spi-topcliff-pch: supports a spi mode setup and bit order setup by IO control
[zen-stable.git] / drivers / net / wireless / ath / ath5k / qcu.c
blob30b50f934172d59aca3f183c4004a715fbdf9052
1 /*
2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
5 * Permission to use, copy, modify, and distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 /********************************************\
20 Queue Control Unit, DCF Control Unit Functions
21 \********************************************/
23 #include "ath5k.h"
24 #include "reg.h"
25 #include "debug.h"
26 #include <linux/log2.h>
28 /**
29 * DOC: Queue Control Unit (QCU)/DCF Control Unit (DCU) functions
31 * Here we setup parameters for the 12 available TX queues. Note that
32 * on the various registers we can usually only map the first 10 of them so
33 * basically we have 10 queues to play with. Each queue has a matching
34 * QCU that controls when the queue will get triggered and multiple QCUs
35 * can be mapped to a single DCU that controls the various DFS parameters
36 * for the various queues. In our setup we have a 1:1 mapping between QCUs
37 * and DCUs allowing us to have different DFS settings for each queue.
39 * When a frame goes into a TX queue, QCU decides when it'll trigger a
40 * transmission based on various criteria (such as how many data we have inside
41 * it's buffer or -if it's a beacon queue- if it's time to fire up the queue
42 * based on TSF etc), DCU adds backoff, IFSes etc and then a scheduler
43 * (arbitrator) decides the priority of each QCU based on it's configuration
44 * (e.g. beacons are always transmitted when they leave DCU bypassing all other
45 * frames from other queues waiting to be transmitted). After a frame leaves
46 * the DCU it goes to PCU for further processing and then to PHY for
47 * the actual transmission.
51 /******************\
52 * Helper functions *
53 \******************/
55 /**
56 * ath5k_hw_num_tx_pending() - Get number of pending frames for a given queue
57 * @ah: The &struct ath5k_hw
58 * @queue: One of enum ath5k_tx_queue_id
60 u32
61 ath5k_hw_num_tx_pending(struct ath5k_hw *ah, unsigned int queue)
63 u32 pending;
64 AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
66 /* Return if queue is declared inactive */
67 if (ah->ah_txq[queue].tqi_type == AR5K_TX_QUEUE_INACTIVE)
68 return false;
70 /* XXX: How about AR5K_CFG_TXCNT ? */
71 if (ah->ah_version == AR5K_AR5210)
72 return false;
74 pending = ath5k_hw_reg_read(ah, AR5K_QUEUE_STATUS(queue));
75 pending &= AR5K_QCU_STS_FRMPENDCNT;
77 /* It's possible to have no frames pending even if TXE
78 * is set. To indicate that q has not stopped return
79 * true */
80 if (!pending && AR5K_REG_READ_Q(ah, AR5K_QCU_TXE, queue))
81 return true;
83 return pending;
86 /**
87 * ath5k_hw_release_tx_queue() - Set a transmit queue inactive
88 * @ah: The &struct ath5k_hw
89 * @queue: One of enum ath5k_tx_queue_id
91 void
92 ath5k_hw_release_tx_queue(struct ath5k_hw *ah, unsigned int queue)
94 if (WARN_ON(queue >= ah->ah_capabilities.cap_queues.q_tx_num))
95 return;
97 /* This queue will be skipped in further operations */
