spi-topcliff-pch: supports a spi mode setup and bit order setup by IO control
[zen-stable.git] / drivers / net / wireless / rt2x00 / rt2400pci.c
blob3a6b40239bc1473a219921f11b0f5e50a72c7bf7
1 /*
2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 Module: rt2400pci
23 Abstract: rt2400pci device specific routines.
24 Supported chipsets: RT2460.
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34 #include <linux/slab.h>
36 #include "rt2x00.h"
37 #include "rt2x00pci.h"
38 #include "rt2400pci.h"
41 * Register access.
42 * All access to the CSR registers will go through the methods
43 * rt2x00pci_register_read and rt2x00pci_register_write.
44 * BBP and RF register require indirect register access,
45 * and use the CSR registers BBPCSR and RFCSR to achieve this.
46 * These indirect registers work with busy bits,
47 * and we will try maximal REGISTER_BUSY_COUNT times to access
48 * the register while taking a REGISTER_BUSY_DELAY us delay
49 * between each attempt. When the busy bit is still set at that time,
50 * the access attempt is considered to have failed,
51 * and we will print an error.
53 #define WAIT_FOR_BBP(__dev, __reg) \
54 rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
55 #define WAIT_FOR_RF(__dev, __reg) \
56 rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
58 static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
59 const unsigned int word, const u8 value)
61 u32 reg;
63 mutex_lock(&rt2x00dev->csr_mutex);
66 * Wait until the BBP becomes available, afterwards we
67 * can safely write the new data into the register.
69 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
70 reg = 0;
71 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
72 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
73 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
74 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
76 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
79 mutex_unlock(&rt2x00dev->csr_mutex);
82 static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
83 const unsigned int word, u8 *value)
85 u32 reg;
87 mutex_lock(&rt2x00dev->csr_mutex);
90 * Wait until the BBP becomes available, afterwards we
91 * can safely write the read request into the register.
92 * After the data has been written, we wait until hardware
93 * returns the correct value, if at any time the register
94 * doesn't become available in time, reg will be 0xffffffff
95 * which means we return 0xff to the caller.
97 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
98 reg = 0;
99 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
100 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
101 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
103 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
105 WAIT_FOR_BBP(rt2x00dev, &reg);
108 *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
110 mutex_unlock(&rt2x00dev->csr_mutex);
113 static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
114 const unsigned int word, const u32 value)
116 u32 reg;
118 mutex_lock(&rt2x00dev->csr_mutex);
121 * Wait until the RF becomes available, afterwards we
122 * can safely write the new data into the register.
124 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
125 reg = 0;
126 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
127 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
128 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
129 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
131 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
132 rt2x00_rf_write(rt2x00dev, word, value);
135 mutex_unlock(&rt2x00dev->csr_mutex);
138 static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
140 struct rt2x00_dev *rt2x00dev = eeprom->data;
141 u32 reg;
143 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
145 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
146 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
147 eeprom->reg_data_clock =
148 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
149 eeprom->reg_chip_select =
150 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
153 static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
155 struct rt2x00_dev *rt2x00dev = eeprom->data;
156 u32 reg = 0;
158 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
159 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
160 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
161 !!eeprom->reg_data_clock);
162 rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
163 !!eeprom->reg_chip_select);
165 rt2x00pci_register_write(rt2x00dev, CSR21, reg);
168 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
169 static const struct rt2x00debug rt2400pci_rt2x00debug = {
170 .owner = THIS_MODULE,
171 .csr = {
172 .read = rt2x00pci_register_read,
173 .write = rt2x00pci_register_write,
174 .flags = RT2X00DEBUGFS_OFFSET,
175 .word_base = CSR_REG_BASE,
176 .word_size = sizeof(u32),
177 .word_count = CSR_REG_SIZE / sizeof(u32),
179 .eeprom = {
180 .read = rt2x00_eeprom_read,
181 .write = rt2x00_eeprom_write,
182 .word_base = EEPROM_BASE,
183 .word_size = sizeof(u16),
184 .word_count = EEPROM_SIZE / sizeof(u16),
186 .bbp = {
187 .read = rt2400pci_bbp_read,
188 .write = rt2400pci_bbp_write,
189 .word_base = BBP_BASE,
190 .word_size = sizeof(u8),
191 .word_count = BBP_SIZE / sizeof(u8),
193 .rf = {
194 .read = rt2x00_rf_read,
195 .write = rt2400pci_rf_write,
196 .word_base = RF_BASE,
197 .word_size = sizeof(u32),
198 .word_count = RF_SIZE / sizeof(u32),
201 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
203 static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
205 u32 reg;
207 rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
208 return rt2x00_get_field32(reg, GPIOCSR_BIT0);
211 #ifdef CONFIG_RT2X00_LIB_LEDS
212 static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
213 enum led_brightness brightness)
215 struct rt2x00_led *led =
216 container_of(led_cdev, struct rt2x00_led, led_dev);
217 unsigned int enabled = brightness != LED_OFF;
218 u32 reg;
220 rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
222 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
223 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
224 else if (led->type == LED_TYPE_ACTIVITY)
225 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
227 rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
230 static int rt2400pci_blink_set(struct led_classdev *led_cdev,
231 unsigned long *delay_on,
232 unsigned long *delay_off)
234 struct rt2x00_led *led =
235 container_of(led_cdev, struct rt2x00_led, led_dev);
236 u32 reg;
238 rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
239 rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
240 rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
241 rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
243 return 0;
246 static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
247 struct rt2x00_led *led,
248 enum led_type type)
250 led->rt2x00dev = rt2x00dev;
251 led->type = type;
252 led->led_dev.brightness_set = rt2400pci_brightness_set;
253 led->led_dev.blink_set = rt2400pci_blink_set;
254 led->flags = LED_INITIALIZED;
256 #endif /* CONFIG_RT2X00_LIB_LEDS */
259 * Configuration handlers.
