for_tx = true;
2382 update_def_on_tx = false;
2383 use_def_for_rts = true;
2384 use_def_for_sg = false;
2385 fast_div = true;
2386 break;
2387 case AR5K_ANTMODE_DEBUG:
2388 def_ant = 1;
2389 tx_ant = 2;
2390 use_def_for_tx = false;
2391 update_def_on_tx = false;
2392 use_def_for_rts = false;
2393 use_def_for_sg = false;
2394 fast_div = false;
2395 break;
2396 default:
2397 return;
2400 ah->ah_tx_ant = tx_ant;
2401 ah->ah_ant_mode = ant_mode;
2402 ah->ah_def_ant = def_ant;
2404 sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
2405 sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
2406 sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
2407 sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
2409 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
2411 if (sta_id1)
2412 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
2414 ath5k_hw_set_antenna_switch(ah, ee_mode);
2415 /* Note: set diversity before default antenna
2416 * because it won't work correctly */
2417 ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
2418 ath5k_hw_set_def_antenna(ah, def_ant);
2422 /****************\
2423 * TX power setup *
2424 \****************/
2427 * Helper functions
2431 * ath5k_get_interpolated_value() - Get interpolated Y val between two points
2432 * @target: X value of the middle point
2433 * @x_left: X value of the left point
2434 * @x_right: X value of the right point
2435 * @y_left: Y value of the left point
2436 * @y_right: Y value of the right point
2438 static s16
2439 ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
2440 s16 y_left, s16 y_right)
2442 s16 ratio, result;
2444 /* Avoid divide by zero and skip interpolation
2445 * if we have the same point */
2446 if ((x_left == x_right) || (y_left == y_right))
2447 return y_left;
2450 * Since we use ints and not fps, we need to scale up in
2451 * order to get a sane ratio value (or else we 'll eg. get
2452 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
2453 * to have some accuracy both for 0.5 and 0.25 steps.
2455 ratio = ((100 * y_right - 100 * y_left) / (x_right - x_left));
2457 /* Now scale down to be in range */
2458 result = y_left + (ratio * (target - x_left) / 100);
2460 return result;
2464 * ath5k_get_linear_pcdac_min() - Find vertical boundary (min pwr) for the
2465 * linear PCDAC curve
2466 * @stepL: Left array with y values (pcdac steps)
2467 * @stepR: Right array with y values (pcdac steps)
2468 * @pwrL: Left array with x values (power steps)
2469 * @pwrR: Right array with x values (power steps)
2471 * Since we have the top of the curve and we draw the line below
2472 * until we reach 1 (1 pcdac step) we need to know which point
2473 * (x value) that is so that we don't go below x axis and have negative
2474 * pcdac values when creating the curve, or fill the table with zeros.
2476 static s16
2477 ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
2478 const s16 *pwrL, const s16 *pwrR)
2480 s8 tmp;
2481 s16 min_pwrL, min_pwrR;
2482 s16 pwr_i;
2484 /* Some vendors write the same pcdac value twice !!! */
2485 if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2486 return max(pwrL[0], pwrR[0]);
2488 if (pwrL[0] == pwrL[1])
2489 min_pwrL = pwrL[0];
2490 else {
2491 pwr_i = pwrL[0];
2492 do {
2493 pwr_i--;
2494 tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2495 pwrL[0], pwrL[1],
2496 stepL[0], stepL[1]);
2497 } while (tmp > 1);
2499 min_pwrL = pwr_i;
2502 if (pwrR[0] == pwrR[1])
2503 min_pwrR = pwrR[0];
2504 else {
2505 pwr_i = pwrR[0];
2506 do {
2507 pwr_i--;
2508 tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2509 pwrR[0], pwrR[1],
2510 stepR[0], stepR[1]);
2511 } while (tmp > 1);
2513 min_pwrR = pwr_i;
2516 /* Keep the right boundary so that it works for both curves */
2517 return max(min_pwrL, min_pwrR);
2521 * ath5k_create_power_curve() - Create a Power to PDADC or PCDAC curve
2522 * @pmin: Minimum power value (xmin)
2523 * @pmax: Maximum power value (xmax)
2524 * @pwr: Array of power steps (x values)
2525 * @vpd: Array of matching PCDAC/PDADC steps (y values)
2526 * @num_points: Number of provided points
2527 * @vpd_table: Array to fill with the full PCDAC/PDADC values (y values)
2528 * @type: One of enum ath5k_powertable_type (eeprom.h)
2530 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2531 * Power to PCDAC curve.
2533 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2534 * steps (offsets) on y axis. Power can go up to 31.5dB and max
2535 * PCDAC/PDADC step for each curve is 64 but we can write more than
2536 * one curves on hw so we can go up to 128 (which is the max step we
2537 * can write on the final table).
2539 * We write y values (PCDAC/PDADC steps) on hw.
2541 static void
2542 ath5k_create_power_curve(s16 pmin, s16 pmax,
2543 const s16 *pwr, const u8 *vpd,
2544 u8 num_points,
2545 u8 *vpd_table, u8 type)
2547 u8 idx[2] = { 0, 1 };
2548 s16 pwr_i = 2 * pmin;
2549 int i;
2551 if (num_points < 2)
2552 return;
2554 /* We want the whole line, so adjust boundaries
2555 * to cover the entire power range. Note that
2556 * power values are already 0.25dB so no need
2557 * to multiply pwr_i by 2 */
2558 if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2559 pwr_i = pmin;
2560 pmin = 0;
2561 pmax = 63;
2564 /* Find surrounding turning points (TPs)
2565 * and interpolate between them */
2566 for (i = 0; (i <= (u16) (pmax - pmin)) &&
2567 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2569 /* We passed the right TP, move to the next set of TPs
2570 * if we pass the last TP, extrapolate above using the last
2571 * two TPs for ratio */
2572 if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2573 idx[0]++;
2574 idx[1]++;
2577 vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2578 pwr[idx[0]], pwr[idx[1]],
2579 vpd[idx[0]], vpd[idx[1]]);
2581 /* Increase by 0.5dB
2582 * (0.25 dB units) */
2583 pwr_i += 2;
2588 * ath5k_get_chan_pcal_surrounding_piers() - Get surrounding calibration piers
2589 * for a given channel.