98 ah->ah_txq[queue].tqi_type = AR5K_TX_QUEUE_INACTIVE;
99 /*For SIMR setup*/
100 AR5K_Q_DISABLE_BITS(ah->ah_txq_status, queue);
104 * ath5k_cw_validate() - Make sure the given cw is valid
105 * @cw_req: The contention window value to check
107 * Make sure cw is a power of 2 minus 1 and smaller than 1024
109 static u16
110 ath5k_cw_validate(u16 cw_req)
112 cw_req = min(cw_req, (u16)1023);
114 /* Check if cw_req + 1 a power of 2 */
115 if (is_power_of_2(cw_req + 1))
116 return cw_req;
118 /* Check if cw_req is a power of 2 */
119 if (is_power_of_2(cw_req))
120 return cw_req - 1;
122 /* If none of the above is correct
123 * find the closest power of 2 */
124 cw_req = (u16) roundup_pow_of_two(cw_req) - 1;
126 return cw_req;
130 * ath5k_hw_get_tx_queueprops() - Get properties for a transmit queue
131 * @ah: The &struct ath5k_hw
132 * @queue: One of enum ath5k_tx_queue_id
133 * @queue_info: The &struct ath5k_txq_info to fill
136 ath5k_hw_get_tx_queueprops(struct ath5k_hw *ah, int queue,
137 struct ath5k_txq_info *queue_info)
139 memcpy(queue_info, &ah->ah_txq[queue], sizeof(struct ath5k_txq_info));
140 return 0;
144 * ath5k_hw_set_tx_queueprops() - Set properties for a transmit queue
145 * @ah: The &struct ath5k_hw
146 * @queue: One of enum ath5k_tx_queue_id
147 * @qinfo: The &struct ath5k_txq_info to use
149 * Returns 0 on success or -EIO if queue is inactive
152 ath5k_hw_set_tx_queueprops(struct ath5k_hw *ah, int queue,
153 const struct ath5k_txq_info *qinfo)
155 struct ath5k_txq_info *qi;
157 AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
159 qi = &ah->ah_txq[queue];
161 if (qi->tqi_type == AR5K_TX_QUEUE_INACTIVE)
162 return -EIO;
164 /* copy and validate values */
165 qi->tqi_type = qinfo->tqi_type;
166 qi->tqi_subtype = qinfo->tqi_subtype;
167 qi->tqi_flags = qinfo->tqi_flags;
169 * According to the docs: Although the AIFS field is 8 bit wide,
170 * the maximum supported value is 0xFC. Setting it higher than that
171 * will cause the DCU to hang.
173 qi->tqi_aifs = min(qinfo->tqi_aifs, (u8)0xFC);
174 qi->tqi_cw_min = ath5k_cw_validate(qinfo->tqi_cw_min);
175 qi->tqi_cw_max = ath5k_cw_validate(qinfo->tqi_cw_max);
176 qi->tqi_cbr_period = qinfo->tqi_cbr_period;
177 qi->tqi_cbr_overflow_limit = qinfo->tqi_cbr_overflow_limit;
178 qi->tqi_burst_time = qinfo->tqi_burst_time;
179 qi->tqi_ready_time = qinfo->tqi_ready_time;
181 /*XXX: Is this supported on 5210 ?*/
182 /*XXX: Is this correct for AR5K_WME_AC_VI,VO ???*/
183 if ((qinfo->tqi_type == AR5K_TX_QUEUE_DATA &&
184 ((qinfo->tqi_subtype == AR5K_WME_AC_VI) ||
185 (qinfo->tqi_subtype == AR5K_WME_AC_VO))) ||
186 qinfo->tqi_type == AR5K_TX_QUEUE_UAPSD)
187 qi->tqi_flags |= AR5K_TXQ_FLAG_POST_FR_BKOFF_DIS;
189 return 0;
193 * ath5k_hw_setup_tx_queue() - Initialize a transmit queue
194 * @ah: The &struct ath5k_hw
195 * @queue_type: One of enum ath5k_tx_queue
196 * @queue_info: The &struct ath5k_txq_info to use
198 * Returns 0 on success, -EINVAL on invalid arguments
201 ath5k_hw_setup_tx_queue(struct ath5k_hw *ah, enum ath5k_tx_queue queue_type,