261 static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
262 const unsigned int filter_flags)
264 u32 reg;
267 * Start configuration steps.
268 * Note that the version error will always be dropped
269 * since there is no filter for it at this time.
271 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
272 rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
273 !(filter_flags & FIF_FCSFAIL));
274 rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
275 !(filter_flags & FIF_PLCPFAIL));
276 rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
277 !(filter_flags & FIF_CONTROL));
278 rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
279 !(filter_flags & FIF_PROMISC_IN_BSS));
280 rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
281 !(filter_flags & FIF_PROMISC_IN_BSS) &&
282 !rt2x00dev->intf_ap_count);
283 rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
284 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
287 static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
288 struct rt2x00_intf *intf,
289 struct rt2x00intf_conf *conf,
290 const unsigned int flags)
292 unsigned int bcn_preload;
293 u32 reg;
295 if (flags & CONFIG_UPDATE_TYPE) {
297 * Enable beacon config
299 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
300 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
301 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
302 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
305 * Enable synchronisation.
307 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
308 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
309 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
312 if (flags & CONFIG_UPDATE_MAC)
313 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
314 conf->mac, sizeof(conf->mac));
316 if (flags & CONFIG_UPDATE_BSSID)
317 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
318 conf->bssid, sizeof(conf->bssid));
321 static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
322 struct rt2x00lib_erp *erp,
323 u32 changed)
325 int preamble_mask;
326 u32 reg;
329 * When short preamble is enabled, we should set bit 0x08
331 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
332 preamble_mask = erp->short_preamble << 3;
334 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
335 rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x1ff);
336 rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0x13a);
337 rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
338 rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
339 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
341 rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
342 rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
343 rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
344 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
345 GET_DURATION(ACK_SIZE, 10));
346 rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
348 rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
349 rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
350 rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
351 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
352 GET_DURATION(ACK_SIZE, 20));
353 rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
355 rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
356 rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
357 rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
358 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
359 GET_DURATION(ACK_SIZE, 55));
360 rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
362 rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
363 rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
364 rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
365 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
366 GET_DURATION(ACK_SIZE, 110));
367 rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
370 if (changed & BSS_CHANGED_BASIC_RATES)
371 rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
373 if (changed & BSS_CHANGED_ERP_SLOT) {
374 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
375 rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
376 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
378 rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
379 rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
380 rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
381 rt2x00pci_register_write(rt2x00dev, CSR18, reg);
383 rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
384 rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
385 rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
386 rt2x00pci_register_write(rt2x00dev, CSR19, reg);
389 if (changed & BSS_CHANGED_BEACON_INT) {
390 rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
391 rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
392 erp->beacon_int * 16);
393 rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
394 erp->beacon_int * 16);
395 rt2x00pci_register_write(rt2x00dev, CSR12, reg);
399 static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev,
400 struct antenna_setup *ant)
402 u8 r1;
403 u8 r4;
406 * We should never come here because rt2x00lib is supposed
407 * to catch this and send us the correct antenna explicitely.
409 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
410 ant->tx == ANTENNA_SW_DIVERSITY);
412 rt2400pci_bbp_read(rt2x00dev, 4, &r4);
413 rt2400pci_bbp_read(rt2x00dev, 1, &r1);
416 * Configure the TX antenna.
418 switch (ant->tx) {
419 case ANTENNA_HW_DIVERSITY:
420 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
421 break;
422 case ANTENNA_A:
423 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
424 break;
425 case ANTENNA_B:
426 default:
427 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
428 break;
432 * Configure the RX antenna.
434 switch (ant->rx) {
435 case ANTENNA_HW_DIVERSITY:
436 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
437 break;
438 case ANTENNA_A:
439 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
440 break;
441 case ANTENNA_B:
442 default:
443 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
444 break;
447 rt2400pci_bbp_write(rt2x00dev, 4, r4);
448 rt2400pci_bbp_write(rt2x00dev, 1, r1);
451 static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
452 struct rf_channel *rf)
455 * Switch on tuning bits.
457 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
458 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
460 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
461 rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
462 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
465 * RF2420 chipset don't need any additional actions.
467 if (rt2x00_rf(rt2x00dev, RF2420))
468 return;
471 * For the RT2421 chipsets we need to write an invalid
472 * reference clock rate to activate auto_tune.
473 * After that we set the value back to the correct channel.
475 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
476 rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
477 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
479 msleep(1);
481 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
482 rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
483 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
485 msleep(1);
488 * Switch off tuning bits.
490 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
491 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
493 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
494 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
497 * Clear false CRC during channel switch.