2590 * @ah: The &struct ath5k_hw
2591 * @channel: The &struct ieee80211_channel
2592 * @pcinfo_l: The &struct ath5k_chan_pcal_info to put the left cal. pier
2593 * @pcinfo_r: The &struct ath5k_chan_pcal_info to put the right cal. pier
2595 * Get the surrounding per-channel power calibration piers
2596 * for a given frequency so that we can interpolate between
2597 * them and come up with an appropriate dataset for our current
2598 * channel.
2600 static void
2601 ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2602 struct ieee80211_channel *channel,
2603 struct ath5k_chan_pcal_info **pcinfo_l,
2604 struct ath5k_chan_pcal_info **pcinfo_r)
2606 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2607 struct ath5k_chan_pcal_info *pcinfo;
2608 u8 idx_l, idx_r;
2609 u8 mode, max, i;
2610 u32 target = channel->center_freq;
2612 idx_l = 0;
2613 idx_r = 0;
2615 switch (channel->hw_value) {
2616 case AR5K_EEPROM_MODE_11A:
2617 pcinfo = ee->ee_pwr_cal_a;
2618 mode = AR5K_EEPROM_MODE_11A;
2619 break;
2620 case AR5K_EEPROM_MODE_11B:
2621 pcinfo = ee->ee_pwr_cal_b;
2622 mode = AR5K_EEPROM_MODE_11B;
2623 break;
2624 case AR5K_EEPROM_MODE_11G:
2625 default:
2626 pcinfo = ee->ee_pwr_cal_g;
2627 mode = AR5K_EEPROM_MODE_11G;
2628 break;
2630 max = ee->ee_n_piers[mode] - 1;
2632 /* Frequency is below our calibrated
2633 * range. Use the lowest power curve
2634 * we have */
2635 if (target < pcinfo[0].freq) {
2636 idx_l = idx_r = 0;
2637 goto done;
2640 /* Frequency is above our calibrated
2641 * range. Use the highest power curve
2642 * we have */
2643 if (target > pcinfo[max].freq) {
2644 idx_l = idx_r = max;
2645 goto done;
2648 /* Frequency is inside our calibrated
2649 * channel range. Pick the surrounding
2650 * calibration piers so that we can
2651 * interpolate */
2652 for (i = 0; i <= max; i++) {
2654 /* Frequency matches one of our calibration
2655 * piers, no need to interpolate, just use
2656 * that calibration pier */
2657 if (pcinfo[i].freq == target) {
2658 idx_l = idx_r = i;
2659 goto done;
2662 /* We found a calibration pier that's above
2663 * frequency, use this pier and the previous
2664 * one to interpolate */
2665 if (target < pcinfo[i].freq) {
2666 idx_r = i;
2667 idx_l = idx_r - 1;
2668 goto done;
2672 done:
2673 *pcinfo_l = &pcinfo[idx_l];
2674 *pcinfo_r = &pcinfo[idx_r];
2678 * ath5k_get_rate_pcal_data() - Get the interpolated per-rate power
2679 * calibration data
2680 * @ah: The &struct ath5k_hw *ah,
2681 * @channel: The &struct ieee80211_channel
2682 * @rates: The &struct ath5k_rate_pcal_info to fill
2684 * Get the surrounding per-rate power calibration data
2685 * for a given frequency and interpolate between power
2686 * values to set max target power supported by hw for
2687 * each rate on this frequency.
2689 static void
2690 ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2691 struct ieee80211_channel *channel,
2692 struct ath5k_rate_pcal_info *rates)
2694 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2695 struct ath5k_rate_pcal_info *rpinfo;
2696 u8 idx_l, idx_r;
2697 u8 mode, max, i;
2698 u32 target = channel->center_freq;
2700 idx_l = 0;
2701 idx_r = 0;
2703 switch (channel->hw_value) {
2704 case AR5K_MODE_11A:
2705 rpinfo = ee->ee_rate_tpwr_a;
2706 mode = AR5K_EEPROM_MODE_11A;
2707 break;
2708 case AR5K_MODE_11B:
2709 rpinfo = ee->ee_rate_tpwr_b;
2710 mode = AR5K_EEPROM_MODE_11B;
2711 break;
2712 case AR5K_MODE_11G:
2713 default:
2714 rpinfo = ee->ee_rate_tpwr_g;
2715 mode = AR5K_EEPROM_MODE_11G;
2716 break;
2718 max = ee->ee_rate_target_pwr_num[mode] - 1;
2720 /* Get the surrounding calibration
2721 * piers - same as above */
2722 if (target < rpinfo[0].freq) {
2723 idx_l = idx_r = 0;
2724 goto done;
2727 if (target > rpinfo[max].freq) {
2728 idx_l = idx_r = max;
2729 goto done;
2732 for (i = 0; i <= max; i++) {
2734 if (rpinfo[i].freq == target) {
2735 idx_l = idx_r = i;
2736 goto done;
2739 if (target < rpinfo[i].freq) {
2740 idx_r = i;
2741 idx_l = idx_r - 1;
2742 goto done;
2746 done:
2747 /* Now interpolate power value, based on the frequency */
2748 rates->freq = target;
2750 rates->target_power_6to24 =
2751 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2752 rpinfo[idx_r].freq,
2753 rpinfo[idx_l].target_power_6to24,
2754 rpinfo[idx_r].target_power_6to24);
2756 rates->target_power_36 =
2757 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2758 rpinfo[idx_r].freq,
2759 rpinfo[idx_l].target_power_36,
2760 rpinfo[idx_r].target_power_36);
2762 rates->target_power_48 =
2763 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2764 rpinfo[idx_r].freq,
2765 rpinfo[idx_l].target_power_48,
2766 rpinfo[idx_r].target_power_48);
2768 rates->target_power_54 =
2769 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2770 rpinfo[idx_r].freq,
2771 rpinfo[idx_l].target_power_54,
2772 rpinfo[idx_r].target_power_54);
2776 * ath5k_get_max_ctl_power() - Get max edge power for a given frequency
2777 * @ah: the &struct ath5k_hw
2778 * @channel: The &struct ieee80211_channel
2780 * Get the max edge power for this channel if
2781 * we have such data from EEPROM's Conformance Test
2782 * Limits (CTL), and limit max power if needed.