202 struct ath5k_txq_info *queue_info)
204 unsigned int queue;
205 int ret;
208 * Get queue by type
210 /* 5210 only has 2 queues */
211 if (ah->ah_capabilities.cap_queues.q_tx_num == 2) {
212 switch (queue_type) {
213 case AR5K_TX_QUEUE_DATA:
214 queue = AR5K_TX_QUEUE_ID_NOQCU_DATA;
215 break;
216 case AR5K_TX_QUEUE_BEACON:
217 case AR5K_TX_QUEUE_CAB:
218 queue = AR5K_TX_QUEUE_ID_NOQCU_BEACON;
219 break;
220 default:
221 return -EINVAL;
223 } else {
224 switch (queue_type) {
225 case AR5K_TX_QUEUE_DATA:
226 for (queue = AR5K_TX_QUEUE_ID_DATA_MIN;
227 ah->ah_txq[queue].tqi_type !=
228 AR5K_TX_QUEUE_INACTIVE; queue++) {
230 if (queue > AR5K_TX_QUEUE_ID_DATA_MAX)
231 return -EINVAL;
233 break;
234 case AR5K_TX_QUEUE_UAPSD:
235 queue = AR5K_TX_QUEUE_ID_UAPSD;
236 break;
237 case AR5K_TX_QUEUE_BEACON:
238 queue = AR5K_TX_QUEUE_ID_BEACON;
239 break;
240 case AR5K_TX_QUEUE_CAB:
241 queue = AR5K_TX_QUEUE_ID_CAB;
242 break;
243 default:
244 return -EINVAL;
249 * Setup internal queue structure
251 memset(&ah->ah_txq[queue], 0, sizeof(struct ath5k_txq_info));
252 ah->ah_txq[queue].tqi_type = queue_type;
254 if (queue_info != NULL) {
255 queue_info->tqi_type = queue_type;
256 ret = ath5k_hw_set_tx_queueprops(ah, queue, queue_info);
257 if (ret)
258 return ret;
262 * We use ah_txq_status to hold a temp value for
263 * the Secondary interrupt mask registers on 5211+
264 * check out ath5k_hw_reset_tx_queue
266 AR5K_Q_ENABLE_BITS(ah->ah_txq_status, queue);
268 return queue;
272 /*******************************\
273 * Single QCU/DCU initialization *
274 \*******************************/
277 * ath5k_hw_set_tx_retry_limits() - Set tx retry limits on DCU
278 * @ah: The &struct ath5k_hw
279 * @queue: One of enum ath5k_tx_queue_id
281 * This function is used when initializing a queue, to set
282 * retry limits based on ah->ah_retry_* and the chipset used.
284 void
285 ath5k_hw_set_tx_retry_limits(struct ath5k_hw *ah,
286 unsigned int queue)
288 /* Single data queue on AR5210 */
289 if (ah->ah_version == AR5K_AR5210) {
290 struct ath5k_txq_info *tq = &ah->ah_txq[queue];
292 if (queue > 0)
293 return;
295 ath5k_hw_reg_write(ah,
296 (tq->tqi_cw_min << AR5K_NODCU_RETRY_LMT_CW_MIN_S)
297 | AR5K_REG_SM(ah->ah_retry_long,
298 AR5K_NODCU_RETRY_LMT_SLG_RETRY)
299 | AR5K_REG_SM(ah->ah_retry_short,
300 AR5K_NODCU_RETRY_LMT_SSH_RETRY)
301 | AR5K_REG_SM(ah->ah_retry_long,
302 AR5K_NODCU_RETRY_LMT_LG_RETRY)
303 | AR5K_REG_SM(ah->ah_retry_short,
304 AR5K_NODCU_RETRY_LMT_SH_RETRY),
305 AR5K_NODCU_RETRY_LMT);
306 /* DCU on AR5211+ */
307 } else {
308 ath5k_hw_reg_write(ah,
309 AR5K_REG_SM(ah->ah_retry_long,
310 AR5K_DCU_RETRY_LMT_RTS)
311 | AR5K_REG_SM(ah->ah_retry_long,
312 AR5K_DCU_RETRY_LMT_STA_RTS)
313 | AR5K_REG_SM(max(ah->ah_retry_long, ah->ah_retry_short),
314 AR5K_DCU_RETRY_LMT_STA_DATA),
315 AR5K_QUEUE_DFS_RETRY_LIMIT(queue));
320 * ath5k_hw_reset_tx_queue() - Initialize a single hw queue
321 * @ah: The &struct ath5k_hw
322 * @queue: One of enum ath5k_tx_queue_id
324 * Set DCF properties for the given transmit queue on DCU
325 * and configures all queue-specific parameters.