499 rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
502 static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
504 rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
507 static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
508 struct rt2x00lib_conf *libconf)
510 u32 reg;
512 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
513 rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
514 libconf->conf->long_frame_max_tx_count);
515 rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
516 libconf->conf->short_frame_max_tx_count);
517 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
520 static void rt2400pci_config_ps(struct rt2x00_dev *rt2x00dev,
521 struct rt2x00lib_conf *libconf)
523 enum dev_state state =
524 (libconf->conf->flags & IEEE80211_CONF_PS) ?
525 STATE_SLEEP : STATE_AWAKE;
526 u32 reg;
528 if (state == STATE_SLEEP) {
529 rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
530 rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
531 (rt2x00dev->beacon_int - 20) * 16);
532 rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
533 libconf->conf->listen_interval - 1);
535 /* We must first disable autowake before it can be enabled */
536 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
537 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
539 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
540 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
541 } else {
542 rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
543 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
544 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
547 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
550 static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
551 struct rt2x00lib_conf *libconf,
552 const unsigned int flags)
554 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
555 rt2400pci_config_channel(rt2x00dev, &libconf->rf);
556 if (flags & IEEE80211_CONF_CHANGE_POWER)
557 rt2400pci_config_txpower(rt2x00dev,
558 libconf->conf->power_level);
559 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
560 rt2400pci_config_retry_limit(rt2x00dev, libconf);
561 if (flags & IEEE80211_CONF_CHANGE_PS)
562 rt2400pci_config_ps(rt2x00dev, libconf);
565 static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
566 const int cw_min, const int cw_max)
568 u32 reg;
570 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
571 rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
572 rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
573 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
577 * Link tuning
579 static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
580 struct link_qual *qual)
582 u32 reg;
583 u8 bbp;
586 * Update FCS error count from register.
588 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
589 qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
592 * Update False CCA count from register.
594 rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
595 qual->false_cca = bbp;
598 static inline void rt2400pci_set_vgc(struct rt2x00_dev *rt2x00dev,
599 struct link_qual *qual, u8 vgc_level)
601 if (qual->vgc_level_reg != vgc_level) {
602 rt2400pci_bbp_write(rt2x00dev, 13, vgc_level);
603 qual->vgc_level = vgc_level;
604 qual->vgc_level_reg = vgc_level;
608 static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
609 struct link_qual *qual)
611 rt2400pci_set_vgc(rt2x00dev, qual, 0x08);
614 static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev,
615 struct link_qual *qual, const u32 count)
618 * The link tuner should not run longer then 60 seconds,
619 * and should run once every 2 seconds.
621 if (count > 60 || !(count & 1))
622 return;
625 * Base r13 link tuning on the false cca count.
627 if ((qual->false_cca > 512) && (qual->vgc_level < 0x20))
628 rt2400pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
629 else if ((qual->false_cca < 100) && (qual->vgc_level > 0x08))
630 rt2400pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
634 * Queue handlers.
636 static void rt2400pci_start_queue(struct data_queue *queue)
638 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
639 u32 reg;
641 switch (queue->qid) {
642 case QID_RX:
643 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
644 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
645 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
646 break;
647 case QID_BEACON:
648 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
649 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
650 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
651 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
652 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
653 break;
654 default:
655 break;
659 static void rt2400pci_kick_queue(struct data_queue *queue)
661 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
662 u32 reg;
664 switch (queue->qid) {
665 case QID_AC_VO:
666 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
667 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
668 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
669 break;
670 case QID_AC_VI:
671 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
672 rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
673 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
674 break;
675 case QID_ATIM:
676 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
677 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
678 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
679 break;
680 default:
681 break;
685 static void rt2400pci_stop_queue(struct data_queue *queue)
687 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
688 u32 reg;
690 switch (queue->qid) {
691 case QID_AC_VO:
692 case QID_AC_VI:
693 case QID_ATIM:
694 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
695 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
696 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
697 break;
698 case QID_RX:
699 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
700 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
701 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
702 break;
703 case QID_BEACON:
704 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
705 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
706 rt2x00_set_field32(&reg, CSR14_TBCN, 0);
707 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
708 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
711 * Wait for possibly running tbtt tasklets.
713 tasklet_kill(&rt2x00dev->tbtt_tasklet);
714 break;
715 default:
716 break;
721 * Initialization functions.
723 static bool rt2400pci_get_entry_state(struct queue_entry *entry)
725 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
726 u32 word;
728 if (entry->queue->qid == QID_RX) {
729 rt2x00_desc_read(entry_priv->desc, 0, &word);
731 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
732 } else {
733 rt2x00_desc_read(entry_priv->desc, 0, &word);
735 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
736 rt2x00_get_field32(word, TXD_W0_VALID));
740 static void rt2400pci_clear_entry(struct queue_entry *entry)
742 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
743 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
744 u32 word;
746 if (entry->queue->qid == QID_RX) {
747 rt2x00_desc_read(entry_priv->desc, 2, &word);
748 rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
749 rt2x00_desc_write(entry_priv->desc, 2, word);
751 rt2x00_desc_read(entry_priv->desc, 1, &word);
752 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
753 rt2x00_desc_write(entry_priv->desc, 1, word);
755 rt2x00_desc_read(entry_priv->desc, 0, &word);
756 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
757 rt2x00_desc_write(entry_priv->desc, 0, word);
758 } else {
759 rt2x00_desc_read(entry_priv->desc, 0, &word);
760 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
761 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
762 rt2x00_desc_write(entry_priv->desc, 0, word);
766 static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
768 struct queue_entry_priv_pci *entry_priv;
769 u32 reg;
772 * Initialize registers.