2784 static void
2785 ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2786 struct ieee80211_channel *channel)
2788 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2789 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2790 struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2791 u8 *ctl_val = ee->ee_ctl;
2792 s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2793 s16 edge_pwr = 0;
2794 u8 rep_idx;
2795 u8 i, ctl_mode;
2796 u8 ctl_idx = 0xFF;
2797 u32 target = channel->center_freq;
2799 ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2801 switch (channel->hw_value) {
2802 case AR5K_MODE_11A:
2803 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2804 ctl_mode |= AR5K_CTL_TURBO;
2805 else
2806 ctl_mode |= AR5K_CTL_11A;
2807 break;
2808 case AR5K_MODE_11G:
2809 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2810 ctl_mode |= AR5K_CTL_TURBOG;
2811 else
2812 ctl_mode |= AR5K_CTL_11G;
2813 break;
2814 case AR5K_MODE_11B:
2815 ctl_mode |= AR5K_CTL_11B;
2816 break;
2817 default:
2818 return;
2821 for (i = 0; i < ee->ee_ctls; i++) {
2822 if (ctl_val[i] == ctl_mode) {
2823 ctl_idx = i;
2824 break;
2828 /* If we have a CTL dataset available grab it and find the
2829 * edge power for our frequency */
2830 if (ctl_idx == 0xFF)
2831 return;
2833 /* Edge powers are sorted by frequency from lower
2834 * to higher. Each CTL corresponds to 8 edge power
2835 * measurements. */
2836 rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2838 /* Don't do boundaries check because we
2839 * might have more that one bands defined
2840 * for this mode */
2842 /* Get the edge power that's closer to our
2843 * frequency */
2844 for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2845 rep_idx += i;
2846 if (target <= rep[rep_idx].freq)
2847 edge_pwr = (s16) rep[rep_idx].edge;
2850 if (edge_pwr)
2851 ah->ah_txpower.txp_max_pwr = 4 * min(edge_pwr, max_chan_pwr);
2856 * Power to PCDAC table functions
2860 * DOC: Power to PCDAC table functions
2862 * For RF5111 we have an XPD -eXternal Power Detector- curve
2863 * for each calibrated channel. Each curve has 0,5dB Power steps
2864 * on x axis and PCDAC steps (offsets) on y axis and looks like an
2865 * exponential function. To recreate the curve we read 11 points
2866 * from eeprom (eeprom.c) and interpolate here.
2868 * For RF5112 we have 4 XPD -eXternal Power Detector- curves
2869 * for each calibrated channel on 0, -6, -12 and -18dBm but we only
2870 * use the higher (3) and the lower (0) curves. Each curve again has 0.5dB
2871 * power steps on x axis and PCDAC steps on y axis and looks like a
2872 * linear function. To recreate the curve and pass the power values
2873 * on hw, we get 4 points for xpd 0 (lower gain -> max power)
2874 * and 3 points for xpd 3 (higher gain -> lower power) from eeprom (eeprom.c)
2875 * and interpolate here.
2877 * For a given channel we get the calibrated points (piers) for it or
2878 * -if we don't have calibration data for this specific channel- from the
2879 * available surrounding channels we have calibration data for, after we do a
2880 * linear interpolation between them. Then since we have our calibrated points
2881 * for this channel, we do again a linear interpolation between them to get the
2882 * whole curve.
2884 * We finally write the Y values of the curve(s) (the PCDAC values) on hw
2888 * ath5k_fill_pwr_to_pcdac_table() - Fill Power to PCDAC table on RF5111
2889 * @ah: The &struct ath5k_hw
2890 * @table_min: Minimum power (x min)
2891 * @table_max: Maximum power (x max)
2893 * No further processing is needed for RF5111, the only thing we have to
2894 * do is fill the values below and above calibration range since eeprom data
2895 * may not cover the entire PCDAC table.
2897 static void
2898 ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2899 s16 *table_max)
2901 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2902 u8 *pcdac_tmp = ah->ah_txpower.tmpL[0];
2903 u8 pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2904 s16 min_pwr, max_pwr;
2906 /* Get table boundaries */
2907 min_pwr = table_min[0];
2908 pcdac_0 = pcdac_tmp[0];
2910 max_pwr = table_max[0];
2911 pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2913 /* Extrapolate below minimum using pcdac_0 */
2914 pcdac_i = 0;
2915 for (i = 0; i < min_pwr; i++)
2916 pcdac_out[pcdac_i++] = pcdac_0;
2918 /* Copy values from pcdac_tmp */
2919 pwr_idx = min_pwr;
2920 for (i = 0; pwr_idx <= max_pwr &&
2921 pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2922 pcdac_out[pcdac_i++] = pcdac_tmp[i];
2923 pwr_idx++;
2926 /* Extrapolate above maximum */
2927 while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2928 pcdac_out[pcdac_i++] = pcdac_n;
2933 * ath5k_combine_linear_pcdac_curves() - Combine available PCDAC Curves
2934 * @ah: The &struct ath5k_hw
2935 * @table_min: Minimum power (x min)
2936 * @table_max: Maximum power (x max)
2937 * @pdcurves: Number of pd curves
2939 * Combine available XPD Curves and fill Linear Power to PCDAC table on RF5112
2940 * RFX112 can have up to 2 curves (one for low txpower range and one for
2941 * higher txpower range). We need to put them both on pcdac_out and place
2942 * them in the correct location. In case we only have one curve available
2943 * just fit it on pcdac_out (it's supposed to cover the entire range of
2944 * available pwr levels since it's always the higher power curve). Extrapolate
2945 * below and above final table if needed.