328 ath5k_hw_reset_tx_queue(struct ath5k_hw *ah, unsigned int queue)
330 struct ath5k_txq_info *tq = &ah->ah_txq[queue];
332 AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
334 tq = &ah->ah_txq[queue];
336 /* Skip if queue inactive or if we are on AR5210
337 * that doesn't have QCU/DCU */
338 if ((ah->ah_version == AR5K_AR5210) ||
339 (tq->tqi_type == AR5K_TX_QUEUE_INACTIVE))
340 return 0;
343 * Set contention window (cw_min/cw_max)
344 * and arbitrated interframe space (aifs)...
346 ath5k_hw_reg_write(ah,
347 AR5K_REG_SM(tq->tqi_cw_min, AR5K_DCU_LCL_IFS_CW_MIN) |
348 AR5K_REG_SM(tq->tqi_cw_max, AR5K_DCU_LCL_IFS_CW_MAX) |
349 AR5K_REG_SM(tq->tqi_aifs, AR5K_DCU_LCL_IFS_AIFS),
350 AR5K_QUEUE_DFS_LOCAL_IFS(queue));
353 * Set tx retry limits for this queue
355 ath5k_hw_set_tx_retry_limits(ah, queue);
359 * Set misc registers
362 /* Enable DCU to wait for next fragment from QCU */
363 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_DFS_MISC(queue),
364 AR5K_DCU_MISC_FRAG_WAIT);
366 /* On Maui and Spirit use the global seqnum on DCU */
367 if (ah->ah_mac_version < AR5K_SREV_AR5211)
368 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_DFS_MISC(queue),
369 AR5K_DCU_MISC_SEQNUM_CTL);
371 /* Constant bit rate period */
372 if (tq->tqi_cbr_period) {
373 ath5k_hw_reg_write(ah, AR5K_REG_SM(tq->tqi_cbr_period,
374 AR5K_QCU_CBRCFG_INTVAL) |
375 AR5K_REG_SM(tq->tqi_cbr_overflow_limit,
376 AR5K_QCU_CBRCFG_ORN_THRES),
377 AR5K_QUEUE_CBRCFG(queue));
379 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue),
380 AR5K_QCU_MISC_FRSHED_CBR);
382 if (tq->tqi_cbr_overflow_limit)
383 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue),
384 AR5K_QCU_MISC_CBR_THRES_ENABLE);
387 /* Ready time interval */
388 if (tq->tqi_ready_time && (tq->tqi_type != AR5K_TX_QUEUE_CAB))
389 ath5k_hw_reg_write(ah, AR5K_REG_SM(tq->tqi_ready_time,
390 AR5K_QCU_RDYTIMECFG_INTVAL) |
391 AR5K_QCU_RDYTIMECFG_ENABLE,
392 AR5K_QUEUE_RDYTIMECFG(queue));
394 if (tq->tqi_burst_time) {
395 ath5k_hw_reg_write(ah, AR5K_REG_SM(tq->tqi_burst_time,
396 AR5K_DCU_CHAN_TIME_DUR) |
397 AR5K_DCU_CHAN_TIME_ENABLE,
398 AR5K_QUEUE_DFS_CHANNEL_TIME(queue));
400 if (tq->tqi_flags & AR5K_TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE)
401 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue),
402 AR5K_QCU_MISC_RDY_VEOL_POLICY);
405 /* Enable/disable Post frame backoff */
406 if (tq->tqi_flags & AR5K_TXQ_FLAG_BACKOFF_DISABLE)
407 ath5k_hw_reg_write(ah, AR5K_DCU_MISC_POST_FR_BKOFF_DIS,
408 AR5K_QUEUE_DFS_MISC(queue));
410 /* Enable/disable fragmentation burst backoff */
411 if (tq->tqi_flags & AR5K_TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE)
412 ath5k_hw_reg_write(ah, AR5K_DCU_MISC_BACKOFF_FRAG,
413 AR5K_QUEUE_DFS_MISC(queue));
416 * Set registers by queue type
418 switch (tq->tqi_type) {
419 case AR5K_TX_QUEUE_BEACON:
420 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue),