774 rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
775 rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
776 rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
777 rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
778 rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
779 rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
781 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
782 rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
783 rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
784 entry_priv->desc_dma);
785 rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
787 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
788 rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
789 rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
790 entry_priv->desc_dma);
791 rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
793 entry_priv = rt2x00dev->atim->entries[0].priv_data;
794 rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
795 rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
796 entry_priv->desc_dma);
797 rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
799 entry_priv = rt2x00dev->bcn->entries[0].priv_data;
800 rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
801 rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
802 entry_priv->desc_dma);
803 rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
805 rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
806 rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
807 rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
808 rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
810 entry_priv = rt2x00dev->rx->entries[0].priv_data;
811 rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
812 rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
813 entry_priv->desc_dma);
814 rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
816 return 0;
819 static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
821 u32 reg;
823 rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
824 rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
825 rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
826 rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
828 rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
829 rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
830 rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
831 rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
832 rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
834 rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
835 rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
836 (rt2x00dev->rx->data_size / 128));
837 rt2x00pci_register_write(rt2x00dev, CSR9, reg);
839 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
840 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
841 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
842 rt2x00_set_field32(&reg, CSR14_TBCN, 0);
843 rt2x00_set_field32(&reg, CSR14_TCFP, 0);
844 rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
845 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
846 rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
847 rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
848 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
850 rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);
852 rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
853 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
854 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
855 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
856 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
857 rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);
859 rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
860 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
861 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
862 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
863 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
864 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
865 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
866 rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
868 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
870 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
871 return -EBUSY;
873 rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
874 rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
876 rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
877 rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
878 rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
880 rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
881 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
882 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
883 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
884 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
885 rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
887 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
888 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
889 rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
890 rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
891 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
893 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
894 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
895 rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
896 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
899 * We must clear the FCS and FIFO error count.
900 * These registers are cleared on read,
901 * so we may pass a useless variable to store the value.
903 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
904 rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
906 return 0;
909 static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
911 unsigned int i;
912 u8 value;
914 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
915 rt2400pci_bbp_read(rt2x00dev, 0, &value);
916 if ((value != 0xff) && (value != 0x00))
917 return 0;
918 udelay(REGISTER_BUSY_DELAY);
921 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
922 return -EACCES;
925 static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
927 unsigned int i;
928 u16 eeprom;
929 u8 reg_id;
930 u8 value;
932 if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
933 return -EACCES;
935 rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
936 rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
937 rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
938 rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
939 rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
940 rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
941 rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
942 rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
943 rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
944 rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
945 rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
946 rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
947 rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
948 rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
950 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
951 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
953 if (eeprom != 0xffff && eeprom != 0x0000) {
954 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
955 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
956 rt2400pci_bbp_write(rt2x00dev, reg_id, value);
960 return 0;
964 * Device state switch handlers.
966 static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
967 enum dev_state state)
969 int mask = (state == STATE_RADIO_IRQ_OFF);
970 u32 reg;
971 unsigned long flags;
974 * When interrupts are being enabled, the interrupt registers
975 * should clear the register to assure a clean state.
977 if (state == STATE_RADIO_IRQ_ON) {
978 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
979 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
983 * Only toggle the interrupts bits we are going to use.
984 * Non-checked interrupt bits are disabled by default.
986 spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
988 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
989 rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
990 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
991 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
992 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
993 rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
994 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
996 spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
998 if (state == STATE_RADIO_IRQ_OFF) {
1000 * Ensure that all tasklets are finished before
1001 * disabling the interrupts.
1003 tasklet_kill(&rt2x00dev->txstatus_tasklet);
1004 tasklet_kill(&rt2x00dev->rxdone_tasklet);
1005 tasklet_kill(&rt2x00dev->tbtt_tasklet);
1009 static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1012 * Initialize all registers.
1014 if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
1015 rt2400pci_init_registers(rt2x00dev) ||
1016 rt2400pci_init_bbp(rt2x00dev)))
1017 return -EIO;
1019 return 0;
1022 static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1025 * Disable power
1027 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1030 static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
1031 enum dev_state state)
1033 u32 reg, reg2;
1034 unsigned int i;
1035 char put_to_sleep;
1036 char bbp_state;
1037 char rf_state;
1039 put_to_sleep = (state != STATE_AWAKE);
1041 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1042 rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1043 rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1044 rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1045 rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1046 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1049 * Device is not guaranteed to be in the requested state yet.
1050 * We must wait until the register indicates that the
1051 * device has entered the correct state.