2947 static void
2948 ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2949 s16 *table_max, u8 pdcurves)
2951 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2952 u8 *pcdac_low_pwr;
2953 u8 *pcdac_high_pwr;
2954 u8 *pcdac_tmp;
2955 u8 pwr;
2956 s16 max_pwr_idx;
2957 s16 min_pwr_idx;
2958 s16 mid_pwr_idx = 0;
2959 /* Edge flag turns on the 7nth bit on the PCDAC
2960 * to declare the higher power curve (force values
2961 * to be greater than 64). If we only have one curve
2962 * we don't need to set this, if we have 2 curves and
2963 * fill the table backwards this can also be used to
2964 * switch from higher power curve to lower power curve */
2965 u8 edge_flag;
2966 int i;
2968 /* When we have only one curve available
2969 * that's the higher power curve. If we have
2970 * two curves the first is the high power curve
2971 * and the next is the low power curve. */
2972 if (pdcurves > 1) {
2973 pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2974 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2975 mid_pwr_idx = table_max[1] - table_min[1] - 1;
2976 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2978 /* If table size goes beyond 31.5dB, keep the
2979 * upper 31.5dB range when setting tx power.
2980 * Note: 126 = 31.5 dB in quarter dB steps */
2981 if (table_max[0] - table_min[1] > 126)
2982 min_pwr_idx = table_max[0] - 126;
2983 else
2984 min_pwr_idx = table_min[1];
2986 /* Since we fill table backwards
2987 * start from high power curve */
2988 pcdac_tmp = pcdac_high_pwr;
2990 edge_flag = 0x40;
2991 } else {
2992 pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2993 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2994 min_pwr_idx = table_min[0];
2995 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2996 pcdac_tmp = pcdac_high_pwr;
2997 edge_flag = 0;
3000 /* This is used when setting tx power*/
3001 ah->ah_txpower.txp_min_idx = min_pwr_idx / 2;
3003 /* Fill Power to PCDAC table backwards */
3004 pwr = max_pwr_idx;
3005 for (i = 63; i >= 0; i--) {
3006 /* Entering lower power range, reset
3007 * edge flag and set pcdac_tmp to lower
3008 * power curve.*/
3009 if (edge_flag == 0x40 &&
3010 (2 * pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
3011 edge_flag = 0x00;
3012 pcdac_tmp = pcdac_low_pwr;
3013 pwr = mid_pwr_idx / 2;
3016 /* Don't go below 1, extrapolate below if we have
3017 * already switched to the lower power curve -or
3018 * we only have one curve and edge_flag is zero
3019 * anyway */
3020 if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
3021 while (i >= 0) {
3022 pcdac_out[i] = pcdac_out[i + 1];
3023 i--;
3025 break;
3028 pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
3030 /* Extrapolate above if pcdac is greater than
3031 * 126 -this can happen because we OR pcdac_out
3032 * value with edge_flag on high power curve */
3033 if (pcdac_out[i] > 126)
3034 pcdac_out[i] = 126;
3036 /* Decrease by a 0.5dB step */
3037 pwr--;
3042 * ath5k_write_pcdac_table() - Write the PCDAC values on hw
3043 * @ah: The &struct ath5k_hw
3045 static void
3046 ath5k_write_pcdac_table(struct ath5k_hw *ah)
3048 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
3049 int i;
3052 * Write TX power values
3054 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
3055 ath5k_hw_reg_write(ah,
3056 (((pcdac_out[2 * i + 0] << 8 | 0xff) & 0xffff) << 0) |
3057 (((pcdac_out[2 * i + 1] << 8 | 0xff) & 0xffff) << 16),
3058 AR5K_PHY_PCDAC_TXPOWER(i));
3064 * Power to PDADC table functions
3068 * DOC: Power to PDADC table functions
3070 * For RF2413 and later we have a Power to PDADC table (Power Detector)
3071 * instead of a PCDAC (Power Control) and 4 pd gain curves for each
3072 * calibrated channel. Each curve has power on x axis in 0.5 db steps and
3073 * PDADC steps on y axis and looks like an exponential function like the
3074 * RF5111 curve.
3076 * To recreate the curves we read the points from eeprom (eeprom.c)
3077 * and interpolate here. Note that in most cases only 2 (higher and lower)
3078 * curves are used (like RF5112) but vendors have the opportunity to include
3079 * all 4 curves on eeprom. The final curve (higher power) has an extra
3080 * point for better accuracy like RF5112.
3082 * The process is similar to what we do above for RF5111/5112
3086 * ath5k_combine_pwr_to_pdadc_curves() - Combine the various PDADC curves
3087 * @ah: The &struct ath5k_hw
3088 * @pwr_min: Minimum power (x min)
3089 * @pwr_max: Maximum power (x max)
3090 * @pdcurves: Number of available curves
3092 * Combine the various pd curves and create the final Power to PDADC table
3093 * We can have up to 4 pd curves, we need to do a similar process
3094 * as we do for RF5112. This time we don't have an edge_flag but we
3095 * set the gain boundaries on a separate register.
3097 static void
3098 ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
3099 s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
3101 u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
3102 u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
3103 u8 *pdadc_tmp;
3104 s16 pdadc_0;
3105 u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
3106 u8 pd_gain_overlap;
3108 /* Note: Register value is initialized on initvals
3109 * there is no feedback from hw.