421 AR5K_QCU_MISC_FRSHED_DBA_GT |
422 AR5K_QCU_MISC_CBREXP_BCN_DIS |
423 AR5K_QCU_MISC_BCN_ENABLE);
425 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_DFS_MISC(queue),
426 (AR5K_DCU_MISC_ARBLOCK_CTL_GLOBAL <<
427 AR5K_DCU_MISC_ARBLOCK_CTL_S) |
428 AR5K_DCU_MISC_ARBLOCK_IGNORE |
429 AR5K_DCU_MISC_POST_FR_BKOFF_DIS |
430 AR5K_DCU_MISC_BCN_ENABLE);
431 break;
433 case AR5K_TX_QUEUE_CAB:
434 /* XXX: use BCN_SENT_GT, if we can figure out how */
435 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue),
436 AR5K_QCU_MISC_FRSHED_DBA_GT |
437 AR5K_QCU_MISC_CBREXP_DIS |
438 AR5K_QCU_MISC_CBREXP_BCN_DIS);
440 ath5k_hw_reg_write(ah, ((tq->tqi_ready_time -
441 (AR5K_TUNE_SW_BEACON_RESP -
442 AR5K_TUNE_DMA_BEACON_RESP) -
443 AR5K_TUNE_ADDITIONAL_SWBA_BACKOFF) * 1024) |
444 AR5K_QCU_RDYTIMECFG_ENABLE,
445 AR5K_QUEUE_RDYTIMECFG(queue));
447 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_DFS_MISC(queue),
448 (AR5K_DCU_MISC_ARBLOCK_CTL_GLOBAL <<
449 AR5K_DCU_MISC_ARBLOCK_CTL_S));
450 break;
452 case AR5K_TX_QUEUE_UAPSD:
453 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue),
454 AR5K_QCU_MISC_CBREXP_DIS);
455 break;
457 case AR5K_TX_QUEUE_DATA:
458 default:
459 break;
462 /* TODO: Handle frame compression */
465 * Enable interrupts for this tx queue
466 * in the secondary interrupt mask registers
468 if (tq->tqi_flags & AR5K_TXQ_FLAG_TXOKINT_ENABLE)
469 AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txok, queue);
471 if (tq->tqi_flags & AR5K_TXQ_FLAG_TXERRINT_ENABLE)
472 AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txerr, queue);
474 if (tq->tqi_flags & AR5K_TXQ_FLAG_TXURNINT_ENABLE)
475 AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txurn, queue);
477 if (tq->tqi_flags & AR5K_TXQ_FLAG_TXDESCINT_ENABLE)
478 AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txdesc, queue);
480 if (tq->tqi_flags & AR5K_TXQ_FLAG_TXEOLINT_ENABLE)
481 AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txeol, queue);
483 if (tq->tqi_flags & AR5K_TXQ_FLAG_CBRORNINT_ENABLE)
484 AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_cbrorn, queue);
486 if (tq->tqi_flags & AR5K_TXQ_FLAG_CBRURNINT_ENABLE)
487 AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_cbrurn, queue);
489 if (tq->tqi_flags & AR5K_TXQ_FLAG_QTRIGINT_ENABLE)
490 AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_qtrig, queue);
492 if (tq->tqi_flags & AR5K_TXQ_FLAG_TXNOFRMINT_ENABLE)
493 AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_nofrm, queue);
495 /* Update secondary interrupt mask registers */
497 /* Filter out inactive queues */
498 ah->ah_txq_imr_txok &= ah->ah_txq_status;
499 ah->ah_txq_imr_txerr &= ah->ah_txq_status;
500 ah->ah_txq_imr_txurn &= ah->ah_txq_status;
501 ah->ah_txq_imr_txdesc &= ah->ah_txq_status;
502 ah->ah_txq_imr_txeol &= ah->ah_txq_status;
503 ah->ah_txq_imr_cbrorn &= ah->ah_txq_status;
504 ah->ah_txq_imr_cbrurn &= ah->ah_txq_status;