1053 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1054 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg2);
1055 bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
1056 rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
1057 if (bbp_state == state && rf_state == state)
1058 return 0;
1059 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1060 msleep(10);
1063 return -EBUSY;
1066 static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1067 enum dev_state state)
1069 int retval = 0;
1071 switch (state) {
1072 case STATE_RADIO_ON:
1073 retval = rt2400pci_enable_radio(rt2x00dev);
1074 break;
1075 case STATE_RADIO_OFF:
1076 rt2400pci_disable_radio(rt2x00dev);
1077 break;
1078 case STATE_RADIO_IRQ_ON:
1079 case STATE_RADIO_IRQ_OFF:
1080 rt2400pci_toggle_irq(rt2x00dev, state);
1081 break;
1082 case STATE_DEEP_SLEEP:
1083 case STATE_SLEEP:
1084 case STATE_STANDBY:
1085 case STATE_AWAKE:
1086 retval = rt2400pci_set_state(rt2x00dev, state);
1087 break;
1088 default:
1089 retval = -ENOTSUPP;
1090 break;
1093 if (unlikely(retval))
1094 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1095 state, retval);
1097 return retval;
1101 * TX descriptor initialization
1103 static void rt2400pci_write_tx_desc(struct queue_entry *entry,
1104 struct txentry_desc *txdesc)
1106 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1107 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1108 __le32 *txd = entry_priv->desc;
1109 u32 word;
1112 * Start writing the descriptor words.
1114 rt2x00_desc_read(txd, 1, &word);
1115 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1116 rt2x00_desc_write(txd, 1, word);
1118 rt2x00_desc_read(txd, 2, &word);
1119 rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, txdesc->length);
1120 rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, txdesc->length);
1121 rt2x00_desc_write(txd, 2, word);
1123 rt2x00_desc_read(txd, 3, &word);
1124 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
1125 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
1126 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
1127 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
1128 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
1129 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
1130 rt2x00_desc_write(txd, 3, word);
1132 rt2x00_desc_read(txd, 4, &word);
1133 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW,
1134 txdesc->u.plcp.length_low);
1135 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
1136 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
1137 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH,
1138 txdesc->u.plcp.length_high);
1139 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
1140 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
1141 rt2x00_desc_write(txd, 4, word);
1144 * Writing TXD word 0 must the last to prevent a race condition with
1145 * the device, whereby the device may take hold of the TXD before we
1146 * finished updating it.
1148 rt2x00_desc_read(txd, 0, &word);
1149 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1150 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1151 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1152 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1153 rt2x00_set_field32(&word, TXD_W0_ACK,
1154 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1155 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1156 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1157 rt2x00_set_field32(&word, TXD_W0_RTS,
1158 test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1159 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1160 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1161 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1162 rt2x00_desc_write(txd, 0, word);
1165 * Register descriptor details in skb frame descriptor.
1167 skbdesc->desc = txd;
1168 skbdesc->desc_len = TXD_DESC_SIZE;
1172 * TX data initialization
1174 static void rt2400pci_write_beacon(struct queue_entry *entry,
1175 struct txentry_desc *txdesc)
1177 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1178 u32 reg;
1181 * Disable beaconing while we are reloading the beacon data,
1182 * otherwise we might be sending out invalid data.
1184 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1185 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1186 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1188 rt2x00queue_map_txskb(entry);
1191 * Write the TX descriptor for the beacon.
1193 rt2400pci_write_tx_desc(entry, txdesc);
1196 * Dump beacon to userspace through debugfs.
1198 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1201 * Enable beaconing again.
1203 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1204 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1208 * RX control handlers
1210 static void rt2400pci_fill_rxdone(struct queue_entry *entry,
1211 struct rxdone_entry_desc *rxdesc)
1213 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1214 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1215 u32 word0;
1216 u32 word2;
1217 u32 word3;
1218 u32 word4;
1219 u64 tsf;
1220 u32 rx_low;
1221 u32 rx_high;
1223 rt2x00_desc_read(entry_priv->desc, 0, &word0);
1224 rt2x00_desc_read(entry_priv->desc, 2, &word2);
1225 rt2x00_desc_read(entry_priv->desc, 3, &word3);
1226 rt2x00_desc_read(entry_priv->desc, 4, &word4);
1228 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1229 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1230 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1231 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1234 * We only get the lower 32bits from the timestamp,
1235 * to get the full 64bits we must complement it with
1236 * the timestamp from get_tsf().
1237 * Note that when a wraparound of the lower 32bits
1238 * has occurred between the frame arrival and the get_tsf()
1239 * call, we must decrease the higher 32bits with 1 to get
1240 * to correct value.
1242 tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw, NULL);
1243 rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
1244 rx_high = upper_32_bits(tsf);
1246 if ((u32)tsf <= rx_low)
1247 rx_high--;
1250 * Obtain the status about this packet.
1251 * The signal is the PLCP value, and needs to be stripped
1252 * of the preamble bit (0x08).
1254 rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
1255 rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
1256 rxdesc->rssi = rt2x00_get_field32(word2, RXD_W3_RSSI) -
1257 entry->queue->rt2x00dev->rssi_offset;
1258 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1260 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1261 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1262 rxdesc->dev_flags |= RXDONE_MY_BSS;
1266 * Interrupt functions.
1268 static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
1269 const enum data_queue_qid queue_idx)
1271 struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
1272 struct queue_entry_priv_pci *entry_priv;
1273 struct queue_entry *entry;
1274 struct txdone_entry_desc txdesc;
1275 u32 word;
1277 while (!rt2x00queue_empty(queue)) {
1278 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1279 entry_priv = entry->priv_data;
1280 rt2x00_desc_read(entry_priv->desc, 0, &word);
1282 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1283 !rt2x00_get_field32(word, TXD_W0_VALID))
1284 break;
1287 * Obtain the status about this packet.