3110 * XXX: What about pd_gain_overlap from EEPROM ? */
3111 pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
3112 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
3114 /* Create final PDADC table */
3115 for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
3116 pdadc_tmp = ah->ah_txpower.tmpL[pdg];
3118 if (pdg == pdcurves - 1)
3119 /* 2 dB boundary stretch for last
3120 * (higher power) curve */
3121 gain_boundaries[pdg] = pwr_max[pdg] + 4;
3122 else
3123 /* Set gain boundary in the middle
3124 * between this curve and the next one */
3125 gain_boundaries[pdg] =
3126 (pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
3128 /* Sanity check in case our 2 db stretch got out of
3129 * range. */
3130 if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
3131 gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
3133 /* For the first curve (lower power)
3134 * start from 0 dB */
3135 if (pdg == 0)
3136 pdadc_0 = 0;
3137 else
3138 /* For the other curves use the gain overlap */
3139 pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
3140 pd_gain_overlap;
3142 /* Force each power step to be at least 0.5 dB */
3143 if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
3144 pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
3145 else
3146 pwr_step = 1;
3148 /* If pdadc_0 is negative, we need to extrapolate
3149 * below this pdgain by a number of pwr_steps */
3150 while ((pdadc_0 < 0) && (pdadc_i < 128)) {
3151 s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
3152 pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
3153 pdadc_0++;
3156 /* Set last pwr level, using gain boundaries */
3157 pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
3158 /* Limit it to be inside pwr range */
3159 table_size = pwr_max[pdg] - pwr_min[pdg];
3160 max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
3162 /* Fill pdadc_out table */
3163 while (pdadc_0 < max_idx && pdadc_i < 128)
3164 pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
3166 /* Need to extrapolate above this pdgain? */
3167 if (pdadc_n <= max_idx)
3168 continue;
3170 /* Force each power step to be at least 0.5 dB */
3171 if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
3172 pwr_step = pdadc_tmp[table_size - 1] -
3173 pdadc_tmp[table_size - 2];
3174 else
3175 pwr_step = 1;
3177 /* Extrapolate above */
3178 while ((pdadc_0 < (s16) pdadc_n) &&
3179 (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
3180 s16 tmp = pdadc_tmp[table_size - 1] +
3181 (pdadc_0 - max_idx) * pwr_step;
3182 pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
3183 pdadc_0++;
3187 while (pdg < AR5K_EEPROM_N_PD_GAINS) {
3188 gain_boundaries[pdg] = gain_boundaries[pdg - 1];
3189 pdg++;
3192 while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
3193 pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
3194 pdadc_i++;
3197 /* Set gain boundaries */
3198 ath5k_hw_reg_write(ah,
3199 AR5K_REG_SM(pd_gain_overlap,
3200 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
3201 AR5K_REG_SM(gain_boundaries[0],
3202 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
3203 AR5K_REG_SM(gain_boundaries[1],
3204 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
3205 AR5K_REG_SM(gain_boundaries[2],
3206 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
3207 AR5K_REG_SM(gain_boundaries[3],
3208 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
3209 AR5K_PHY_TPC_RG5);
3211 /* Used for setting rate power table */
3212 ah->ah_txpower.txp_min_idx = pwr_min[0];
3217 * ath5k_write_pwr_to_pdadc_table() - Write the PDADC values on hw
3218 * @ah: The &struct ath5k_hw
3219 * @ee_mode: One of enum ath5k_driver_mode
3221 static void
3222 ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode)
3224 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
3225 u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
3226 u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode];
3227 u8 pdcurves = ee->ee_pd_gains[ee_mode];
3228 u32 reg;
3229 u8 i;
3231 /* Select the right pdgain curves */
3233 /* Clear current settings */
3234 reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
3235 reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
3236 AR5K_PHY_TPC_RG1_PDGAIN_2 |
3237 AR5K_PHY_TPC_RG1_PDGAIN_3 |
3238 AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
3241 * Use pd_gains curve from eeprom
3243 * This overrides the default setting from initvals
3244 * in case some vendors (e.g. Zcomax) don't use the default
3245 * curves. If we don't honor their settings we 'll get a
3246 * 5dB (1 * gain overlap ?) drop.
3248 reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
3250 switch (pdcurves) {
3251 case 3:
3252 reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
3253 /* Fall through */
3254 case 2:
3255 reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
3256 /* Fall through */
3257 case 1:
3258 reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
3259 break;
3261 ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
3264 * Write TX power values
3266 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
3267 u32 val = get_unaligned_le32(&pdadc_out[4 * i]);
3268 ath5k_hw_reg_write(ah, val, AR5K_PHY_PDADC_TXPOWER(i));
3274 * Common code for PCDAC/PDADC tables
3278 * ath5k_setup_channel_powertable() - Set up power table for this channel
3279 * @ah: The &struct ath5k_hw
3280 * @channel: The &struct ieee80211_channel
3281 * @ee_mode: One of enum ath5k_driver_mode
3282 * @type: One of enum ath5k_powertable_type (eeprom.h)
3284 * This is the main function that uses all of the above
3285 * to set PCDAC/PDADC table on hw for the current channel.
3286 * This table is used for tx power calibration on the baseband,
3287 * without it we get weird tx power levels and in some cases
3288 * distorted spectral mask
3290 static int
3291 ath5k_setup_channel_powertable(struct ath5k_hw *ah,
3292 struct ieee80211_channel *channel,
3293 u8 ee_mode, u8 type)
3295 struct ath5k_pdgain_info *pdg_L, *pdg_R;
3296 struct ath5k_chan_pcal_info *pcinfo_L;
3297 struct ath5k_chan_pcal_info *pcinfo_R;
3298 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
3299 u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
3300 s16 table_min[AR5K_EEPROM_N_PD_GAINS];
3301 s16 table_max[AR5K_EEPROM_N_PD_GAINS];
3302 u8 *tmpL;
3303 u8 *tmpR;
3304 u32 target = channel->center_freq;
3305 int pdg, i;
3307 /* Get surrounding freq piers for this channel */
3308 ath5k_get_chan_pcal_surrounding_piers(ah, channel,
3309 &pcinfo_L,
3310 &pcinfo_R);
3312 /* Loop over pd gain curves on
3313 * surrounding freq piers by index */
3314 for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
3316 /* Fill curves in reverse order
3317 * from lower power (max gain)
3318 * to higher power. Use curve -> idx
3319 * backmapping we did on eeprom init */
3320 u8 idx = pdg_curve_to_idx[pdg];
3322 /* Grab the needed curves by index */
3323 pdg_L = &pcinfo_L->pd_curves[idx];
3324 pdg_R = &pcinfo_R->pd_curves[idx];
3326 /* Initialize the temp tables */
3327 tmpL = ah->ah_txpower.tmpL[pdg];
3328 tmpR = ah->ah_txpower.tmpR[pdg];
3330 /* Set curve's x boundaries and create
3331 * curves so that they cover the same
3332 * range (if we don't do that one table
3333 * will have values on some range and the
3334 * other one won't have any so interpolation
3335 * will fail) */
3336 table_min[pdg] = min(pdg_L->pd_pwr[0],
3337 pdg_R->pd_pwr[0]) / 2;
3339 table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
3340 pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
3342 /* Now create the curves on surrounding channels
3343 * and interpolate if needed to get the final
3344 * curve for this gain on this channel */
3345 switch (type) {
3346 case AR5K_PWRTABLE_LINEAR_PCDAC:
3347 /* Override min/max so that we don't loose
3348 * accuracy (don't divide by 2) */
3349 table_min[pdg] = min(pdg_L->pd_pwr[0],
3350 pdg_R->pd_pwr[0]);
3352 table_max[pdg] =
3353 max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
3354 pdg_R->pd_pwr[pdg_R->pd_points - 1]);
3356 /* Override minimum so that we don't get
3357 * out of bounds while extrapolating
3358 * below. Don't do this when we have 2
3359 * curves and we are on the high power curve
3360 * because table_min is ok in this case */
3361 if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
3363 table_min[pdg] =
3364 ath5k_get_linear_pcdac_min(pdg_L->pd_step,
3365 pdg_R->pd_step,
3366 pdg_L->pd_pwr,
3367 pdg_R->pd_pwr);
3369 /* Don't go too low because we will
3370 * miss the upper part of the curve.