505 ah->ah_txq_imr_qtrig &= ah->ah_txq_status;
506 ah->ah_txq_imr_nofrm &= ah->ah_txq_status;
508 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txq_imr_txok,
509 AR5K_SIMR0_QCU_TXOK) |
510 AR5K_REG_SM(ah->ah_txq_imr_txdesc,
511 AR5K_SIMR0_QCU_TXDESC),
512 AR5K_SIMR0);
514 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txq_imr_txerr,
515 AR5K_SIMR1_QCU_TXERR) |
516 AR5K_REG_SM(ah->ah_txq_imr_txeol,
517 AR5K_SIMR1_QCU_TXEOL),
518 AR5K_SIMR1);
520 /* Update SIMR2 but don't overwrite rest simr2 settings */
521 AR5K_REG_DISABLE_BITS(ah, AR5K_SIMR2, AR5K_SIMR2_QCU_TXURN);
522 AR5K_REG_ENABLE_BITS(ah, AR5K_SIMR2,
523 AR5K_REG_SM(ah->ah_txq_imr_txurn,
524 AR5K_SIMR2_QCU_TXURN));
526 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txq_imr_cbrorn,
527 AR5K_SIMR3_QCBRORN) |
528 AR5K_REG_SM(ah->ah_txq_imr_cbrurn,
529 AR5K_SIMR3_QCBRURN),
530 AR5K_SIMR3);
532 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txq_imr_qtrig,
533 AR5K_SIMR4_QTRIG), AR5K_SIMR4);
535 /* Set TXNOFRM_QCU for the queues with TXNOFRM enabled */
536 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txq_imr_nofrm,
537 AR5K_TXNOFRM_QCU), AR5K_TXNOFRM);
539 /* No queue has TXNOFRM enabled, disable the interrupt
540 * by setting AR5K_TXNOFRM to zero */
541 if (ah->ah_txq_imr_nofrm == 0)
542 ath5k_hw_reg_write(ah, 0, AR5K_TXNOFRM);
544 /* Set QCU mask for this DCU to save power */
545 AR5K_REG_WRITE_Q(ah, AR5K_QUEUE_QCUMASK(queue), queue);
547 return 0;
551 /**************************\
552 * Global QCU/DCU functions *
553 \**************************/
556 * ath5k_hw_set_ifs_intervals() - Set global inter-frame spaces on DCU
557 * @ah: The &struct ath5k_hw
558 * @slot_time: Slot time in us
560 * Sets the global IFS intervals on DCU (also works on AR5210) for
561 * the given slot time and the current bwmode.
563 int ath5k_hw_set_ifs_intervals(struct ath5k_hw *ah, unsigned int slot_time)
565 struct ieee80211_channel *channel = ah->ah_current_channel;
566 struct ieee80211_rate *rate;
567 u32 ack_tx_time, eifs, eifs_clock, sifs, sifs_clock;
568 u32 slot_time_clock = ath5k_hw_htoclock(ah, slot_time);
570 if (slot_time < 6 || slot_time_clock > AR5K_SLOT_TIME_MAX)
571 return -EINVAL;
573 sifs = ath5k_hw_get_default_sifs(ah);
574 sifs_clock = ath5k_hw_htoclock(ah, sifs - 2);
576 /* EIFS
577 * Txtime of ack at lowest rate + SIFS + DIFS
578 * (DIFS = SIFS + 2 * Slot time)
580 * Note: HAL has some predefined values for EIFS
581 * Turbo: (37 + 2 * 6)
582 * Default: (74 + 2 * 9)
583 * Half: (149 + 2 * 13)
584 * Quarter: (298 + 2 * 21)
586 * (74 + 2 * 6) for AR5210 default and turbo !
588 * According to the formula we have
589 * ack_tx_time = 25 for turbo and
590 * ack_tx_time = 42.5 * clock multiplier
591 * for default/half/quarter.
593 * This can't be right, 42 is what we would get
594 * from ath5k_hw_get_frame_dur_for_bwmode or
595 * ieee80211_generic_frame_duration for zero frame
596 * length and without SIFS !