1289 txdesc.flags = 0;
1290 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1291 case 0: /* Success */
1292 case 1: /* Success with retry */
1293 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1294 break;
1295 case 2: /* Failure, excessive retries */
1296 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1297 /* Don't break, this is a failed frame! */
1298 default: /* Failure */
1299 __set_bit(TXDONE_FAILURE, &txdesc.flags);
1301 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1303 rt2x00lib_txdone(entry, &txdesc);
1307 static inline void rt2400pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
1308 struct rt2x00_field32 irq_field)
1310 u32 reg;
1313 * Enable a single interrupt. The interrupt mask register
1314 * access needs locking.
1316 spin_lock_irq(&rt2x00dev->irqmask_lock);
1318 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1319 rt2x00_set_field32(&reg, irq_field, 0);
1320 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1322 spin_unlock_irq(&rt2x00dev->irqmask_lock);
1325 static void rt2400pci_txstatus_tasklet(unsigned long data)
1327 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1328 u32 reg;
1331 * Handle all tx queues.
1333 rt2400pci_txdone(rt2x00dev, QID_ATIM);
1334 rt2400pci_txdone(rt2x00dev, QID_AC_VO);
1335 rt2400pci_txdone(rt2x00dev, QID_AC_VI);
1338 * Enable all TXDONE interrupts again.
1340 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
1341 spin_lock_irq(&rt2x00dev->irqmask_lock);
1343 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1344 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
1345 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
1346 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
1347 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1349 spin_unlock_irq(&rt2x00dev->irqmask_lock);
1353 static void rt2400pci_tbtt_tasklet(unsigned long data)
1355 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1356 rt2x00lib_beacondone(rt2x00dev);
1357 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1358 rt2400pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
1361 static void rt2400pci_rxdone_tasklet(unsigned long data)
1363 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1364 if (rt2x00pci_rxdone(rt2x00dev))
1365 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1366 else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1367 rt2400pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
1370 static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
1372 struct rt2x00_dev *rt2x00dev = dev_instance;
1373 u32 reg, mask;
1376 * Get the interrupt sources & saved to local variable.
1377 * Write register value back to clear pending interrupts.
1379 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1380 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1382 if (!reg)
1383 return IRQ_NONE;
1385 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1386 return IRQ_HANDLED;
1388 mask = reg;
1391 * Schedule tasklets for interrupt handling.
1393 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1394 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
1396 if (rt2x00_get_field32(reg, CSR7_RXDONE))
1397 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1399 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
1400 rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
1401 rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
1402 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
1404 * Mask out all txdone interrupts.
1406 rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
1407 rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
1408 rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
1412 * Disable all interrupts for which a tasklet was scheduled right now,
1413 * the tasklet will reenable the appropriate interrupts.
1415 spin_lock(&rt2x00dev->irqmask_lock);
1417 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1418 reg |= mask;
1419 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1421 spin_unlock(&rt2x00dev->irqmask_lock);
1425 return IRQ_HANDLED;
1429 * Device probe functions.
1431 static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1433 struct eeprom_93cx6 eeprom;
1434 u32 reg;
1435 u16 word;
1436 u8 *mac;
1438 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1440 eeprom.data = rt2x00dev;
1441 eeprom.register_read = rt2400pci_eepromregister_read;
1442 eeprom.register_write = rt2400pci_eepromregister_write;
1443 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1444 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1445 eeprom.reg_data_in = 0;
1446 eeprom.reg_data_out = 0;
1447 eeprom.reg_data_clock = 0;
1448 eeprom.reg_chip_select = 0;
1450 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1451 EEPROM_SIZE / sizeof(u16));
1454 * Start validation of the data that has been read.
1456 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1457 if (!is_valid_ether_addr(mac)) {
1458 random_ether_addr(mac);
1459 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1462 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1463 if (word == 0xffff) {
1464 ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
1465 return -EINVAL;
1468 return 0;
1471 static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1473 u32 reg;
1474 u16 value;
1475 u16 eeprom;
1478 * Read EEPROM word for configuration.
1480 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1483 * Identify RF chipset.
1485 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1486 rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1487 rt2x00_set_chip(rt2x00dev, RT2460, value,
1488 rt2x00_get_field32(reg, CSR0_REVISION));
1490 if (!rt2x00_rf(rt2x00dev, RF2420) && !rt2x00_rf(rt2x00dev, RF2421)) {
1491 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1492 return -ENODEV;
1496 * Identify default antenna configuration.
1498 rt2x00dev->default_ant.tx =
1499 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1500 rt2x00dev->default_ant.rx =
1501 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1504 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1505 * I am not 100% sure about this, but the legacy drivers do not
1506 * indicate antenna swapping in software is required when
1507 * diversity is enabled.
1509 if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1510 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1511 if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1512 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1515 * Store led mode, for correct led behaviour.
1517 #ifdef CONFIG_RT2X00_LIB_LEDS
1518 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1520 rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1521 if (value == LED_MODE_TXRX_ACTIVITY ||
1522 value == LED_MODE_DEFAULT ||
1523 value == LED_MODE_ASUS)
1524 rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1525 LED_TYPE_ACTIVITY);
1526 #endif /* CONFIG_RT2X00_LIB_LEDS */
1529 * Detect if this device has an hardware controlled radio.