3371 * Note: 126 = 31.5dB (max power supported)
3372 * in 0.25dB units */
3373 if (table_max[pdg] - table_min[pdg] > 126)
3374 table_min[pdg] = table_max[pdg] - 126;
3377 /* Fall through */
3378 case AR5K_PWRTABLE_PWR_TO_PCDAC:
3379 case AR5K_PWRTABLE_PWR_TO_PDADC:
3381 ath5k_create_power_curve(table_min[pdg],
3382 table_max[pdg],
3383 pdg_L->pd_pwr,
3384 pdg_L->pd_step,
3385 pdg_L->pd_points, tmpL, type);
3387 /* We are in a calibration
3388 * pier, no need to interpolate
3389 * between freq piers */
3390 if (pcinfo_L == pcinfo_R)
3391 continue;
3393 ath5k_create_power_curve(table_min[pdg],
3394 table_max[pdg],
3395 pdg_R->pd_pwr,
3396 pdg_R->pd_step,
3397 pdg_R->pd_points, tmpR, type);
3398 break;
3399 default:
3400 return -EINVAL;
3403 /* Interpolate between curves
3404 * of surrounding freq piers to
3405 * get the final curve for this
3406 * pd gain. Re-use tmpL for interpolation
3407 * output */
3408 for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
3409 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
3410 tmpL[i] = (u8) ath5k_get_interpolated_value(target,
3411 (s16) pcinfo_L->freq,
3412 (s16) pcinfo_R->freq,
3413 (s16) tmpL[i],
3414 (s16) tmpR[i]);
3418 /* Now we have a set of curves for this
3419 * channel on tmpL (x range is table_max - table_min
3420 * and y values are tmpL[pdg][]) sorted in the same
3421 * order as EEPROM (because we've used the backmapping).
3422 * So for RF5112 it's from higher power to lower power
3423 * and for RF2413 it's from lower power to higher power.
3424 * For RF5111 we only have one curve. */
3426 /* Fill min and max power levels for this
3427 * channel by interpolating the values on
3428 * surrounding channels to complete the dataset */
3429 ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
3430 (s16) pcinfo_L->freq,
3431 (s16) pcinfo_R->freq,
3432 pcinfo_L->min_pwr, pcinfo_R->min_pwr);
3434 ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
3435 (s16) pcinfo_L->freq,
3436 (s16) pcinfo_R->freq,
3437 pcinfo_L->max_pwr, pcinfo_R->max_pwr);
3439 /* Fill PCDAC/PDADC table */
3440 switch (type) {
3441 case AR5K_PWRTABLE_LINEAR_PCDAC:
3442 /* For RF5112 we can have one or two curves
3443 * and each curve covers a certain power lvl
3444 * range so we need to do some more processing */
3445 ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
3446 ee->ee_pd_gains[ee_mode]);
3448 /* Set txp.offset so that we can
3449 * match max power value with max
3450 * table index */
3451 ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
3452 break;
3453 case AR5K_PWRTABLE_PWR_TO_PCDAC:
3454 /* We are done for RF5111 since it has only
3455 * one curve, just fit the curve on the table */
3456 ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
3458 /* No rate powertable adjustment for RF5111 */
3459 ah->ah_txpower.txp_min_idx = 0;
3460 ah->ah_txpower.txp_offset = 0;
3461 break;
3462 case AR5K_PWRTABLE_PWR_TO_PDADC:
3463 /* Set PDADC boundaries and fill
3464 * final PDADC table */
3465 ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
3466 ee->ee_pd_gains[ee_mode]);
3468 /* Set txp.offset, note that table_min
3469 * can be negative */
3470 ah->ah_txpower.txp_offset = table_min[0];
3471 break;
3472 default:
3473 return -EINVAL;
3476 ah->ah_txpower.txp_setup = true;
3478 return 0;
3482 * ath5k_write_channel_powertable() - Set power table for current channel on hw
3483 * @ah: The &struct ath5k_hw
3484 * @ee_mode: One of enum ath5k_driver_mode
3485 * @type: One of enum ath5k_powertable_type (eeprom.h)
3487 static void
3488 ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type)
3490 if (type == AR5K_PWRTABLE_PWR_TO_PDADC)
3491 ath5k_write_pwr_to_pdadc_table(ah, ee_mode);
3492 else
3493 ath5k_write_pcdac_table(ah);
3498 * DOC: Per-rate tx power setting
3500 * This is the code that sets the desired tx power limit (below
3501 * maximum) on hw for each rate (we also have TPC that sets
3502 * power per packet type). We do that by providing an index on the
3503 * PCDAC/PDADC table we set up above, for each rate.
3505 * For now we only limit txpower based on maximum tx power
3506 * supported by hw (what's inside rate_info) + conformance test
3507 * limits. We need to limit this even more, based on regulatory domain
3508 * etc to be safe. Normally this is done from above so we don't care
3509 * here, all we care is that the tx power we set will be O.K.
3510 * for the hw (e.g. won't create noise on PA etc).