598 * Also we have different lowest rate for 802.11a
600 if (channel->band == IEEE80211_BAND_5GHZ)
601 rate = &ah->sbands[IEEE80211_BAND_5GHZ].bitrates[0];
602 else
603 rate = &ah->sbands[IEEE80211_BAND_2GHZ].bitrates[0];
605 ack_tx_time = ath5k_hw_get_frame_duration(ah, 10, rate, false);
607 /* ack_tx_time includes an SIFS already */
608 eifs = ack_tx_time + sifs + 2 * slot_time;
609 eifs_clock = ath5k_hw_htoclock(ah, eifs);
611 /* Set IFS settings on AR5210 */
612 if (ah->ah_version == AR5K_AR5210) {
613 u32 pifs, pifs_clock, difs, difs_clock;
615 /* Set slot time */
616 ath5k_hw_reg_write(ah, slot_time_clock, AR5K_SLOT_TIME);
618 /* Set EIFS */
619 eifs_clock = AR5K_REG_SM(eifs_clock, AR5K_IFS1_EIFS);
621 /* PIFS = Slot time + SIFS */
622 pifs = slot_time + sifs;
623 pifs_clock = ath5k_hw_htoclock(ah, pifs);
624 pifs_clock = AR5K_REG_SM(pifs_clock, AR5K_IFS1_PIFS);
626 /* DIFS = SIFS + 2 * Slot time */
627 difs = sifs + 2 * slot_time;
628 difs_clock = ath5k_hw_htoclock(ah, difs);
630 /* Set SIFS/DIFS */
631 ath5k_hw_reg_write(ah, (difs_clock <<
632 AR5K_IFS0_DIFS_S) | sifs_clock,
633 AR5K_IFS0);
635 /* Set PIFS/EIFS and preserve AR5K_INIT_CARR_SENSE_EN */
636 ath5k_hw_reg_write(ah, pifs_clock | eifs_clock |
637 (AR5K_INIT_CARR_SENSE_EN << AR5K_IFS1_CS_EN_S),
638 AR5K_IFS1);
640 return 0;
643 /* Set IFS slot time */
644 ath5k_hw_reg_write(ah, slot_time_clock, AR5K_DCU_GBL_IFS_SLOT);
646 /* Set EIFS interval */
647 ath5k_hw_reg_write(ah, eifs_clock, AR5K_DCU_GBL_IFS_EIFS);
649 /* Set SIFS interval in usecs */
650 AR5K_REG_WRITE_BITS(ah, AR5K_DCU_GBL_IFS_MISC,
651 AR5K_DCU_GBL_IFS_MISC_SIFS_DUR_USEC,
652 sifs);
654 /* Set SIFS interval in clock cycles */
655 ath5k_hw_reg_write(ah, sifs_clock, AR5K_DCU_GBL_IFS_SIFS);
657 return 0;
662 * ath5k_hw_init_queues() - Initialize tx queues
663 * @ah: The &struct ath5k_hw
665 * Initializes all tx queues based on information on
666 * ah->ah_txq* set by the driver
669 ath5k_hw_init_queues(struct ath5k_hw *ah)
671 int i, ret;
673 /* TODO: HW Compression support for data queues */
674 /* TODO: Burst prefetch for data queues */
677 * Reset queues and start beacon timers at the end of the reset routine
678 * This also sets QCU mask on each DCU for 1:1 qcu to dcu mapping
679 * Note: If we want we can assign multiple qcus on one dcu.
681 if (ah->ah_version != AR5K_AR5210)
682 for (i = 0; i < ah->ah_capabilities.cap_queues.q_tx_num; i++) {
683 ret = ath5k_hw_reset_tx_queue(ah, i);
684 if (ret) {
685 ATH5K_ERR(ah,
686 "failed to reset TX queue #%d\n", i);
687 return ret;
690 else
691 /* No QCU/DCU on AR5210, just set tx
692 * retry limits. We set IFS parameters
693 * on ath5k_hw_set_ifs_intervals */
694 ath5k_hw_set_tx_retry_limits(ah, 0);
696 /* Set the turbo flag when operating on 40MHz */
697 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
698 AR5K_REG_ENABLE_BITS(ah, AR5K_DCU_GBL_IFS_MISC,
699 AR5K_DCU_GBL_IFS_MISC_TURBO_MODE);
701 /* If we didn't set IFS timings through
702 * ath5k_hw_set_coverage_class make sure
703 * we set them here */
704 if (!ah->ah_coverage_class) {
705 unsigned int slot_time = ath5k_hw_get_default_slottime(ah);
706 ath5k_hw_set_ifs_intervals(ah, slot_time);
709 return 0;