1531 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1532 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1535 * Check if the BBP tuning should be enabled.
1537 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
1538 __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
1540 return 0;
1544 * RF value list for RF2420 & RF2421
1545 * Supports: 2.4 GHz
1547 static const struct rf_channel rf_vals_b[] = {
1548 { 1, 0x00022058, 0x000c1fda, 0x00000101, 0 },
1549 { 2, 0x00022058, 0x000c1fee, 0x00000101, 0 },
1550 { 3, 0x00022058, 0x000c2002, 0x00000101, 0 },
1551 { 4, 0x00022058, 0x000c2016, 0x00000101, 0 },
1552 { 5, 0x00022058, 0x000c202a, 0x00000101, 0 },
1553 { 6, 0x00022058, 0x000c203e, 0x00000101, 0 },
1554 { 7, 0x00022058, 0x000c2052, 0x00000101, 0 },
1555 { 8, 0x00022058, 0x000c2066, 0x00000101, 0 },
1556 { 9, 0x00022058, 0x000c207a, 0x00000101, 0 },
1557 { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
1558 { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
1559 { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
1560 { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
1561 { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
1564 static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1566 struct hw_mode_spec *spec = &rt2x00dev->spec;
1567 struct channel_info *info;
1568 char *tx_power;
1569 unsigned int i;
1572 * Initialize all hw fields.
1574 rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1575 IEEE80211_HW_SIGNAL_DBM |
1576 IEEE80211_HW_SUPPORTS_PS |
1577 IEEE80211_HW_PS_NULLFUNC_STACK;
1579 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1580 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1581 rt2x00_eeprom_addr(rt2x00dev,
1582 EEPROM_MAC_ADDR_0));
1585 * Initialize hw_mode information.
1587 spec->supported_bands = SUPPORT_BAND_2GHZ;
1588 spec->supported_rates = SUPPORT_RATE_CCK;
1590 spec->num_channels = ARRAY_SIZE(rf_vals_b);
1591 spec->channels = rf_vals_b;
1594 * Create channel information array
1596 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1597 if (!info)
1598 return -ENOMEM;
1600 spec->channels_info = info;
1602 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1603 for (i = 0; i < 14; i++) {
1604 info[i].max_power = TXPOWER_FROM_DEV(MAX_TXPOWER);
1605 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1608 return 0;
1611 static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1613 int retval;
1616 * Allocate eeprom data.
1618 retval = rt2400pci_validate_eeprom(rt2x00dev);
1619 if (retval)
1620 return retval;
1622 retval = rt2400pci_init_eeprom(rt2x00dev);
1623 if (retval)
1624 return retval;
1627 * Initialize hw specifications.
1629 retval = rt2400pci_probe_hw_mode(rt2x00dev);
1630 if (retval)
1631 return retval;
1634 * This device requires the atim queue and DMA-mapped skbs.
1636 __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1637 __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
1638 __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1641 * Set the rssi offset.
1643 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1645 return 0;
1649 * IEEE80211 stack callback functions.
1651 static int rt2400pci_conf_tx(struct ieee80211_hw *hw,
1652 struct ieee80211_vif *vif, u16 queue,
1653 const struct ieee80211_tx_queue_params *params)
1655 struct rt2x00_dev *rt2x00dev = hw->priv;
1658 * We don't support variating cw_min and cw_max variables
1659 * per queue. So by default we only configure the TX queue,
1660 * and ignore all other configurations.
1662 if (queue != 0)
1663 return -EINVAL;
1665 if (rt2x00mac_conf_tx(hw, vif, queue, params))
1666 return -EINVAL;
1669 * Write configuration to register.