3512 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps -
3513 * x values) and is indexed as follows:
3514 * rates[0] - rates[7] -> OFDM rates
3515 * rates[8] - rates[14] -> CCK rates
3516 * rates[15] -> XR rates (they all have the same power)
3520 * ath5k_setup_rate_powertable() - Set up rate power table for a given tx power
3521 * @ah: The &struct ath5k_hw
3522 * @max_pwr: The maximum tx power requested in 0.5dB steps
3523 * @rate_info: The &struct ath5k_rate_pcal_info to fill
3524 * @ee_mode: One of enum ath5k_driver_mode
3526 static void
3527 ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
3528 struct ath5k_rate_pcal_info *rate_info,
3529 u8 ee_mode)
3531 unsigned int i;
3532 u16 *rates;
3534 /* max_pwr is power level we got from driver/user in 0.5dB
3535 * units, switch to 0.25dB units so we can compare */
3536 max_pwr *= 2;
3537 max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
3539 /* apply rate limits */
3540 rates = ah->ah_txpower.txp_rates_power_table;
3542 /* OFDM rates 6 to 24Mb/s */
3543 for (i = 0; i < 5; i++)
3544 rates[i] = min(max_pwr, rate_info->target_power_6to24);
3546 /* Rest OFDM rates */
3547 rates[5] = min(rates[0], rate_info->target_power_36);
3548 rates[6] = min(rates[0], rate_info->target_power_48);
3549 rates[7] = min(rates[0], rate_info->target_power_54);
3551 /* CCK rates */
3552 /* 1L */
3553 rates[8] = min(rates[0], rate_info->target_power_6to24);
3554 /* 2L */
3555 rates[9] = min(rates[0], rate_info->target_power_36);
3556 /* 2S */
3557 rates[10] = min(rates[0], rate_info->target_power_36);
3558 /* 5L */
3559 rates[11] = min(rates[0], rate_info->target_power_48);
3560 /* 5S */
3561 rates[12] = min(rates[0], rate_info->target_power_48);
3562 /* 11L */
3563 rates[13] = min(rates[0], rate_info->target_power_54);
3564 /* 11S */
3565 rates[14] = min(rates[0], rate_info->target_power_54);
3567 /* XR rates */
3568 rates[15] = min(rates[0], rate_info->target_power_6to24);
3570 /* CCK rates have different peak to average ratio
3571 * so we have to tweak their power so that gainf
3572 * correction works ok. For this we use OFDM to
3573 * CCK delta from eeprom */
3574 if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
3575 (ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
3576 for (i = 8; i <= 15; i++)
3577 rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
3579 /* Now that we have all rates setup use table offset to
3580 * match the power range set by user with the power indices
3581 * on PCDAC/PDADC table */
3582 for (i = 0; i < 16; i++) {
3583 rates[i] += ah->ah_txpower.txp_offset;
3584 /* Don't get out of bounds */
3585 if (rates[i] > 63)
3586 rates[i] = 63;
3589 /* Min/max in 0.25dB units */
3590 ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3591 ah->ah_txpower.txp_cur_pwr = 2 * rates[0];
3592 ah->ah_txpower.txp_ofdm = rates[7];
3597 * ath5k_hw_txpower() - Set transmission power limit for a given channel
3598 * @ah: The &struct ath5k_hw
3599 * @channel: The &struct ieee80211_channel
3600 * @txpower: Requested tx power in 0.5dB steps
3602 * Combines all of the above to set the requested tx power limit
3603 * on hw.
3605 static int
3606 ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3607 u8 txpower)
3609 struct ath5k_rate_pcal_info rate_info;
3610 struct ieee80211_channel *curr_channel = ah->ah_current_channel;
3611 int ee_mode;
3612 u8 type;
3613 int ret;
3615 if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3616 ATH5K_ERR(ah, "invalid tx power: %u\n", txpower);
3617 return -EINVAL;
3620 ee_mode = ath5k_eeprom_mode_from_channel(channel);
3621 if (ee_mode < 0) {
3622 ATH5K_ERR(ah,
3623 "invalid channel: %d\n", channel->center_freq);
3624 return -EINVAL;
3627 /* Initialize TX power table */
3628 switch (ah->ah_radio) {
3629 case AR5K_RF5110:
3630 /* TODO */
3631 return 0;
3632 case AR5K_RF5111:
3633 type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3634 break;
3635 case AR5K_RF5112:
3636 type = AR5K_PWRTABLE_LINEAR_PCDAC;
3637 break;
3638 case AR5K_RF2413:
3639 case AR5K_RF5413:
3640 case AR5K_RF2316:
3641 case AR5K_RF2317:
3642 case AR5K_RF2425:
3643 type = AR5K_PWRTABLE_PWR_TO_PDADC;
3644 break;
3645 default:
3646 return -EINVAL;
3650 * If we don't change channel/mode skip tx powertable calculation
3651 * and use the cached one.
3653 if (!ah->ah_txpower.txp_setup ||
3654 (channel->hw_value != curr_channel->hw_value) ||
3655 (channel->center_freq != curr_channel->center_freq)) {
3656 /* Reset TX power values */
3657 memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3658 ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3660 /* Calculate the powertable */
3661 ret = ath5k_setup_channel_powertable(ah, channel,
3662 ee_mode, type);
3663 if (ret)
3664 return ret;
3667 /* Write table on hw */
3668 ath5k_write_channel_powertable(ah, ee_mode, type);
3670 /* Limit max power if we have a CTL available */
3671 ath5k_get_max_ctl_power(ah, channel);
3673 /* FIXME: Antenna reduction stuff */
3675 /* FIXME: Limit power on turbo modes */
3677 /* FIXME: TPC scale reduction */
3679 /* Get surrounding channels for per-rate power table
3680 * calibration */
3681 ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3683 /* Setup rate power table */
3684 ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3686 /* Write rate power table on hw */
3687 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3688 AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3689 AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3691 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3692 AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3693 AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3695 ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3696 AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3697 AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3699 ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3700 AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3701 AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3703 /* FIXME: TPC support */
3704 if (ah->ah_txpower.txp_tpc) {
3705 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3706 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3708 ath5k_hw_reg_write(ah,
3709 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3710 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3711 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3712 AR5K_TPC);
3713 } else {
3714 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3715 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3718 return 0;
3722 * ath5k_hw_set_txpower_limit() - Set txpower limit for the current channel
3723 * @ah: The &struct ath5k_hw
3724 * @txpower: The requested tx power limit in 0.5dB steps
3726 * This function provides access to ath5k_hw_txpower to the driver in
3727 * case user or an application changes it while PHY is running.
3730 ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3732 ATH5K_DBG(ah, ATH5K_DEBUG_TXPOWER,
3733 "changing txpower to %d\n", txpower);
3735 return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower);
3739 /*************\
3740 Init function
3741 \*************/
3744 * ath5k_hw_phy_init() - Initialize PHY
3745 * @ah: The &struct ath5k_hw
3746 * @channel: The @struct ieee80211_channel
3747 * @mode: One of enum ath5k_driver_mode
3748 * @fast: Try a fast channel switch instead
3750 * This is the main function used during reset to initialize PHY
3751 * or do a fast channel change if possible.
3753 * NOTE: Do not call this one from the driver, it assumes PHY is in a
3754 * warm reset state !
3757 ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3758 u8 mode, bool fast)
3760 struct ieee80211_channel *curr_channel;
3761 int ret, i;
3762 u32 phy_tst1;
3763 ret = 0;
3766 * Sanity check for fast flag
3767 * Don't try fast channel change when changing modulation
3768 * mode/band. We check for chip compatibility on
3769 * ath5k_hw_reset.
3771 curr_channel = ah->ah_current_channel;
3772 if (fast && (channel->hw_value != curr_channel->hw_value))
3773 return -EINVAL;
3776 * On fast channel change we only set the synth parameters
3777 * while PHY is running, enable calibration and skip the rest.
3779 if (fast) {
3780 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3781 AR5K_PHY_RFBUS_REQ_REQUEST);
3782 for (i = 0; i < 100; i++) {
3783 if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
3784 break;
3785 udelay(5);
3787 /* Failed */
3788 if (i >= 100)
3789 return -EIO;
3791 /* Set channel and wait for synth */
3792 ret = ath5k_hw_channel(ah, channel);
3793 if (ret)
3794 return ret;
3796 ath5k_hw_wait_for_synth(ah, channel);
3800 * Set TX power
3802 * Note: We need to do that before we set
3803 * RF buffer settings on 5211/5212+ so that we
3804 * properly set curve indices.
3806 ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_cur_pwr ?
3807 ah->ah_txpower.txp_cur_pwr / 2 : AR5K_TUNE_MAX_TXPOWER);
3808 if (ret)
3809 return ret;
3811 /* Write OFDM timings on 5212*/
3812 if (ah->ah_version == AR5K_AR5212 &&
3813 channel->hw_value != AR5K_MODE_11B) {
3815 ret = ath5k_hw_write_ofdm_timings(ah, channel);
3816 if (ret)
3817 return ret;
3819 /* Spur info is available only from EEPROM versions
3820 * greater than 5.3, but the EEPROM routines will use
3821 * static values for older versions */
3822 if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
3823 ath5k_hw_set_spur_mitigation_filter(ah,
3824 channel);
3827 /* If we used fast channel switching
3828 * we are done, release RF bus and
3829 * fire up NF calibration.
3831 * Note: Only NF calibration due to
3832 * channel change, not AGC calibration
3833 * since AGC is still running !
3835 if (fast) {
3837 * Release RF Bus grant
3839 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3840 AR5K_PHY_RFBUS_REQ_REQUEST);
3843 * Start NF calibration
3845 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3846 AR5K_PHY_AGCCTL_NF);
3848 return ret;
3852 * For 5210 we do all initialization using
3853 * initvals, so we don't have to modify
3854 * any settings (5210 also only supports
3855 * a/aturbo modes)
3857 if (ah->ah_version != AR5K_AR5210) {
3860 * Write initial RF gain settings
3861 * This should work for both 5111/5112
3863 ret = ath5k_hw_rfgain_init(ah, channel->band);
3864 if (ret)
3865 return ret;
3867 usleep_range(1000, 1500);
3870 * Write RF buffer
3872 ret = ath5k_hw_rfregs_init(ah, channel, mode);
3873 if (ret)
3874 return ret;
3876 /*Enable/disable 802.11b mode on 5111
3877 (enable 2111 frequency converter + CCK)*/
3878 if (ah->ah_radio == AR5K_RF5111) {
3879 if (mode == AR5K_MODE_11B)
3880 AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
3881 AR5K_TXCFG_B_MODE);
3882 else
3883 AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
3884 AR5K_TXCFG_B_MODE);
3887 } else if (ah->ah_version == AR5K_AR5210) {
3888 usleep_range(1000, 1500);
3889 /* Disable phy and wait */
3890 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
3891 usleep_range(1000, 1500);
3894 /* Set channel on PHY */
3895 ret = ath5k_hw_channel(ah, channel);
3896 if (ret)
3897 return ret;
3900 * Enable the PHY and wait until completion
3901 * This includes BaseBand and Synthesizer
3902 * activation.
3904 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
3906 ath5k_hw_wait_for_synth(ah, channel);
3909 * Perform ADC test to see if baseband is ready
3910 * Set tx hold and check adc test register
3912 phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
3913 ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
3914 for (i = 0; i <= 20; i++) {
3915 if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
3916 break;
3917 usleep_range(200, 250);
3919 ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
3922 * Start automatic gain control calibration
3924 * During AGC calibration RX path is re-routed to
3925 * a power detector so we don't receive anything.
3927 * This method is used to calibrate some static offsets
3928 * used together with on-the fly I/Q calibration (the
3929 * one performed via ath5k_hw_phy_calibrate), which doesn't
3930 * interrupt rx path.
3932 * While rx path is re-routed to the power detector we also
3933 * start a noise floor calibration to measure the
3934 * card's noise floor (the noise we measure when we are not
3935 * transmitting or receiving anything).
3937 * If we are in a noisy environment, AGC calibration may time
3938 * out and/or noise floor calibration might timeout.
3940 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3941 AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
3943 /* At the same time start I/Q calibration for QAM constellation
3944 * -no need for CCK- */
3945 ah->ah_iq_cal_needed = false;
3946 if (!(mode == AR5K_MODE_11B)) {
3947 ah->ah_iq_cal_needed = true;
3948 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
3949 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
3950 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
3951 AR5K_PHY_IQ_RUN);
3954 /* Wait for gain calibration to finish (we check for I/Q calibration
3955 * during ath5k_phy_calibrate) */
3956 if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
3957 AR5K_PHY_AGCCTL_CAL, 0, false)) {
3958 ATH5K_ERR(ah, "gain calibration timeout (%uMHz)\n",
3959 channel->center_freq);
3962 /* Restore antenna mode */
3963 ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
3965 return ret;