1671 rt2400pci_config_cw(rt2x00dev,
1672 rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
1674 return 0;
1677 static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw,
1678 struct ieee80211_vif *vif)
1680 struct rt2x00_dev *rt2x00dev = hw->priv;
1681 u64 tsf;
1682 u32 reg;
1684 rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1685 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1686 rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1687 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1689 return tsf;
1692 static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
1694 struct rt2x00_dev *rt2x00dev = hw->priv;
1695 u32 reg;
1697 rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1698 return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1701 static const struct ieee80211_ops rt2400pci_mac80211_ops = {
1702 .tx = rt2x00mac_tx,
1703 .start = rt2x00mac_start,
1704 .stop = rt2x00mac_stop,
1705 .add_interface = rt2x00mac_add_interface,
1706 .remove_interface = rt2x00mac_remove_interface,
1707 .config = rt2x00mac_config,
1708 .configure_filter = rt2x00mac_configure_filter,
1709 .sw_scan_start = rt2x00mac_sw_scan_start,
1710 .sw_scan_complete = rt2x00mac_sw_scan_complete,
1711 .get_stats = rt2x00mac_get_stats,
1712 .bss_info_changed = rt2x00mac_bss_info_changed,
1713 .conf_tx = rt2400pci_conf_tx,
1714 .get_tsf = rt2400pci_get_tsf,
1715 .tx_last_beacon = rt2400pci_tx_last_beacon,
1716 .rfkill_poll = rt2x00mac_rfkill_poll,
1717 .flush = rt2x00mac_flush,
1718 .set_antenna = rt2x00mac_set_antenna,
1719 .get_antenna = rt2x00mac_get_antenna,
1720 .get_ringparam = rt2x00mac_get_ringparam,
1721 .tx_frames_pending = rt2x00mac_tx_frames_pending,
1724 static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
1725 .irq_handler = rt2400pci_interrupt,
1726 .txstatus_tasklet = rt2400pci_txstatus_tasklet,
1727 .tbtt_tasklet = rt2400pci_tbtt_tasklet,
1728 .rxdone_tasklet = rt2400pci_rxdone_tasklet,
1729 .probe_hw = rt2400pci_probe_hw,
1730 .initialize = rt2x00pci_initialize,
1731 .uninitialize = rt2x00pci_uninitialize,
1732 .get_entry_state = rt2400pci_get_entry_state,
1733 .clear_entry = rt2400pci_clear_entry,
1734 .set_device_state = rt2400pci_set_device_state,
1735 .rfkill_poll = rt2400pci_rfkill_poll,
1736 .link_stats = rt2400pci_link_stats,
1737 .reset_tuner = rt2400pci_reset_tuner,
1738 .link_tuner = rt2400pci_link_tuner,
1739 .start_queue = rt2400pci_start_queue,
1740 .kick_queue = rt2400pci_kick_queue,
1741 .stop_queue = rt2400pci_stop_queue,
1742 .flush_queue = rt2x00pci_flush_queue,
1743 .write_tx_desc = rt2400pci_write_tx_desc,
1744 .write_beacon = rt2400pci_write_beacon,
1745 .fill_rxdone = rt2400pci_fill_rxdone,
1746 .config_filter = rt2400pci_config_filter,
1747 .config_intf = rt2400pci_config_intf,
1748 .config_erp = rt2400pci_config_erp,
1749 .config_ant = rt2400pci_config_ant,
1750 .config = rt2400pci_config,
1753 static const struct data_queue_desc rt2400pci_queue_rx = {
1754 .entry_num = 24,
1755 .data_size = DATA_FRAME_SIZE,
1756 .desc_size = RXD_DESC_SIZE,
1757 .priv_size = sizeof(struct queue_entry_priv_pci),
1760 static const struct data_queue_desc rt2400pci_queue_tx = {
1761 .entry_num = 24,
1762 .data_size = DATA_FRAME_SIZE,
1763 .desc_size = TXD_DESC_SIZE,
1764 .priv_size = sizeof(struct queue_entry_priv_pci),
1767 static const struct data_queue_desc rt2400pci_queue_bcn = {
1768 .entry_num = 1,
1769 .data_size = MGMT_FRAME_SIZE,
1770 .desc_size = TXD_DESC_SIZE,
1771 .priv_size = sizeof(struct queue_entry_priv_pci),
1774 static const struct data_queue_desc rt2400pci_queue_atim = {
1775 .entry_num = 8,
1776 .data_size = DATA_FRAME_SIZE,
1777 .desc_size = TXD_DESC_SIZE,
1778 .priv_size = sizeof(struct queue_entry_priv_pci),
1781 static const struct rt2x00_ops rt2400pci_ops = {
1782 .name = KBUILD_MODNAME,
1783 .max_sta_intf = 1,
1784 .max_ap_intf = 1,
1785 .eeprom_size = EEPROM_SIZE,
1786 .rf_size = RF_SIZE,
1787 .tx_queues = NUM_TX_QUEUES,
1788 .extra_tx_headroom = 0,
1789 .rx = &rt2400pci_queue_rx,
1790 .tx = &rt2400pci_queue_tx,
1791 .bcn = &rt2400pci_queue_bcn,
1792 .atim = &rt2400pci_queue_atim,
1793 .lib = &rt2400pci_rt2x00_ops,
1794 .hw = &rt2400pci_mac80211_ops,
1795 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1796 .debugfs = &rt2400pci_rt2x00debug,
1797 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1801 * RT2400pci module information.
1803 static DEFINE_PCI_DEVICE_TABLE(rt2400pci_device_table) = {
1804 { PCI_DEVICE(0x1814, 0x0101) },
1805 { 0, }
1809 MODULE_AUTHOR(DRV_PROJECT);
1810 MODULE_VERSION(DRV_VERSION);
1811 MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
1812 MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
1813 MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
1814 MODULE_LICENSE("GPL");
1816 static int rt2400pci_probe(struct pci_dev *pci_dev,
1817 const struct pci_device_id *id)
1819 return rt2x00pci_probe(pci_dev, &rt2400pci_ops);
1822 static struct pci_driver rt2400pci_driver = {
1823 .name = KBUILD_MODNAME,
1824 .id_table = rt2400pci_device_table,
1825 .probe = rt2400pci_probe,
1826 .remove = __devexit_p(rt2x00pci_remove),
1827 .suspend = rt2x00pci_suspend,
1828 .resume = rt2x00pci_resume,
1831 static int __init rt2400pci_init(void)
1833 return pci_register_driver(&rt2400pci_driver);
1836 static void __exit rt2400pci_exit(void)
1838 pci_unregister_driver(&rt2400pci_driver);
1841 module_init(rt2400pci_init);
1842 module_exit(rt2400pci_exit);